Nothing Special   »   [go: up one dir, main page]

EP4076777B1 - Metallblech mit einer deterministischen oberflächenstruktur und verfahren zur herstellung eines umgeformten und lackierten blechbauteils - Google Patents

Metallblech mit einer deterministischen oberflächenstruktur und verfahren zur herstellung eines umgeformten und lackierten blechbauteils Download PDF

Info

Publication number
EP4076777B1
EP4076777B1 EP20823757.8A EP20823757A EP4076777B1 EP 4076777 B1 EP4076777 B1 EP 4076777B1 EP 20823757 A EP20823757 A EP 20823757A EP 4076777 B1 EP4076777 B1 EP 4076777B1
Authority
EP
European Patent Office
Prior art keywords
sheet
sheet metal
region
coating
surface structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20823757.8A
Other languages
English (en)
French (fr)
Other versions
EP4076777A1 (de
Inventor
Fabian JUNGE
Tobias LEWE
Burak William Cetinkaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP4076777A1 publication Critical patent/EP4076777A1/de
Application granted granted Critical
Publication of EP4076777B1 publication Critical patent/EP4076777B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/10Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form into a peculiar profiling shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H8/00Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
    • B21H8/005Embossing sheets or rolls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/14Roughness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the invention relates to a metal sheet with a deterministic surface structure, the surface structure being embossed into the metal sheet, the surface structure having at least one mountain area and at least one valley area, the mountain area and the valley area being connected by a flank area.
  • the invention further relates to a method for producing a formed and painted sheet metal component.
  • Zinc phosphate coatings are used for surface refinement of coated (galvanized, hot-dip aluminized) and uncoated metal sheets in order to significantly improve surface-relevant properties. This primarily includes increasing corrosion resistance as well as improving formability and paint adhesion.
  • Zinc phosphate layers are inorganic crystalline metal phosphate layers that are deposited from an aqueous phase. These are not closed layers, but rather an accumulation of individual zinc phosphate crystals, whose location, size, distribution, composition as well as chemical and mechanical properties depend on a whole range of manufacturing factors. This primarily includes the composition of the phosphating solution, the substrate preparation and the process parameters during phosphating.
  • the phosphating process is a multi-stage process which, in addition to multi-stage rinsing steps, primarily consists of a pretreatment step, an activation step and at least one phosphating step.
  • the applied zinc phosphate crystals result in a significant increase in surface area, which leads to improved forming properties (improved oil holding capacity and more homogeneous oil distribution). Furthermore, the crystals serve as an optimal adhesive base for paints.
  • Standard zinc phosphating involves a very large consumption of chemicals (including disposal costs, maintenance) as well as the use of the heavy metals manganese and especially nickel (trication phosphating to increase temperature and alkali resistance as well as). Grain refinement and to adjust the color tone). Accordingly, the automotive industry is very interested in replacing the zinc phosphating process with a more environmentally friendly and process-safe alternative. Examples of this are nickel-free phosphating or silane-based systems.
  • the object of the invention is therefore to provide a metal sheet and a method for producing a formed and painted sheet metal component with which reduced or no zinc phosphating effort is possible compared to the prior art, with the surface having essentially comparable properties to a conventional zinc phosphated surface having.
  • the provision of a defined surface structure on a trained metal sheet is essential for further processes, especially in the processing industry for producing sheet metal components in the automotive industry.
  • the process media used such as oil and/or lubricants, are present homogeneously and in the necessary amount at points relevant to the forming process.
  • the metal sheet is subjected to a rolling process (pass tempering), in which, among other things, a roughness is set on the metal sheet using textured temper rolls.
  • band waves can also be eliminated and/or compensated for through skin-passing if the metal sheet has previously been subjected to a thermal treatment (annealing, etc.).
  • the skin pass also causes a reduction in thickness and/or elongation between the incoming and outgoing sheet/strip (degree of skin pass), so that, among other things, the mechanical properties of the metal sheet can also be specifically adjusted.
  • metal sheets can be produced with a deterministic surface structure, which not only combines the aforementioned advantages, but can also at least partially or completely replace conventional zinc phosphating by creating an artificial enlargement of the surface in such a way that the mountain area and / or the valley area has a substructure which is designed such that the substructure has a surface area that is at least 3% larger compared to a flat projection surface of the mountain area and / or the valley area or an Sdr value of at least 3%.
  • the surface enlargement is no longer generated by zinc phosphating or zinc phosphate crystals, but rather by a specifically adjustable larger surface.
  • the specifically adjusted surface enlargement not only serves as an optimal adhesive base for a paint coating, but can also promote the suitability of the adhesive through a larger interface provided by offering the adhesive a corresponding reaction surface.
  • the substructure in particular has a surface area that is at least 7%, preferably at least 10%, preferably at least 15%, preferably at least 20% larger compared to the flat projection surface of the mountain area and/or the valley area, in particular determined by atomic force microscopy (AFM), which, for example, enables a resolution with an area of up to 90 x 90 ⁇ m 2 .
  • AFM atomic force microscopy
  • a resolution on the order of, for example, a valley area or part of a valley area or a mountain area or part of a mountain area can be selected, which can also have an area smaller than 90 x 90 ⁇ m 2 , for example.
  • a flat projection surface of the mountain area or the valley area is to be understood as a flat surface which is visible and/or determinable in plan view, parallel to the metal sheet plane.
  • the larger surface area in the mountain area or valley area created by the substructure corresponds to the actual, determinable three-dimensional (surface) area.
  • the Sdr value refers to a developed limit ratio or is also a measure of surface enlargement, which indicates the percentage of the additional area of a definition area that is attributable to a texture (substructure) compared to the absolutely flat definition area, wherein the definition area (resolution) can be directed to a part of the valley area or to a valley area and / or to a part of the mountain area or to a mountain area.
  • the substructure in particular has an Sdr value of at least 7%, preferably at least 10%, preferably at least 15%, preferably at least 20%.
  • a flat surface would have an Sdr value of 0.
  • the Sdr value can also be determined, for example, using atomic force microscopy (AFM).
  • Deterministic surface structure means recurring structures (at least one valley area or valley areas and at least one mountain area) which have a defined shape and/or design, cf. EP 2 892 663 B1 .
  • this also includes surfaces with a (quasi-)stochastic appearance, which are, however, applied using a deterministic texturing process and are therefore composed of deterministic form elements.
  • a continuous mountain area with several recurring valley areas, each of which is connected to the mountain area by flank areas is designed as a surface structure.
  • Sheet metal is generally understood to mean a flat metal product, which can be provided in sheet form or in blank form or in strip form.
  • the substructure is crystal-like in the mountain area and/or in the valley area.
  • the crystal-like formation can be elongated and/or spherical and/or oval as an elevation and/or depression in the mountain area and/or valley area, in particular a length, width or diameter of the crystal-like formation between 0.5 and 20 ⁇ m, in particular between 0 .9 and 15 ⁇ m, preferably between 1.2 and 10 ⁇ m.
  • the metal sheet is coated with a metallic coating.
  • the metal sheet may be coated with a zinc-based coating applied by hot-dip coating.
  • the metal sheet is a steel sheet.
  • the coating may contain additional elements such as aluminum with a content of up to 5% by weight and/or magnesium with a content of up to 5% by weight in the coating.
  • Steel sheets with a zinc-based coating have very good cathodic corrosion protection, which has been used in automobile construction for years. If improved corrosion protection is provided, the coating additionally has magnesium with a content of at least 0.5% by weight, in particular at least 0.6% by weight, preferably at least 0.9% by weight.
  • Aluminum can be present as an alternative or in addition to magnesium with a content of at least 0.5% by weight, in particular to ensure binding of the
  • the thickness of the coating can be between 1 and 15 ⁇ m, in particular between 2 and 12 ⁇ m, preferably between 3 and 10 ⁇ m. Below the minimum limit, sufficient cathodic corrosion protection cannot be guaranteed and above the maximum limit, joining problems can occur when connecting the steel sheet according to the invention or a component made from it to another component. In particular, if the thickness of the coating specified is exceeded, no stable process can occur during thermal joining or Welding can be ensured.
  • the steel sheets are first coated with an appropriate coating and then passed on for tempering. The tempering takes place after the steel sheet has been hot-dip coated.
  • the metal sheet can be coated with a metallic coating, in particular a zinc-based coating, which is applied by electrolytic coating.
  • the thickness of the coating can be between 1 and 10 ⁇ m, in particular between 1.5 and 8 ⁇ m, preferably between 2 and 5 ⁇ m.
  • the steel sheet can first be tempered and then electrolytically coated. Depending on the thickness of the coating, the roughness in the flank area can essentially be retained even after electrolytic coating. Alternatively, initial electrolytic coating followed by tempering is also conceivable.
  • no coating for example no metallic coating
  • the metal sheet is/is coated with a non-metallic coating, for example in a coil coating system, with the metal sheet being coated with a non-metallic coating before or after the coating.
  • the metal sheet is coated with a phosphate coating or silane-based coating, in particular the thickness of the phosphate coating or silane-based coating being less than 500 nm.
  • a phosphate coating or silane-based coating in particular the thickness of the phosphate coating or silane-based coating being less than 500 nm.
  • the metal sheet can be coated with a phosphate coating be coated or with a silane-based coating.
  • the thickness of the phosphate coating or silane-based coating can be set to less than 500 nm, in particular less than 200 nm, preferably less than 100 nm, preferably less than 50 nm, particularly preferably less than 25 nm.
  • Conventional zinc phosphating forms on the surface of a metal sheet a coating with a thickness of at least 500 nm, which is insulating, electrically non-conductive and can therefore disrupt the process in a welding process, in particular in a resistance welding process. Reducing an insulating, electrically non-conductive phosphate coating or silane-based coating to a thickness below 500 nm does not represent a process-disrupting factor.
  • the skin pass roller with which the surface structure was embossed into the metal sheet, has produced a substructure during the embossing in the mountain area and/or in the valley area, such that a substructure with a surface area that is at least 3% larger compared to a flat projection surface of the Mountain area and/or valley area or with an Sdr value of at least 3%.
  • a corresponding metal sheet is provided, which is cut before, during and/or after the forming.
  • forming is carried out using conventional tools.
  • the formed sheet metal component is painted in a conventional manner.
  • At least one valley area on a skin-pass roll can be designed as an open structure. Mountain areas on the skin-pass roll thus define local and recurring elevations on the surface of the skin-pass roll.
  • the tempering roller By appropriate action of the tempering roller on a surface of a metal sheet, the mountain regions of the tempering roller are impressed into the surface of the metal sheet and form a surface structure with a substantially closed structure (closed volume).
  • the mountain areas of the skin pass roller thus create pocket-like structures on the surface of the metal sheet.
  • the closed volume the so-called empty volume, can be applied for later processing, in particular by means of forming processes Take up process medium, for example forming oil.
  • a (negative) substructure is formed in the at least one valley area and/or in the mountain area or mountain areas of the temper roller, which, by acting on the surface of the metal sheet, forms a (positive) substructure with a surface area that is at least 3% larger compared to a flat one Projection surface of the mountain area and/or the valley area or with an Sdr value of at least 3%.
  • the generation of a deterministic surface topography with at least one mountain area or mountain areas and at least one valley area including (negative) substructure on the surface of the skin pass roller can be carried out specifically using a laser texturing process, cf. EP 2 892 663 B1 .
  • the geometric design (size and depth) of the deterministic surface topography in the form of at least one mountain area or mountain areas and at least one valley area including (negative) substructure can be adjusted individually by using a pulse laser as a result of material removal on the surface of the skin pass roller.
  • the design of the structure(s) can be positively influenced by targeted control of the energy and pulse duration of a laser beam acting on the surface of the tempering roller. With a higher or longer pulse duration, the interaction time between the laser beam and the skin-pass roll surface increases and more material can be removed from the surface of the skin-pass roll.
  • a pulse leaves a substantially circular, in particular concave, crater on the tempering roller surface, which forms the surface of the steel sheet after tempering.
  • Reducing the pulse duration has an influence on the formation of a crater; in particular, the diameter of the crater can be reduced.
  • By reducing the pulse duration especially when using short or ultra-short pulse lasers, it is possible to specifically adjust the geometric structure on the surface of a temper roll in order to be able to texture a sheet steel surface in a functional manner. This is achieved, for example, if the pulse duration of the laser with which the surface of the tempering roll is textured is reduced and the geometric structure on the roll can thus be generated with higher resolution.
  • no zinc phosphating was carried out before the metal sheet was formed.
  • the invention essentially eliminates the complex step of conventional zinc phosphating to produce a larger surface area using zinc phosphate crystals.
  • the metal sheet before the metal sheet is provided, the metal sheet has been coated with a phosphate coating or silane-based coating, in particular the thickness of the coating being less than 500 nm.
  • a phosphate coating or silane-based coating in particular the thickness of the coating being less than 500 nm.
  • the phosphating includes in particular a deposition/deposition of surfactants, a conversion chemistry or a pickling, for example with phosphoric acid.
  • the metal sheet has been treated with an acidic solution before or after the surface structure has been introduced.
  • an "acidic” solution which has a pH value of less than 3, in particular less than 2, preferably less than 1, is preferably used to clean the surface and/or to remove oxide adhesion (oxide layer) on the surface of the metal sheet.
  • the sheet metal component is an outer skin part of a vehicle.
  • Outer skin parts in particular are subject to strict requirements regarding the suitability for forming and the appearance of the paint.
  • the invention makes it possible to produce corresponding outer skin parts cost-effectively.
  • the sheet metal component is a structural part of a vehicle.
  • FIG. 1 a schematic partial sectional view of an embodiment from the prior art is shown.
  • the execution can, for example, be the execution according to EP 2 892 663 B1 are equivalent to.
  • Shown is a metal sheet (1) with a deterministic surface structure (2), the surface structure (2) being embossed into the metal sheet (1), the surface structure (2) having at least one mountain region (1.1) and at least one valley region (1.2). , whereby the mountain area (1.1) and the valley area (1.2) are connected by a flank area (1.3).
  • the metal sheet (1) is preferably a steel sheet.
  • the mountain area (1.1) and/or the valley area (1.2) has a substructure (1.11, 1.21) which is designed in such a way that the substructure (1.11, 1.21) has a surface area that is at least 3% larger compared to a flat projection surface ( P) of the mountain area (1.1) and/or the valley area (1.2) or has an Sdr value of at least 3%.
  • the substructure (1.11, 1.21) can be crystal-like in the mountain area (1.1) and/or in the valley area (1.2), the crystal-like formation being elongated and/or spherical as an elevation and/or depression, shown as a depression in this embodiment, in the mountain area (1.1) and / or valley area (1.2), in particular a length, width or diameter of the crystal-like formation can be set between 0.5 and 20 ⁇ m.
  • Figure 3 a schematic partial sectional view of a further embodiment according to the invention is shown.
  • the metal sheet (1) is coated with a metallic coating (3), preferably with a zinc-based coating.
  • the metal sheet (1) is coated with a phosphate coating (4), the thickness of the phosphate coating (4) being less than 500 nm.
  • a metal sheet (1) according to the invention is provided for producing a formed and painted sheet metal component, not shown, (A).
  • the provided metal sheet (1) is formed into a formed sheet metal component, (B).
  • the formed sheet metal component is painted, (C).
  • Figure 4 shows schematically a corresponding sequence of the method according to the invention.
  • the formed and painted sheet metal component, not shown, can be used as an outer skin part or structural part in the vehicle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Coating With Molten Metal (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

  • Die Erfindung betrifft ein Metallblech mit einer deterministischen Oberflächenstruktur, wobei die Oberflächenstruktur in das Metallblech eingeprägt ist, wobei die Oberflächenstruktur mindestens einen Bergbereich und mindestens einen Talbereich aufweist, wobei der Bergbereich und der Talbereich durch einen Flankenbereich verbunden sind. Des Weiteren betrifft die Erfindung ein Verfahren zum Herstellen eines umgeformten und lackierten Blechbauteils.
  • Aus der DE 694 25 784 T2 , die die Basis für den Oberbegriff der Ansprüche 1 und 6 bildet, sind beispielhaft mit einer deterministischen Textur dressierte Stahlbleche bekannt.
  • Zinkphosphatschichten werden zur Oberflächenveredelung von beschichten (verzinkten, feueraluminierten) und unbeschichteten Metallblechen eingesetzt, um oberflächenrelevante Eigenschaften deutlich zu verbessern. Hierzu gehören vor allem die Erhöhung der Korrosionsresistenz sowie die Verbesserung der Umformbarkeit und Lackhaftung. Zinkphosphatschichten sind anorganische kristalline Metallphosphatschichten, die aus einer wässrigen Phase abgeschieden werden. Dabei handelt es sich nicht um geschlossene Schichten, sondern um eine Anhäufung einzelner Zinkphosphatkristalle, deren Lage, Größe, Verteilung, Zusammensetzung sowie chemische und mechanische Eigenschaften von einer ganzen Reihe von Herstellungsfaktoren abhängen. Hierzu gehören vor allem die Zusammensetzung der Phosphatierungslösung, die Substratvorbereitung und die Prozessparameter während der Phosphatierung. Der Phosphatierungsprozess ist ein mehrstufiges Verfahren, welches sich neben mehrstufigen Spülschritten vor allem aus einem Vorbehandlungsschritt, einem Aktivierungsschritt und mindestens einem Phosphatierungsschritt zusammensetzt.
  • Durch die aufgebrachten Zinkphosphatkristalle geht eine deutliche Oberflächenvergrößerung einher, welche zu verbesserten Umformeigenschaften (verbessertes Ölhaltevermögen und homogenere Ölverteilung) führt. Des Weiteren dienen die Kristalle als optimaler Haftgrund für Lacke.
  • Die Zinkphosphatierung von Metalloberflächen ist mit einem hohen anlagentechnischen (mehrstufiges Verfahren = u. a. Reinigen, Aktivieren, Phosphatieren und Spülen; Überwachung) und energetischen (die einzelnen Prozessbäder sind einige bis viele Kubikmeter groß und müssen ständig in Bewegung gehalten und teilweise auf bis zu 60°C temperiert werden) Aufwand verbunden. Bei einer standardmäßigen Zinkphosphatierung kommen ein sehr großer Chemikalienverbrauch (inkl. Entsorgungskosten, Wartung) sowie u. a. der Einsatz der Schwermetalle Mangan und vor allem Nickel (Trikationenphosphatierung zur Erhöhung der Temperatur- und Alkaliresistenz sowie zur Kornverfeinerung und zum Einstellen des Farbtons) hinzu. Dementsprechend ist die Automobilbranche sehr daran interessiert, den Zinkphosphatierungsprozess durch eine umweltfreundlichere und prozesssichere Alternative zu ersetzen. Beispiele hierfür sind nickelfreie Phosphatierungen oder silanbasierte Systeme.
  • Bei der Erzeugung von Zinkphosphatschichten muss eine sensible Prozessführung bei der Aktivierung und Phosphatierung sichergestellt sein, um z.B. eine Verschleppung oder alternde Prozessbäder, welche sich negativ auf den Phosphatierungsprozess auswirken können und zu Phosphatierungsstörungen, insbesondere zu nicht geschlossenen, flächendeckenden Zinkphosphatschichten und/oder zu verschlechterter Lackhaftung führen, zu vermeiden. Des Weiteren kann die Aktivierung sensibel auf nicht optimal gereinigte Oberflächen reagieren, so dass Phosphatierungsflecken mit großen und kleinen Kristallen zu optischen Unterschieden im Phosphatierungsbild (dunkel/hell) führen und nicht phosphatierte Stellen entstehen. Nachteilig kann sich auch eine Dehydrierung bei hohen Temperaturen auswirken, z.B. beim Einbrennen eines Lacks und damit zu einer Verschlechterung der Lackhaftung führen.
  • Die Aufgabe der Erfindung ist daher, ein Metallblech sowie ein Verfahren zum Herstellen eines umgeformten und lackierten Blechbauteils anzugeben, mit welchem ein reduzierter bzw. kein Zinkphosphatierungsaufwand im Vergleich zum Stand der Technik möglich ist, wobei die Oberfläche im Wesentlichen vergleichbare Eigenschaften zu einer konventionell zinkphosphatierten Oberfläche aufweist.
  • Die Bereitstellung einer definierten Oberflächenstruktur auf einem dressierten Metallblech ist wesentlich für weitere Prozesse insbesondere in der weiterverarbeitenden Industrie zum Herstellen von Blechbauteilen in der Automobilbranche. Im Zuge der Bauteilherstellung, insbesondere in Umformprozessen ist es vorteilhaft, wenn verwendete Prozessmedien, wie zum Beispiel Öl und/oder Schmierstoffe, homogen und in notwendiger Auflage an umformprozessrelevanten Stellen vorhanden sind. Um eine möglichst vorteilhafte Oberflächenrauheit auf Metallblechen für eine spätere Verarbeitung einstellen zu können, wird das Metallblech einem Walzvorgang (Dressieren) unterzogen, in welchem u. a. eine Rauheit unter Verwendung von texturierten Dressierwalzen am Metallblech eingestellt wird. Über das Dressieren können beispielsweise auch Bandwellen beseitigt und/oder kompensiert werden, wenn das Metallblech insbesondere vorher einer thermischen Behandlung (Glühen etc.) unterzogen worden ist. Das Dressieren bewirkt auch eine Dickenabnahme und/oder Längung zwischen einlaufendem und auslaufendem Blech/Band (Dressiergrad), so dass darüber u. a. auch die mechanischen Eigenschaften des Metallblechs gezielt eingestellt werden können.
  • Die Erfinder haben festgestellt, dass Metallbleche mit einer deterministischen Oberflächenstruktur hergestellt werden können, welche nicht nur die vorgenannten Vorteile vereint, sondern auch eine konventionelle Zinkphosphatierung zumindest teilweise oder vollständig ersetzen können, indem eine künstliche Vergrößerung der Oberfläche geschaffen wird, derart, dass der Bergbereich und/oder der Talbereich eine Substruktur aufweist, welche derart ausgebildet ist, dass die Substruktur eine um mindestens 3% größere Oberfläche im Vergleich zu einer planen Projektionsfläche des Bergbereichs und/oder des Talbereichs oder einen Sdr-Wert von mindestens 3% aufweist. Die Oberflächenvergrößerung wird erfindungsgemäß nicht mehr durch eine Zinkphosphatierung respektive durch Zinkphosphatkristalle erzeugt, sondern durch eine gezielt einstellbare größere Oberfläche. Die gezielt eingestellte Oberflächenvergrößerung dient nicht nur als optimaler Haftgrund für einen Lacküberzug, sondern kann dadurch auch die Klebeeignung durch eine größere bereitgestellte Grenzfläche begünstigen, indem dem Klebstoff eine entsprechende Reaktionsfläche angeboten werden kann.
  • Die Substruktur weist insbesondere eine um mindestens 7%, vorzugsweise eine um mindestens 10%, vorzugsweise eine um mindestens 15%, bevorzugt eine um mindestens 20% größere Oberfläche im Vergleich zur planen Projektionsfläche des Bergbereichs und/oder des Talbereichs auf, insbesondere bestimmt durch Rasterkraftmikroskopie (AFM), welche beispielsweise eine Auflösung mit einer Fläche von bis zu 90 x 90 µm2 ermöglicht. Je nach zu vermessender Oberflächenstruktur kann eine Auflösung in der Größenordnung beispielsweise eines Talbereichs respektive eines Teils eines Talbereichs oder eines Bergbereichs respektive eines Teils eines Bergbereichs gewählt werden, welche beispielsweise auch eine Fläche kleiner als 90 x 90 µm2 aufweisen kann.
  • Unter planen Projektionsfläche des Bergbereichs bzw. des Talbereichs ist eine ebene Fläche zu verstehen, welche in Draufsicht, parallel zur Metallblechebene, sichtbar und/oder bestimmbar ist. Die durch die Substruktur erzeugte größere Oberfläche im Bergbereich bzw. Talbereich entspricht der tatsächlichen, bestimmbaren dreidimensionalen (Ober)Fläche.
  • Der Sdr-Wert bezieht sich auf ein entwickeltes Grenzwertverhältnis bzw. ist auch ein Maß für die Oberflächenvergrößerung, welche(s) den Prozentsatz der zusätzlichen Fläche eines Definitionsbereichs, die auf eine Textur (Substruktur) zurückzuführen ist, im Vergleich zum absolut ebenen Definitionsbereich angibt, wobei der Definitionsbereich (Auflösung) auf einen Teil des Talbereichs oder auf einen Talbereich und/oder auf einen Teil des Bergbereichs oder auf einen Bergbereich gerichtet werden kann. Die Substruktur weist insbesondere einen Sdr-Wert von mindestens 7%, vorzugsweise von mindestens 10%, vorzugsweise von mindestens 15%, bevorzugt von mindestens 20% auf. Eine plane Oberfläche hätte einen Sdr-Wert von 0. Der Sdr-Wert ist beispielsweise auch durch bzw. mittels einer Rasterkraftmikroskopie (AFM) ermittelbar.
  • Unter deterministischer Oberflächenstruktur sind wiederkehrende Strukturen (mindestens ein Talbereich respektive Talbereiche und mindestens ein Bergbereich) zu verstehen, welche eine definierte Form und/oder Ausgestaltung aufweisen, vgl. EP 2 892 663 B1 . Insbesondere gehören hierzu zudem Oberflächen mit einer (quasi-)stochastischen Anmutung, die jedoch mittels eines deterministischen Texturierungsverfahrens aufgebracht werden und sich somit aus deterministischen Formelementen zusammensetzen. Insbesondere ist ein durchgehender Bergbereich mit mehreren, wiederkehrenden Talbereichen, welche jeweils durch Flankenbereiche mit dem Bergbereich verbunden sind, als Oberflächenstruktur ausgeführt.
  • Unter Metallblech ist allgemein ein Metallflachprodukt zu verstehen, welches in Blechform bzw. in Platinenform oder in Bandform bereitgestellt werden kann.
  • Weitere vorteilhafte Ausgestaltungen und Weiterbildungen gehen aus der nachfolgenden Beschreibung hervor. Ein oder mehrere Merkmale aus den Ansprüchen, der Beschreibung wie auch der Zeichnung können mit einem oder mehreren anderen Merkmalen daraus zu weiteren Ausgestaltungen der Erfindung verknüpft werden. Es können auch ein oder mehrere Merkmale aus den unabhängigen Ansprüchen durch ein oder mehrere andere Merkmale verknüpft werden.
  • Gemäß einer Ausgestaltung des erfindungsgemäßen Metallblechs ist die Substruktur kristallartig im Bergbereich und/oder im Talbereich ausgebildet. Die kristallartige Ausbildung kann länglich und/oder kugelig und/oder oval als Erhebung und/oder Vertiefung im Bergbereich und/oder Talbereich ausgeführt sein, wobei insbesondere eine Länge, Breite oder Durchmesser der kristallartigen Ausbildung zwischen 0,5 und 20 µm, insbesondere zwischen 0,9 und 15 µm, vorzugsweise zwischen 1,2 und 10 µm, eingestellt ist.
  • Gemäß einer Ausgestaltung des erfindungsgemäßen Metallblechs ist das Metallblech mit einem metallischen Überzug beschichtet. Das Metallblech kann mit einem zinkbasierten Überzug beschichtet sein, welcher durch Schmelztauchbeschichten aufgebracht ist. Insbesondere ist das Metallblech ein Stahlblech. Vorzugsweise kann der Überzug neben Zink und unvermeidbaren Verunreinigungen zusätzliche Elemente wie Aluminium mit einem Gehalt von bis zu 5 Gew.-% und/oder Magnesium mit einem Gehalt von bis zu 5 Gew.-% in dem Überzug enthalten. Stahlbleche mit zinkbasiertem Überzug weisen einen sehr guten kathodischen Korrosionsschutz auf, welche seit Jahren im Automobilbau eingesetzt werden. Ist ein verbesserter Korrosionsschutz vorgesehen, weist der Überzug zusätzlich Magnesium mit einem Gehalt von mindestens 0,5 Gew.-%, insbesondere von mindestens 0,6 Gew.-%, vorzugsweise von mindestens 0,9 Gew.-% auf. Aluminium kann alternativ oder zusätzlich zu Magnesium mit einem Gehalt von mindestens 0,5 Gew.-% vorhanden sein, um insbesondere eine Anbindung des
  • Überzugs an das Stahlblech zu verbessern und insbesondere eine Diffusion von Eisen aus dem Stahlblech in den Überzug bei einer Wärmebehandlung des beschichteten Stahlblechs im Wesentlichen zu verhindern, damit die positiven Korrosionseigenschaften weiterhin erhalten bleiben. Dabei kann eine Dicke des Überzugs zwischen 1 und 15 µm, insbesondere zwischen 2 und 12 µm, vorzugsweise zwischen 3 und 10 µm betragen. Unterhalb der Mindestgrenze kann kein ausreichender kathodischer Korrosionsschutz gewährleistet werden und oberhalb der Höchstgrenze können Fügeprobleme beim Verbinden des erfindungsgemäßen Stahlblechs respektive eines daraus gefertigten Bauteils mit einem anderen Bauteil auftreten, insbesondere kann bei Überschreiten der Dicke des Überzugs angegebene Höchstgrenze kein stabiler Prozess beim thermischen Fügen bzw. Schweißen sichergestellt werden. Beim Schmelztauschbeschichten werden zunächst die Stahlbleche mit einem entsprechenden Überzug beschichtet und anschließend dem Dressieren zugeführt. Das Dressieren erfolgt nach dem Schmelztauchbeschichten des Stahlblechs.
  • Alternativ kann das Metallblech mit einem metallischen Überzug, insbesondere einem zinkbasierten Überzug beschichtet sein, welcher durch elektrolytisches Beschichten aufgebracht ist. Dabei kann eine Dicke des Überzugs zwischen 1 und 10 µm, insbesondere zwischen 1,5 und 8 µm, vorzugsweise zwischen 2 und 5 µm betragen. Im Vergleich zum Schmelztauchbeschichten kann das Stahlblech zunächst dressiert und anschließend elektrolytisch beschichtet werden. Je nach Dicke des Überzugs kann die Rauheit im Flankenbereich im Wesentlichen auch nach dem elektrolytischen Beschichten beibehalten werden. Alternativ ist auch zunächst ein elektrolytisches Beschichten mit anschließendem Dressieren denkbar.
  • Denkbar ist auch, dass kein Überzug, beispielsweise kein metallischer Überzug vorgesehen ist. Denkbar ist es auch, dass das Metallblech mit einem nichtmetallischen Überzug beispielsweise in einer Bandbeschichtungsanlage beschichtet wird/ist, wobei das Metallblech vor oder nach der Beschichtung mit einem nichtmetallischen Überzug dressiert wird.
  • Gemäß einer Ausgestaltung des erfindungsgemäßen Metallblechs ist das Metallblech mit einem Phosphatüberzug oder silanbasierten Überzug beschichtet, wobei insbesondere die Dicke des Phosphatüberzugs oder silanbasierten Überzugs kleiner 500 nm ist. Um dennoch die Vorteile eines (Phosphat-)Überzugs, insbesondere hinsichtlich der Benetzungsverhaltens und/oder als Haftgrund für Lacküberzüge und/oder Klebsysteme beizubehalten und bestehende Prozessrouten, die auf phosphatierte Metallbleche ausgelegt worden sind, weiterhin bedienen zu können, kann das Metallblech mit einem Phosphatüberzug beschichtet sein oder mit einem silanbasierten Überzug. Die Dicke des Phosphatüberzugs oder silanbasierten Überzugs kann auf kleiner 500 nm, insbesondere kleiner 200 nm, vorzugsweise kleiner 100 nm, bevorzugt kleiner 50 nm, besonders bevorzugt kleiner 25 nm eingestellt werden. Eine konventionelle Zinkphosphatierung bildet auf der Oberfläche eines Metallblechs einen Überzug mit einer Dicke von mindestens 500 nm aus, welcher isolierend, elektrisch nichtleitend ist und sich somit bei einem Schweißprozess, insbesondere bei einem Widerstandsschweißprozess prozessstörend auswirken kann. Eine Reduktion eines isolierenden, elektrisch nichtleitenden Phosphatüberzugs respektive silanbasierten Überzugs auf eine Dicke unterhalb 500 nm stellt keinen prozessstörenden Faktor dar.
  • Gemäß einem zweiten Aspekt betrifft die Erfindung ein Verfahren zum Herstellen eines umgeformten und lackierten Blechbauteils, wobei das Verfahren folgende Schritte umfasst:
    • Bereitstellen eines Metallblechs mit einer deterministischen Oberflächenstruktur, wobei die Oberflächenstruktur in das Metallblech mittels einer Dressierwalze eingeprägt worden ist, wobei die Oberflächenstruktur mindestens einen Bergbereich und mindestens einen Talbereich aufweist, wobei der Bergbereich und der Talbereich durch einen Flankenbereich verbunden sind,
    • Umformen des Metallblechs zu einem Blechbauteil,
    • Lackieren des umgeformten Blechbauteils.
  • Erfindungsgemäß hat die Dressierwalze, mit welcher die Oberflächenstruktur in das Metallblech eingeprägt worden ist, während des Einprägens im Bergbereich und/oder im Talbereich eine Substruktur erzeugt, derart, dass eine Substruktur mit einer um mindestens 3% größeren Oberfläche im Vergleich zu einer planen Projektionsfläche des Bergbereichs und/oder des Talbereichs oder mit einem Sdr-Wert von mindestens 3% erzeugt worden ist.
  • Abhängig von dem zu erstellenden Blechbauteil wird insbesondere ein entsprechendes Metallblech bereitgestellt, welches vor, während und/oder nach der Umformung geschnitten wird. Das Umformen erfolgt je nach Ausführung mit konventionellen Werkzeugen.
  • Das Lackieren des umgeformten Blechbauteils erfolgt auf konventionelle Art und Weise.
  • Um Wiederholungen zu vermeiden, wird jeweils auf die Ausführungen zu dem erfindungsgemäßen Metallblech verwiesen.
  • Auf einer Dressierwalze kann mindestens ein Talbereich als eine offene Struktur ausgebildet sein. Bergbereiche auf der Dressierwalze definieren somit lokale und immer wiederkehrende Erhebungen auf der Oberfläche der Dressierwalze. Durch entsprechende Einwirkung der Dressierwalze auf eine Oberfläche eines Metallblechs prägen sich die Bergbereiche der Dressierwalze in die Oberfläche des Metallblechs ein und bilden eine Oberflächenstruktur mit einer im Wesentlichen geschlossenen Struktur (geschlossenes Volumen) aus. Die Bergbereiche der Dressierwalze erzeugen somit taschenähnliche Strukturen auf der Oberfläche des Metallblechs aus. Das geschlossene Volumen, das sogenannte Leervolumen, kann ein für die spätere Verarbeitung insbesondere mittels Umformverfahren appliziertes Prozessmedium, beispielsweise Umformöl, aufnehmen. Zudem ist in dem zumindest einen Talbereich und/oder in dem Bergbereich respektive Bergbereichen der Dressierwalze eine (negative) Substruktur ausgebildet, welche durch Einwirken auf die Oberfläche des Metallblechs eine (positive) Substruktur mit einem um mindestens 3% größeren Oberfläche im Vergleich zu einer planen Projektionsfläche des Bergbereichs und/oder des Talbereichs oder mit einem Sdr-Wert von mindestens 3% erzeugt.
  • Die Erzeugung einer deterministischen Oberflächentopographie mit mindestens einem Bergbereich respektive Bergbereichen und mindestens einem Talbereich inklusive (negativer) Substruktur auf der Oberfläche der Dressierwalze, kann gezielt mittels eines Laser-Texturierverfahrens erfolgen, vgl. EP 2 892 663 B1 .
  • Die geometrische Ausgestaltung (Größe und Tiefe) der deterministischen Oberflächentopographie in Form von mindestens einem Bergbereich respektive Bergbereichen und mindestens einem Talbereich inklusive (negativer) Substruktur kann individuell durch die Verwendung eines Pulslasers infolge eines Materialabtrags auf der Oberfläche der Dressierwalze eingestellt werden. Insbesondere kann durch gezielte Ansteuerung der Energie und der Pulsdauer eines auf die Oberfläche der Dressierwalze einwirkenden Laserstrahls positiv Einfluss auf die Gestaltung der Struktur(en) genommen werden. Mit hoher bzw. höherer Pulsdauer steigt die Wechselwirkungszeit von Laserstrahl und Dressierwalzenoberfläche und es kann mehr Material auf der Oberfläche der Dressierwalze abgetragen werden. Ein Puls hinterlässt auf der Dressierwalzenoberfläche einen im Wesentlichen kreisrunden, insbesondere konkaven Krater, der nach dem Dressieren die Oberfläche des Stahlblechs abbildet. Eine Reduktion der Pulsdauer hat Einfluss auf die Ausbildung eines Kraters, insbesondere kann der Durchmesser des Kraters verringert werden. Durch die Reduktion der Pulsdauer, insbesondere bei der Verwendung von Kurz- bzw. Ultrakurzpulslasern, ist es möglich, die geometrische Struktur auf der Oberfläche einer Dressierwalze derart gezielt einzustellen, um damit eine Stahlblechoberfläche funktionsgerecht texturieren zu können. Dies wird beispielsweise erreicht, wenn die Pulsdauer des Lasers, mit dem die Oberfläche der Dressierwalze texturiert wird, verringert wird und so die geometrische Struktur auf der Walze mit höherer Auflösung erzeugt werden kann.
  • Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist vor dem Umformen des Metallblechs keine Zinkphosphatierung durchgeführt worden. Durch die Erfindung kann der aufwendige Schritt einer konventionellen Zinkphosphatierung zur Erzeugung einer größeren Oberfläche durch Zinkphosphatkristalle im Wesentlichen wegfallen.
  • Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist vor dem Bereitstellen des Metallblechs das Metallblech mit einem Phosphatüberzug oder silanbasierten Überzug beschichtet worden, wobei insbesondere die Dicke des Überzugs kleiner 500 nm ist. Dadurch können die Vorteile einer Phosphatschicht beibehalten werden und insbesondere durch Reduktion der Überzugsdicke ein vorzugsweise Widerstandsschweißen prozesssicher umgesetzt werden. Die Phosphatierung umfasst insbesondere ein Ablagern/Abscheiden von Tensiden, einer Konversionschemie oder einem Beizen beispielsweise mit Phosphorsäure.
  • Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist das Metallblech vor oder nach dem Einbringen der Oberflächenstruktur mit einer sauren Lösung behandelt worden. Der Einsatz einer "sauren" Lösung, welche einen pH-Wert kleiner 3, insbesondere kleiner 2, vorzugsweise kleiner 1 einnimmt, wird bevorzugt zur Reinigung der Oberfläche und/oder zur Entfernung von Oxidanhaftungen (Oxidschicht) auf der Oberfläche des Metallblechs verwendet.
  • Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist das Blechbauteil ein Außenhautteil eines Fahrzeugs. Insbesondere Außenhautteile unterliegen strengen Anforderung an die Umformeignung und Lackanmutung. Durch die Erfindung sind entsprechende Außenhautteile kostengünstig herstellbar.
  • Gemäß einer alternativen Ausgestaltung des erfindungsgemäßen Verfahrens ist das Blechbauteil ein Strukturteil eines Fahrzeugs.
  • Im Folgenden werden konkrete Ausgestaltungen der Erfindung mit Bezugnahme auf die Zeichnung im Detail näher erläutert. Die Zeichnung und begleitende Beschreibung der resultierenden Merkmale sind nicht beschränkend auf die jeweiligen Ausgestaltungen zu lesen, dienen jedoch der Illustration beispielhafter Ausgestaltung. Weiterhin können die jeweiligen Merkmale untereinander wie auch mit Merkmalen der obigen Beschreibung genutzt werden für mögliche weitere Entwicklungen und Verbesserungen der Erfindung, speziell bei zusätzlichen Ausgestaltungen, welche nicht dargestellt sind. Gleiche Teile sind stets mit den gleichen Bezugszeichen versehen.
  • Die Zeichnung zeigt in
  • Figur 1)
    eine schematische Teilschnittansicht einer Ausführungsform aus dem Stand der Technik,
    Figur 2)
    eine schematische Teilschnittansicht einer Ausführungsform gemäß der Erfindung,
    Figur 3)
    eine schematische Teilschnittansicht einer weiteren Ausführungsform gemäß der Erfindung und
    Figur 4)
    eine schematische Abfolge einer Ausführungsform gemäß einem erfindungsgemäßen Verfahren.
  • In Figur 1 ist eine schematische Teilschnittansicht einer Ausführungsform aus dem Stand der Technik gezeigt. Die Ausführung kann beispielsweise der Ausführung gemäß der EP 2 892 663 B1 entsprechen. Dargestellt ist ein Metallblech (1) mit einer deterministischen Oberflächenstruktur (2), wobei die Oberflächenstruktur (2) in das Metallblech (1) eingeprägt ist, wobei die Oberflächenstruktur (2) mindestens einen Bergbereich (1.1) und mindestens einen Talbereich (1.2) aufweist, wobei der Bergbereich (1.1) und der Talbereich (1.2) durch einen Flankenbereich (1.3) verbunden sind. Das Metallblech (1) ist bevorzugt ein Stahlblech.
  • In Figur 2 ist eine schematische Teilschnittansicht einer Ausführungsform gemäß der Erfindung gezeigt.
  • Im Unterschied zu Figur 1 weist der Bergbereich (1.1) und/oder der Talbereich (1.2) eine Substruktur (1.11, 1.21) auf, welche derart ausgebildet ist, dass die Substruktur (1.11, 1.21) eine um mindestens 3% größere Oberfläche im Vergleich zu einer planen Projektionsfläche (P) des Bergbereichs (1.1) und/oder des Talbereichs (1.2) oder einen Sdr-Wert von mindestens 3% aufweist. Die Substruktur (1.11, 1.21) kann kristallartig im Bergbereich (1.1) und/oder im Talbereich (1.2) ausgebildet sein, wobei die kristallartige Ausbildung länglich und/oder kugelig als Erhebung und/oder Vertiefung, in dieser Ausführung als Vertiefung gezeigt, im Bergbereich (1.1) und/oder Talbereich (1.2) ausgeführt sein, wobei insbesondere eine Länge, Breite oder Durchmesser der kristallartigen Ausbildung zwischen 0,5 und 20 µm eingestellt sein kann.
  • In Figur 3 ist eine schematische Teilschnittansicht einer weiteren Ausführungsform gemäß der Erfindung gezeigt. Im Vergleich zu Figur 2 ist das Metallblech (1) mit einem metallischen Überzug (3) beschichtet, verzugsweise mit einem zinkbasierten Überzug. Alternativ oder vorzugsweise zusätzlich ist das Metallblech (1) mit einem Phosphatüberzug (4) beschichtet, wobei die Dicke des Phosphatüberzugs (4) kleiner 500 nm sein kann.
  • Ein erfindungsgemäßes Metallblech (1), insbesondere gemäß der Ausführung in Figur 3, wird zum Herstellen eines nicht dargestellten, umgeformten und lackierten Blechbauteils bereitgestellt, (A). In einem nächsten Schritt erfolgt eine Umformung des bereitgestellten Metallblechs (1) zu einem umgeformten Blechbauteil, (B). Nach dem Umformen erfolgt ein Lackieren des umgeformten Blechbauteils, (C). Figur 4 zeigt schematisch eine entsprechende Abfolge des erfindungsgemäßen Verfahrens. Das nicht dargestellte umgeformte und lackierte Blechbauteil kann als Außenhautteil oder Strukturteil im Fahrzeug verwendet werden.
  • Die einzelnen Merkmale sind, im Rahmen des durch die Ansprüche definierten Schutzumfanges, soweit technisch möglich, alle miteinander kombinierbar,

Claims (11)

  1. Metallblech (1) mit einer deterministischen Oberflächenstruktur (2), wobei die Oberflächenstruktur (2) in das Metallblech (1) eingeprägt ist, wobei die Oberflächenstruktur (2) mindestens einen Bergbereich (1.1) und mindestens einen Talbereich (1.2) aufweist, wobei der Bergbereich (1.1) und der Talbereich (1.2) durch einen Flankenbereich (1.3) verbunden sind, wobei der Bergbereich (1.1) und/oder der Talbereich (1.2) eine Substruktur (1.11, 1.21) aufweist,
    dadurch gekennzeichnet, dass
    die Substruktur (1.11, 1.21) eine um mindestens 3% größere Oberfläche im Vergleich zu einer planen Projektionsfläche (P) des Bergbereichs (1.1) und/oder des Talbereichs (1.2) oder einen Sdr-Wert von mindestens 3% aufweist.
  2. Metallblech nach Anspruch 1, wobei die Substruktur (1.11, 1.21) eine um mindestens 7% größere Oberfläche im Vergleich zur planen Projektionsfläche (P) des Bergbereichs (1.1) und/oder des Talbereichs (1.2) oder einen Sdr-Wert von mindestens 7% aufweist.
  3. Metallblech nach einem der vorhergehenden Ansprüche, wobei die Substruktur (1.11, 1.21) kristallartig im Bergbereich (1.1) und/oder im Talbereich (1.2) ausgebildet ist.
  4. Metallblech nach einem der vorhergehenden Ansprüche, wobei das Metallblech (1) mit einem metallischen Überzug (3) beschichtet ist.
  5. Metallblech nach einem der vorhergehenden Ansprüche, wobei das Metallblech (1) mit einem Phosphatüberzug (4) oder silanbasierten Überzug beschichtet ist, wobei insbesondere die Dicke des Überzugs (4) kleiner 500 nm ist.
  6. Verfahren zum Herstellen eines umgeformten und lackierten Blechbauteils, wobei das Verfahren folgende Schritte umfasst:
    - Bereitstellen eines Metallblechs (1) mit einer deterministischen Oberflächenstruktur (2), wobei die Oberflächenstruktur (2) in das Metallblech (1) mittels einer Dressierwalze eingeprägt worden ist, wobei die Oberflächenstruktur (2) mindestens einen Bergbereich (1.1) und mindestens einen Talbereich (1.2) aufweist, wobei der Bergbereich (1.1) und der Talbereich (1.2) durch einen Flankenbereich (1.3) verbunden sind, wobei die Dressierwalze, mit welcher die Oberflächenstruktur (2) in das Metallblech (1) eingeprägt worden ist, während des Einprägens im Bergbereich (1.1) und/oder im Talbereich (1.2) eine Substruktur (1.11, 1.21) erzeugt hat,
    - Umformen des Metallblechs (1) zu einem Blechbauteil,
    - Lackieren des umgeformten Blechbauteils,
    dadurch gekennzeichnet, dass
    eine Substruktur (1.11, 1.21) mit einer um mindestens 3% größeren Oberfläche im Vergleich zu einer planen Projektionsfläche (P) des Bergbereichs (1.1) und/oder des Talbereichs (1.2) oder mit einem Sdr-Wert von mindestens 3% erzeugt worden ist.
  7. Verfahren nach einem Anspruch 6, wobei vor dem Umformen des Metallblechs (1) keine Zinkphosphatierung durchgeführt worden ist.
  8. Verfahren nach Anspruch 6 oder 7, wobei vor dem Bereitstellen des Metallblechs (1) das Metallblech (1) mit einem Phosphatüberzug (4) oder silanbasierten Überzug beschichtet worden ist, wobei insbesondere die Dicke des Überzugs (4) kleiner 500 nm ist.
  9. Verfahren nach einem der Ansprüche 6 bis 8, wobei das Metallblech (1) vor oder nach dem Einbringen der Oberflächenstruktur (2) mit einer sauren Lösung behandelt worden ist.
  10. Verfahren nach einem der Ansprüche 6 bis 9, wobei das Blechbauteil ein Außenhautteil eines Fahrzeugs ist.
  11. Verfahren nach einem der Ansprüche 6 bis 9, wobei das Blechbauteil ein Strukturteil eines Fahrzeugs ist.
EP20823757.8A 2019-12-16 2020-12-07 Metallblech mit einer deterministischen oberflächenstruktur und verfahren zur herstellung eines umgeformten und lackierten blechbauteils Active EP4076777B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019219651.9A DE102019219651A1 (de) 2019-12-16 2019-12-16 Metallblech mit einer deterministischen Oberflächenstruktur und Verfahren zur Herstellung eines umgeformten und lackierten Blechbauteils
PCT/EP2020/084888 WO2021122106A1 (de) 2019-12-16 2020-12-07 Metallblech mit einer deterministischen oberflächenstruktur und verfahren zur herstellung eines umgeformten und lackierten blechbauteils

Publications (2)

Publication Number Publication Date
EP4076777A1 EP4076777A1 (de) 2022-10-26
EP4076777B1 true EP4076777B1 (de) 2023-11-15

Family

ID=73793190

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20823757.8A Active EP4076777B1 (de) 2019-12-16 2020-12-07 Metallblech mit einer deterministischen oberflächenstruktur und verfahren zur herstellung eines umgeformten und lackierten blechbauteils

Country Status (5)

Country Link
US (1) US20230002910A1 (de)
EP (1) EP4076777B1 (de)
CN (1) CN114829029A (de)
DE (1) DE102019219651A1 (de)
WO (1) WO2021122106A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021119589A1 (de) 2021-07-28 2023-02-02 Thyssenkrupp Steel Europe Ag Metallblech mit einer deterministischen Oberflächenstruktur
DE102022102111A1 (de) 2022-01-31 2023-08-03 Thyssenkrupp Steel Europe Ag Unbeschichtetes kaltgewalztes Stahlblech für die Warmumformung, Verfahren zur Herstellung eines warmumgeformten Stahlblechbauteils und warmumgeformtes Stahlblechbauteil
DE102022123741A1 (de) * 2022-09-16 2024-03-21 Thyssenkrupp Steel Europe Ag FAL-beschichtetes Stahlblech für die Warmumformung
DE102023106688A1 (de) 2023-03-17 2024-09-19 Thyssenkrupp Steel Europe Ag Geklebte Bauteilgruppe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841611A (en) * 1986-07-14 1989-06-27 Kawasaki Steel Corporation Work roll with dulled surface having geometrically patterned uneven dulled sections for temper rolling

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4241146A (en) * 1978-11-20 1980-12-23 Eugene W. Sivachenko Corrugated plate having variable material thickness and method for making same
JPS60133905A (ja) * 1983-12-23 1985-07-17 Sumitomo Metal Ind Ltd 塗装外観性の優れた冷延鋼板及びその製造方法
US4798772A (en) * 1986-01-17 1989-01-17 Kawasaki Steel Corporation Steel sheets for painting and a method of producing the same
EP0438031B1 (de) * 1990-01-17 1994-03-23 H J L PROJECTS & DEVELOPMENTS LTD. Verfahren zur Bearbeitung von Oberflächen auf Gebilden und nach diesem Verfahren hergestellte Gebilde
US20030079811A1 (en) * 1992-03-27 2003-05-01 The Louis Berkman Company, An Ohio Corporation Corrosion-resistant coated metal and method for making the same
AU4936993A (en) * 1993-09-17 1995-04-03 Sidmar N.V. Method and device for manufacturing cold rolled metal sheets or strips, and metal sheets or strips obtained
JP3744964B2 (ja) * 1995-04-06 2006-02-15 株式会社アルバック 成膜装置用構成部品及びその製造方法
CN2851805Y (zh) * 2005-10-15 2006-12-27 鞍钢集团新钢铁有限责任公司 圆弧边尖头扁豆花纹板
US20110008644A1 (en) * 2008-03-17 2011-01-13 Taisei Plas Co., Ltd. Bonded body of galvanized steel sheet and adherend, and manufacturing method thereof
DE102009003508B4 (de) * 2009-02-19 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines pressgehärteten Metallbauteils
DE102012017703A1 (de) 2012-09-07 2014-03-13 Daetwyler Graphics Ag Flachprodukt aus Metallwerkstoff, insbesondere einem Stahlwerkstoff, Verwendung eines solchen Flachprodukts sowie Walze und Verfahren zur Herstellung solcher Flachprodukte
KR101839245B1 (ko) * 2016-12-14 2018-03-15 주식회사 포스코 압연롤 및 이에 의해 제조된 도금강판
WO2018149967A1 (de) * 2017-02-17 2018-08-23 Voestalpine Stahl Gmbh Verfahren zum herstellen von stahlblechen, stahlblech und dessen verwendung
CN209094172U (zh) * 2018-11-13 2019-07-12 中冶京诚工程技术有限公司 一种用于热轧薄带轧机工作辊的上辊切水板和下辊切水板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841611A (en) * 1986-07-14 1989-06-27 Kawasaki Steel Corporation Work roll with dulled surface having geometrically patterned uneven dulled sections for temper rolling

Also Published As

Publication number Publication date
CN114829029A (zh) 2022-07-29
DE102019219651A1 (de) 2021-06-17
US20230002910A1 (en) 2023-01-05
WO2021122106A1 (de) 2021-06-24
EP4076777A1 (de) 2022-10-26

Similar Documents

Publication Publication Date Title
EP4076777B1 (de) Metallblech mit einer deterministischen oberflächenstruktur und verfahren zur herstellung eines umgeformten und lackierten blechbauteils
EP2848709A1 (de) Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
EP3489386A1 (de) Beschichtetes stahlsubstrat und verfahren zum herstellen eines gehärteten bauteils aus einem beschichteten stahlsubstrat
EP4031301A1 (de) Stahlblech mit einer deterministischen oberflächenstruktur
EP3925713B1 (de) Dressiertes und beschichtetes stahlblech sowie verfahren zu seiner herstellung
DE102008004728A1 (de) Phosphatiertes Stahlblech sowie Verfahren zur Herstellung eines solchen Blechs
EP0922123B1 (de) Wässrige lösung und verfahren zur phosphatierung metallischer oberflächen
KR100419322B1 (ko) 표면처리강판 및 그 제조방법
DE102015202642A1 (de) Verfahren zum Herstellen eines Erzeugnisses aus gewalztem Bandmaterial
WO2023088783A1 (de) Verfahren zum herstellen eines schmelztauchbeschichteten stahlblechs und schmelztauchbeschichtetes stahlblech
DE102007057185A1 (de) Zirconiumphosphatierung von metallischen Bauteilen, insbesondere Eisen
EP4110970B1 (de) Verfahren zum herstellen gehärteter stahlbauteile mit einer konditionierten zinkkorrosionsschutzschicht
EP3856947B1 (de) Verfahren zur verbesserung der phosphatierbarkeit von metallischen oberflächen, welche mit einer temporären vor- bzw. nachbehandlung versehen werden
DE102020107653A1 (de) Verfahren zum Erzeugen einer Phosphatierschicht und mit einer Phosphatierschicht versehenes Stahlflachprodukt
EP1350865A2 (de) Verzinktes und phosphatiertes Blech sowie Verfahren zur Herstellung eines solchen Blechs
EP3585917B1 (de) Verfahren zum beschichten von stahlblechen oder stahlbändern und verfahren zur herstellung von pressgehärteten bauteilen hieraus
DE69218916T2 (de) Blech aus aluminium-legierung mit verbesserter pressverformbarkeit und verfahren zur herstellung
DE102006035974A1 (de) Verfahren zur Phosphatierung einer Metallschicht
EP4110972B1 (de) Verfahren zum herstellen gehärteter stahlbauteile mit einer konditionierten zinklegierungskorrosionsschutzschicht
EP1433879B1 (de) Verfahren zur Beschichtung von Metalloberflächen mit einer Alkaliphosphatierungslösung, wässeriges Konzentrat und Verwendung der derart beschichteten Metalloberflächen
WO2001059180A1 (de) Verfahren zur beschichtung von metalloberflächen, wässeriges konzentrat hierzu und verwendung der beschichteten metallteile
DE102021119589A1 (de) Metallblech mit einer deterministischen Oberflächenstruktur
DE4333894C1 (de) Verfahren zur Harzvergütung einer Metalloberfläche
WO2023057300A1 (de) Verfahren zum dressieren eines stahlblechs, dressiertes stahlblech und daraus hergestelltes bauteil
EP3872231A1 (de) Verfahren zum konditionieren der oberfläche eines mit einer zinklegierungs-korrosionsschutzschicht beschichteten metallbandes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006085

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231027

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240216

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020006085

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

26N No opposition filed

Effective date: 20240819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231115

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231207

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240115

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231