EP3426606A1 - Apparatus for the treatment of waste water containing fats, oils and grease - Google Patents
Apparatus for the treatment of waste water containing fats, oils and greaseInfo
- Publication number
- EP3426606A1 EP3426606A1 EP17713047.3A EP17713047A EP3426606A1 EP 3426606 A1 EP3426606 A1 EP 3426606A1 EP 17713047 A EP17713047 A EP 17713047A EP 3426606 A1 EP3426606 A1 EP 3426606A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- centrifuge
- waste water
- heat exchanger
- channel
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 97
- 239000003921 oil Substances 0.000 title description 39
- 239000004519 grease Substances 0.000 title description 12
- 239000003925 fat Substances 0.000 title description 10
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000007791 liquid phase Substances 0.000 claims description 30
- 239000007787 solid Substances 0.000 claims description 30
- 239000012071 phase Substances 0.000 claims description 21
- 238000011144 upstream manufacturing Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000000356 contaminant Substances 0.000 claims description 5
- 239000013528 metallic particle Substances 0.000 claims description 3
- 235000019198 oils Nutrition 0.000 description 38
- 239000002699 waste material Substances 0.000 description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000003860 storage Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 15
- 239000010865 sewage Substances 0.000 description 15
- 239000002184 metal Substances 0.000 description 10
- 235000013305 food Nutrition 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 238000009300 dissolved air flotation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 239000003225 biodiesel Substances 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 206010061217 Infestation Diseases 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000008162 cooking oil Substances 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000002879 macerating effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/38—Treatment of water, waste water, or sewage by centrifugal separation
- C02F1/385—Treatment of water, waste water, or sewage by centrifugal separation by centrifuging suspensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0208—Separation of non-miscible liquids by sedimentation
- B01D17/0214—Separation of non-miscible liquids by sedimentation with removal of one of the phases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/0217—Separation of non-miscible liquids by centrifugal force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/12—Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B1/00—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
- B04B1/04—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls
- B04B1/08—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls of conical shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B1/00—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
- B04B1/20—Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B15/00—Other accessories for centrifuges
- B04B15/02—Other accessories for centrifuges for cooling, heating, or heat insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B5/00—Other centrifuges
- B04B5/10—Centrifuges combined with other apparatus, e.g. electrostatic separators; Sets or systems of several centrifuges
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/38—Treatment of water, waste water, or sewage by centrifugal separation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/40—Devices for separating or removing fatty or oily substances or similar floating material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/22—Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/32—Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
Definitions
- the present invention relates to an apparatus for the treatment of contaminated water waste, and in particular a method for separating fats, oils and greases from waste water.
- the present invention also relates to a method of treating contaminated water waste.
- waste streams that include a mixture of oils (vegetable oil, animal fats, and/or mineral oils), contaminated water, and solids.
- oils vegetable oil, animal fats, and/or mineral oils
- these materials are commonly referred to as 'fats, oils, and grease' (FOG).
- FOG waste streams are common to several industries, for example, sink trap grease waste from restaurant kitchens, drainage grease interceptor waste adjacent to animal and food processing facilities, dissolved air flotation sludge produced in dairies, waste water output from tanneries and food processing facilities.
- the build up of FOG either in parts of the drain and/or sewage network can also cause other environment and/or health risks, for example it may attract vermin and lead to rat infestations.
- Grease traps or grease interceptors can be installed in drainage systems in both domestic and industrial settings where FOG waste is produced. These collect the FOG and allow the waste water to flow into the sewage network. The traps/interceptors must be maintained and emptied by licenced collectors. FOG also has a tendency to accumulate in the sewage network, particularly at sewage pumping stations and sewage treatment works. This has often to be extracted with a vacuum tanker and removed.
- the constituent phases which make up these FOG waste streams are of potential financial value.
- the oil phase can, for example, be used as a feedstock for the biodiesel industry.
- the aqueous phase can, for example, be used as a feedstock for low retention time high yield anaerobic digestion.
- the solids phase can be used, for example, for anaerobic digestion and/or composting, or protein recovery.
- Embodiments of the invention seek to provide an apparatus which overcome some of these problems.
- an apparatus for treating contaminated waste water comprising:
- a heat exchanger having a first channel and a second channel, wherein the first channel is connected in a flow path extending between the feed apparatus and the centrifuge;
- the apparatus is particularly suited for the treatment of waste water contaminated with fats, oils and greases (FOG), and solid materials.
- the apparatus may be suited for the treatment of grease interceptor waste, dissolved air flotation (DAF) sludge, septic tank skimmings, and other similar contaminated waste water streams.
- Grease interceptor waste may be waste from grease interceptors installed in a drainage system between waste water plumbing and the sewer network, for example, between a commercial sink and the foul water pipe leading to the sewers; or waste from food factories.
- Dissolved air flotation (DAF) sludge may be waste water from poultry and other animal processing plants, abattoirs, food factories or from petroleum refining processes.
- Fats, oils and grease may be waste material that has accumulated in the sewer network, for example, at sewage pumping stations, or at sewage treatment works.
- the feed apparatus may be provided upstream of the heater.
- the apparatus may comprise a storage tank for holding contaminated waste water, in particular waste water contaminated with fats, oils and greases.
- the feed apparatus may be a pump.
- the feed apparatus may be provided between the storage tank and the downstream equipment.
- the feed apparatus may include additional pumps, provided at other downstream locations.
- the channel may be any suitable conduit or flow path, such as a pipe, closed/open channel etc..
- the first channel of the heat exchanger may be fluidly coupled at a downstream end to the main centrifuge.
- the first channel of the heat exchanger may be fluidly coupled at an upstream end to the feed apparatus.
- Further equipment may be provided in the flow path extending between the feed apparatus and the main centrifuge, such that the first channel of the heat exchanger is indirectly coupled to the feed apparatus and/or the main centrifuge.
- the main centrifuge may include a plurality of outlets, including at least: a solids discharge flow outlet, a lighter oil stream outlet; and a heavier waste water flow outlet.
- the waste water outlet of the main centrifuge may be directly or indirectly coupled to the inlet of the second channel of the heat exchanger.
- the oil stream outlet may be fluidly coupled to a storage tank in order to collect the oil for further processing.
- the centrifuge may be a tricanter-type centrifuge.
- the apparatus may include a buffer tank provided between the main heater and the tricanter-type centrifuge.
- the buffer tank may include a stirring mechanism.
- the buffer tank may include a heating mechanism.
- the first channel of the heat exchanger may be connected between the buffer tank and the inlet of the tricanter-type centrifuge.
- the centrifuge may be a main centrifuge.
- An auxiliary centrifuge may be provided between the heater and the main centrifuge; the auxiliary centrifuge having a liquid phase outlet which is fluidly coupled to the inlet of the main centrifuge and a solids outlet.
- the liquid phase outlet of the auxiliary centrifuge may be directly or indirectly coupled to the inlet of the main centrifuge.
- the apparatus may include a buffer tank provided between the main heater and the auxiliary centrifuge.
- the buffer tank may include a stirring mechanism.
- the buffer tank may include a heating mechanism.
- the first channel of the heat exchanger may be provided in a flow path extending between the feed apparatus and the heater.
- the first channel of the heat exchanger may be provided in a flow path extending between the auxiliary centrifuge and the main centrifuge.
- a secondary heater may be provided between the auxiliary centrifuge and the main centrifuge.
- a secondary buffer tank may be provided between the auxiliary centrifuge and the main centrifuge.
- the secondary buffer tank may supply the secondary heater.
- the apparatus may further include a secondary heat exchanger having a first channel and a second channel; wherein the first channel of the secondary heat exchanger is connected in a flow path between the auxiliary centrifuge and the main centrifuge.
- the secondary heat exchanger may be provided upstream of a secondary heater.
- a secondary buffer tank may be provided between the auxiliary centrifuge and the main centrifuge. The secondary buffer tank may supply the secondary heat exchanger.
- the second channel of the secondary heat exchanger may be fluidly coupled to the waste water outlet of the main centrifuge.
- the waste water exiting the secondary heat exchange may then be conveyed to the second channel of the main heat exchanger.
- the second channel of the secondary heat exchanger may be fluidly coupled to the oil phase outlet of the main centrifuge.
- the second channel of the secondary heat exchanger may be directly or indirectly coupled to the oil phase outlet of the main centrifuge. With this arrangement, heat is recovered from both the waste water flow and the recovered oil phase flow.
- the main centrifuge is a disk-stack-type centrifuge.
- the auxiliary centrifuge is a decanter-type centrifuge.
- the decanter-type centrifuge may include outlets for a solids discharge flow and a liquid phase flow.
- the disk stack-type centrifuge solids flow outlet may be coupled to the inlet of the decanter-type centrifuge.
- the or each heat exchanger may be a counter-flow heat exchanger.
- the or each heat exchanger may be a parallel-flow heat exchanger.
- the or each heat exchanger may be a cross-flow heat exchanger.
- the or each heat exchanger may comprise two heat exchangers arranged in parallel in the flow path.
- the main heater and/or the secondary heater is a steam heat exchanger.
- the main heater and/or secondary heater may be a scraped surface heat exchanger.
- Polymer or de-emulsifying agents may be added prior to centrifugation.
- a macerator may be provided upstream of the heater.
- the macerator may be configured to reduce the size of any entrained particles in the waste water to below a predefined maximum size.
- a filter may be provided upstream of the heater, the filter may be configured to remove particles above a predefined size.
- a metal removal apparatus may be provided upstream of the heater.
- a method of treating contaminated waste water comprising:
- the method is particularly suited for the treatment of waste water contaminated with fats, oils and greases (FOG).
- FOG fats, oils and greases
- the centrifuge may be a tricanter centrifuge.
- the step of separating the contaminated waste water flow may further include conveying the heated waste water to an auxiliary centrifuge configured to separate the flow into a liquid phase flow and a solids phase flow, and then conveying the liquid phase flow to a main centrifuge configured to separate the flow into a waste water flow; a solids flow and an oil phase flow.
- the step of separating the contaminated waste water flow may further include heating the liquid phase flow before it is conveyed to the main centrifuge.
- the waste water is pre-heated in the heat exchanger before being conveyed to the main heater.
- the liquid phase flow may be pre-heated in the heat exchanger before being conveyed to the main centrifuge.
- the method may further include providing a secondary heat exchanger having a first channel and a second channel; conveying the oil phase flow outputted from the main centrifuge to the second channel of the secondary heat exchanger; and conveying the liquid phase flow from the auxiliary centrifuge through the first channel of the secondary heat exchanger before it is conveyed to the main centrifuge.
- the liquid phase flow may further be heated be a secondary heater before it is conveyed to the main centrifuge.
- the main centrifuge may be a disk-stack-type centrifuge and the auxiliary centrifuge may be a decanter-type centrifuge.
- the or each heat exchanger may be a counter-flow heat exchanger.
- the step of providing a supply of contaminated waste water may include removing particle contaminants above a predefined size and/or metallic particles.
- the step of providing a supply of contaminated waste water may include macerating the contaminated waste water supply.
- Figure 1 is a schematic representation of an apparatus according to a first embodiment of the invention
- FIGS 2a to 2c show schematic views of types of centrifuges used in embodiments of the invention
- Figures 3 to 7 are schematic representations of an apparatus according to further embodiments of the invention.
- FIG. 1 shows a plan view of an apparatus 1 for treating waste water according to a first embodiment of the invention.
- the apparatus 1 provides a cost effective arrangement for extracting contaminants such as fats, oil and grease (FOG) from waste water.
- the apparatus 1 includes a storage apparatus 10 holding contaminated water 2 including FOG; a pump 1 1 , a metal removal apparatus 12, a macerator 14, a heat exchanger 20, a heater 30, a holding tank 40, a first centrifuge 50, a second centrifuge 60, and an oil storage tank 70.
- the metal removal apparatus 12 and macerator 14 are optional and can be omitted from the apparatus and/or replaced with a filter. It will be appreciated that the metal removal apparatus 12 and macerator 14 may be used in any of the embodiments described herein.
- the contaminated waste water is pumped by the pump 1 1 through the metal removal apparatus 12 which detects and removes metallic particles 13 in order to prevent damage to the downstream equipment.
- the waste is then fed through a macerator 14 which reduces the particles to below a predefined maximum size.
- the maximum size is determined by the maximum permissible particle size which can be handled by the downstream decanter-type centrifuge 50 (explained in more detail below).
- a macerator 14 is provided which reduces the average particle size to below the allowable tolerance of the decanting centrifuge, typically below 5mm, this allows a heat exchanger 20 having a higher heat transfer coefficient to be used. This also ensures that downstream equipment, such as the centrifuges, is not damaged.
- the waste water is then fed through a first channel 22 of the heat exchanger 20 (the operation of which will be explained in more detail below) in which the material is preheated. It is then fed to the heater 30, which raises the material temperature to between 50°C and 98°C. Since the material has been pre-heated by the economiser heat exchanger, less energy is required by the heater in heating the material up to the desired elevated processing temperature.
- the waste water flow is conveyed to the holding tank 40.
- the holding tank 40 is a stirred tank, and the waste water is continuously stirred at the elevated temperature allowing additional time for the debinding of the material.
- the material is conveyed from the tank 40 to the first (auxiliary) centrifuge 50.
- the holding tank may not be necessary in all applications, and when no holding tank is provided the material is conveyed directly from the heat exchanger 20 to the first centrifuge. It will be appreciated that a holding tank 40 may be used in any of the embodiments described herein.
- the first centrifuge 50 is a decanter-type centrifuge.
- the first centrifuge 50 separates the material into low moisture content solid flow 4 and a liquid phase flow 3 having a low solids content.
- a typical decanter-type centrifuge (shown in Figure 2a) includes a horizontal spinning bowl 56, and an auger type screw 58, comprising a helical blade 58a mounted on a shaft 58b which provided within the bowl 56 such that there is a small clearance between the distal extremes of the screw blade 58a and the surface of the bowl 56.
- the centrifuge 50 includes an inlet 52, a first outlet 53 at a first end of the bowl, and a second outlet 54 at the opposite end of the bowl.
- Inflow material is fed from the inlet 52 through the shaft 58b into the bowl 56 which rotates at approximately 3000rpm.
- the screw 58 is rotated at a slightly lower speed to that of the bowl 56, typically a differential in the range 15-100 rpm. This causes the screw 58 to convey the solids away from the lighter liquid phases.
- the solids are discharged from the first outlet 53 and the liquid phases flow is discharged from the second outlet 54. It has been found that the solids are discharged with moisture content typically in the range 10-20%, and the liquid phases are discharged with very low solids content.
- the decanter-type centrifuge 50 has an operating temperature of approximately 60 °C.
- the liquid phases 3 are then conveyed to a second, main centrifuge 60.
- the second centrifuge 60 is a disk stack type centrifuge or separator, also known as a conical plate centrifuge.
- the disk stack type centrifuge 60 separates the material outputted from the first centrifuge into: a solids discharge flow 8, a lighter oil stream 6 and a heavier waste water flow 9.
- a typical disk stack type centrifuge separates the phases by subjecting the liquid phases to an extremely high centrifugal force, and includes stack plates which provide increased surface settling area to speed up the separation process.
- a typical disk stack type centrifuge is shown in Figure 2b.
- the disk stack centrifuge 60 includes an inlet 62, a first outlet 63 through which the solids discharge flow is discharged, a second outlet 64 for discharging the heavy water 9 and a third outlet 65 for discharging the lighter oil 6.
- the oil stream 6 has a water content brought down to solubility levels ( ⁇ 1 weight percentage (wt%)) and with almost all trace solids removed.
- the waste water flow 9 has a raised temperature, typically in the range 80 to 98°C and is conveyed to a second channel 24 of the heat exchanger 20.
- the heat exchanger 20 of the embodiment has a counter-current arrangement in which the water waste inlet is provided at the same end as the material flow outlet.
- the heat recovered from the waste water heats up the material flowing through the first channel 22, which reduces the heating requirement and therefore energy consumption of the heater 30.
- the waste water exiting from the apparatus 1 has been cooled sufficiently to be discharged into the sewage network.
- the apparatus includes a single tricanter-type centrifuge 90 (shown in Figure 2C) instead of the first and second centrifuges as described above.
- the tricanter-type centrifuge When the tricanter-type centrifuge is used, the material is transferred from the stirring tank into the centrifuge inlet 92. The solids are conveyed by a screw 98 away from the liquid phases, and then discharged from a first outlet 94. The heavier water waste flow is discharged under pressure from a second outlet 93 and conveyed to the second channel of the heat exchange in the same way as described above for the water waste from the second centrifuge in Figure 1 . The lighter oil stream is discharged by gravity through a third outlet 95.
- FIG. 3 shows an apparatus 101 according to second embodiment of the invention.
- the apparatus 101 includes a includes a storage tank 1 10 holding contaminated water 2 including FOG; a pump (not shown), a macerator 1 14, a filter 1 16, a heat exchanger 125, a first heater 130, a first centrifuge 150, a second heater 135, a second centrifuge 160, and an oil storage tank 170.
- the filter 1 16 and macerator 1 14 are optional and can be omitted from the apparatus. It will be appreciated that the filter 1 16 and macerator 1 14 may be used in any of the embodiments described herein.
- the arrangement may also include a metal detection/removal apparatus.
- a pump pumps the contaminated waste water through the macerator and filter to reduce entrained particle size and remove large contaminants to ensure that subsequent downstream equipment, such as the centrifuges, is not damaged.
- the processed waste water flow 2a then passes first through the first heater 130 which raises the temperature to approximately 95 C and then into the first (auxiliary) centrifuge 150.
- this is a decanter-type centrifuge which separates the contaminated waste water into a low moisture content solid flow 4 and a liquid phase flow 3 having a low solids content.
- the liquid phase flow 3 is then conveyed through a first channel of the heat exchanger 125, through a second heater 135 and then to the second, main centrifuge 160.
- the second centrifuge is a disk stack centrifuge (as before), which separates the flow into: a solids discharge flow 8, a lighter oil stream 6 and a heavier waste water flow 9.
- the waste water flow 9 is conveyed to a second channel of the heat exchanger 125.
- the cooled waste water exiting the heat exchanger 1 25 is then collected in a tank 172, from where it can be discharged into the sewage network.
- FIG. 4 shows an apparatus 201 according to third embodiment of the invention.
- the apparatus 201 includes a includes a storage tank 210 holding contaminated water 2 including FOG; a pump (not shown), a macerator 214, a filter 216, a heat exchanger 220, a first heater 230, a first centrifuge 250, a second heater 235, a second centrifuge 260, and an oil storage tank 270.
- the filter 216 and macerator 214 are optional and can be omitted from the apparatus. It will be appreciated that the filter 216 and macerator 214 may be used in any of the embodiments described herein.
- the arrangement may also include a metal detection/removal apparatus.
- the first centrifuge 250 is a decanter type centrifuge and the second centrifuge 260 is a disk-stack type centrifuge.
- a pump pumps the contaminated waste water through the macerator and filter to reduce entrained particle size and remove large contaminants.
- the processed waste water flow 2a passes first through a first channel of the heat exchanger 220 and then through a heater 230.
- the heated waste water flow is then conveyed into the decanter centrifuge 250 where is separated into a low moisture content solid flow 4 and a liquid phase flow 3.
- This arrangement differs from previous embodiments in that the liquid phase flow 3 exiting the decanter centrifuge 250 is conveyed through the second heater 235 before entering the disk stack centrifuge 260.
- the second heater 235 raises the temperature of the liquid phase flow to approximately 95°C which will allow a greater degree of separation between heavy and light liquid phases at a given flowrate.
- the disk stack centrifuge separates the flow into: a solids discharge flow 8, a lighter oil stream 6 and a heavier waste water flow 9.
- the waste water flow 9 is conveyed through a second channel of the heat exchanger 220.
- the cooled waste water exiting the heat exchanger 220 is then collected in a tank 272, from where it can be discharged into the sewage network.
- FIG. 5 shows an apparatus 301 according to fourth embodiment of the invention.
- the apparatus 301 includes a includes a storage tank 310 holding contaminated water 2 including FOG; a pump (not shown), a macerator 314, a filter 316, a first heat exchanger 320, a first heater 330, a first centrifuge 350, a second heat exchanger 325, a second heater 335, a second centrifuge 360, and an oil storage tank 370.
- the filter 316 and macerator 314 are optional and can be omitted from the apparatus, and a metal detection/removal apparatus may also be included upstream of the first heat exchanger 320. It will be appreciated that the filter 316 and macerator 314 may be used in any of the embodiments described herein.
- the first centrifuge 350 is a decanter type centrifuge and the second centrifuge 360 is a disk-stack type centrifuge.
- the processed waste water flow 2a passes through a first channel in the first heat exchanger 320 and then the first heater 330 before being conveyed into the decanter centrifuge 350.
- the liquid phase outflow 3 from the decanter centrifuge 350 is passed through a first channel of the second heat exchanger 325 which preheats it before it enters the second heater 335.
- the second heater 335 heats the flow to a temperature of approximately 95°C which allows for a greater degree of separation between the heavy and light liquid phases.
- the disk stack centrifuge 360 separates the flow into: a solids discharge flow 8, a lighter oil stream 6 and a heavier waste water flow 9.
- the waste water flow 9 is conveyed first through a second channel of the second heat exchanger 325, and then through a second channel of the first heat exchanger 320.
- the cooled waste water exiting the first heat exchanger 320 is then collected in a tank 372, from where it can be discharged into the sewage network.
- This embodiment provides liquid inflow to the disk stack centrifuge with an elevated temperature which is typically in the range of 80 to 98°C.
- the double heat recovery from the waste water flow reduces the energy required by the two heaters 330, 335.
- an apparatus is provided which is similar to that shown in Figure 5, but without the second heater, meaning that the liquid phase flow is heated only by the second heat exchanger before being conveyed into the disk stack centrifuge. Since this arrangement includes only one heater it has a lower energy requirement.
- FIG. 6 shows an apparatus 401 according to fifth embodiment of the invention.
- the apparatus 401 includes a storage tank 410 holding contaminated water 2 including FOG; a pump (not shown), a filter 416, a first heat exchanger 420, a first heater 430, a first centrifuge 450, a second heat exchanger 425, a second heater 435, a second centrifuge 460, and an oil storage tank 470.
- the filter 416 is optional, and the macerator and/or a metal detection/removal apparatus may also be included upstream of the first heat exchanger. It will be appreciated that the filter 416 and the macerator may be used in any of the embodiments described herein.
- the first centrifuge 450 is a decanter type centrifuge and the second centrifuge 460 is a disk-stack type centrifuge.
- the first heat exchanger 420 includes two heat exchangers 420a, 420b arranged in parallel, downstream of the first heater 430 in the flow path.
- the processed waste water flow 2a is split into two channels and conveyed through first channels in the two heat exchangers 420a, 420b.
- the second heat exchanger 425 includes two heat exchangers 425a, 425b arranged in parallel in the liquid phase 3 flow path between the decanter centrifuge 450 and the second heater 435.
- the disk stack centrifuge 460 separates the flow into: a solids discharge flow 8, a lighter oil stream 6 and a heavier waste water flow 9.
- the waste water flow 9 is conveyed first through a second channel of the second heat exchanger 425a, and then through a second channel of the first heat exchanger 420a.
- the oil stream flow 6 is conveyed first through a second channel of the second heat exchanger 425b, and then through a second channel of the first heat exchanger 420b. This means that heat is recovered from both the extracted oil and waste water.
- the double parallel heat exchanger arrangements produce a greater temperature rise, which results in lower energy requirements for both of the heaters 430, 435.
- FIG. 7 shows an apparatus 501 according to a further embodiment of the invention.
- the apparatus 501 includes a storage tank 510 holding contaminated water 2 including FOG; a pump (not shown), a macerator 514, a filter 516, a first holding tank, a first heat exchanger 520, a first heater 530, a first centrifuge 550, a second holding tank 545, a second heat exchanger 525 a second heater 535, two second centrifuges 560a and 560b, an oil storage tank 570 and a waste water tank 572.
- the filter 516 and macerator are optional, and/or a metal detection/removal apparatus may also be included upstream of the first heat exchanger.
- the filter 516 and macerator may be used in any of the embodiments described herein.
- the first centrifuge 550 is a decanter type centrifuge and the second centrifuges 560a and 560b are disk-stack type centrifuges.
- the apparatus 501 is an example layout of the type suited for large-scale operations which can process large quantities of FOG contaminated waste water, such as in a water utilities company.
- the storage tank includes a loop circuit having a hot water heater 518.
- the feedstock stored in the tank 510 can be pumped by the pump 51 1 around this circuit to recirculate and heat the feedstock.
- This storage loop circuit may be provided in combination with the other apparatus layouts described previously.
- the processed waste water flow 2a is conveyed through the first holding tank 540 in which it is stirred, and from here conveyed to the first heat exchanger 520 and then to the first heater 530.
- the heated flow is then conveyed to the decanter centrifuge where it is separated into a solids flow 4 and a liquids phase flow 3.
- the liquids phase flow 3 is conveyed to the second holding (stirring) tank 545 and then to the second heat exchanger 525. It will be appreciated that holding tanks 540 and 545 may be used in any of the embodiments described herein.
- the second heater 535 includes two heaters 535a, 555b arranged in parallel upstream of the second heat exchanger 525. After being pre-heated in the second heat exchanger 525, the flow is split into two and conveyed through the two heaters 535a, 535b. Each of the heaters 535a, 555b feeds a respective disk stack centrifuge 560a, 560b. The oil phase outflows 6 from the disk stack centrifuges are conveyed to an oil storage tank 570. The waste water flows 9 from the disk stack centrifuges 560a, 560b are combined to a single channel and conveyed first through a second channel of the second heat exchanger 525, and then through a second channel of the first heat exchanger 520.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physical Water Treatments (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Centrifugal Separators (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1603905.9A GB2548106A (en) | 2016-03-07 | 2016-03-07 | Apparatus for the treatment of waste water |
PCT/GB2017/050607 WO2017153739A1 (en) | 2016-03-07 | 2017-03-07 | Apparatus for the treatment of waste water containing fats, oils and grease |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3426606A1 true EP3426606A1 (en) | 2019-01-16 |
EP3426606B1 EP3426606B1 (en) | 2021-12-22 |
Family
ID=55859112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17713047.3A Active EP3426606B1 (en) | 2016-03-07 | 2017-03-07 | Apparatus for the treatment of waste water containing fats, oils and grease |
Country Status (6)
Country | Link |
---|---|
US (1) | US11370674B2 (en) |
EP (1) | EP3426606B1 (en) |
DK (1) | DK3426606T3 (en) |
ES (1) | ES2909483T3 (en) |
GB (1) | GB2548106A (en) |
WO (1) | WO2017153739A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2548106A (en) * | 2016-03-07 | 2017-09-13 | Physichem Ltd | Apparatus for the treatment of waste water |
US10731428B2 (en) * | 2016-04-19 | 2020-08-04 | Recover Energy Services Inc. | Multi-stage drilling waste material recovery process |
CN112551813A (en) * | 2020-12-08 | 2021-03-26 | 肇庆专工试剂科技有限公司 | Spraying circulating water treatment device and method and wood shaving piece drying equipment |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HU204738B (en) | 1989-09-05 | 1992-02-28 | Richter Gedeon Vegyeszet | Process and equipment for recovering fat- or protein-containing solid material from fat-containing sludge and/or sewage, particularly from slaughtered sludge and/or sewage |
US5145585A (en) * | 1990-02-09 | 1992-09-08 | Coke Alden L | Method and apparatus for treating water in a cooling system |
FR2720014B1 (en) | 1994-05-18 | 1996-08-14 | Cpr | Process and installation for the treatment and recovery of fatty waste. |
US5593591A (en) * | 1995-06-07 | 1997-01-14 | Unipure Corporation | Production of dry, free flowing solids from bio-waste sludge |
WO1997023264A1 (en) | 1995-12-22 | 1997-07-03 | Fluid Recycling Services | Method of recycling fluids |
FR2911514B1 (en) * | 2007-01-19 | 2009-04-10 | Veolia Proprete Sa | PROCESS AND INSTALLATION FOR THE TREATMENT OF FAT WASTE |
JP2008188533A (en) * | 2007-02-05 | 2008-08-21 | Toshiba Corp | Water treatment apparatus |
DE102009014108B3 (en) * | 2009-03-24 | 2010-05-12 | Argus Umweltbiotechnologie Gmbh | Compact strip plant for removing highly volatile impurities from ground water, comprises a housing with water inlet- and outlet direction and with supply air inlet line and exhaust air outlet line, and/or funnels |
EP2530135B1 (en) * | 2011-05-30 | 2022-05-25 | GEA Mechanical Equipment GmbH | Method for purifying pyrolysis oil |
US8926841B2 (en) * | 2011-06-27 | 2015-01-06 | Waste Management National Services, Inc. | System and method for converting organic waste into methane and other useful products |
AU2013100882A4 (en) * | 2012-10-18 | 2013-07-25 | Transpacific Industries Group Ltd | Process and apparatus for treating waste |
US20170226165A1 (en) * | 2016-02-09 | 2017-08-10 | Fluid Quip Process Technologies, Llc | System and method for isolation of protein as a co-product of biofuel and/or biochemical production |
GB2548106A (en) * | 2016-03-07 | 2017-09-13 | Physichem Ltd | Apparatus for the treatment of waste water |
-
2016
- 2016-03-07 GB GB1603905.9A patent/GB2548106A/en not_active Withdrawn
-
2017
- 2017-03-07 US US16/083,002 patent/US11370674B2/en active Active
- 2017-03-07 EP EP17713047.3A patent/EP3426606B1/en active Active
- 2017-03-07 ES ES17713047T patent/ES2909483T3/en active Active
- 2017-03-07 DK DK17713047.3T patent/DK3426606T3/en active
- 2017-03-07 WO PCT/GB2017/050607 patent/WO2017153739A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
GB2548106A (en) | 2017-09-13 |
WO2017153739A1 (en) | 2017-09-14 |
GB201603905D0 (en) | 2016-04-20 |
EP3426606B1 (en) | 2021-12-22 |
ES2909483T3 (en) | 2022-05-06 |
US20190092654A1 (en) | 2019-03-28 |
US11370674B2 (en) | 2022-06-28 |
DK3426606T3 (en) | 2022-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2850155C (en) | Thickening treatment of oil sands tailings including asphaltenes | |
US11370674B2 (en) | Apparatus for the treatment of waste water containing fats, oils and grease | |
JP4577911B2 (en) | Animal and vegetable oil waste liquid recycling system | |
JP5201689B2 (en) | Waste treatment system | |
CN113121076B (en) | Oil sludge sand treatment method | |
KR0133527B1 (en) | Oil recovery process and apparatus for oil refinery waste | |
CN104193019A (en) | Emulsion wastewater treatment process and device | |
US20190022555A1 (en) | Method and system for cleaning oily waste | |
KR20150056429A (en) | Treating Method of Sewage comprising sludge and waste water using solvent extraction | |
CN104479863B (en) | A kind of production of biodiesel feedstock oil pretreatment unit and its processing method | |
US11000777B1 (en) | Apparatus and process for treating water | |
CN115403243B (en) | Fatlute processing system | |
CN107129828A (en) | A kind of sump oil integrated processing system and its processing method | |
CN102424444B (en) | Method and device for removing oil from desalted water of crude electrostatic desalting apparatus | |
KR102521149B1 (en) | Pre-treatment system to remove contaminants from food waste | |
US1764390A (en) | Process of recovering grease from garbage | |
CN105174520A (en) | Oil removal treatment method for acidic water | |
WO2007038963A1 (en) | Process and device for producing palm oil or vegetable oil | |
CN106977064A (en) | A kind of biological extractant handles the method and its application of oily sludge | |
CN106608705A (en) | Oil sludge reduction equipment | |
CN217709328U (en) | Heavy dirty oil ultrasonic treatment device | |
CN210313919U (en) | Potato starch effluent disposal system | |
CN214400183U (en) | System for draw oil content in oil sludge | |
JP2018176059A (en) | Treatment method of water-containing oil waste liquid and treatment apparatus of water-containing oil waste liquid | |
CN106433728A (en) | Coal tar desalination and dehydration device and method for treating overwater tar and underwater tar by device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20181008 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190618 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210705 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017051212 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1456964 Country of ref document: AT Kind code of ref document: T Effective date: 20220115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20220322 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220322 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2909483 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220506 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1456964 Country of ref document: AT Kind code of ref document: T Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220322 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220422 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602017051212 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220422 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602017051212 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20220331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220322 |
|
26N | No opposition filed |
Effective date: 20220923 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: NE Effective date: 20221221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R073 Ref document number: 602017051212 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220401 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220307 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220307 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220322 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221001 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: NE Effective date: 20221215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R074 Ref document number: 602017051212 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: FR Effective date: 20230301 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: NF Effective date: 20230412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220307 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221001 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: DE Effective date: 20230213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: BE Effective date: 20230412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220307 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20220801 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602017051212 Country of ref document: DE Representative=s name: KANDLBINDER, MARKUS, DIPL.-PHYS., DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: S28 Free format text: APPLICATION FILED |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: NF Effective date: 20231218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220401 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: NL Effective date: 20231218 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: S28 Free format text: RESTORATION ALLOWED Effective date: 20240201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170307 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240320 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240122 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240325 Year of fee payment: 8 Ref country code: FR Payment date: 20240329 Year of fee payment: 8 Ref country code: BE Payment date: 20240328 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EGE Effective date: 20240530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240405 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240529 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240408 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240402 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: DK Effective date: 20240529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: DK Effective date: 20240529 |