EP3212348B1 - Method for producing a component by subjecting a sheet bar of steel to a forming process - Google Patents
Method for producing a component by subjecting a sheet bar of steel to a forming process Download PDFInfo
- Publication number
- EP3212348B1 EP3212348B1 EP15786860.5A EP15786860A EP3212348B1 EP 3212348 B1 EP3212348 B1 EP 3212348B1 EP 15786860 A EP15786860 A EP 15786860A EP 3212348 B1 EP3212348 B1 EP 3212348B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blank
- temperature
- forming
- component
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 229910000831 Steel Inorganic materials 0.000 title claims description 22
- 239000010959 steel Substances 0.000 title claims description 22
- 230000008569 process Effects 0.000 title description 9
- 238000010438 heat treatment Methods 0.000 claims description 49
- 238000005520 cutting process Methods 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 238000004080 punching Methods 0.000 claims description 14
- 238000005482 strain hardening Methods 0.000 claims description 8
- 230000002829 reductive effect Effects 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 claims description 7
- 238000003466 welding Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 11
- 238000000926 separation method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/022—Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/04—Stamping using rigid devices or tools for dimpling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D28/00—Shaping by press-cutting; Perforating
- B21D28/02—Punching blanks or articles with or without obtaining scrap; Notching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D35/00—Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D35/00—Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
- B21D35/001—Shaping combined with punching, e.g. stamping and perforating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/88—Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
- C21D2221/02—Edge parts
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2261/00—Machining or cutting being involved
Definitions
- the invention relates to a method for producing a component by forming a blank made of steel, according to the preamble of claim 1, which allows a high formability work-hardened, mechanically separated sheet edges.
- a component is understood to be a component produced from a sheet metal blank by forming by means of a forming tool at room temperature.
- sheet materials are all deformable metal materials into consideration, but especially steel.
- the sheet metal blanks may be uncoated or provided with a metallic and / or organic corrosion protection coating.
- Such components are mainly used in body construction, but also in the home appliance industry, in mechanical engineering or construction offer opportunities.
- the material suppliers are trying to meet the necessary material requirements by reducing the wall thicknesses by providing high-strength and ultra-high-strength steels, while at the same time improving component behavior during production and operation.
- a sheet metal blank of hot or cold strip is first cut to size at room temperature.
- the cutting process is usually mechanical separation processes, such. shearing or punching, but more rarely also thermal separation methods, such as e.g. laser cutting, for use.
- Thermal separation processes are significantly more costly compared to mechanical separation processes, so that they are used only in exceptional cases.
- the cut board After cutting the cut board is placed in a forming tool and in single or multi-stage forming steps the finished component, such as. a chassis carrier generated.
- the cut edges especially when raised or raised, e.g. in collar operations in perforated boards, particularly stressed.
- the aforementioned damage to the sheet edges can lead to premature failure in subsequent forming operations or during operation of the component.
- the testing of the forming behavior of cut sheet edges with regard to their edge crack sensitivity is carried out with a hole expansion test according to ISO 16630.
- Object of the present invention is to provide a method for producing a cold-formed component of a sheared at room temperature sheet metal plate with occasionally various other performed at room temperature manufacturing steps, such as punching or cutting operations, which reduces the previously described damage to the cutting areas in their effect or eliminates and thus the edge crack sensitivity in the subsequent cold forming of the sheet metal blank reduced or even eliminated.
- the method should be simple and inexpensive to implement and achieve comparable and / or improved properties on the one hand in the production, in particular with respect to the formability of the cut edges and on the other hand in the component, in particular with respect to the static strength.
- this object is achieved by a method for producing a component by forming a steel circuit board at room temperature, having a high formability and reduced crack sensitivity mechanically cut or punched edges on the board, in which the board previously from a tape or Sheet is cut at room temperature, where appropriate, further manufacturing steps, such as Punching or cutting operations, to achieve recesses or openings on the sheet or the board are carried out at room temperature and then the prepared board in one or more steps to a component at room temperature is formed, which is characterized in that regardless of the deformation to a component at any time after cutting the blank and any further punching or cutting operations which, by the cutting or punching operations cold-hardened sheet edge portions, which undergo a subsequent cold working in the manufacture of the component, to a temperature of at least 600 ° C. are heated and the time of the temperature application is less than 10 seconds.
- further manufacturing steps such as Punching or cutting operations
- the heat is applied over the entire sheet thickness and in the plane direction of the board in a range which corresponds at most to the sheet thickness.
- the duration of the heat depends on the type of heat treatment process.
- the heating itself can take place arbitrarily, for example, conductively, inductively via radiation heating or by means of laser processing.
- Excellent for the Heat treatment is the conductive heating, as it is often used, for example in the automotive industry on the example of spot welds.
- a spot welding machine with rather short exposure times for the treatment of punched holes in the board, whereas in indefinite to be treated edge portions, the inductive method, radiation heating or laser machining with longer exposure times in question.
- an advantageous development of the invention provides for rinsing these areas with inert gases, for example argon.
- the inert gas purging takes place during the duration of the heat treatment but can also, if necessary, be made shortly before the beginning and / or in a limited period of time after the heat treatment has been carried out.
- the heat input is very concentrated in the shear-influenced cutting edge areas and is therefore associated with a relatively low energy consumption, in particular with regard to methods in which the entire board is supplied to a heating or by orders of magnitude temporally more expensive stress relief is applied.
- the process window for the temperature to be reached in the cutting edge area is also very large and covers a temperature range from above 600 ° C up to the solidus temperature of approx. 1500 ° C.
- the method according to the invention has the advantage that only microstructural changes are made by the heat treatment of the shard-influenced edge regions, and the strength is not generally reduced, but rather increased.
- the insensitivity to edge cracks in the sense of a larger Lochaufweititess, can thus be improved by a factor of 2 or even more than 3.
- the method according to the invention allows more complex component geometries and thus greater design freedom when using the same materials.
- the fatigue strength of the cold-formed component is expected not to be reduced due to the self-adjusting, but possibly harder but homogeneous compared to the initial state but homogeneous structure, but with pronounced two-phase structures such. Dual phase structures increased.
- the heat treatment of the cold-cut edge regions to be cold can be completed at any time after the cutting or punching processes and before forming the board or as an intermediate step in multi-stage forming operations of the board are carried out to form a component, so that the process steps cutting or punching the board, heat treatment of the cutting edges and forming the board are completely decoupled from one another.
- the production is much more flexible than is possible in the prior art in integration of edge modification by heat treatment.
- the method can be integrated as an intermediate production step in a series production which specifies a cycle in the range of 0.1 to 10 seconds.
- the production of sheet metal components in the automotive sector in several successive steps thus represents a predestined scope.
- the forming of the board prepared in this way can advantageously be carried out with the forming tools already in production, since no additional heating devices, such as e.g. Ovens, to heat the board itself are necessary. This allows a further cost-effective production and by the decoupling of the manufacturing steps a high flexibility in the production process.
- the heating of the cut edges may be provided with a downstream heat treatment device or this may be directly upstream of the forming device for cold forming of the board.
- the board itself may for example be rolled flexibly with different thicknesses or be joined from cold or hot strip of the same or different thickness and / or quality.
- the invention is applicable to hot or cold rolled steel strip from soft to high strength steels, eg with yield strengths from 140 MPa to 1200 MPa, which may be provided with a corrosion inhibiting layer as a metallic and / or organic coating.
- the metallic coating may for example consist of zinc or an alloy of zinc or of magnesium or of aluminum and / or silicon.
- FIG. 1 the hole-widening test according to ISO 16630 is shown schematically on heat-treated cut edges according to the invention.
- the heat treatment takes place only at the shard-influenced cut edges as an intermediate step after cutting the blank and before reshaping edge-near areas.
- the experimental set - up for the conductive heat treatment of shard - influenced cut edges is in FIG. 2 shown.
- step 1 a sheet with a hole punched out therein (step 1) in the area of the shard-influenced sheet edges heat-treated (step 2). Thereafter, in step 3, the actual hole widening takes place by means of a punch, which is subsequently determined on the tested sample.
- the opposing spot welding electrodes have a diameter larger than the punched hole, so that the shard-influenced hole edges can be heat-treated.
- the electrodes have a hemispherical shape on the ends contacting the hole edges, so that the sheet is simply centered on the one hand, and on the other hand, the heat can be concentrated only introduced into the sheer-influenced region.
- the shape of the contacting electrode tip should be adapted to the respective geometric configuration of the edge areas.
- a treatment duration ie the duration of the current flow in the case of inductive heating and the duration of the power reduction by the laser, or the duration of action of other heat sources in a range of 20 ms to at most 10 s, in but usually advantageous between 100 ms to apply to 2000 ms. It is essential in any case that a temperature of at least 600 ° C at the location of the heat treatment is achieved.
- the main process parameters are, in addition to the duration of treatment, and in the case of inductive heating, the current, which was varied between 4 and 10 kA.
- the laser heat treatment first, a laser power of 5 kW was set, which was spread on a circular area of about 12 mm, so that about a ring mold with 1 mm edge width of the cut circular hole of the sample with the diameter of 10 mm was heat-treated.
- FIG. 3 The results of hole expansion tests according to ISO 16630 on uncoated samples HDT780C after conductive heat treatment of the shard affected cut edges are the FIG. 3 and corresponding results on hot - dip galvanized samples HCT780CD and uncoated samples HDT780C after heat treatment of the shard - influenced cut edges by means of laser are the FIG. 4 refer to.
- FIG. 5 shows in the upper part of the picture on the left, in a schematic representation in a plan view of a hole punched in a sheet, which according to the invention was heat treated in the region of the hole edge.
- the self-adjusting microstructures in the heat-affected area are shown schematically in the upper part of the picture on the right.
- the structure In the near edge area of approx. 0.5 mm, the structure consists of 100% martensite. As a result, there was heating above Ac3, which was rapidly cooled. As the distance to the edge increases, the proportion of bainite increases up to a distance to the edge Edge of about 2.5 mm, from which 100% bainite is present. From an edge distance of 2.5 mm, the structure was no longer subject to conversion, so that here treatment temperatures were below Ac1 (about 700 ° C).
- the hardness increase ( FIG. 5 , lower part of the image) in the vicinity of the hole edge is typical for microalloyed bainitic hot strip and results from the subsequent separation of nanoparticles in the temperature range of about 500 ° C - 700 ° C.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Laser Beam Processing (AREA)
- Metal Rolling (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils durch Umformen einer Platine aus Stahl, gemäß dem Oberbegriff des Patentanspruches 1, welches eine hohe Umformbarkeit kaltverfestigter, mechanisch getrennter Blechkanten ermöglicht.The invention relates to a method for producing a component by forming a blank made of steel, according to the preamble of
Unter Bauteil wird im Folgenden ein aus einer Blechplatine durch Umformen mittels eines Umformwerkzeuges bei Raumtemperatur hergestelltes Bauteil verstanden. Als Blechwerkstoffe kommen alle umformbaren Metallwerkstoffe in Betracht, insbesondere jedoch Stahl. Die Blechplatinen können unbeschichtet oder mit einem metallischen und/oder organischen Korrosionsschutzüberzug versehen sein.In the following, a component is understood to be a component produced from a sheet metal blank by forming by means of a forming tool at room temperature. As sheet materials are all deformable metal materials into consideration, but especially steel. The sheet metal blanks may be uncoated or provided with a metallic and / or organic corrosion protection coating.
Derartige Bauteile werden hauptsächlich im Karosseriebau verwendet, aber auch in der Hausgeräteindustrie, im Maschinenbau oder Bauwesen bieten sich Einsatzmöglichkeiten.Such components are mainly used in body construction, but also in the home appliance industry, in mechanical engineering or construction offer opportunities.
Der intensiv umkämpfte Automobilmarkt zwingt die Hersteller, ständig nach Lösungen zur Senkung ihres Flottenverbrauches unter Beibehaltung eines höchstmöglichen Komforts und Insassenschutzes zu suchen. Dabei spielt einerseits die Gewichtsersparnis aller Fahrzeugkomponenten eine entscheidende Rolle andererseits aber auch ein möglichst günstiges Verhalten der einzelnen Bauteile bei hoher statischer und dynamischer Beanspruchung im Betrieb wie auch im Crashfall.The highly competitive automotive market is forcing manufacturers to constantly seek solutions to reduce their fleet consumption while maintaining maximum comfort and occupant safety. On the one hand, the weight saving of all vehicle components plays a decisive role, on the other hand, but also a most favorable behavior of the individual components with high static and dynamic stress during operation as well as in the event of a crash.
Den notwendigen Werkstoffanforderungen versuchen die Vormateriallieferanten dadurch Rechnung zu tragen, dass durch die Bereitstellung hoch- und höchstfester Stähle die Wanddicken reduziert werden können bei gleichzeitig verbessertem Bauteilverhalten bei der Fertigung und im Betrieb.The material suppliers are trying to meet the necessary material requirements by reducing the wall thicknesses by providing high-strength and ultra-high-strength steels, while at the same time improving component behavior during production and operation.
Diese Stähle müssen daher vergleichsweise hohen Anforderungen hinsichtlich Festigkeit, Dehnfähigkeit, Zähigkeit, Energieaufnahme und Korrosionsbeständigkeit sowie ihrer Verarbeitbarkeit, beispielsweise bei der Kaltumformung und beim Schweißen, genügen.These steels must therefore meet comparatively high requirements in terms of strength, ductility, toughness, energy absorption and corrosion resistance and their processability, for example in cold forming and welding.
Unter den vorgenannten Aspekten gewinnt die Herstellung von Bauteilen aus höher- und hochfesten Stählen mit Streckgrenzen oberhalb 600 MPa zunehmend an Bedeutung.Among the above-mentioned aspects, the production of components made of high-strength and high-strength steels with yield strengths above 600 MPa is becoming increasingly important.
Zur Herstellung eines Bauteils wird zunächst eine Blechplatine aus Warm- oder Kaltband bei Raumtemperatur auf Maß geschnitten. Als Schneidverfahren kommen zumeist mechanische Trennverfahren, wie z.B. das Abscheren oder Stanzen, seltener aber auch thermische Trennverfahren, wie z.B. das Laserschneiden, zur Anwendung. Thermische Trennverfahren sind deutlich kostenintensiver im Vergleich zu mechanischen Trennverfahren, so dass diese nur in Ausnahmefällen eingesetzt werden.To produce a component, a sheet metal blank of hot or cold strip is first cut to size at room temperature. The cutting process is usually mechanical separation processes, such. shearing or punching, but more rarely also thermal separation methods, such as e.g. laser cutting, for use. Thermal separation processes are significantly more costly compared to mechanical separation processes, so that they are used only in exceptional cases.
Nach dem Zuschneiden wird die zugeschnittene Platine in ein Umformwerkzeug gelegt und in ein- oder mehrstufigen Umformschritten das fertige Bauteil, wie z.B. ein Fahrwerksträger, erzeugt.After cutting the cut board is placed in a forming tool and in single or multi-stage forming steps the finished component, such as. a chassis carrier generated.
Vor der Umformung werden fallweise diverse weitere Fertigungsschritte, wie z.B. Stanz- und Schneidoperationen an der Platine und während der Umformung kombinierte Bördeloperationen an gelochten Abschnitten vorgenommen.Before forming, various further manufacturing steps, such as e.g. Punching and cutting operations on the board and made during the forming combined flaring operations on perforated sections.
Bei der Umformung werden die Schnittkanten, insbesondere wenn sie auf- bzw. hochgestellt werden, z.B. bei Kragenoperationen in gelochten Platinen, besonders belastet.In forming, the cut edges, especially when raised or raised, e.g. in collar operations in perforated boards, particularly stressed.
An den Schnittkanten können diverse Vorschädigungen vorliegen. Zum einen bedingt durch eine Kaltverfestigung des Werkstoffs, hervorgerufen durch das mechanische Trennen, das eine totale Umformung bis zur Materialtrennung darstellt. Zum anderen kann eine Kerbwirkung auftreten, welche durch die Topographie der Schnittfläche entsteht.At the cutting edges various preliminary damages can be present. On the one hand due to a work hardening of the material, caused by the mechanical separation, which represents a total deformation to material separation. On the other hand, a notch effect can occur which results from the topography of the cut surface.
Gerade bei hoch- und höchstfesten Blechwerkstoffen tritt daher bei der anschließenden Umformung eine erhöhte Risswahrscheinlichkeit in den Randbereichen dieser Schnittkanten auf.Especially in the case of high-strength and ultra-high-strength sheet-metal materials, an increased cracking probability therefore occurs in the edge regions of these cut edges during the subsequent shaping.
Die genannten Vorschädigungen an den Blechkanten können zum vorzeitigen Versagen bei nachfolgenden Umformoperationen bzw. beim Betrieb der Komponente führen. Die Prüfung des Umformverhaltens geschnittener Blechkanten im Hinblick auf deren Kantenrissempfindlichkeit wird mit einem Lochaufweitversuch nach ISO 16630 durchgeführt.The aforementioned damage to the sheet edges can lead to premature failure in subsequent forming operations or during operation of the component. The testing of the forming behavior of cut sheet edges with regard to their edge crack sensitivity is carried out with a hole expansion test according to ISO 16630.
Beim Lochaufweitversuch wird in das Blech durch Scherschneiden ein kreisrundes Loch eingebracht, das dann durch einen konischen Stempel aufgeweitet wird. Die Messgröße ist die auf den Ausgangsdurchmesser bezogene Änderung des Lochdurchmessers, bei der am Rand des Lochs der erste Riss durch das Blech auftritt.When Lochaufweitversuch a circular hole is introduced into the sheet by shear cutting, which is then widened by a conical punch. The measured quantity is the change in the diameter of the hole in relation to the initial diameter at which the first crack occurs through the sheet at the edge of the hole.
Um die vorab beschriebene Kantenrissempfindlichkeit bei der Kaltumformung von schergeschnittenen oder gestanzten Blechkanten zu minimieren, sind z.B. Ansätze zur Veränderung der Legierungszusammensetzung und Werkstoffprozessierung (z.B. gezieltes Einstellen von bainitischen Gefügen) oder der Verfahrenstechnik beim Kaltbeschnitt der Platine (z.B. über Modifikationen von Schneidspalt, Geschwindigkeit, Mehrfachbeschnitt etc.) bekannt.In order to minimize the above-described edge crack sensitivity in the cold working of sheared or punched sheet edges, e.g. Approaches for changing the alloy composition and material processing (e.g., targeted setting of bainitic structures) or the process technique in cold-cutting the board (e.g., via modifications of cutting gap, speed, multiple trimming, etc.) are known.
Diese Maßnahmen sind entweder teuer und aufwändig (z.B. mehrstufige Schneidoperationen. Instandhaltung von 3-D Schnitten etc.), oder sie liefern noch keine optimalen Ergebnisse.These measures are either expensive and expensive (e.g., multi-stage cutting operations, maintenance of 3-D cuts, etc.), or they do not yet provide optimal results.
Desweiteren ist es aus der Offenlegungsschrift
Aus der
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung eines kaltumgeformten Bauteils aus einer bei Raumtemperatur schergeschnittenen Blechplatine mit fallweise diversen weiteren bei Raumtemperatur durchgeführten Fertigungsschritten, wie z.B. Lochstanz- oder Schneidoperationen anzugeben, welches die vorab beschriebenen Vorschädigungen der Schnittbereiche in ihrer Auswirkung vermindert bzw. eliminiert und somit die Kantenrissempfindlichkeit bei der nachfolgenden Kaltumformung der Blechplatine reduziert oder sogar eliminiert. Das Verfahren soll einfach und kostengünstig realisierbar sein und vergleichbare und/oder verbesserte Eigenschaften einerseits bei der Herstellung, insbesondere bezüglich der Umformbarkeit der Schnittkanten und andererseits im Bauteil insbesondere bezüglich der statischen Festigkeit erreichen.Object of the present invention is to provide a method for producing a cold-formed component of a sheared at room temperature sheet metal plate with occasionally various other performed at room temperature manufacturing steps, such as punching or cutting operations, which reduces the previously described damage to the cutting areas in their effect or eliminates and thus the edge crack sensitivity in the subsequent cold forming of the sheet metal blank reduced or even eliminated. The method should be simple and inexpensive to implement and achieve comparable and / or improved properties on the one hand in the production, in particular with respect to the formability of the cut edges and on the other hand in the component, in particular with respect to the static strength.
Nach der Lehre der Erfindung wird diese Aufgabe gelöst durch ein Verfahren zur Herstellung eines Bauteils durch Umformen einer Platine aus Stahl bei Raumtemperatur, aufweisend eine hohe Umformbarkeit und verminderte Rissempfindlichkeit mechanisch an der Platine geschnittener oder gestanzter Kanten, bei dem die Platine zuvor aus einem Band oder Blech bei Raumtemperatur zugeschnitten wird, wobei fallweise weitere Fertigungsschritte, wie z.B. Stanz- oder Schneidoperationen, zur Erzielung von Aussparungen oder Durchbrüchen am Blech bzw. der Platine bei Raumtemperatur durchgeführt werden und anschließend die so vorbereitete Platine in einem oder mehreren Schritten zu einem Bauteil bei Raumtemperatur umgeformt wird, welches dadurch gekennzeichnet ist, dass unabhängig von der Umformung zu einem Bauteil zu einem beliebigen Zeitpunkt nach dem Zuschneiden der Platine und etwaigen weiteren Stanz- oder Schneidoperationen, die durch die Schneid- oder Stanzoperationen kalt verfestigten Blechkantenbereiche, welche eine anschließende Kaltumformung bei der Herstellung des Bauteils erfahren, auf eine Temperatur von mindestens 600°C erwärmt werden und die Zeit der Temperaturbeaufschlagung weniger als 10 Sekunden beträgt.According to the teaching of the invention, this object is achieved by a method for producing a component by forming a steel circuit board at room temperature, having a high formability and reduced crack sensitivity mechanically cut or punched edges on the board, in which the board previously from a tape or Sheet is cut at room temperature, where appropriate, further manufacturing steps, such as Punching or cutting operations, to achieve recesses or openings on the sheet or the board are carried out at room temperature and then the prepared board in one or more steps to a component at room temperature is formed, which is characterized in that regardless of the deformation to a component at any time after cutting the blank and any further punching or cutting operations which, by the cutting or punching operations cold-hardened sheet edge portions, which undergo a subsequent cold working in the manufacture of the component, to a temperature of at least 600 ° C. are heated and the time of the temperature application is less than 10 seconds.
Versuche haben gezeigt, dass es zur Verbesserung des Lochaufweitvermögens nicht notwendig ist, den Schneidprozess selbst bei erhöhter Temperatur der Schnittkantenbereiche durchzuführen, sondern es ausreichend ist, nur die kaltverfestigten, scherbeeinflussten Schnittkantenbereiche in einem unerwartet kurzen Zeitintervall im Bereich von weniger als 10 Sekunden, in der Regel aber zwischen 0,1 und 2,0 Sekunden auf eine Temperatur von mindestens 600°C aufzuheizen. Erfindungsgemäß kann dies losgelöst vom Schneid- oder Stanzprozess und den nachfolgenden Fertigungsschritten, zu einem beliebigen Zeitpunkt vor der Umformung zu einem Bauteil geschehen.Experiments have shown that it is not necessary to perform the cutting process even at elevated temperature of the cut edge areas to improve the Lochaufweitvermögen, but it is sufficient only the work hardened, shear-influenced cut edge areas in an unexpectedly short time interval in the range of less than 10 seconds, in the Usually, however, to heat up to a temperature of at least 600 ° C between 0.1 and 2.0 seconds. According to the invention this can be done detached from the cutting or punching process and the subsequent manufacturing steps, at any time before the forming into a component.
Die Wärmeeinwirkung erfolgt dabei über die gesamte Blechdicke und in Ebenenrichtung der Platine in einem Bereich der höchstens der Blechdicke entspricht. Die Dauer der Wärmeeinwirkung richtet sich dabei nach der Art des Wärmebehandlungsverfahrens.The heat is applied over the entire sheet thickness and in the plane direction of the board in a range which corresponds at most to the sheet thickness. The duration of the heat depends on the type of heat treatment process.
Die Erwärmung selbst kann auf beliebige Weise zum Beispiel konduktiv, induktiv über Strahlungserwärmung oder mittels Laserbearbeitung erfolgen. Hervorragend geeignet für die Wärmebehandlung ist die konduktive Erwärmung, wie sie zum Beispiel in der Automobilfertigung vielfach am Beispiel von Punktschweißungen angewendet wird. Vorteilhaft eignet sich zum Beispiel eine Punktschweißmaschine mit eher kurzen Einwirkzeiten zur Behandlung von gestanzten Löchern in der Platine, wohingegen bei zu behandelnden längeren Kantenabschnitten das induktive Verfahren, Strahlungserwärmung oder Laserbearbeitung mit längeren Einwirkzeiten in Frage kommt.The heating itself can take place arbitrarily, for example, conductively, inductively via radiation heating or by means of laser processing. Excellent for the Heat treatment is the conductive heating, as it is often used, for example in the automotive industry on the example of spot welds. Advantageously, for example, is a spot welding machine with rather short exposure times for the treatment of punched holes in the board, whereas in indefinite to be treated edge portions, the inductive method, radiation heating or laser machining with longer exposure times in question.
Zum Schutz der erwärmten Schnittkantenbereiche vor Oxidation sieht eine vorteilhafte Weiterbildung der Erfindung vor, diese Bereiche mit Inertgasen, zum Beispiel Argon, zu spülen. Die Inertgasspülung erfolgt dabei während der Dauer der Wärmebehandlung kann aber auch, falls es notwendig erscheint, zusätzlich schon kurz vor Beginn und/oder in einem begrenzten Zeitraum noch nach Durchführung der Wärmebehandlung erfolgen.In order to protect the heated cut edge regions from oxidation, an advantageous development of the invention provides for rinsing these areas with inert gases, for example argon. The inert gas purging takes place during the duration of the heat treatment but can also, if necessary, be made shortly before the beginning and / or in a limited period of time after the heat treatment has been carried out.
Somit erfolgt die Wärmeeinbringung nur sehr konzentriert in den scherbeeinflussten Schnittkantenbereichen und ist daher mit einem vergleichsweise geringem Energieaufwand verbunden, insbesondere hinsichtlich Verfahren, bei denen die gesamte Platine einer Erwärmung zugeführt wird oder eine um Größenordnungen zeitlich aufwendigere Spannungsarmglühung Anwendung findet.Thus, the heat input is very concentrated in the shear-influenced cutting edge areas and is therefore associated with a relatively low energy consumption, in particular with regard to methods in which the entire board is supplied to a heating or by orders of magnitude temporally more expensive stress relief is applied.
Das Prozessfenster für die zu erreichende Temperatur im Schnittkantenbereich ist zudem sehr groß und umfasst einen Temperaturbereich von oberhalb 600°C bis hin zur Solidustemperatur von ca. 1500°C.The process window for the temperature to be reached in the cutting edge area is also very large and covers a temperature range from above 600 ° C up to the solidus temperature of approx. 1500 ° C.
Die Versuche haben außerdem gezeigt, dass allein die Eliminierung der Kaltverfestigung entscheidend für eine deutliche Verbesserung des Lochaufweitvermögens ist und die nicht ausheilbaren Ungänzen wie z.B. Poren einer untergeordneten Bedeutung zukommen.The experiments have also shown that only the elimination of strain hardening is crucial for a significant improvement in hole-expanding capacity, and the non-recoverable discontinuities, e.g. Pores of subordinate importance.
Dies ist unabhängig davon, ob die Wärmebehandlung unterhalb oder oberhalb der Umwandlungstemperatur Ac1 stattfindet.This is independent of whether the heat treatment takes place below or above the transformation temperature Ac1.
Wird die Wärmebehandlung oberhalb von Ac1 durchgeführt, kommt es nach Behandlung im Zuge einer raschen Abkühlung aufgrund des umgebenden kalten Materials bei umwandlungsfähigen Stählen zu einer Umwandlung in sogenannte metastabile Phasen. Das daraufhin einstellende Gefüge wird sich vom Ausgangszustand hinsichtlich einer erhöhten Festigkeit unterscheiden.If the heat treatment is carried out above Ac1, transformation into so-called metastable phases takes place after treatment in the course of a rapid cooling due to the surrounding cold material in the case of convertible steels. The resulting microstructure will differ from the initial state in terms of increased strength.
Eine Gefügeumwandlung mit einer damit in aller Regel einhergehenden Härte- und Festigkeitssteigerung hat überraschenderweise keinen negativen Einfluss auf das Lochaufweitvermögen, unabhängig davon, ob ein im Vergleich zum Ausgangsgefüge härteres und weniger zähes Gefüge eingestellt wird, so dass auch Behandlungstemperaturen der Schnittkanten bis hin zur Solidusgrenze möglich sind. Entscheidend bleibt in jedem Falle, dass die durch das Schneiden eingebrachte Kaltverfestigung weitestgehend eliminiert wird.Surprisingly, a structural transformation with as a rule associated increase in hardness and strength has no negative influence on the Lochaufweitvermögen, regardless of whether a harder and less tough compared to the starting structure structure is adjusted, so that treatment temperatures of the cut edges up to the solidus limit possible are. In any case, it is crucial that the strain hardening introduced by cutting is largely eliminated.
Um die erfindungsgemäßen Ziele zu erreichen, reicht es nach den vorliegenden Untersuchungen nicht aus, eine Erwärmung unterhalb 600°C für die Dauer einiger Sekunden durchzuführen, da eine deutliche Reduzierung der durch den mechanischen Trennvorgang eingebrachten Versetzungen erfolgen muss.In order to achieve the objectives according to the invention, it is not sufficient, according to the present investigations, to carry out a heating below 600 ° C. for a period of a few seconds, since a significant reduction in the dislocations introduced by the mechanical separation process must take place.
Das erfindungsgemäße Verfahren hat gegenüber den bekannten Maßnahmen zur Verminderung der Kantenrissempfindlichkeit den Vorteil, dass durch die Wärmebehandlung nur der scherbeeinflussten Kantenbereiche mikrostrukturell verändert und die Festigkeit dabei in der Regel nicht verringert, sondern erhöht wird. Die Unempfindlichkeit gegenüber Kantenrissen im Sinne eines größeren Lochaufweitvermögens, kann damit um den Faktor 2 oder sogar mehr als 3 verbessert werden.Compared to the known measures for reducing the edge crack sensitivity, the method according to the invention has the advantage that only microstructural changes are made by the heat treatment of the shard-influenced edge regions, and the strength is not generally reduced, but rather increased. The insensitivity to edge cracks in the sense of a larger Lochaufweitvermögens, can thus be improved by a factor of 2 or even more than 3.
Bei der industriellen Anwendung des erfindungsgemäßen Verfahrens kann aufgrund der deutlich erhöhten Umformbarkeit der kritischen scherbeeinflussten Blechkantenbereiche einerseits der Ausschuss an umgeformten Bauteilen gesenkt werden und andererseits können bislang notwendige Fügeoperationen zum Beispiel durch jetzt durchführbare Kragenoperationen bei der Ausbildung z.B. von Lagerstellen eingespart werden.In the industrial application of the method according to the invention can be reduced due to the significantly increased formability of the critical shear-influenced sheet edge areas on the one hand, the Committee of formed components and on the other hand, previously required joining operations, for example, by now feasible collar operations in the formation of e.g. Saved from storage locations.
Das erfindungsgemäße Verfahren erlaubt durch das verbesserte Umformvermögen der Schnittkantenbereiche komplexere Bauteilgeometrien und somit eine größere konstruktive Freiheit bei Verwendung derselben Werkstoffe. Zudem wird die Dauerfestigkeit des kalt umgeformten Bauteils erwartungsgemäß aufgrund des sich einstellenden, zwar möglicherweise im Vergleich zum Ausgangszustand härteren aber homogenen Gefüges nicht verringert, sondern bei ausgeprägt zweiphasigen Gefügen wie z.B. Dualphasengefügen erhöht.Due to the improved formability of the cut edge regions, the method according to the invention allows more complex component geometries and thus greater design freedom when using the same materials. In addition, the fatigue strength of the cold-formed component is expected not to be reduced due to the self-adjusting, but possibly harder but homogeneous compared to the initial state but homogeneous structure, but with pronounced two-phase structures such. Dual phase structures increased.
Die Wärmebehandlung der kalt umzuformenden Schnittkantenbereiche kann vollständig zu einem beliebigen Zeitpunkt nach den Schneid- oder Stanzprozessen und vor der Umformung der Platine oder als Zwischenschritt bei mehrstufigen Umformoperationen der Platine zu einem Bauteil durchgeführt werden, so dass die Prozessschritte Schneiden bzw. Stanzen der Platine, Wärmebehandlung der Schnittkanten und Umformung der Platine zu einem Bauteil voneinander vollständig entkoppelt sind. Somit wird die Fertigung deutlich flexibler, als es nach dem Stand der Technik bei Integration einer Kantenmodifikation durch Wärmebehandlung möglich ist.The heat treatment of the cold-cut edge regions to be cold can be completed at any time after the cutting or punching processes and before forming the board or as an intermediate step in multi-stage forming operations of the board are carried out to form a component, so that the process steps cutting or punching the board, heat treatment of the cutting edges and forming the board are completely decoupled from one another. Thus, the production is much more flexible than is possible in the prior art in integration of edge modification by heat treatment.
Aufgrund der im Vergleich zu bekannten Maßnahmen kurzen Behandlungsdauer, kann das Verfahren in einer Serienfertigung, die eine Taktung im Bereich von 0,1 bis 10 Sekunden vorgibt, als Zwischenfertigungsschritt integriert werden. Insbesondere die Fertigung von Blechkomponenten im Automobilbereich in mehreren aufeinander folgenden Schritten stellt somit einen prädestinierten Anwendungsbereich dar.Due to the short duration of treatment compared with known measures, the method can be integrated as an intermediate production step in a series production which specifies a cycle in the range of 0.1 to 10 seconds. In particular, the production of sheet metal components in the automotive sector in several successive steps thus represents a predestined scope.
Die Umformung der so vorbereiteten Platine kann zudem vorteilhaft mit den bereits in der Produktion vorhandenen Umformwerkzeugen durchgeführt werden, da keine zusätzlichen Erwärmungseinrichtungen, wie z.B. Öfen, zum Aufheizen der Platine selbst notwendig sind. Dies ermöglicht eine weiterhin kostengünstige Fertigung und durch die Entkopplung der Fertigungsschritte eine hohe Flexibilität im Produktionsablauf.In addition, the forming of the board prepared in this way can advantageously be carried out with the forming tools already in production, since no additional heating devices, such as e.g. Ovens, to heat the board itself are necessary. This allows a further cost-effective production and by the decoupling of the manufacturing steps a high flexibility in the production process.
Nach einer vorteilhaften Weiterbildung der Erfindung kann die Erwärmung der Schnittkanten jedoch abhängig vom vorgesehenen Produktionsablauf, wenn dies vorteilhaft erscheint, auch unmittelbar nach den mechanischen Schneid- oder Stanzprozessen oder unmittelbar vor der Umformung zu einem Bauteil, in einem mit dem jeweiligen Fertigungsprozess kombinierten Arbeitsschritt erfolgen. Zum Beispiel können die Schneid- und Stanzeinrichtungen mit einer nachgeschalteten Wärmebehandlungsvorrichtung versehen sein oder diese kann der Umformeinrichtung zum Kaltumformen der Platine direkt vorgeschaltet sein.According to an advantageous development of the invention, the heating of the cut edges, however, depending on the intended production process, if this appears advantageous, even immediately after the mechanical cutting or punching processes or immediately before forming into a component, take place in a combined with the respective manufacturing process step. For example, the cutting and stamping devices may be provided with a downstream heat treatment device or this may be directly upstream of the forming device for cold forming of the board.
Die Platine selbst kann z.B. flexibel mit unterschiedlichen Dicken gewalzt sein oder aus Kalt- oder Warmband gleicher oder unterschiedlicher Dicke und/oder Güte gefügt sein. Die Erfindung ist anwendbar für warm- oder kaltgewalzte Stahlbänder aus weichen bis hochfesten Stählen, z.B. mit Streckgrenzen von 140 MPa bis 1200 MPa, die mit einer korrosionshemmenden Schicht als metallischem und/oder organischem Überzug versehen sein können. Der metallische Überzug kann zum Beispiel aus Zink oder einer Legierung aus Zink oder aus Magnesium oder aus Aluminium und/oder Silizium bestehen.The board itself may for example be rolled flexibly with different thicknesses or be joined from cold or hot strip of the same or different thickness and / or quality. The invention is applicable to hot or cold rolled steel strip from soft to high strength steels, eg with yield strengths from 140 MPa to 1200 MPa, which may be provided with a corrosion inhibiting layer as a metallic and / or organic coating. The metallic coating may for example consist of zinc or an alloy of zinc or of magnesium or of aluminum and / or silicon.
Die Eignung von beschichteten Stahlbändern erklärt sich aus der Möglichkeit, die Behandlung des Kantenbereichs auf einen Abstand zur Kante zu beschränken der einem Bruchteil der Blechdicke entspricht, da in diesem Bereich der überwiegende Anteil der schädlichen Kaltverfestigung beim Scherschneiden vorliegt. So kann bei Blechdicken von einigen Millimetern Dicke der Bereich bis zu einem Abstand zur Kante von einigen zehn Mikrometern bereits ausreichend sein, so dass beispielsweise der wirksame Korrosionsschutz einer metallischen korrosionshemmenden Schicht nicht oder nur unerheblich beeinflusst wird.
Als höherfeste Stähle kommen alle einphasigen aber auch mehrphasige Stahlsorten zur Anwendung. Dazu gehören mikrolegierte, höherfeste Stahlsorten genauso wie bainitische oder martensitische Sorten sowie Dualphasen, Komplexphasen und TRIP Stähle. Anspruch 15 betrifft die Verwendung einer Platine aus Stahl zur Umformung bei Raumtemperatur, bei welcher vor der Umformung die in Anspruch 1 definierte Lehre angewendet wird. Weitere bevorzugte Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der dargestellten Figuren. Es zeigen:
-
Figur 1 - schematische Darstellung des Lochaufweiteversuchs nach ISO 16630 an erfindungsgemäß wärmebehandelten Schnittkanten
-
Figur 2 - Versuchsaufbau zur konduktiven Wärmebehandlung scherbeeinflusster Schnittkanten
-
Figur 3 - Ergebnisse von Lochaufweitversuchen nach ISO 16630 an unbeschichteten Proben HDT780C nach konduktiver Wärmebehandlung der scherbeeinflussten Schnittkanten
-
Figur 4 - Ergebnisse von Lochaufweitversuchen nach ISO 16630 an schmelztauchverzinkten Proben HCT780CD und unbeschichteten Proben HDT780C nach Wärmebehandlung der scherbeeinflussten Schnittkanten mittels Laser
-
Figur 5 - Gefüge und Härteverlauf an erfindungsgemäß wärmebehandelten Schnittkanten
As higher-strength steels, all single-phase as well as multi-phase steel grades are used. These include microalloyed, high-strength steels as well as bainitic or martensitic grades as well as dual phases, complex phases and TRIP steels.
- FIG. 1
- Schematic representation of the Lochaufweiteversuchs ISO 16630 according to the invention heat-treated cut edges
- FIG. 2
- Experimental setup for the conductive heat treatment of shear-influenced cut edges
- FIG. 3
- Results of hole expansion tests according to ISO 16630 on uncoated samples HDT780C after conductive heat treatment of the shard-influenced cut edges
- FIG. 4
- Results of hole expansion tests according to ISO 16630 on hot-dip galvanized samples HCT780CD and uncoated samples HDT780C after heat treatment of the shard-influenced cut edges by laser
- FIG. 5
- Microstructure and hardness profile of inventively heat-treated cut edges
In
Erfindungsgemäß findet die Wärmebehandlung nur an den scherbeeinflussten Schnittkanten als Zwischenschritt nach Zuschneiden der Platine und vor der Umformung kantennaher Bereiche statt.According to the invention, the heat treatment takes place only at the shard-influenced cut edges as an intermediate step after cutting the blank and before reshaping edge-near areas.
Der Versuchsaufbau zur konduktiven Wärmebehandlung scherbeeinflusster Schnittkanten ist in
Als Erwärmungseinrichtung wurde bei Untersuchungen neben einem leistungsstarken Laser eine handelsübliche Punktschweißmaschine zum Verbindungsschweißen von Stahlblechen genutzt, wie sie auch bei der Herstellung von Fahrzeugteilen in der Automobilindustrie eingesetzt wird. Im vorliegenden Fall werden jedoch keine aufeinanderliegenden Bleche miteinander verschweißt, sondern es wird gemäß
Wie in der
Um im Wesentlichen nur die scherbeeinflussten Bereiche mit Strom zu beaufschlagen, sollte die Form der kontaktierenden Elektrodenspitze der jeweiligen geometrischen Ausbildung der Kantenbereiche angepasst werden.In order to apply power to essentially only the shard-influenced areas, the shape of the contacting electrode tip should be adapted to the respective geometric configuration of the edge areas.
Für die Versuche wurde ein unbeschichteter, höherfester, warmgewalzter bainitischer Stahl der Güte HDT780C mit einer Mindeststreckgrenze von 680 MPa und einer Mindestzugfestigkeit von 800 MPa verwendet. Desweiteren wurde ein schmelztauchverzinkter, kaltgewalzter Komplexphasenstahl mit einer Mindeststreckgrenze von 500 MPa und einer Mindestzugfestigkeit von 780MPa der Güte HCT780CD eingesetzt.For the tests, an uncoated, higher-strength, hot-rolled bainitic grade HDT780C steel with a minimum yield strength of 680 MPa and a minimum tensile strength of 800 MPa was used. Furthermore, a hot-dip galvanized, cold-rolled complex phase steel with a minimum yield strength of 500 MPa and a minimum tensile strength of 780 MPa grade HCT780CD was used.
Je nach Verfahren ist eine Behandlungsdauer, d.h. die Dauer des Stromflusses im Falle der induktiven Erwärmung und die Dauer der Leistungsabnahme durch den Laser, oder die Einwirkungsdauer anderer Wärmequellen in einem Bereich von 20 ms bis höchstens 10 s, in der Regel aber vorteilhaft zwischen 100 ms bis hin zu 2000 ms anzuwenden. Wesentlich ist auf jeden Fall, dass eine Temperatur von mindestens 600°C an der Stelle der Wärmebehandlung erreicht wird.Depending on the method, a treatment duration, ie the duration of the current flow in the case of inductive heating and the duration of the power reduction by the laser, or the duration of action of other heat sources in a range of 20 ms to at most 10 s, in but usually advantageous between 100 ms to apply to 2000 ms. It is essential in any case that a temperature of at least 600 ° C at the location of the heat treatment is achieved.
Die wesentlichen Verfahrensparameter sind neben der Behandlungsdauer, sowie im Falle der induktiven Erwärmung der Strom, der zwischen 4 und 10 kA variiert wurde. Bei der Wärmebehandlung mittels Laser, wurde zunächst eine Laserleistung von 5 kW eingestellt, die auf eine Kreisfläche von etwa 12 mm verteilt wurde, so dass etwa eine Ringform mit 1 mm Randbreite des geschnittenen Kreislochs der Probe mit dem Durchmesser von 10 mm wärmebehandelt wurde.The main process parameters are, in addition to the duration of treatment, and in the case of inductive heating, the current, which was varied between 4 and 10 kA. In the laser heat treatment, first, a laser power of 5 kW was set, which was spread on a circular area of about 12 mm, so that about a ring mold with 1 mm edge width of the cut circular hole of the sample with the diameter of 10 mm was heat-treated.
Die Ergebnisse von Lochaufweitversuchen nach ISO 16630 an unbeschichteten Proben HDT780C nach konduktiver Wärmebehandlung der scherbeeinflussten Schnittkanten sind der
Nach der Wärmebehandlung konnte gemäß der
Hieraus lässt sich die Wirkung der Wärmebehandlung beispielhaft darstellen und Rückschlüsse auf die vorgelegenen Temperaturen ableiten. Die dargestellten Ergebnisse beziehen sich auf eine induktive Behandlung mit 500 ms Behandlungsdauer und einem Strom von 8 kA von einem Stahl HDT780C mit bainitischem Gefüge.From this, the effect of the heat treatment can be exemplified and conclusions can be drawn on the prevailing temperatures. The results shown refer to inductive treatment with 500 ms treatment time and 8 kA current from a bainitic steel HDT780C steel.
Im nahen Randbereich von ca. 0,5 mm besteht das Gefüge aus 100% Martensit. Folglich lag eine Erwärmung oberhalb von Ac3 vor, auf die eine rasche Abkühlung erfolgte. Mit zunehmendem Abstand zur Kante erhöht sich der Anteil an Bainit bis zu einem Abstand zur Kante von etwa 2,5 mm, ab dem 100% Bainit vorliegt. Ab einem Kantenabstand von 2,5 mm unterlag das Gefüge keiner Umwandlung mehr, so dass hier Behandlungstemperaturen unterhalb Ac1 (ca. 700°C) vorlagen.In the near edge area of approx. 0.5 mm, the structure consists of 100% martensite. As a result, there was heating above Ac3, which was rapidly cooled. As the distance to the edge increases, the proportion of bainite increases up to a distance to the edge Edge of about 2.5 mm, from which 100% bainite is present. From an edge distance of 2.5 mm, the structure was no longer subject to conversion, so that here treatment temperatures were below Ac1 (about 700 ° C).
Der Härteanstieg (
Insgesamt lassen sich die Vorteile der Erfindung wie folgt zusammenfassen:
- Erzeugung einer sehr gut umformbaren Schnittkante mit reduzierter Kantenrissempfindlichkeit und hohem Lochaufweitvermögen, was die Herstellung komplexerer Bauteilgeomtrien ermöglicht und das Risiko von Ausschüssen aufgrund von Kantenrissen bei der Umformung reduziert.
- Erzeugung eines optimierten Produktes unter Leichtbau- und Kostengesichtspunkten durch Herstellung komplexer Bauteilgeometrien
- Möglichkeit der Integration des Verfahrens in die mehrstufige Fertigung von Pressbauteilen aufgrund der sehr geringen Dauer der Wärmebehandlung und des sehr weiten Temperaturintervalls
- Anwendbarkeit des Verfahrens auf korrosionsscnutzbeschichtet Bleche wegen der örtlich und zeitlich sehr begrenzten Erwärmung
- In der Regel keine Erweichung sondern bei umwandlungsfähigen Werkstoffen Verfestigung der wärmebehandelten Bereiche im Vergleich zum Grundwerkstoff
- Produce a very well-formed cut edge with reduced edge crack sensitivity and high hole expandability, enabling the creation of more complex component geometries and reducing the risk of broke due to edge cracking during forming.
- Production of an optimized product from a lightweight and cost perspective by producing complex component geometries
- Possibility of integration of the process in the multi-stage production of press components due to the very short duration of the heat treatment and the very wide temperature interval
- Applicability of the method on corrosion-protected coated sheets because of the local and temporal very limited heating
- As a rule, no softening, but in the case of materials capable of transformation solidification of the heat-treated areas in comparison to the base material
Claims (15)
- A method for producing a component by forming a blank from steel at room temperature, having a high formability and reduced crack sensitivity of edges which are mechanically cut or punched on the blank, in which the blank is previously cut to size from a strip or metal sheet at room temperature, wherein, in some cases, further manufacturing steps, for example punching or cutting operations, are performed at room temperature to achieve cutouts or openings in the metal sheet or blank and the blank which is prepared in this way is then formed into a component at room temperature in one or more steps,
characterised in that,
independently of the forming into a component, at any time after the cutting to size of the blank and any further punching or cutting operations, the sheet metal edge regions, which are strain-hardened by the cutting or punching operations and undergo a subsequent cold forming during the production of the component, are heated to a temperature of at least 600°C and the time of the exposure to temperature is a maximum of 10 seconds. - The method according to Claim 1,
characterised in that
the time of the exposure to temperature is 0.02 to 10 seconds. - The method according to Claim 2,
characterised in that
the time of the exposure to temperature is 0.1 to 2 seconds. - The method according to Claims 1 to 3,
characterised in that the heating of the strain-hardened sheet metal edge regions is carried out to a temperature of 600°C to solidus temperature. - The method according to Claim 4,
characterised in that
the heating of the strain-hardened sheet metal edge regions is carried out to a temperature of Ac1 to solidus temperature. - The method according to Claims 1 to 5,
characterised in that the heating to forming temperature is carried out inductively, conductively, by means of radiation heating or by means of laser radiation. - The method according to Claim 6,
characterised in that
the heating is carried out by means of a resistance welding device or by means of a laser. - The method according to at least one of Claims 1 to 7,
characterised in that the blank is formed in one or more steps. - The method according to at least one of Claims 1 to 8,
characterised in that the sheet metal blank has an organic and/or metallic coating. - The method according to Claim 9,
characterised in that
the metallic coating contains Zn and/or Mg and/or Al and/or Si. - The method according to at least one of Claims 1 to 10,
characterised in that
the heat treatment is carried out in the planar direction of the blank, starting from the sheet metal edge, in a region which corresponds maximally to the sheet metal thickness. - The method according to one of Claims 1 to 11,
characterised in that
the region surrounding the point of the heat treatment is protected against oxidation. - The method according to one of Claims 1 to 12,
characterised in that,
to protect against oxidation, the region surrounding the point of the heat treatment is purged with an inert gas at least during the heat exposure. - The method according to Claim 13,
characterised in that
the region surrounding the point of the heat treatment is additionally purged with an inert gas prior to and/or following the heat exposure. - The use of a blank made from steel for forming into a component at room temperature, in which the blank is mechanically cut to size from a strip or metal sheet at room temperature prior to the forming procedure and, in some cases, further punching or cutting operations are performed at room temperature to achieve cutouts or openings, in which, prior to the forming into a component, a heat treatment of at least 600°C is performed over a period of 0.02 to 10 seconds or 0.1 to 2 seconds at the cut or punched sheet metal edges which have undergone strain-hardening.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014016614.7A DE102014016614A1 (en) | 2014-10-31 | 2014-10-31 | Process for producing a component by forming a steel circuit board |
PCT/DE2015/100414 WO2016066155A1 (en) | 2014-10-31 | 2015-10-06 | Method for producing a component by subjecting a sheet bar of steel to a forming process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3212348A1 EP3212348A1 (en) | 2017-09-06 |
EP3212348B1 true EP3212348B1 (en) | 2018-09-12 |
Family
ID=54359651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15786860.5A Active EP3212348B1 (en) | 2014-10-31 | 2015-10-06 | Method for producing a component by subjecting a sheet bar of steel to a forming process |
Country Status (9)
Country | Link |
---|---|
US (1) | US20170333971A1 (en) |
EP (1) | EP3212348B1 (en) |
KR (1) | KR102469605B1 (en) |
CN (1) | CN107208170B (en) |
DE (1) | DE102014016614A1 (en) |
ES (1) | ES2701869T3 (en) |
MX (1) | MX381095B (en) |
RU (1) | RU2701810C2 (en) |
WO (1) | WO2016066155A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11383288B2 (en) | 2019-01-25 | 2022-07-12 | Toyota Jidosha Kabushiki Kaisha | Method of processing steel plate and punching machine |
US11732317B2 (en) | 2019-01-25 | 2023-08-22 | Toyota Jidosha Kabushiki Kaisha | Method for processing steel plate |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016107152B4 (en) | 2016-04-18 | 2017-11-09 | Salzgitter Flachstahl Gmbh | Component of press-hardened aluminum-coated steel sheet and method for producing such a component and its use |
DE102016121902A1 (en) * | 2016-11-15 | 2018-05-17 | Salzgitter Flachstahl Gmbh | Process for the production of chassis parts made of micro-alloyed steel with improved cold workability |
DE102016121905A1 (en) | 2016-11-15 | 2018-05-17 | Salzgitter Flachstahl Gmbh | Method for producing dual-phase steel wheel discs with improved cold workability |
DE102017103729A1 (en) | 2017-02-23 | 2018-08-23 | Salzgitter Flachstahl Gmbh | Method for producing a component by further shaping a preformed contour |
DE102017103743A1 (en) * | 2017-02-23 | 2018-08-23 | Salzgitter Flachstahl Gmbh | Method for optimized production of a component with at least one secondary feature |
EP3733320A4 (en) * | 2017-12-25 | 2021-03-10 | JFE Steel Corporation | Method for manufacturing press formed product |
US20220049324A1 (en) * | 2019-02-27 | 2022-02-17 | Jfe Steel Corporation | Method for manufacturing steel sheet for cold press and method for manufacturing press component |
WO2021089800A1 (en) * | 2019-11-08 | 2021-05-14 | Autotech Engineering, S.L. | A forming sheet metal part for a vehicle frame and corresponding production method |
JP7673410B2 (en) * | 2021-01-13 | 2025-05-09 | トヨタ自動車株式会社 | Molding method |
CN119489322B (en) * | 2025-01-17 | 2025-04-25 | 山西鼎荣冷弯型钢有限公司 | Cold roll forming processing technology for stainless steel high-frequency welded pipe of highway guardrail |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2063832C1 (en) * | 1994-07-20 | 1996-07-20 | Александр Николаевич Жученко | Method to produce flat pieces with bulges of rail tie plates type |
DE19619034C2 (en) * | 1995-07-18 | 1998-01-22 | Mannesmann Ag | Process for improving the formability in the production of components from light metal strip |
US6143241A (en) * | 1999-02-09 | 2000-11-07 | Chrysalis Technologies, Incorporated | Method of manufacturing metallic products such as sheet by cold working and flash annealing |
RU2230621C2 (en) * | 2002-03-26 | 2004-06-20 | Оренбургский государственный университет | Method for making bent parts and apparatus for performing the same |
DE102004038626B3 (en) * | 2004-08-09 | 2006-02-02 | Voestalpine Motion Gmbh | Method for producing hardened components from sheet steel |
EP2238273B1 (en) * | 2008-02-07 | 2020-08-12 | Bluescope Steel Limited | Metal-coated steel strip |
DE102008014559A1 (en) * | 2008-03-15 | 2009-09-17 | Elringklinger Ag | Process for partially forming a sheet metal layer of a flat gasket produced from a spring steel sheet and device for carrying out this process |
JP5565785B2 (en) * | 2009-03-05 | 2014-08-06 | 株式会社デルタツーリング | Structural material |
DE102009049155B4 (en) | 2009-10-12 | 2017-01-05 | Bayerische Motoren Werke Aktiengesellschaft | Method for determining the edge crack sensitivity of a sheet metal material and apparatus for producing a test piece from this sheet metal material |
SE535821C2 (en) * | 2011-07-06 | 2013-01-02 | Gestamp Hardtech Ab | Ways to heat mold and harden a sheet metal blank |
TWI467028B (en) * | 2011-09-30 | 2015-01-01 | Nippon Steel & Sumitomo Metal Corp | High-strength hot-dip galvanized steel sheet with excellent impact resistance and its manufacturing method and high-strength alloyed hot-dip galvanized steel sheet and manufacturing method thereof |
DE102011054865B4 (en) * | 2011-10-27 | 2016-05-12 | Benteler Automobiltechnik Gmbh | A method of manufacturing a hot-formed and press-hardened automotive body component and motor vehicle body component |
DE102011054866A1 (en) * | 2011-10-27 | 2013-05-02 | Benteler Automobiltechnik Gmbh | Preparing hot-formed and press-hardened motor vehicle body component, comprises processing metal sheet circuit board from curable sheet steel in hot-forming and press-hardening tool, and forming area in circuit board as embossing region |
DE102011121904B4 (en) | 2011-12-21 | 2025-06-12 | Volkswagen Aktiengesellschaft | Process for shearing sheet metal with subsequent forming and a cutting tool intended for this purpose |
DE102012006941B4 (en) * | 2012-03-30 | 2013-10-17 | Salzgitter Flachstahl Gmbh | Method for producing a steel component by hot forming |
DE102014001979A1 (en) * | 2014-02-17 | 2015-08-20 | Wisco Tailored Blanks Gmbh | Method of laser welding one or more hardenable steel workpieces in the butt joint |
-
2014
- 2014-10-31 DE DE102014016614.7A patent/DE102014016614A1/en not_active Withdrawn
-
2015
- 2015-10-06 CN CN201580059268.5A patent/CN107208170B/en active Active
- 2015-10-06 KR KR1020177014382A patent/KR102469605B1/en active Active
- 2015-10-06 WO PCT/DE2015/100414 patent/WO2016066155A1/en active Application Filing
- 2015-10-06 MX MX2017005563A patent/MX381095B/en unknown
- 2015-10-06 EP EP15786860.5A patent/EP3212348B1/en active Active
- 2015-10-06 RU RU2017118583A patent/RU2701810C2/en active
- 2015-10-06 ES ES15786860T patent/ES2701869T3/en active Active
- 2015-10-06 US US15/523,191 patent/US20170333971A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11383288B2 (en) | 2019-01-25 | 2022-07-12 | Toyota Jidosha Kabushiki Kaisha | Method of processing steel plate and punching machine |
US11732317B2 (en) | 2019-01-25 | 2023-08-22 | Toyota Jidosha Kabushiki Kaisha | Method for processing steel plate |
Also Published As
Publication number | Publication date |
---|---|
KR20170077192A (en) | 2017-07-05 |
RU2701810C2 (en) | 2019-10-01 |
RU2017118583A3 (en) | 2019-04-24 |
MX2017005563A (en) | 2017-12-14 |
KR102469605B1 (en) | 2022-11-21 |
US20170333971A1 (en) | 2017-11-23 |
EP3212348A1 (en) | 2017-09-06 |
DE102014016614A1 (en) | 2016-05-04 |
CN107208170B (en) | 2019-06-14 |
MX381095B (en) | 2025-03-12 |
ES2701869T3 (en) | 2019-02-26 |
CN107208170A (en) | 2017-09-26 |
WO2016066155A1 (en) | 2016-05-06 |
RU2017118583A (en) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3212348B1 (en) | Method for producing a component by subjecting a sheet bar of steel to a forming process | |
EP3011081B1 (en) | Method for producing a product from rolled strip material | |
EP2733226B1 (en) | Method for producing a product from a flexible rolled strip material | |
EP2155917B1 (en) | Process for producing a locally hardened profile component | |
DE102011101991B3 (en) | Heat treatment of hardenable sheet metal components | |
DE102013010024B4 (en) | Structural component for a motor vehicle and method for producing such a structural component | |
EP3585531B1 (en) | Method for producing a component by further forming of a preformed contour | |
EP3697936A1 (en) | Method for producing a steel component having a metal coating protecting it against corrosion | |
WO2019185272A1 (en) | Method for welding coated steel plates | |
EP3642371A1 (en) | Method for producing a steel component provided with a metallic coating protecting against corrosion | |
EP3541966B1 (en) | Method for producing chassis parts from micro-alloyed steel with improved cold workability | |
EP2327805B1 (en) | Method for producing a sheet metal part with a corrosion-resistant coating | |
DE102014210008A1 (en) | Method and plant for producing a hardened molded part | |
WO2018091039A1 (en) | Method for producing wheel discs from a dual-phase steel with improved cold workability | |
EP4038215B1 (en) | Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom | |
EP3456456A1 (en) | Method for the preparation of tailor welded blank (twbs) | |
EP3365469B1 (en) | Method for producing a steel component for a vehicle | |
DE102017201674B3 (en) | Method for producing a press-hardened component and press mold | |
WO2019137910A1 (en) | Method for producing a steel sheet component | |
DE102015209660B4 (en) | Process for producing a sheet metal forming part | |
EP3585530B1 (en) | Method for the optimized production of a component with at least one secondary formed element | |
EP4281592A1 (en) | Method for producing a formed component from a steel blank, use of such a component, and corresponding blank and component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170413 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180329 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015005890 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1039931 Country of ref document: AT Kind code of ref document: T Effective date: 20181015 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181212 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181213 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2701869 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190112 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190112 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015005890 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181006 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
26N | No opposition filed |
Effective date: 20190613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180912 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180912 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151006 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1039931 Country of ref document: AT Kind code of ref document: T Effective date: 20201006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201006 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241021 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241025 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241030 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20241127 Year of fee payment: 10 |