EP4218444A1 - Ensemble de chauffage et dispositif de formation d'aérosol - Google Patents
Ensemble de chauffage et dispositif de formation d'aérosol Download PDFInfo
- Publication number
- EP4218444A1 EP4218444A1 EP21870731.3A EP21870731A EP4218444A1 EP 4218444 A1 EP4218444 A1 EP 4218444A1 EP 21870731 A EP21870731 A EP 21870731A EP 4218444 A1 EP4218444 A1 EP 4218444A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- segment portion
- heating body
- heater assembly
- aerosol
- assembly according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 209
- 239000000443 aerosol Substances 0.000 title description 7
- 239000000758 substrate Substances 0.000 claims abstract description 94
- 239000000919 ceramic Substances 0.000 claims description 50
- 239000000463 material Substances 0.000 claims description 12
- 239000010410 layer Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000011241 protective layer Substances 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 239000002241 glass-ceramic Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 claims description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims description 2
- HBAGRTDVSXKKDO-UHFFFAOYSA-N dioxido(dioxo)manganese lanthanum(3+) Chemical compound [La+3].[La+3].[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O HBAGRTDVSXKKDO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- IGPAMRAHTMKVDN-UHFFFAOYSA-N strontium dioxido(dioxo)manganese lanthanum(3+) Chemical compound [Sr+2].[La+3].[O-][Mn]([O-])(=O)=O IGPAMRAHTMKVDN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 238000009740 moulding (composite fabrication) Methods 0.000 description 70
- 241000208125 Nicotiana Species 0.000 description 22
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 22
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 229910010293 ceramic material Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 206010016256 fatigue Diseases 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910002110 ceramic alloy Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052574 oxide ceramic Inorganic materials 0.000 description 2
- 239000011224 oxide ceramic Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- -1 iron-silicon-aluminum Chemical compound 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/04—Waterproof or air-tight seals for heaters
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/03—Electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/06—Heater elements structurally combined with coupling elements or holders
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/141—Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/22—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
- H05B3/24—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/20—Devices using solid inhalable precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/022—Heaters specially adapted for heating gaseous material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/032—Heaters specially adapted for heating by radiation heating
Definitions
- the present disclosure relates to the field of heating-not-burning smoke-forming devices, and in particular to a heater assembly and an aerosol-forming device.
- e-cigarettes are safe, can be conveniently used, healthy, and environmentally friendly. Therefore, the e-cigarettes, such as heating-not-burning e-cigarettes, also known as heating-not-burning aerosol-forming devices, are increasingly popular.
- a heating-not-burning aerosol-forming device in the art may heat substrates in a tubular peripheral heating manner or in a central embedding heating manner.
- the tubular peripheral heating manner refers to a heating rod or a flat blade surrounding an outside of an aerosol-forming substrate (such as tobacco) to heat the aerosol-forming substrate.
- the central embedding heating manner refers to the heating rod or flat blade being inserted into the aerosol-forming substrate to heat the aerosol-forming substrate.
- the heater assembly may be easily manufactured and may be used easily, and therefore, the heater assembly is widely used.
- a heater assembly in the art may be manufactured by configuring a ceramic or an insulated metal as a substrate, printing or coating at least one resistor heating circuit on the substrate, and performing a high temperature treatment to fix the resistor heating circuit on the substrate.
- the resistor heating circuit on the heater assembly in the art heating line is a thin film that is printed or coated on a substrate at a later stage.
- the substrate In the process of inserting the heater assembly into the aerosol-forming substrate for a plurality of times, after being heated to a high temperature, the substrate may be curved, and the resistor heating circuit may fall off from the substrate easily, and the stability is poor.
- the resistor heating circuit contacts only the aerosol-forming substrate located on a side of the substrate arranged with the resistor heating circuit, but does not contact the aerosol-forming substrate located on an opposite side of the substrate. Therefore, the aerosol-forming substrate may not be heated uniformly.
- the present disclosure provides a heater assembly and an aerosol-forming device to solve the technical problems that the resistor heating circuit may fall off from the substrate easily when the heater assembly in the art being heated to a high temperature, the heater assembly has a poor stability, and the aerosol-forming substrate may not be heated by the resistor heating circuit uniformly.
- a heater assembly includes a heating body.
- the heating body is configured to be inserted into and to heat an aerosol-forming substrate.
- the heating body includes a first segment portion and a second segment portion spaced apart from the first segment portion, the second segment portion is connected to an end of the first segment portion. At least a portion of the first segment portion and at least a portion of the second segment portion are configured to be inserted into the aerosol-forming substrate and to generate heat, when being supplied with power, to heat the aerosol-forming substrate.
- an aerosol-forming device includes: a housing, the heater assembly according to the above aspect, and a power supply assembly.
- the heater assembly and the power supply assembly are arranged inside the housing; the power supply assembly is connected to the heater assembly and is configured to supply power to the heater assembly.
- a heater assembly and an aerosol-forming device are provided.
- the heater assembly includes the heating body configured to be inserted and heat the aerosol-forming substrate, the heating body includes a first extension and a second extension.
- the second extension is spaced apart from the first extension and is connected to an end of the first extension.
- Both the first extension and the second extension are configured to be at least partially insert into the aerosol forming substrate and generate heat to heat the aerosol forming substrate when being supplied with power.
- the heating body of the present disclosure can be directly and independently inserted into the aerosol-forming substrate.
- the heating body When the temperature is excessively high, the heating body may not fall off from the substrate, failure of the heater assembly may not be caused, the stability of the heater assembly may be improved significantly. Further, since the heating body is directly inserted and heats the aerosol-forming substrate, the uniformity that the aerosol-forming substrate is heated by the heating body is greatly improved.
- first”, “second”, and “third” in the present disclosure are used for descriptive purposes only, and shall not be interpreted as indicating or implying relative importance or implicitly specifying the number of an indicated technical feature. Therefore, a feature defined by the terms “first”, “second”, and “third” may explicitly or implicitly include at least one such feature.
- "a plurality of” means at least two, such as two, three, and so on, unless otherwise expressly and specifically limited. All directional indications (such as up, down, left, right, forward, backward «) in the present disclosure are used only to explain relative positions and movements of components in a particular attitude (the attitude shown in the corresponding drawing). When the particular attitude is changed, the directional indications may be changed accordingly.
- FIG. 1a is a structural schematic view of a heater assembly according to a first embodiment of the present disclosure
- FIG. 1b is a structural schematic view of the heater assembly according to a second embodiment of the present disclosure
- FIG. 1c is a schematic view of the heater assembly inserted in to the aerosol-forming substrate according to an embodiment of the present disclosure
- FIG. 2 is an exploded view of the structure shown in FIG. 1b
- FIG. 3a is a structural schematic view of the heater assembly according to a third embodiment of the present disclosure
- FIG. 3b is a schematic view of the heater assembly inserted in to an aerosol-forming substrate according to another embodiment of the present disclosure
- FIG. 4 is an exploded view of the structure shown in FIG. 3a .
- a heater assembly 10 is provided and is configured to be inserted into and heat an aerosol forming substrate 102.
- the heater assembly 10 may be configured to be inserted into tobacco to heat tobacco, and the following embodiments will be described by taking the tobacco as an example of the aerosol-forming substrate 102. It is understood that in this embodiment, the aerosol forming substrate 102 may be tobacco.
- the above-mentioned heater assembly 10 includes a heating body 11.
- the heating body 11 may be a self-supporting structure. That is, the heating body 11 may be configured independently without any other carrier.
- the self-supporting structure of the heating body 11 may be directly and independently inserted into the aerosol-forming substrate 102. Further, when the heating body 11 is heated to reach a high temperature, the resistor heating circuit may not fall off from the substrate, and the stability of the heater assembly 10 may be improved significantly. Since the heating body 11 is the self-supporting structure, the heating body is not required to engage with the substrate.
- Two opposite surfaces of the heating body 11 may directly contact the tobacco, such that a high energy utilization rate is achieved, the tobacco may be heated more uniformly, the pre-defined temperature field can be achieved, and especially, when the device is initiated at a low pressure, a power may be controlled and determined in real time.
- the heating body 11 may be made of conductive ceramics. Compared to the heating body in the art made of metals, the heating body 11 made of conductive ceramics has a high conductive efficiency, and the heat generated by heating may be uniformly distributed on the heating body. Further, a power of the heating body 11 made of conductive ceramics may be adjusted between 3 watts and 4 watts, a conductive efficiency of the heating body 11 made of conductive ceramics may be in a range of 1 ⁇ 10 -4 to 1 ⁇ 10 -6 ohms. A strength of the heating body 11 made of conductive ceramics against bending may be greater than 40MPa. A fire-resistance of the heating body 11 made of conductive ceramics may be higher than 1200°C. In addition, the heating body 11 made of conductive ceramics may have a full starting voltage.
- an electromagnetic heating wavelength of the heating body 11 generated by the ceramic is a mid-infrared wavelength, allowing the tobacco oil to be atomized easily and providing an improved taste.
- the ceramic used to make the heating body 11 is oxide ceramic, and a microcrystalline structure of the ceramic is stable at high temperatures. Since the oxide ceramic is highly resistant to fatigue, has a high strength, and has a high density, harmful heavy metal volatilization and dust may be avoided, significantly increasing the service life of the heating body 11.
- the heating body 11 may be an entire sheet of ceramics, such that an area of the highest temperature hot spot may be reduced, a risk of fatigue cracking and an increase in the resistance due to the fatigue may be eliminated, and the heating body 11 may have better consistency. Further, since the ceramic heating material has a high strength, and the microcrystalline structure of the ceramic heating material provides smoothness, the surface of the heating body 11 may be cleaned easily, and substrates may not be adhered to the surface of the heating body. In addition, the heating body 11 may be produced by performing a ceramic production process.
- the ceramic production process includes raw material mixing, forming and sintering, and a cutting process. The ceramic production process may be simple and may be controlled easily, and costs of the ceramic production process may be low. Therefore, the ceramic production process may be promoted for batch manufacturing, and economic benefits may be improved.
- the heating body 11 made of the conductive ceramic includes a main component and a crystalline component.
- the main component is configured to conduct electricity and to allow the conductive ceramic of the heating body 11 to generate a certain resistance.
- the main component may specifically be one or more of manganese, strontium, lanthanum, tin, antimony, zinc, bismuth, silicon, and titanium.
- the crystalline component i.e., the main material of the ceramic, is configured to form the shape and the structure of the conductive ceramic.
- the crystalline component may specifically be one or more of lanthanum manganate, lanthanum strontium manganate, tin oxide, zinc oxide, antimony oxide, bismuth oxide, silicon oxide, and yttrium oxide.
- the heating body 11 may be made of a ceramic alloy made of metal alloys, or a ceramic alloy made of iron-silicon alloys or iron-silicon-aluminum alloys.
- the heater assembly 10 specifically includes a first segment portion 111 and a second segment portion 112 connected to the first segment portion 111.
- each of at least a portion of the first segment portion 111 and at least a portion of the second segment portion 112 is inserted into the aerosol-forming substrate 102 for generating heat, when being conducted with power, to heat the aerosol-forming substrate 102.
- the first segment portion 111 and the second segment portion 112 may be independently and directly inserted into the aerosol-forming substrate 102.
- the resistor heating circuit in the art which is screen-printed or coated to the substrate, may be inserted into the aerosol-forming substrate 102 via the substrate, and may not be independently inserted into the aerosol-forming device. Further, the first segment portion 111 and the second segment portion 112 of the present disclosure may not fall off from the substrate when being heated to high temperatures, and failure of the heater assembly may not be caused, such that stability of the heater assembly 10 may be improved significantly.
- the heating body 11 of the present disclosure is directly inserted into the aerosol-forming substrate 102, the substrate or other base plates may not be required. Therefore, at least two opposite surfaces of the first segment portion 111 and at least two opposite surfaces of the second segment portion 112 of the heating body 11 directly contact the aerosol-forming substrate 102, such that utilization of the generated heat may be improved significantly, and a heating efficiency is improved significantly
- the heater assembly 30 further includes a third segment portion 113 which may be entirely inserted into and heat the aerosol-forming substrate 102.
- the first segment portion 111 and the second segment portion 112 are arranged side by side and are spaced apart from each other.
- An end of the first segment portion 111 near the second segment portion 112 and an end of the second segment portion 112 near the first segment portion 111 are connected with each other by the third segment portion 113.
- the end of the first segment portion 111 near the second segment portion 112 and the end of the second segment portion 112 near the first segment portion 111 refer to ends that firstly contact and are inserted into the aerosol-forming substrate 102.
- first segment portion 111, the second segment portion 112 and the third portion 113 cooperatively form a substantially U-shaped structure.
- the first segment portion 111, the second segment portion 112 and the third segment portion 113 are conductive ceramics, and are sintered and configured as an integral one-piece structure.
- a substrate plate for forming the heating body 11 may be cut by laser, and a cut-groove 114 is generated, such that the substrate having the first segment portion 111, the second segment portion 112 and the third segment portion 113 is obtained.
- the heating body 11 may also be configured by sintered directly.
- shapes of the first segment portion 111, the second segment portion 112, and the third segment portion 113 are not limited herein and may be determined according to actual demands.
- the first segment portion 111 and the second segment portion 112 may be elongated, and a width of the third segment portion 113 decreases from an end near the first segment portion 111 to an end away from the first segment portion 111, such that a tip is formed, enabling the heating body 11 to be inserted into the tobacco easily.
- the first segment portion 111 and the second segment portion 112 are rectangular cubes, and the third segment portion 113 is substantially V-shaped.
- the third segment portion 113 may be U-shaped or isosceles trapezoidal, or may be in another shape which has a width decreasing along the direction from the end near the first segment portion 111 and the second segment portion 112 to the end away from the first segment portion 111 and the second segment portion 112.
- the cut-groove 114 is a rectangle having a uniform width, or a convex leading arc is formed at an end of the rectangle near the third segment portion 113.
- the cut-groove 114 is axial symmetric. A length direction of the cut-groove 114 is parallel to a direction of a central axis of the cut-groove 114.
- the first segment portion 111 and the second segment portion 112 are parallel to and spaced apart from each other, and are arranged side by side. Length directions of the first segment portion 111 and the second segment portion 112 are parallel to the direction of the central axis of the cut-groove 114. Each of a width direction of the first segment portion 111, a width direction of the second segment portion 112, and a width direction of the third segment portion 113 is perpendicular to the direction of the central axis of the cut-groove 114.
- the heating body 11 is symmetrical about the central axis of the cut-groove 114.
- each of the first segment portion 111, the second segment portion 112, and the third segment portion 113 is symmetrical about the central axis of the cut-groove 114.
- corresponding positions of the first segment portion 111, the second segment portion 112, and the third segment portion 113, which are arranged on two opposite sides of the cut-groove 114, in the width direction may have a same temperature, such that the smoke may have a better taste for the user.
- FIG. 5 is a plane view of the heater assembly according to an implementation of the present disclosure.
- the first segment portion 111 and the second segment portion 112 are arranged side by side.
- the cut-groove 114 may be centrosymmetric, and the width of the cut-groove 114 may decrease in a direction from the end away from the third segment portion 113 to the end near the third segment portion 113.
- an outer edge of the first segment portion 111 and an outer edge of the second segment portion 112 are parallel to each other.
- a width of the first segment portion 111/the second segment portion 112 may increase in the direction from the end away from the third segment portion 113 to the end near the third segment portion 113. In this way, a resistance at the end away from the third segment portion 113 may be increased slightly to be balanced with a resistance of the third segment portion 113 (which has a relatively large resistance), such that the entire heater assembly may generate heat uniformly.
- FIG. 6 is a plane view of the heater assembly according to another implementation of the present disclosure.
- the cut-groove 114 may be centrosymmetric.
- the width of the cut-groove 114 may increase in the direction from the end away from the third segment portion 113 to the end near the third segment portion 113.
- the outer edge of the first segment portion 111 and the outer edge of the second segment portion 112 are parallel to each other.
- the width of the first segment portion 111/the second segment portion 112 may decrease in the direction from the end away from the third segment portion 113 to the end near the third segment portion 113. In this way, a resistance near an upper end of the heating body 11 may be higher, meeting the requirements that high temperatures are more concentrated at a middle-upper portion of the heating body 11.
- FIG. 7 is a plane view of the heater assembly according to still another implementation of the present disclosure.
- the first segment portion 111 and the second segment portion 112 are rectangular, but are not arranged side by side.
- the first segment portion 111 and the second segment portion 112 are not parallel to each other, and there is a certain angle between the first segment portion 111 and the second segment portion 112, such as 3 degrees to 10 degrees.
- the cut-groove 114 may be centrosymmetric, and the width of the cut-groove 114 may decrease in the direction from the end away from the third segment portion 113 to the end near the third segment portion 113.
- FIG. 8 is a schematic view showing a size of the heater plate according to an embodiment of the present disclosure.
- the heating body 11 may be configured as a plate as shown in FIG. 8 and may be a heater plate made of conductive ceramic.
- a spacing between the first segment portion 111 and the second segment portion 112 is less than one tenth of the width of the entire heating body 11.
- the spacing L1 between the first segment portionlll and second segment portion 112 may be in a range of 0.25 mm to 0.35 mm in order to ensure the strength of the heating body 11 while avoiding short circuits.
- a resistivity of the ceramic used for making the heater plate may be 5 ⁇ 10 -5 ohms, a design power of the ceramic may be 2 watts, and a resistance of the ceramic may be 0.71 ohms.
- the heater plate may be formed by single-strip being connected in series (a cut-groove 114 defined in the middle). That is, the first segment portion 111, the third segment portion 113, and second segment portion 112 are arranged in sequence and are connected in series with each other.
- the thickness H1 of the heater plate may be 0.5 mm, and the total length L2 of the heater plate may be 18 mm.
- Each of the length L3 of the first segment portion 111 and the length L3 of the second segment portion 112 may be 16 mm.
- the effective length of the single strip of the heating body 11 may be 32.0 mm.
- the length of the third segment portion 113 of the heating body 11 may be 2 mm.
- the width W1 of the heater plate may be 4.0 mm; specifically, an error of each dimension of the heater plate is not greater than 0.05 mm.
- Each of two opposite surfaces of the plate-shaped heating body 11 may be configured to contact and heat the aerosol-forming substrate 102.
- FIG. 9 is a schematic view showing a size of a heater stick according to an implementation of the present disclosure.
- the heating body 11 may alternatively be a stick and may be a heater stick made of conductive ceramic.
- the spacing L4 between the first segment portion 111 and the second segment portion 112 is less than one third of the diameter ⁇ of the entire heater stick.
- the spacing L4 may specifically be in a range from 0 mm to 1 mm, and may preferably be 0.3mm or 0.4mm.
- a support ceramic 14 is arranged between the first segment portion 111 and the second segment portion 112 to increase the strength of the heating body 11.
- the support ceramic 14 may be bonded to the first segment portion 111 and the second segment portion 112 by a glass ceramic 15, such that a bonding force there between may be improved.
- the support ceramic 14 may be made of ceramic materials such as zirconia, zirconia toughened, alumina material, and so on.
- a resistivity of the ceramic materials for making the heater stick may be 3*10-5 ohms; a design power of the heater stick may be in a range of 3W to 4W, such as 3.3W specifically; and a resistance of the heater stick may be in a range of 0.3ohms to 1ohm, such as 0.5ohms.
- the heater stick may be formed by single-strip being connection in series. That is, the first segment portion 111, the third segment portion 113, and the second segment portion 112 are arranged in sequence and are connected in series.
- the diameter ⁇ of the heater stick may be in a range of 2 mm to 5 mm, specifically 3 mm.
- the length L5 of the heater stick may be in a range of 18 mm to 22 mm, specifically 19.7 mm.
- Each of the length L6 of the first segment portion111 and the length L6 of the second segment portion 112 may be in a range of 12 mm to 18 mm, specifically 16 mm. It shall be understood that the effective length of a single strip of the heating body 11 may be in a range of 30 mm to 35 mm, specifically 32.0 mm.
- the length of the third segment portion 113 may be in a range of 2 mm to 5 mm, specifically 3.7 mm.
- the length L7 of the support ceramic 14 disposed between the first segment portion 111 and the second segment portion 112 may be in a range of 12 mm to 18 mm, specifically 17 mm.
- the width W2 of the support ceramic 14 may be the same as the diameter ⁇ of the heater stick and may be in a range of 2 mm to 5 mm, specifically 3 mm.
- the thickness H2 of the support ceramic 14 may be slightly less than the spacing between the first segment portion 111 and the second segment portion 112. Specifically, the thickness H2 may be in a range of 0.8 mm to 1.2 mm, such as 0.9 mm, allowing the glass ceramic 15 to be arranged easily.
- the heater assembly 10 further includes two electrodes 12, one of the two electrodes 12 is arranged on the first segment portion 111, and the other one of the two electrodes 12 is arranged on the second segment portion 112. While the device is in use, each of the two electrodes 12 is electrically connected to the power supply assembly through an electrode lead, allowing the heating body 11 to be electrically connected to the power supply assembly.
- the two electrodes 12 are arranged on the end of the first segment portion 111 away from the third segment portion 113 and on the end of the second segment portion 112 away from the third segment portion 113, respectively; and sides of the ends where the two electrodes 12 are arranged face a same direction.
- the two electrodes 12 are formed by coating a conductive silver paste on an outer surface of a lower end of the conductive ceramic.
- each of the two electrodes 12 is substantially semi-cylindrical, and the two electrodes 12 extend from two ends of a cross section of the heating body 11 to the cut-groove 114. In this way, a contact area of the conductive ceramic may be increased as much as possible to reduce a contact resistance.
- the electrode lead may be soldered easily.
- a contact resistance between the electrodes and the heating circuit is high, the contact area between the heating body 11 of the present disclosure and the electrodes 12 may be increased significantly, such that the contact resistance may be reduced, and the heating body 11 may be sued more stably.
- FIG. 10a is a schematic view showing electrodes arranged on two opposite surfaces of the heating body according to an embodiment of the present disclosure.
- each of two opposite surfaces of the first segment portion 111 and each of two opposite surfaces of the second segment portion 112 is arranged with one electrode 12. That is, one of the two electrodes 12 is arranged on each of a first surface C at the end of the first segment portion 111 and a second surface D opposite to the first surface C of the first segment portion 111, and the other one of the two electrodes 12 is arranged on each of a first surface C at the end of the second segment portion 112 and a second surface D opposite to the first surface C of the second segment portion 112.
- FIG. 10b is a schematic view of a heater stick according to an embodiment of the present disclosure.
- Each of the two electrodes 12 may extend to the inner wall surface corresponding to the cut-groove 114.
- the first segment portion 111 of the heater stick has a first inner surface 111a and a first outer surface 111b.
- the second segment portion 112 has a second inner surface 112a and a second outer surface 112b.
- the electrode 12 arranged on the first segment portion 111 extends from the first outer surface 111a to the first inner surface 111b.
- the electrode 12 arranged on the second segment portion 112 extends from the second outer surface 112a to the second inner surface 112b.
- soldering may be performed easily, the heating body 11 may have a lower resistance and may generate relatively less heat when being conducted, such that the heating body 11 may be prevented from being damaged effectively.
- the two surfaces of the conductive ceramic may be conducted at the same time, a same electrical potential may be generated, conductive components of the two surfaces may generate a uniform electric field, and a better heating effect may be achieved.
- FIG. 10c is a schematic view of the heater assembly, viewed from an E direction, according to an embodiment of the present disclosure.
- each of an edge of the first segment portion 111, an edge of the second segment portion 112, and an edge of the third segment portion 113 extends from a surface parallel to the middle of the first surface C and the second surface D towards the first surface C and the second surface D to form a guiding surface 118.
- the guiding surface 118 may specifically be a guiding inclined surface (see FIG. 10c ) or an arc. In this way, the heating body 11 may be inserted into the tobacco easily, a resistance while inserting may be reduced, and the heating body 11 may be protected better.
- the electrodes 12 may be formed on two ends of the first segment portion 111 and on two ends of the second segment portion 112 by coating, in order to improve bonding strength between the electrodes 12 and the heating body 11, such that stability of the connection between the electrode leads connected to the electrodes 12 and the heating body 11 may be improved.
- the ceramic has a microporous structure. The microporous structure of the ceramic enables the bonding between the formed electrodes 12 and the heating body 11 to be strong when the thickness of the coating is large. In this way, the bonding between the electrodes 12 and the heating body 11 is improved significantly.
- the above-mentioned coating material may be the silver paste.
- the electrodes 12 may be formed by depositing a metal film, such as depositing a metal material having a resistivity greater than 1 ⁇ 10 -6 ohms, such as gold, platinum, copper, and so on.
- FIG. 11 is a side view of the heater assembly according to an embodiment of the present disclosure.
- a surface of the heating body 11 may be coated with a protective layer 115.
- the protective layer 15 covers the two electrodes 12, preventing an oil, which is generated while the aerosol-forming substrate 102 is being heated, from damaging or contaminating the two electrodes 12 and the heating body 11.
- the protective layer 115 may be a vitreous glaze layer.
- FIG. 12 is a schematic view showing locations of a heater plate where a first heat region and a second heat region are located according to an embodiment of the present disclosure
- FIG. 13 is a schematic view showing locations of the heater stick where the first heat region and the second heat region are arranged, according to an embodiment of the present disclosure.
- the heating body 11 includes a first heat region A and a second heat region B connected to the first heat region A.
- the first heat region A is a main atomization region and is inserted into the tobacco to heat the tobacco.
- An atomization temperature on the first heat region A is concentrated within a range of 280°C to 350°C, and the concentrated area occupies more than 75% of an area of the atomization region.
- the second heat region B is a main mating section of the heating body 11 and has a temperature below 150°C.
- the length of the first heat region A of the heater stick may be 14.5 mm, and the length of the second heat region B of the heater stick may be 5.2 mm.
- first heat region A and the second heat region B of each of the first segment portion 111 and the second segment portion 112 only the majority of the first heat region A is inserted into the aerosol-forming substrate 102, and a small portion of the first heat region A and the entire second heat region B are disposed out of the aerosol-forming substrate 102.
- first heat region A and the second heat region B of each of the first segment portion 111 and the second segment portion 112 the entire first heat region A is inserted into the aerosol-forming substrate 102, and the second heat region B is disposed out of aerosol-forming substrate 102.
- the entire first heat region A and a small portion of the second heat region B are inserted into the aerosol-forming substrate 102, and only the majority of the second heat region B is disposed out of the aerosol-forming substrate 102.
- the two electrodes 12 are specifically disposed at the second heat region B of the heating body 11 to reduce the atomization temperature of the ceramic heating body 11 disposed at the second heat region B.
- a ratio of the heating temperature of the first heat region A to the heating temperature of the second heat region B of the heating body 11 is greater than 2.
- a resistivity of the material of the portion of the heating body 11 disposed at the second heat region B is less than a resistivity of the material of the portion of the heating body 11 disposed at the first heat region A, such that the temperature of the first heat region A is greater than the temperature of the second heat region B of the heating body 11.
- temperatures of the different heat regions may be regulated based on a difference in the resistivities.
- a major component of the ceramic material of the portion of the heating body 11 disposed at the first heat region A may be the same as a major component of the ceramic material of the portion of the heating body 11 disposed at the second heat region B, and the first heat region A and the second heat region B may be configured as an integral one-piece structure.
- a proportion or other components of the ceramic materials of the portion of the heating body 11 disposed at the first heat region A may be different from a proportion or other components of the ceramic materials of the portion of the heating body 11 disposed at the second heat region B. In this way, the resistivity of the portion of the heating body 11 disposed at the first heat region A is different from the resistivity of the portion of the heating body 11 disposed at the second heat region B.
- first heat region and the second heat region being made of different conductive materials, such as an aluminum film and a gold film
- splicing two different conductive materials may prevent a conductive body made of the first heat region A and the second heat region B of the heating body 11 from being broken.
- the width or/and the thickness of the portion of the first segment portion 111 of the heating body 11 disposed at the second heat region B is greater than the width or/and the thickness of the portion of the first segment portion 111 of the heating body 11 disposed at the first heat region A
- the width or/and the thickness of the portion of the second segment portion 112 of the heating body 11 disposed at the second heat region B is greater than the width or/and the thickness of the portion of the second segment portion 112 of the heating body 11 disposed at the first heat region A, such that the temperature of the first heat region A is greater than the temperature of the second heat region B of the heating body 11.
- the widened portion of the second heat region B of the heating body 11 is snapped within the mounting base 20, such that a position the mounting base 20 may be limited by the widened portion of the heating body 11. It this way, the mounting base 20 may be prevented from being displaced relative to the heating body 11 while being inserted and taken out, and the stability of the connection between the electrode leads and the electrodes 12 may not be affected.
- FIG. 14 is a structural schematic view of the heating body being assembled with the mounting base according to an embodiment of the present disclosure.
- the material may be controlled to allow the temperature of the first heat region A to be greater than the temperature of the second heat region B of the heating body 11.
- a conductive component may be added to a lower part of the heating body 11, such that the lower part has a lower resistance and reaches a lower temperature when being heated.
- the width and/or the thickness of the first segment portion 111 disposed at the second heat region B is equal to the width and/or the thickness of the first segment portion 111 disposed at the first heat region A
- the width and/or the thickness of the second segment portion 112 disposed at the second heat region B is equal to the width and/or the thickness of the second segment portion 112 disposed at the first heat region A, such that the heating body 11 may be processed easily, and the problem that the widened portion is adhered with tobacco or tobacco oil may be avoided.
- the heater assembly 10 While the device is in use, the heater assembly 10 is inserted into the tobacco. After the power is supplied, the heater assembly 10 starts operating, the tobacco is heated, and smokes are generated.
- the heater assembly 10 includes the heating body 11.
- the heating body 11 includes the first segment portion 111 and the second segment portion 112 spaced apart from the first segment portion 111. At least a portion of the first segment portion 111 and at least a portion of the second segment portion 112 are configured to be inserted into the aerosol-forming substrate 102 and to generate heat, when being conducted, to heat the aerosol-forming substrate 102.
- the heating body 11 of the present disclosure may be directly and independently inserted into the aerosol-forming substrate 102, and when the heater assembly is heated to a high temperature, the heating body 11 may not fall of from the ceramic substrate, and failure of the heater assembly may not be caused, the stability of the heater assembly 10 may be improved.
- the heating body 11 since the heating body 11 is a self-supporting structure, the heating body 11 may not be engaged with the substrate, two opposite surfaces of the heating body 11 may directly contact the aerosol-forming substrate 102, such that the heater assembly 10 may heat the aerosol-forming substrate 102 more uniformly.
- FIG. 15 is a schematic view of a fixing sleeve according to an embodiment of the present disclosure
- FIG. 16 is a schematic view of the fixing sleeve according to another embodiment of the present disclosure
- FIG. 17 is a schematic view of the heater assembly including the fixing sleeve according to an embodiment of the present disclosure
- FIG. 18 is a schematic view of the structure shown in FIG. 17 before being assembled
- FIG. 19 is a schematic view of the heater assembly including the fixing sleeve according to another embodiment of the present disclosure
- FIG. 20 is a schematic view of the structure shown in FIG. 19 before being assembled.
- the heater assembly 10 further includes the fixing sleeve 13.
- the fixing sleeve 13 sleeves the outside of the heating body 11 to increase a resistance of the heating body 11 against fatigue, thereby increasing the service life of the heater assembly 10.
- the fixing sleeve 13 may be made of metal, such as steel.
- a thickness of a wall the fixing sleeve 13 may be in a range of 0.1 mm to 0.5 mm.
- FIG. 15 when the heating body 11 is the heater plate, a specific structure of the fixing sleeve 13 may be seen in FIG. 15 .
- a structure of a product formed by the fixing sleeve 13 sleeving the plate-shaped heating body 11 can be seen in FIG. 17 .
- An exploded view of the product can be seen in FIG. 18 .
- the fixing sleeve 13 is also plate-shaped. An end of the fixing sleeve 13 defines an opening, and the other end of the fixing sleeve 13 is closed. The closed end of the fixing sleeve 13 forms the tip, and each of two opposite side walls of the opening end of the fixing sleeve 13 has a notch 131.
- the two electrodes 12 are arranged on side surfaces of the first segment portion 111 and the second segment portion 112 respectively away from the cut-groove 114 and are exposed through two notches 131 to be connected to the electrode leads 23.
- FIG. 16 When the heating body 11 is the heater stick, a specific structure of the fixing sleeve 13 can be seen in FIG. 16 .
- a structure of the product formed by the fixing sleeve 13 sleeving the stick-shaped heating body 11 can be seen in FIG. 19 , and an exploded view of the product can be seen in FIG. 20 .
- the fixing sleeve 13 is stick-shaped.
- An end of the fixing sleeve 13 defines an opening, and the other end of the fixing sleeve 13 is closed.
- the closed end of the fixing sleeve 13 forms the tip, and each of two opposite side walls of the opening end of the fixing sleeve 13 has a notch 131.
- the two electrodes 12 are arranged on side surfaces of the first segment portion 111 and the second segment portion 112 respectively away from the cut-groove 114 and are exposed through two notches 131 to be connected to the electrode leads 23
- an insulating medium layer 24 is disposed between the heating body 11 and the fixing sleeve 13 to strengthen bonding between the fixing sleeve 13 and the heating body 11 and to prevent short circuits.
- the insulating medium layer 24 may be coated on the outer surface of the heating body 11 or the inner surface of the fixing sleeve 13, based on a coating processing. The thickness of the coating can be in a range from 0.05 mm to 0.1 mm. In a specific embodiment, the insulating medium layer 24 is coated on the surface of the heating body 11 and exposes the cut-groove 114 and the electrodes 12.
- the length of the fixing sleeve 13 is the same as or less than the length of the heating body 11. It shall be understood that since the fixing sleeve 13 has the tip, the third segment portion 113 may not have a tip, such that the heating body 11 may be machined easily. In other embodiments, the longitudinal length of the fixing sleeve 13 is less than the length of the heating body 11. That is, the portion arranged with the electrodes 12 is not sleeved by the fixing sleeve 13. In this way, two surfaces of the heating body 11 can be fixed directly to the mounting base 20, and the first segment portion 111 and the second segment portion 112, which are inserted into the tobacco, are reinforced and may not be deformed or broken.
- FIG. 21 is a schematic view of the mounting base according to an embodiment of the present disclosure
- FIG. 22 is a schematic view of the mounting base being assembled with the heater plate according to an embodiment of the present disclosure
- FIG. 23 is a schematic view of the mounting base being assembled with the heater stick according to an embodiment of the present disclosure
- FIG. 24 is a schematic view of the mounting base being assembled with the heater stick according to another embodiment of the present disclosure. That is, in the present embodiment, the heater assembly 10 is arranged on the mounting base 20 when being in use to form a heater mechanism. Further, the mounting base 20 is fastened with the heater assembly 10, such that the heater assembly 10 is mounted in a body of the aerosol-forming device by the mounting base 20.
- the heating body 11 when the heating body 11 is the heater plate, a structure of a product formed by the mounting base 20 being assembled with the heating body 11 can be seen in FIG. 22 .
- the heating body 11 is the heater stick, and when the fixing sleeve 13 does not sleeve the outside of the heating body 11, a structure of a product formed by the mounting base 20 being assembled with the heating body 11 can be seen in FIG. 23 .
- the fixing sleeve 13 is arranged at the outside of the heating body 11, the mounting base 20 may be arranged on the heating body 11 or on the fixing sleeve 13, according to actual situations.
- the mounting base 20 may sleeve the fixing sleeve 13, as shown in FIG. 24 .
- the length of the fixing sleeve 13 is less than the length of the heating body 11, the end of the heating body 11 coated with the electrodes 12 is exposed out of the fixing sleeve 13.
- the mounting base 20 is fixed to the end of the heating body 11 exposed out of the fixing sleeve 13, i.e., fixed to the second heat region B of the heating body 11. Further, the mounting base 20 abuts against the end of the fixing sleeve 13 near the mounting base 20.
- the mounting base 20 is fixed to the opening end of the fixing sleeve 13, and that is, the mounting base20 is inserted into the opening end of the fixing sleeve 13, and the end of the body 11 coated with the electrodes 12 passes through the mounting base 20.
- the mounting base 20 may be made of an organic or an inorganic material having a melting point of greater than 160°C, such as PEEK.
- the mounting base 20 may be adhered to the heater assembly 10 by an adhesive, and the adhesive may be a glue resistant to high temperatures.
- the mounting base 20 includes a mounting body 21 with a through hole 22.
- the heating body 11 is inserted in the through hole 22 to be mounted on the mounting base 20.
- the portion of the heating body 11 corresponding to the second heat region B is inserted in the through hole 22.
- the side wall of the through hole 22 is provided with a reserved slot 211.
- the electrode lead 23 passes through the reserved slot 211 to be inserted to the inside of the mounting base 20 to be connect with the electrode 12 on the heating body 11.
- the mounting body 21 is arranged with at least two fastening portions 24, and the mounting base 20 is fixed to the housing of the aerosol-forming device by the fastening portions 24.
- FIG. 25 is a front view of the mounting base being assembled with the heater assembly according to an embodiment of the present disclosure.
- a first fastening structure 116 is arranged on each of a partial surface of the first segment portion 111 configured to be inserted into the mounting base 20 and a partial surface of the second segment portion 112 configured to be inserted into the mounting base 20 of the heating body 11.
- a second fastening structure 117 is arranged in the through hole 22 of the mounting base 20 at a position corresponding to the first fastening structure 116.
- the mounting base 20 is fixed to the heating body 11 by fastening the first fastening structure 116 with the second fastening structure 117, such that stability of the connection between the mounting base 20 and the heating body 11 is improved.
- the first fastening structure 116 may be arranged on the surface of a part of the fixing sleeve 13 inserted into the mounting base 20 to be fastened with the second fastening structure 117 arranged in the mounting base 20, such that fixation between the fixing sleeve 13 and the mounting base 20 is achieved.
- the first fastening structure 116 may be a plurality of protrusions (or recesses), and the second fastening structure 117 may be a plurality of recesses (or protrusions) engaging with the first fastening structure 116.
- the heater assembly 10 provided in the present embodiment may directly take the self-supporting ceramic heater plate (or heater stick) to generate heat.
- the heating body 11 may be arranged as single-strip connected in series based on locations where the electrodes are arranged and requirements about resistance values.
- the heating body 11 is made of ceramic. Compared to the resistor heating circuit in the art, which is formed by coating a metal heating material on the substrate, two sides of the heating body made of ceramic may contact and heat the tobacco simultaneously, such that the tobacco may be heated more uniformly and stably.
- FIG. 26 is a schematic view of an aerosol-forming device according to an embodiment of the present disclosure.
- an aerosol-forming device 100 is provided and includes a housing 101, and the heater assembly 10 arranged inside the housing 101, a mounting base 20 arranged inside the housing, and a power supply assembly 30 arranged inside housing 101.
- the heater assembly 10 is arranged on the mounting base 20 and is mounted on the inner wall of the housing 101 through the mounting base 20. Specific structures and functions of the heater assembly 10 and the mounting base 20 may be referred to the description of the heater assembly 10 in the above embodiments.
- the power supply assembly 30 is connected to the heater assembly 10 and is configured to supply power to the heater assembly 10. Further, in an embodiment, the power supply assembly 30 may be a rechargeable lithium-ion battery.
- the aerosol-forming device 100 in the present embodiment is arranged with the heater assembly 10, and the heater assembly 10 is inserted into and heat the tobacco.
- the heater assembly 10 includes the heating body 11.
- the heating body 11 includes the first segment portions 111 and the second segment portion 112 spaced apart from the first segment portion 111. Both the first segment portion 111 and the second segment portion 112 are at least partially inserted into the aerosol forming medium 102 and may generate heat, when being supplied with power, to heat the aerosol forming medium 102.
- the heating body 11 of the present disclosure can be directly and independently inserted into the aerosol-forming substrate 102.
- the heating body 11 is the self-supporting structure and is not required to be engaged with the substrate, the entire surface of the heating body 11 directly contacts the aerosol-forming substrate 102, such that the heater assembly 10 may heat the substrate more uniformly.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Resistance Heating (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011010204.5A CN114246371A (zh) | 2020-09-23 | 2020-09-23 | 发热组件及气溶胶形成装置 |
PCT/CN2021/082418 WO2022062342A1 (fr) | 2020-09-23 | 2021-03-23 | Ensemble de chauffage et dispositif de formation d'aérosol |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4218444A1 true EP4218444A1 (fr) | 2023-08-02 |
EP4218444A4 EP4218444A4 (fr) | 2024-04-03 |
Family
ID=80788646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21870731.3A Pending EP4218444A4 (fr) | 2020-09-23 | 2021-03-23 | Ensemble de chauffage et dispositif de formation d'aérosol |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4218444A4 (fr) |
JP (1) | JP7502475B2 (fr) |
KR (1) | KR20230012628A (fr) |
CN (1) | CN114246371A (fr) |
WO (1) | WO2022062342A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115119979A (zh) * | 2022-07-06 | 2022-09-30 | 海南摩尔兄弟科技有限公司 | 气溶胶产生装置及其发热组件 |
GB202216110D0 (en) * | 2022-10-31 | 2022-12-14 | Nicoventures Trading Ltd | Heater for an aerosol provision device |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204579889U (zh) * | 2015-02-12 | 2015-08-26 | 东莞市国研电热材料有限公司 | 一种电子烟用发热体 |
EP2921065A1 (fr) * | 2015-03-31 | 2015-09-23 | Philip Morris Products S.a.s. | Ensemble de chauffage et de chauffage étendu pour un système de génération d'aérosol |
CN205648910U (zh) * | 2016-03-14 | 2016-10-19 | 深圳市合元科技有限公司 | 烟支加热装置及其加热组件 |
JP7112427B2 (ja) * | 2017-06-28 | 2022-08-03 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | エアロゾル形成基体を抵抗加熱するための電気加熱組立品、エアロゾル発生装置および方法 |
JP7112426B2 (ja) | 2017-06-28 | 2022-08-03 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | エアロゾル形成基体を抵抗加熱するための電気加熱組立品、エアロゾル発生装置および方法 |
CN108308710A (zh) * | 2018-01-18 | 2018-07-24 | 绿烟实业(深圳)有限公司 | 烟具设备的发热装置及烟具设备 |
CN208490847U (zh) * | 2018-05-29 | 2019-02-15 | 深圳市华诚达精密工业有限公司 | 一种应用于电子烟的低温加热非燃烧组件 |
CN111246601B (zh) * | 2018-11-29 | 2023-04-25 | 湖北中烟工业有限责任公司 | 一种新型陶瓷发热体的组合物及其发热体制备和应用 |
CN209643859U (zh) * | 2019-01-11 | 2019-11-19 | 惠州市吉瑞科技有限公司深圳分公司 | 一种加热组件及发烟设备 |
CN210248380U (zh) * | 2019-04-08 | 2020-04-07 | 广东国研新材料有限公司 | 一种电子烟用均匀加热陶瓷发热体 |
CN210094671U (zh) * | 2019-04-08 | 2020-02-21 | 昂纳自动化技术(深圳)有限公司 | 用于电子烟的雾化组件 |
CN209807157U (zh) * | 2019-04-12 | 2019-12-20 | 湖南中烟工业有限责任公司 | Ptc发热体及低温烟具 |
CN111035070A (zh) * | 2020-01-08 | 2020-04-21 | 深圳麦时科技有限公司 | 气溶胶产生装置及其发热组件 |
CN111616420A (zh) * | 2020-07-17 | 2020-09-04 | 惠州市沛格斯科技有限公司 | 发热模组及发烟设备 |
CN212488479U (zh) * | 2020-07-24 | 2021-02-09 | 深圳市卓力能技术股份有限公司 | 一种加热组件及气溶胶生成装置 |
CN213908506U (zh) * | 2020-09-23 | 2021-08-10 | 深圳麦克韦尔科技有限公司 | 发热组件及气溶胶形成装置 |
-
2020
- 2020-09-23 CN CN202011010204.5A patent/CN114246371A/zh active Pending
-
2021
- 2021-03-23 KR KR1020227044765A patent/KR20230012628A/ko unknown
- 2021-03-23 EP EP21870731.3A patent/EP4218444A4/fr active Pending
- 2021-03-23 JP JP2022575468A patent/JP7502475B2/ja active Active
- 2021-03-23 WO PCT/CN2021/082418 patent/WO2022062342A1/fr unknown
Also Published As
Publication number | Publication date |
---|---|
JP7502475B2 (ja) | 2024-06-18 |
JP2023530407A (ja) | 2023-07-18 |
EP4218444A4 (fr) | 2024-04-03 |
WO2022062342A1 (fr) | 2022-03-31 |
CN114246371A (zh) | 2022-03-29 |
KR20230012628A (ko) | 2023-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN214229850U (zh) | 加热器组件及气溶胶形成装置 | |
EP4218445A1 (fr) | Ensemble de chauffage et dispositif de formation d'aérosol | |
EP4218444A1 (fr) | Ensemble de chauffage et dispositif de formation d'aérosol | |
CN213908506U (zh) | 发热组件及气溶胶形成装置 | |
JP2020048555A (ja) | 加熱式喫煙具及びその加熱部材 | |
EP4193856A1 (fr) | Appareil de cuisson à chauffage sans combustion et son dispositif de chauffage | |
WO2024055731A1 (fr) | Ensemble de chauffage et dispositif de génération d'aérosol | |
CN113455712A (zh) | 发热体组件和气溶胶产生装置 | |
CN214710374U (zh) | 发热组件及气溶胶形成装置 | |
EP4218446A1 (fr) | Ensemble dispositif de chauffage et dispositif de formation d'aérosol | |
EP4218439A1 (fr) | Ensemble de chauffage et dispositif de formation d'aérosol | |
CN107979881A (zh) | 一种电加热基板元件以及具有该电加热元件的加热装置 | |
CN213908505U (zh) | 发热组件及气溶胶形成装置 | |
CN214229849U (zh) | 发热组件及气溶胶形成装置 | |
EP4084576A1 (fr) | Ensemble de chauffage et dispositif d'atomisation électronique | |
CN217658201U (zh) | 一种发热体及电子雾化装置 | |
JP7514961B2 (ja) | 発熱ユニット及びエアロゾル形成装置 | |
CN216776093U (zh) | 发热体组件和气溶胶产生装置 | |
CN218219097U (zh) | 一种加热器及烟具 | |
CN217523960U (zh) | 用于气雾生成装置的电阻加热器及气雾生成装置 | |
CN217184826U (zh) | 发热组件以及气溶胶生成装置 | |
EP4298932A1 (fr) | Élément de génération de chaleur, ensemble d'atomisation et dispositif d'atomisation électronique | |
CN117297181A (zh) | 一种加热器及烟具 | |
JP2024169882A (ja) | エアロゾル発生装置およびその製造方法 | |
JPH0255665A (ja) | 電気はんだこて先及び電気はんだ工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230209 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20240229 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A24F 40/20 20200101ALN20240223BHEP Ipc: H05B 3/06 20060101ALI20240223BHEP Ipc: H05B 3/24 20060101ALI20240223BHEP Ipc: H05B 3/14 20060101ALI20240223BHEP Ipc: H05B 3/04 20060101ALI20240223BHEP Ipc: A24F 47/00 20200101ALI20240223BHEP Ipc: A24F 40/46 20200101AFI20240223BHEP |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SHENZHEN SMOORE TECHNOLOGY LIMITED |