Nothing Special   »   [go: up one dir, main page]

EP3252542B1 - Pièce de fixation d'un ressort-spiral horloger - Google Patents

Pièce de fixation d'un ressort-spiral horloger Download PDF

Info

Publication number
EP3252542B1
EP3252542B1 EP16172445.5A EP16172445A EP3252542B1 EP 3252542 B1 EP3252542 B1 EP 3252542B1 EP 16172445 A EP16172445 A EP 16172445A EP 3252542 B1 EP3252542 B1 EP 3252542B1
Authority
EP
European Patent Office
Prior art keywords
hairspring
oscillator
fastening
collet
stud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16172445.5A
Other languages
German (de)
English (en)
Other versions
EP3252542A1 (fr
Inventor
Olivier BALAGUE
Dominique Gritti
Thomas Gyger
Ondrej Papes
Antoine RIME
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolex SA
Original Assignee
Rolex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolex SA filed Critical Rolex SA
Priority to EP16172445.5A priority Critical patent/EP3252542B1/fr
Priority to JP2017103454A priority patent/JP7138415B2/ja
Priority to US15/609,749 priority patent/US10409223B2/en
Priority to CN201710406109.9A priority patent/CN107450297B/zh
Publication of EP3252542A1 publication Critical patent/EP3252542A1/fr
Priority to US16/519,735 priority patent/US12045013B2/en
Application granted granted Critical
Publication of EP3252542B1 publication Critical patent/EP3252542B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • G04B17/34Component parts or constructional details, e.g. collet, stud, virole or piton for fastening the hairspring onto the balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • G04B17/325Component parts or constructional details, e.g. collet, stud, virole or piton for fastening the hairspring in a fixed position, e.g. using a block
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • G04B17/34Component parts or constructional details, e.g. collet, stud, virole or piton for fastening the hairspring onto the balance
    • G04B17/345Details of the spiral roll

Definitions

  • the invention relates to a part for fixing one end of a watchmaker's hairspring, in particular a stud or a ferrule.
  • the invention also relates to an assembly comprising a hairspring and such a stud and/or such a ferrule.
  • the invention also relates to an oscillator or a timepiece movement or a timepiece comprising such an assembly.
  • the invention finally relates to a method of manufacturing such an assembly.
  • Clockwork mechanical oscillating mechanisms comprising a hairspring
  • a hairspring are generally equipped with a ferrule for fixing the inner end of the hairspring and/or a stud for fixing the outer end of the spring.
  • the attachment part of the balance-spring namely the ferrule or the peak
  • this fixing part is made of steel, in particular stainless steel.
  • Such an assembly solution is satisfactory in the case of welding a hairspring made of a paramagnetic Nb-Zr-O alloy such as that protected by the patent EP0886195B1 .
  • CH706846 more specifically relates to a split ferrule made of a titanium-based material.
  • the low density of titanium is taken advantage of with the aim of proposing a shell whose density is minimized so as to improve the isochronism of the oscillator in which said shell takes part.
  • the document CH706846 discloses a ferrule whose structure is quite conventional with first and second flats. The ferrule is pierced laterally to receive the blade from the inner end of a spiral spring. The latter can be fixed in the traditional way either by pinning, or alternatively by welding, in particular by laser welding. However, no geometric adaptation of the receiving surface is proposed to allow, or even optimize, the welding of the hairspring within the groove of the ferrule. Furthermore, no details are given as to the nature of the material of the hairspring intended to be attached to such a shroud.
  • Requirement FR2017027 specifically relates to the laser welding of the inner end of a hairspring against a ferrule portion in the shape of an arc of a circle centered on the axis of rotation of the hairspring. No details are given as to the nature of the materials taking part in the device.
  • the blade portion of the inner end of the hairspring here rests continuously against the ferrule portion.
  • a single spot weld is defined along the line of contact between the hairspring and the ferrule. To avoid the risk of tearing the weld, it is recommended to adjust the intensity of the laser so that the welding point does not exceed half the height of the blade and that it extends over a length at least equal to the height of this same blade.
  • the patent CH468662 discloses a particular ferrule geometry, which has the specificity of comprising an annular groove so as to serve as a support and guide for the blade of the inner end of the hairspring. Such a conformation does not make it possible to break the thermal conduction between any two weld zones if it is chosen to fix the leaf spring to the shroud by welding, in particular by laser welding.
  • the patent US3016688 discloses, meanwhile, an elastic peak which comprises a flat surface on which is welded a blade portion of the outer end of a spiral spring.
  • the description indicates that the piton can be welded on several points, in particular more than two points. No mention is made of the materials taking part in the device, it is however indicated that such a solution would make it possible to reinforce the hold of the hairspring against the peak.
  • spiral springs comprising at least one of the elements Nb, V, Ta, Ti, Zr, Hf, is also known from the prior art.
  • the patent EP0886195B1 discloses, for example, a hairspring made of paramagnetic Nb-Zr alloy comprising between 5% and 25% by mass of Zr, as well as an interstitial doping agent formed at least in part of oxygen.
  • the patent EP1258786B1 also discloses a hairspring made of paramagnetic Nb-Hf alloy comprising between 2% and 30% by mass of Hf.
  • the document FR2995098A3 describes an oscillator having a paramagnetic steel hairspring.
  • the document FR2881804A2 describes a stud made of a shape memory material.
  • the document CH706846A1 describes a ferrule comprising titanium for reasons of weight of the ferrule and impact on inertia and unbalance.
  • WO2015189278 discloses, for its part, a balance-spring in which the balance-spring is made of titanium alloy comprising in particular a titanium base which comprises between 10 at.% and 40 at.% of one of the elements from Nb , the Ta, or the V, between 0 at.% and 6 at. % of Zr, and between 0 at.% and 5 at. % of Hf.
  • a hairspring can be coiled and pitonned so as to be assembled within an oscillator, without any further details.
  • the object of the invention is to provide a part for fixing one end of a watchmaker's hairspring making it possible to remedy the drawbacks mentioned above and to improve the fixing parts known from the prior art.
  • the invention proposes a fixing part making it possible to improve the fixing of a hairspring, in particular to improve the resistance to tearing of a hairspring.
  • Claim 1 defines the device according to the invention and claims 11, 12, and 13 define inventive methods for making the device according to the invention.
  • the dependent claims define preferred embodiments.
  • the timepiece is for example a watch, in particular a wristwatch.
  • the timepiece comprises a timepiece movement 500, in particular a mechanical movement, itself comprising an oscillator 400, such as an oscillator of the balance-spring type comprising a balance pivoted along an axis A1 and a balance-spring arranged mainly along a plane P1 perpendicular to the axis A1.
  • Axis A1 is also the axis of the hairspring.
  • Oscillator 400 comprises a hairspring assembly 300 comprising, for its part, a hairspring 2, a first part 1' for fixing the inner end 2b of the hairspring to a balance shaft, i.e.
  • the second fixing part is a stud.
  • the hairspring is made of a paramagnetic alloy, in particular a paramagnetic alloy comprising at least one of the following elements Nb, V, Ta, Ti, Zr and Hf.
  • the hairspring comprises at least 2%, or even at least 5%, by mass of one of the following elements Nb, V, Ta, Ti, Zr and Hf.
  • the hairspring is made of an alloy comprising the elements Nb and Zr with between 5% and 25% by mass of Zr and an interstitial doping agent comprising oxygen.
  • the hairspring is made of an alloy comprising 85% by mass of Nb, 14.95% by mass of Zr and 0.05% by mass of oxygen.
  • the alloy may further comprise various impurities, for example within the following limits: Hf ⁇ 7000ppm, Ta ⁇ 1000ppm, W ⁇ 300ppm, Mo ⁇ 100ppm, others ⁇ 60ppm.
  • made of titanium preferably means any material whose mass content of titanium is greater than 99%, or even greater than 99.5%.
  • titanium alloy is preferably meant any other material whose majority or dominant element by mass is titanium, such as for example Titanium Grade 5 (Ti6Al4V).
  • made of tantalum is preferably meant any material whose mass content of tantalum is greater than 99%, or even greater than 99.5%.
  • tantalum alloy is preferably meant any other material whose majority or dominant element by mass is tantalum, such as for example tantalum TaW containing between 2.5% and 10% of W by mass or tantalum TaNb containing about 40% Nb by mass.
  • the production of the ferrule and/or the eyebolt in titanium or titanium alloy is particularly suitable for welding to a spiral spring consisting of a niobium-based alloy which comprises between 5% and 25% by mass of Zr, in particular an alloy comprising the elements Nb and Zr with between 5% and 25% by mass of Zr and an interstitial doping agent comprising oxygen.
  • a niobium-based alloy which comprises between 5% and 25% by mass of Zr, in particular an alloy comprising the elements Nb and Zr with between 5% and 25% by mass of Zr and an interstitial doping agent comprising oxygen.
  • Nb and Zr are entirely soluble in Ti.
  • the production of the ferrule and/or the eyebolt in tantalum or in tantalum alloy is particularly suitable for welding to a spiral spring consisting of a titanium base which comprises between 17% by mass and 62% by mass of the one of the elements from Nb or Ta, for example 17% by mass minimum of Nb and for example 62% by mass maximum of Your.
  • the production of the ferrule and/or the stud in tantalum or in a tantalum alloy is advantageous for welding to an Nb-Hf spiral spring comprising between 2% and 30% by mass of Hf.
  • the piton is made in one piece as in the illustrated embodiment.
  • it generally has a square shape formed by two wings having substantially the same proportions.
  • the two wings can be connected to each other by a spoke.
  • the peak 1 comprises a first portion 10 intended to be welded to the hairspring 2, in particular by laser welding, at the level of the outer end 2a of the hairspring as shown in the picture 2 .
  • the eyebolt further comprises a second portion 100 intended to be fixed, in particular inserted, conventionally within a groove of the eyebolt support 3, which is mounted on the balance bridge 4 as shown in the picture 3 .
  • the first and second portions can be made of different materials and mounted one on the other.
  • the first portion 10 comprises a first support surface 10b and a second support surface 10c separated by a groove 10a.
  • Each bearing surface is intended to come into contact with the hairspring.
  • the groove extends in the direction of the height h of the hairspring, preferably over a height H10 greater than that of the hairspring.
  • the groove 10a makes it possible to separate or distinguish the first and second bearing surfaces 10b, 10c.
  • the groove 10a is advantageously oriented substantially in the direction of the height H10 of the portion 10 of the peak 1.
  • Such a conformation makes it possible to break any heat conduction during the welding of the blade of the hairspring on each of the first and second bearing surfaces 10b, 10c and to avoid creating interference between two zones of the hairspring that are thermally affected during the making of the welds.
  • This conformation makes it possible to reduce the energy input necessary for welding and therefore to best preserve the integrity of the mechanical properties of the alloy of the hairspring.
  • the groove can be made partially in the thickness of the peak, that is to say without crossing the peak.
  • the groove can cross the piton in its thickness.
  • the groove can be oriented in the direction perpendicular to the height h of the hairspring.
  • the groove can also be oriented in another direction.
  • the first bearing surface 10b has, at one of its ends 101b or 102b, a first conformation 103b or 104b in relief or in bump.
  • This first conformation makes it possible to produce an abutment for positioning the hairspring, in particular an axial abutment for positioning the hairspring.
  • the blade of the hairspring, in contact against the first surface can be moved until it comes into contact against the first conformation so as to precisely position the hairspring relative to the peak in the direction of the height H10 of the peak.
  • the first conformation extends for example perpendicular or substantially perpendicular to the first surface 10b, so as to form an abutment.
  • the first support surface 10b has, at the other of its ends 101b or 102b, a second conformation 103b or 104b in relief or bump.
  • This second conformation makes it possible to produce a positioning stop for the hairspring.
  • the second conformation extends for example perpendicular or substantially perpendicular to the first surface 10b, so as to form an abutment.
  • the second support surface 10c may have, at one of its ends 101c or 102c, a third conformation 103c or 104c in relief or in bump.
  • This third conformation makes it possible to produce a positioning stop for the hairspring.
  • the blade of the hairspring, in contact against the second surface can be moved until it comes into contact against the third conformation so as to precisely position the hairspring relative to the peak in the direction of the height H10 of the peak.
  • the third conformation extends for example perpendicular or substantially perpendicular to the second surface 10c, so as to form an abutment.
  • the second support surface 10c has, at the other of its ends 101c or 102c, a fourth conformation 103c or 104c in relief or bump. This fourth conformation makes it possible to produce a positioning stop for the hairspring.
  • the fourth conformation extends for example perpendicular or substantially perpendicular to the second surface 10c, so as to form an abutment.
  • welding can be performed by two spot welds s1, s2 which are respectively made at each of the bearing surfaces 10b, 10c or at the edge of each of the bearing surfaces 10b, 10c.
  • spot welds s1, s2 which are respectively made at each of the bearing surfaces 10b, 10c or at the edge of each of the bearing surfaces 10b, 10c.
  • third and fourth spot welds s3, s4 are respectively made at each of the bearing surfaces 10b, 10c, or at the edge of each of the bearing surfaces 10b, 10c, in addition to the solder points s1, s2, as shown in the picture 2 .
  • each bearing surface when one or two of the bearing surfaces each have two positioning conformations, they are spaced apart by a distance greater than the height h of the leaf spring.
  • this clearance in height is less than 0.04 mm, or even less than 0.03 mm.
  • All of the positioning conformations described above form a second groove 10d oriented substantially perpendicular to the first groove 10a, so as to serve as a support and/or guide for the blade of the hairspring, as shown in the figure 1 .
  • the first and second bearing surfaces 10b and 10c are designed to perfectly match the curvature of the end blade of the hairspring.
  • the first and second surfaces 10b, 10c are inclined relative to the surface defined by the bottom of the groove 10a or to the face of the peak visible in the view of the figure 1 .
  • the first and second surfaces 10b, 10c are inclined at two distinct angles, which can for example be between 5° and 15°. Consequently, as shown in the figures 5 and 6 , the first and second surfaces 10b, 10c can form between them an angle a, in particular an angle ⁇ comprised between 150° and 179° seen from the axis A1 of the balance wheel or of the hairspring.
  • the axis A1 is in the obtuse dihedral formed by two half-planes passing respectively through the first and second surfaces.
  • the first and second surfaces can also be arranged perpendicular or substantially perpendicular to the plane P1 of the hairspring.
  • the first and second surfaces can be planar faces. They may be plane faces tangent to the same surface, in particular the same cylinder of revolution or a cylindrical surface of revolution or more complex surface formed by a portion of the terminal curve of the hairspring.
  • At least one of the first and second surfaces 10b, 10c can form a non-zero angle relative to a plane extending parallel and orthoradially relative to axis A1.
  • first and second surfaces can be curved surfaces to best match the blade of the hairspring that they receive.
  • first and second surfaces can each constitute a portion of the same cylinder of revolution or a cylindrical surface of revolution or more complex formed by a portion of the terminal curve of the hairspring.
  • first and second surfaces are discontinuous. Ideally, these first and second surfaces are identical to the surface, possibly non-cylindrical, of the outer end 2a of the hairspring.
  • Such a stud configuration advantageously makes it possible to define at least two point contacts between the stud and the end blade of the hairspring.
  • the precision of assembly, in particular of welding, of a hairspring on such a stud is thus optimized, and is no longer given solely by the assembly means.
  • assembly means are shaped so as to minimize, before fixing the blade of the hairspring on the peak, the displacements of the blade of the hairspring around its theoretical point contact defined exclusively by the curvature of the spring and a single and unique plane of reception of the piton.
  • a torsion torque of the blade at the external recess of the spiral spring may occur once the blade fixed on the piton.
  • Such a phenomenon can contribute to a non-concentric development of the hairspring and thus induce chronometric disturbances, in particular at the level of the isochronism slope and the "flat-hanging".
  • the figure 14 illustrates a graph representing the average rate M in seconds per day of a timepiece, averaged according to the different positions of the timepiece, as a function of the amplitude A in degrees of the balance-spring in free isochronism.
  • the dashed curves corresponding to the isochronism curves for a balance-spring assembly representative of the prior art, of which the end of the terminal curve of the balance-spring has undergone a displacement of an angle of ⁇ 4° around its theoretical point contact with the peak, define an envelope in which the average rate of the timepiece varies according to the nominal positioning of the blade of the hairspring opposite the peak.
  • the solid line curve N shows, for its part, a function endowed with an optimized isochronism slope representative of the operation of a balance-hairspring assembly fitted with a peak according to the invention, with a hairspring whose The end of the terminal curve is precisely located thanks to the first and second bearing surfaces of the peak.
  • the ferrule comprises a first portion 10' intended to be welded to a hairspring 2, in particular by laser welding, at the level of the inner end 2b of the hairspring as shown in the figure 8 .
  • the ferrule further comprises a second portion 100', in the form of a central opening 100', which is provided, for example, to be driven against a balance shaft 5 as shown in the figures 8 to 11 .
  • the first and second portions can be made in one piece. Alternatively, the first and second portions can be made of different materials and mounted one on top of the other.
  • portion 10' includes a first groove 10a' so as to define two bearing surfaces 10b', 10c' of a blade portion of the inner end of hairspring 2.
  • the first portion 10' comprises a first bearing surface 10b' and a second bearing surface 10c' separated by a groove 10a'.
  • Each bearing surface is intended to come into contact with the hairspring.
  • the groove extends in the direction of the height h of the hairspring, preferably over a height H10' greater than that of the hairspring.
  • the groove 10a' makes it possible to separate or distinguish the first and second bearing surfaces 10b', 10c'.
  • the groove 10a' is advantageously oriented substantially in the direction of the height H10' of the portion 10 of the eyebolt 1.
  • Such a conformation makes it possible to break any heat conduction during the welding of the blade of the hairspring on each of the first and second surfaces of 'support 10b', 10c' and to avoid creating interference between two zones of the hairspring thermally affected during the realization of the welds
  • This conformation makes it possible to reduce the energy input necessary for the weld and therefore to best preserve the integrity of the mechanical properties of the hairspring alloy.
  • the groove can also serve as a visual cue to precisely position the welding points on the periphery of the shell.
  • the groove can be oriented in the direction perpendicular to the height h of the hairspring.
  • the groove can be oriented in another direction.
  • the first support surface may have, at one of its ends, a first conformation in relief or in bump.
  • This first conformation makes it possible to produce a positioning stop for the hairspring.
  • the blade of the hairspring, in contact against the first surface can be moved until it comes into contact against the first conformation so as to precisely position the hairspring relative to the ferrule in the direction of the height of the ferrule.
  • the first conformation extends for example perpendicular or substantially perpendicular to the first surface 10b', so as to form an abutment.
  • the first bearing surface 10b′ may have, at the other of its ends, a second conformation in relief or in bump. This second conformation makes it possible to produce a positioning stop for the hairspring.
  • the second conformation extends for example perpendicular or substantially perpendicular to the first surface 10b', so as to form an abutment.
  • the second support surface 10c′ may have, at one of its ends, a third conformation in relief or in bump.
  • This third conformation makes it possible to produce a positioning stop for the hairspring.
  • the blade of the hairspring, in contact against the second surface can be moved until it comes into contact against the third conformation so as to position precisely the spiral spring relative to the ferrule in the direction of the height of the ferrule.
  • the third conformation extends for example perpendicular or substantially perpendicular to the second surface 10c′, so as to form an abutment.
  • the second bearing surface 10c′ may present, at the other of its ends, a fourth conformation in relief or in bump. This fourth conformation makes it possible to produce a positioning stop for the hairspring.
  • the fourth conformation extends for example perpendicular or substantially perpendicular to the second surface 10c′, so as to form an abutment.
  • the set of positioning conformations described above makes it possible to achieve precise positioning of the blade of the balance-spring relative to the eyebolt and, consequently, precise fitting of the balance-spring after welding of the balance-spring on the ferrule.
  • Welding can be performed by two spot welds s1', s2' which are respectively made at the level of each of the bearing surfaces 10b', 10c' or at the edge of each of the bearing surfaces 10b', 10c'.
  • third and fourth spot welds s3', s4' are respectively made at each of the bearing surfaces 10b', 10c', or at the edge of each of the bearing surfaces 10b', 10c', in complement of solder points s1', s2', as shown in figure figure 9 .
  • this clearance in height is less than 0.04 mm, or even less than 0.03 mm.
  • the set of positioning conformations described above can thus form a second groove oriented substantially perpendicular to the first groove, so as to serve as a support and/or guide for the blade of the hairspring.
  • the first and second bearing surfaces 10b' and 10c' are designed to perfectly match the curvature of the blade of the hairspring.
  • the first and second surfaces 10b', 10c' can form an angle ⁇ ' between them, in particular an angle ⁇ ' of between 150° and 179° seen from the axis A1 of the balance wheel or of the hairspring.
  • the axis A1 is in the obtuse dihedral formed by two half-planes passing respectively through the first and second surfaces.
  • the first and second surfaces can also be arranged perpendicular or substantially perpendicular to the plane P1 of the hairspring.
  • the first and second surfaces can be planar faces.
  • the surfaces 10b', 10c' are portions of the same cylinder of revolution having as directrix the circle A with center CA which is centered or not on the axis A1 of the balance wheel.
  • the center CA is not on the axis A1 so as to minimize, or even eliminate, the displacement of the surfaces 10b', 10c' on which the spiral spring is welded during the driving in of the ferrule 1' on the axis 5.
  • the ferrule 1' can comprise arms 1A', 1B', 1C', 1D', deformable or not, with variable sections or not, so as to optimize the force necessary for driving the ferrule onto the balance shaft and/or or the holding torque of the ferrule on the balance shaft.
  • the contact between the shroud and the shaft is of the cylinder-cylinder type.
  • the 100' central opening can be in the form of a circular bore 100 'provided to match the cylindrical periphery of the axis 5 of the balance, and this so as to minimize the stresses within the ferrule during the operation of driving in the ferrule on the balance shaft.
  • the ferrule comprises at least one peripheral portion or abutment 1E', 1F', 1G', against which the inner turn of the hairspring can come to rest in the event of impact, before the elastic limit of the material constituting the spring -spiral is exceeded.
  • These stops are distributed angularly, regularly or not, on the outer periphery of the shell as illustrated in the figure 11 .
  • these stops are in the form of arc portions of a circle tangent respectively to circles E, F, G with centers CE, CF, CG.
  • the circles E, F, G have different diameters so as to best follow the geometry of the inner turn of the hairspring.
  • the centers CE, CF, CG are coincident here and coincide with the axis A1 or the center CB of the axis 5 of the balance wheel, and are therefore distinct from the center CA.
  • the stops 1E', 1F', 1G' are located at respective distances RE, RF, RG from the axis A1 which increase in the direction of the hairspring going from the inside to the outside from the junction point of the spiral spring to the ferrule.
  • the welding sub-step comprises the production of at least one spot weld, in particular two spot welds, on each of the first and second surfaces of the stud intended to receive the hairspring and/or the production of at least one spot weld, in particular two spot welds, on each of the first and second surfaces of the ferrule intended to receive the hairspring.
  • the figure 13 shows a comparative graph highlighting the gains of an assembly made according to the manufacturing process described above.
  • the graph indicates different situations on the abscissa and the intensity of the uprooting efforts on the ordinate.
  • the invention it is therefore possible to optimize the weld strength of a hairspring made of a paramagnetic alloy, in particular in the event of impact, by choosing fixing parts whose portion intended to come into contact with the hairspring is made of titanium or titanium alloy or tantalum or tantalum alloy.
  • Such a pair of materials makes it possible to obtain a quality weld thanks to a total solubility of the solid phases, thus avoiding the appearance of fragile intermetallic compounds, as well as a small solidification interval thus limiting the risk of solidification cracks. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Springs (AREA)
  • Laser Beam Processing (AREA)
  • Golf Clubs (AREA)
  • Connection Of Plates (AREA)

Description

  • L'invention concerne une pièce de fixation d'une extrémité d'un ressort-spiral horloger, notamment un piton ou une virole. L'invention concerne aussi un ensemble comprenant un ressort-spiral et un tel piton et/ou une telle virole. L'invention concerne encore un oscillateur ou un mouvement horloger ou une pièce d'horlogerie comprenant un tel ensemble. L'invention concerne enfin un procédé de fabrication d'un tel ensemble.
  • Les mécanismes oscillateurs mécaniques d'horlogerie, comportant un ressort-spiral, sont généralement dotés d'une virole pour la fixation de l'extrémité intérieure du ressort-spiral et/ou d'un piton pour la fixation de l'extrémité extérieure du ressort-spiral. Dans le cas d'un ressort-spiral réalisé en un alliage paramagnétique comprenant au moins un des éléments Nb, V, Ta, Ti, Zr, Hf, la pièce de fixation du ressort-spiral, à savoir la virole ou le piton, peut être fixée au ressort-spiral par soudage, en particulier par soudage laser. D'une manière générale, cette pièce de fixation est fabriquée en acier, notamment en acier inoxydable. Une telle solution d'assemblage donne satisfaction dans le cas du soudage d'un ressort-spiral réalisé en un alliage paramagnétique Nb-Zr-O tel que celui protégé par le brevet EP0886195B1 .
  • La demande CH706846 se rapporte plus spécifiquement à une virole fendue fait d'un matériau à base de titane. La faible densité du titane est mise à profit dans le but de proposer une virole dont la masse volumique est minimisée de façon à améliorer l'isochronisme de l'oscillateur auquel prend part ladite virole. Le document CH706846 divulgue toutefois une virole dont la structure est tout à fait conventionnelle avec des premier et deuxième méplats. La virole est percée latéralement pour recevoir la lame de l'extrémité intérieure d'un ressort-spiral. Cette dernière peut être fixée de façon traditionnelle soit par goupillage, soit alternativement par soudage, en particulier par soudage laser. Néanmoins, aucune adaptation géométrique de la surface de réception n'est proposée pour permettre, voire optimiser, la soudure du ressort-spiral au sein de la gorge de la virole. Par ailleurs, aucun détail n'est donné quant à la nature du matériau du ressort-spiral prévu pour être rapporté sur une telle virole.
  • Il est connu de fixer un ressort-spiral à une virole ou à un piton par soudage laser. La demande de brevet CH561921 divulgue par exemple un procédé de soudage laser d'une virole incluant une étape de préfixation préalable du ressort-spiral afin de positionner précisément le ressort-spiral relativement à la virole.
  • La demande FR2017027 concerne spécifiquement la soudure laser de l'extrémité intérieure d'un ressort-spiral à l'encontre d'une portion de virole en forme d'arc de cercle centré sur l'axe de rotation du ressort-spiral. Aucun détail n'est donné quant à la nature des matériaux prenant part au dispositif. La portion de lame de l'extrémité intérieure du ressort-spiral repose ici de manière continue à l'encontre de la portion de virole. Un unique point de soudure est défini le long de la ligne de contact entre le spiral et la virole. Pour obvier aux risques d'arrachage de la soudure, il est préconisé de régler l'intensité du laser de façon à ce que le point de soudure ne dépasse pas la moitié de la hauteur de la lame et qu'il s'étende sur une longueur au moins égale à la hauteur de cette même lame. Néanmoins, une telle conformation ne permet pas de supprimer l'apparition de composés intermétalliques fragiles qui sont à l'origine de la fragilisation de la soudure. Par ailleurs, une telle conformation risque également de créer un échauffement de la lame du ressort du spiral et donc une modification éventuelle de ses propriétés mécaniques, ainsi que des effets inesthétiques indésirables.
  • Le brevet CH468662 divulgue une géométrie particulière de virole, qui présente la spécificité de comporter une rainure annulaire de façon à servir d'appui et de guide à la lame de l'extrémité intérieure du ressort-spiral. Une telle conformation ne permet pas de rompre la conduction thermique entre deux éventuelles zones de soudure s'il est choisi de fixer le ressort-lame à la virole par soudage, en particulier par soudage laser.
  • Le brevet US3016688 divulgue, quant à lui, un piton élastique qui comporte une surface plane sur laquelle est soudée une portion de lame de l'extrémité extérieure d'un ressort-spiral. La description indique que le piton peut être soudé sur plusieurs points, notamment plus de deux points. Aucune mention n'est faite des matériaux prenant part au dispositif, il est toutefois indiqué qu'une telle solution permettrait de renforcer la tenue du spiral à l'encontre du piton. Néanmoins, une telle conformation ne permet pas de supprimer l'apparition de composés intermétalliques fragiles qui pourraient être à l'origine de la fragilisation de l'un ou l'autre des points de soudure, et qui risqueraient d'être à l'origine d'une fragilisation de l'encastrement du ressort-spiral, et donc d'une variation de la chronométrie, en particulier de la pente d'isochronisme, de l'oscillateur auquel prend part un tel dispositif. Par ailleurs, la géométrie d'un tel piton ne permet pas de rompre la conduction thermique entre deux points de soudure.
  • L'emploi de ressorts-spiraux comprenant au moins un des éléments Nb, V, Ta, Ti, Zr, Hf, est aussi connu de l'art antérieur. Le brevet EP0886195B1 divulgue par exemple un spiral réalisé en alliage paramagnétique Nb-Zr comprenant entre 5% et 25% en masse de Zr, ainsi qu'un agent dopant interstitiel formé au moins en partie d'oxygène.
  • Le brevet EP1258786B1 divulgue également un spiral réalisé en alliage paramagnétique Nb-Hf comprenant entre 2% et 30% en masse de Hf.
  • Le document FR2995098A3 décrit un oscillateur présentant un spiral en acier paramagnétique.
  • Le document FR2881804A2 décrit un piton réalisé en un matériau à mémoire de forme.
  • Le document CH706846A1 décrit une virole comprenant du titane pour des raisons de poids de la virole et d'impact sur l'inertie et le balourd.
  • La demande WO2015189278 divulgue, quant à elle, un balancier-spiral au sein duquel le ressort-spiral est réalisé en alliage de titane comprenant notamment une base de titane qui comporte entre 10 at.% et 40 at.% de l'un des éléments parmi le Nb, le Ta, ou le V, entre 0 at.% et 6 at. % de Zr, et entre 0 at.% et 5 at. % de Hf. Le document mentionne qu'un tel ressort-spiral peut être virolé et pitonné de façon à être assemblé au sein d'un oscillateur, sans aucune autre précision.
  • Le but de l'invention est de fournir une pièce de fixation d'une extrémité d'un ressort-spiral horloger permettant de remédier aux inconvénients mentionnés précédemment et d'améliorer les pièces de fixation connues de l'art antérieur. En particulier, l'invention propose une pièce de fixation permettant d'améliorer la fixation d'un ressort-spiral, notamment d'améliorer la tenue à l'arrachage d'un ressort-spiral.
  • La revendication 1 définit le dispositif selon l'invention et les revendications 11, 12, et 13 définissent des procédés inventifs afin de fabriquer le dispositif selon l'invention. Les revendications dépendantes définissent des modes de réalisations préférées.
  • Les figures annexées représentent, à titre d'exemple, un mode de réalisation d'une pièce d'horlogerie selon l'invention, intégrant dans un mode de réalisation un piton et dans un autre mode de réalisation une virole.
    • La figure 1 est une vue de face d'un mode de réalisation d'un piton, qui peut être utilisé avec l'invention.
    • La figure 2 est une vue en perspective du mode de réalisation d'un piton , qui peut être utilisé avec l'invention.
    • La figure 3 est une vue partielle en perspective d'un oscillateur selon l'invention comprenant un piton.
    • Les figures 4 à 6 sont des vues de détail du mode de réalisation d'un piton, qui peut être utilisé avec l'invention.
    • Les figures 7 à 11 illustrent un mode de réalisation d'une virole , qui peut être utilisée avec l'invention.
    • La figure 12 est un schéma représentant un mode de réalisation d'une pièce d'horlogerie selon l'invention comprenant un piton et une virole .
    • La figure 13 est un graphique illustrant les améliorations de la tenue à l'arrachage du ressort spiral sur un piton, qui peut être utilisé avec l'invention.
    • La figure 14 illustre un graphique représentant la marche moyenne (M) d'une pièce d'horlogerie, moyennée selon les différentes positions de la pièce d'horlogerie, en fonction de l'amplitude (A) du balancier-spiral en isochronisme libre.
  • Un mode de réalisation d'une pièce d'horlogerie 600 est décrit ci-après en référence à la figure 12. La pièce d'horlogerie est par exemple une montre, en particulier une montre bracelet. La pièce d'horlogerie comprend un mouvement horloger 500, en particulier un mouvement mécanique, lui-même comprenant un oscillateur 400, tel qu'un oscillateur du type balancier-spiral comprenant un balancier pivoté selon un axe A1 et un ressort-spiral disposé principalement selon un plan P1 perpendiculaire à l'axe A1. L'axe A1 est aussi l'axe du ressort-spiral. L'oscillateur 400 comprend un ensemble spiral 300 comprenant, quant à lui, un ressort-spiral 2, une première pièce 1' de fixation de l'extrémité intérieure 2b du ressort-spiral à un arbre de balancier, c'est-à-dire une virole 1', et une deuxième pièce 1 de fixation de l'extrémité extérieure 2a du ressort-spiral à un bâti du mouvement, notamment à un pont de balancier 4, éventuellement par l'intermédiaire d'un porte-piton ou d'un support de piton 3 tel qu'illustré sur la figure 3. La deuxième pièce de fixation est un piton.
  • Selon l'invention, le ressort-spiral est en alliage paramagnétique , en particulier en alliage paramagnétique comprenant au moins l'un des éléments suivants Nb, V, Ta, Ti, Zr et Hf. En particulier, le ressort-spiral comprend au moins 2%, voire au moins 5%, en masse de l'un des éléments suivants Nb, V, Ta, Ti, Zr et Hf. De préférence, le ressort-spiral est en alliage comprenant les éléments Nb et Zr avec entre 5% et 25% en masse de Zr et un agent dopant interstitiel comprenant de l'oxygène. De préférence, le ressort-spiral est en alliage comprenant 85% en masse de Nb, 14.95% en masse de Zr et 0.05% en masse d'oxygène. L'alliage peut en outre comprendre différentes impuretés, par exemple dans les limites suivantes : Hf < 7000ppm, Ta<1000ppm, W<300ppm, Mo<100ppm, autres <60ppm.
  • Selon l'invention, le piton 1 et/ou la virole 1' comprend une portion 10, 10' destinée à venir en contact avec le ressort-spiral 2. Le piton et/ou la virole est réalisé :
    • en titane, ou
    • en alliage de titane, notamment en titane grade 2 ou en titane grade 5, ou
    • en tantale, ou
    • en alliage de tantale.
  • Par « en titane », on entend de préférence tout matériau dont la teneur massique en titane est supérieure à 99%, voire supérieure à 99.5%.
  • Par « alliage de titane », on entend de préférence tout autre matériau dont l'élément majoritaire ou dominant en masse est le titane, tel que par exemple le Titane Grade 5 (Ti6AI4V).
  • Par « en tantale », on entend de préférence tout matériau dont la teneur massique en tantale est supérieure à 99%, voire supérieure à 99.5%.
  • Par « alliage de tantale », on entend de préférence tout autre matériau dont l'élément majoritaire ou dominant en masse est le tantale, tel que par exemple le tantale TaW contenant entre 2.5% et 10% de W en masse ou le tantale TaNb contenant environ 40% de Nb en masse.
  • La réalisation de la virole et/ou du piton en titane ou en alliage de titane est particulièrement adaptée pour le soudage à un ressort-spiral constitué d'un alliage à base de niobium qui comporte entre 5 % et 25 % en masse de Zr, en particulier un alliage comprenant les éléments Nb et Zr avec entre 5% et 25% en masse de Zr et un agent dopant interstitiel comprenant de l'oxygène. En effet, le Nb et le Zr sont entièrement solubles dans le Ti.
  • La réalisation de la virole et/ou du piton en tantale ou en alliage de tantale est particulièrement adaptée pour le soudage à un ressort-spiral constitué d'une base de titane qui comporte entre 17% en masse et 62% en masse de l'un des éléments parmi le Nb ou le Ta, par exemple 17% en masse minimum de Nb et par exemple 62% en masse maximum de Ta. La réalisation de la virole et/ou du piton en tantale ou en alliage de tantale est avantageuse pour le soudage à un ressort-spiral Nb-Hf comprenant entre 2% et 30% en masse de Hf.
  • Un mode de réalisation d'un piton , qui peut être utilisé avec l'invention, est décrit ci-après plus en détail en référence aux figures 1 à 6.
  • Par exemple, le piton est réalisé d'un seul tenant comme dans le mode de réalisation illustré. Il a notamment globalement une forme d'équerre formée par deux ailes ayant sensiblement les mêmes proportions. Les deux ailes peuvent être raccordées l'une à l'autre par un rayon.
  • Le piton 1 comprend une première portion 10 prévue pour être soudée au ressort-spiral 2, en particulier par soudage laser, au niveau de l'extrémité extérieure 2a du ressort-spiral comme représenté sur la figure 2. Le piton comprend encore une deuxième portion 100 prévue pour être fixée, notamment insérée, classiquement au sein d'une gorge du support 3 de piton, qui est monté sur le pont 4 de balancier comme représenté sur la figure 3. Les première et deuxième portions peuvent être réalisées en des matériaux différents et montées l'une sur l'autre.
  • La première portion 10 comprend une première surface d'appui 10b et une deuxième surface d'appui 10c séparées par une rainure 10a. Chaque surface d'appui est destinée à venir en contact avec le ressort-spiral. Dans le mode de réalisation illustré, la rainure s'étend dans le sens de la hauteur h du ressort-spiral, de préférence sur une hauteur H10 supérieure à celle du ressort-spiral. La rainure 10a permet de séparer ou distinguer les première et deuxième surfaces d'appui 10b, 10c. La rainure 10a est avantageusement orientée sensiblement dans le sens de la hauteur H10 de la portion 10 du piton 1. Une telle conformation permet de rompre toute conduction de chaleur lors du soudage de la lame du spiral sur chacune des première et deuxième surfaces d'appui 10b, 10c et d'éviter de créer des interférences entre deux zones du ressort-spiral affectées thermiquement lors de la réalisation des soudures. Cette conformation permet de réduire l'apport énergétique nécessaire à la soudure et donc de préserver au mieux l'intégrité des propriétés mécaniques de l'alliage du ressort-spiral.
  • La rainure peut être réalisée partiellement dans l'épaisseur du piton, c'est-à-dire sans traverser le piton. Alternativement, la rainure peut traverser le piton dans son épaisseur.
  • Alternativement à ce qui a été décrit précédemment, la rainure peut être orientée dans le sens perpendiculaire à la hauteur h du ressort-spiral. La rainure peut aussi être orientée selon une autre direction.
  • La première surface d'appui 10b présente, à une de ses extrémités 101b ou 102b, une première conformation 103b ou 104b en relief ou en bosse. Cette première conformation permet de réaliser une butée de positionnement du ressort-spiral, notamment une butée axiale de positionnement du ressort-spiral. En effet, la lame du ressort-spiral, en contact contre la première surface, peut être déplacée jusqu'à venir en contact contre la première conformation de sorte à positionner précisément le ressort-spiral relativement au piton dans le sens de la hauteur H10 du piton. La première conformation s'étend par exemple perpendiculairement ou sensiblement perpendiculairement à la première surface 10b, de sorte à former une butée. Avantageusement, la première surface d'appui 10b présente, à l'autre de ses extrémités 101b ou 102b, une deuxième conformation 103b ou 104b en relief ou en bosse. Cette deuxième conformation permet de réaliser une butée de positionnement du ressort-spiral. La deuxième conformation s'étend par exemple perpendiculairement ou sensiblement perpendiculairement à la première surface 10b, de sorte à former une butée.
  • De manière similaire, la deuxième surface d'appui 10c peut présenter, à une de ses extrémités 101c ou 102c, une troisième conformation 103c ou 104c en relief ou en bosse. Cette troisième conformation permet de réaliser une butée de positionnement du ressort-spiral. En effet, la lame du ressort-spiral, en contact contre la deuxième surface, peut être déplacée jusqu'à venir en contact contre la troisième conformation de sorte à positionner précisément le ressort-spiral relativement au piton dans le sens de la hauteur H10 du piton. La troisième conformation s'étend par exemple perpendiculairement ou sensiblement perpendiculairement à la deuxième surface 10c, de sorte à former une butée. Avantageusement, la deuxième surface d'appui 10c présente, à l'autre de ses extrémités 101c ou 102c, une quatrième conformation 103c ou 104c en relief ou en bosse. Cette quatrième conformation permet de réaliser une butée de positionnement du ressort-spiral. La quatrième conformation s'étend par exemple perpendiculairement ou sensiblement perpendiculairement à la deuxième surface 10c, de sorte à former une butée.
  • L'ensemble des conformations de positionnement décrit précédemment permet de réaliser un positionnement précis de la lame du ressort-spiral relativement au piton et, par suite, un encastrement précis du ressort-spiral après soudure du ressort-spiral sur le piton. La soudure peut être effectuée par deux points de soudure s1, s2 qui sont respectivement réalisés au niveau de chacune des surfaces d'appui 10b, 10c ou en bordure de chacune des surfaces d'appui 10b, 10c. Préférentiellement, des troisième et quatrième points de soudure s3, s4, sont respectivement réalisés au niveau de chacune des surfaces d'appui 10b, 10c, ou en bordure de chacune des surfaces d'appui 10b, 10c, en complément des points de soudure s1, s2, comme représenté sur la figure 2. Pour assurer ce positionnement précis, lorsqu'une ou deux des surfaces d'appui présentent chacune deux conformations de positionnement, elles sont espacées d'une distance supérieure à la hauteur h de la lame de ressort. Avantageusement, ce jeu en hauteur est inférieur à 0.04 mm, voire inférieur à 0.03 mm. L'ensemble des conformations de positionnement décrit précédemment forme une deuxième rainure 10d orientée sensiblement perpendiculairement à la première rainure 10a, de façon à servir d'appui et/ou de guide à la lame du ressort-spiral, comme représenté sur la figure 1.
  • Avantageusement, les première et deuxième surfaces d'appui 10b et 10c sont prévues pour épouser parfaitement la courbure de la lame terminale du ressort-spiral. Pour ce faire, les première et deuxième surfaces 10b, 10c sont inclinées relativement à la surface définie par le fond de la rainure 10a ou à la face du piton visible sur la vue de la figure 1. Préférentiellement, les première et deuxième surfaces 10b, 10c sont inclinées selon deux angles distincts, qui peuvent par exemple être compris entre 5° et 15°. En conséquence, comme représenté sur les figures 5 et 6, les première et deuxième surfaces 10b, 10c peuvent former entre elles un angle a, notamment un angle α compris entre 150° et 179° vu depuis l'axe A1 du balancier ou du ressort-spiral. Autrement dit, l'axe A1 se trouve dans le dièdre obtus formé par deux demi-plans passant respectivement par les première et deuxième surfaces. Les première et deuxième surfaces peuvent encore être disposées perpendiculairement ou sensiblement perpendiculairement par rapport au plan P1 du spiral. Les première et deuxième surfaces peuvent être des faces planes. Il peut s'agir de faces planes tangentes à une même surface, notamment un même cylindre de révolution ou une surface cylindrique de révolution ou plus complexe formée par une portion de la courbe terminale du ressort-spiral. Au moins une des première et deuxième surfaces 10b, 10c peut former un angle non nul par rapport à un plan s'étendant parallèlement et orthoradialement relativement à l'axe A1.
  • Alternativement, les première et deuxième surfaces peuvent être des surfaces courbées pour épouser au mieux la lame du ressort-spiral qu'elles reçoivent. Par exemple, les première et deuxième surfaces peuvent chacune constituer une portion d'un même cylindre de révolution ou une surface cylindrique de révolution ou plus complexe formée par une portion de la courbe terminale du ressort-spiral.
  • Dans le piton , les première et deuxième surfaces sont discontinues. Idéalement, ces première et deuxième surfaces sont identiques à la surface, éventuellement non cylindrique, de l'extrémité extérieure 2a du ressort-spiral.
  • Une telle conformation de piton permet de définir avantageusement au moins deux contacts ponctuels entre le piton et la lame terminale du ressort-spiral. La précision d'assemblage, notamment de soudage, d'un ressort-spiral sur un tel piton est ainsi optimisée, et n'est plus seulement donnée par les moyens d'assemblage. Dans les techniques connues de l'art antérieur, des moyens d'assemblage sont conformés de façon à minimiser, avant fixation de la lame du ressort-spiral sur le piton, les déplacements de la lame du ressort-spiral autour de son contact ponctuel théorique défini exclusivement par la courbure du ressort et un seul et unique plan de réception du piton. Du fait de ce degré de liberté permettant à la lame d'osciller sur une plage angulaire d'environ 4°, voire 8°, autour de son contact ponctuel théorique, un couple de torsion de la lame au niveau de l'encastrement extérieur du ressort spiral peut survenir une fois la lame fixée sur le piton. Un tel phénomène peut contribuer à un développement non concentrique du ressort-spiral et induire ainsi des perturbations chronométriques, en particulier au niveau de la pente d'isochronisme et du « plat-pendu ».
  • La figure 14 illustre un graphique représentant la marche moyenne M en secondes par jour d'une pièce d'horlogerie, moyennée selon les différentes positions de la pièce d'horlogerie, en fonction de l'amplitude A en degrés du balancier-spiral en isochronisme libre. Les courbes en traitillé, correspondant aux courbes d'isochronisme pour un ensemble balancier-spiral représentatif de l'art antérieur, dont l'extrémité de la courbe terminale du ressort-spiral a subi un déplacement d'un angle de ±4° autour de son contact ponctuel théorique au piton, définissent une enveloppe dans laquelle la marche moyenne de la pièce d'horlogerie varie en fonction du positionnement nominal de la lame du ressort-spiral en regard du piton.
  • La courbe en trait plein N montre, quant à elle, une fonction dotée d'une pente d'isochronisme optimisée représentative du fonctionnement d'un ensemble balancier-spiral doté d'un piton selon l'invention, avec un ressort-spiral dont l'extrémité de la courbe terminale est précisément localisée grâce aux première et deuxième surfaces d'appui du piton. Une telle conformation permet notamment d'obtenir en pratique la pente d'isochronisme et le plat-pendu escomptés de la pièce d'horlogerie auquel prend part le balancier-spiral.
  • Un mode de réalisation d'une virole , qui peut être utilisée avec l'invention, est décrit ci-après plus en détail en référence aux figures 7 à 11.
  • La virole comprend une première portion 10' prévue pour être soudée à un ressort-spiral 2, en particulier par soudage laser, au niveau de l'extrémité intérieure 2b du ressort-spiral comme représenté sur la figure 8. La virole comprend encore une deuxième portion 100', se présentant sous la forme d'une ouverture centrale 100', qui est prévue, par exemple, pour être chassée à l'encontre d'un axe 5 de balancier comme représenté sur les figures 8 à 11. Les première et deuxième portions peuvent être réalisées d'un seul tenant. Alternativement, les première et deuxième portions peuvent être réalisées en des matériaux différents et montées l'une sur l'autre.
  • A l'instar du piton 1, la portion 10' comporte une première rainure 10a' de façon à définir deux surfaces d'appui 10b', 10c' d'une portion de lame de l'extrémité intérieure du ressort-spiral 2. Ainsi, la première portion 10' comprend une première surface d'appui 10b' et une deuxième surface d'appui 10c' séparées par une rainure 10a'. Chaque surface d'appui est destinée à venir en contact avec le ressort-spiral. Dans le mode de réalisation illustré, la rainure s'étend dans le sens de la hauteur h du ressort-spiral, de préférence sur une hauteur H10' supérieure à celle du ressort-spiral. La rainure 10a' permet de séparer ou de distinguer les première et deuxième surfaces d'appui 10b', 10c'. La rainure 10a' est avantageusement orientée sensiblement dans le sens de la hauteur H10' de la portion 10 du piton 1. Une telle conformation permet de rompre toute conduction de chaleur lors du soudage de la lame du spiral sur chacune des première et deuxième surfaces d'appui 10b', 10c' et d'éviter de créer des interférences entre deux zones du ressort-spiral affectées thermiquement lors de la réalisation des soudures Cette conformation permet de réduire l'apport énergétique nécessaire à la soudure et donc de préserver au mieux l'intégrité des propriétés mécaniques de l'alliage du ressort-spiral. La rainure peut également servir de repère visuel pour positionner précisément les points de soudure sur la périphérie de la virole.
  • Alternativement à ce qui a été décrit précédemment, la rainure peut être orientée dans le sens perpendiculaire à la hauteur h du ressort-spiral. Alternativement encore, la rainure peut être orientée selon une autre direction.
  • Dans un mode de réalisation non illustré, la première surface d'appui peut présenter, à une de ses extrémités, une première conformation en relief ou en bosse. Cette première conformation permet de réaliser une butée de positionnement du ressort-spiral. En effet, la lame du ressort-spiral, en contact contre la première surface, peut être déplacée jusqu'à venir en contact contre la première conformation de sorte à positionner précisément le ressort-spiral relativement à la virole dans le sens de la hauteur de la virole. La première conformation s'étend par exemple perpendiculairement ou sensiblement perpendiculairement à la première surface 10b', de sorte à former une butée. Avantageusement, la première surface d'appui 10b' peut présenter, à l'autre de ses extrémités, une deuxième conformation en relief ou en bosse. Cette deuxième conformation permet de réaliser une butée de positionnement du ressort-spiral. La deuxième conformation s'étend par exemple perpendiculairement ou sensiblement perpendiculairement à la première surface 10b', de sorte à former une butée.
  • De manière similaire, la deuxième surface d'appui 10c' peut présenter, à une de ses extrémités, une troisième conformation en relief ou en bosse. Cette troisième conformation permet de réaliser une butée de positionnement du ressort-spiral. En effet, la lame du ressort-spiral, en contact contre la deuxième surface, peut être déplacée jusqu'à venir en contact contre la troisième conformation de sorte à positionner précisément le ressort-spiral relativement à la virole dans le sens de la hauteur de la virole. La troisième conformation s'étend par exemple perpendiculairement ou sensiblement perpendiculairement à la deuxième surface 10c', de sorte à former une butée. Avantageusement, la deuxième surface d'appui 10c' peut présenter, à l'autre de ses extrémités, une quatrième conformation en relief ou en bosse. Cette quatrième conformation permet de réaliser une butée de positionnement du ressort-spiral. La quatrième conformation s'étend par exemple perpendiculairement ou sensiblement perpendiculairement à la deuxième surface 10c', de sorte à former une butée.
  • L'ensemble des conformations de positionnement décrit précédemment permet de réaliser un positionnement précis de la lame du ressort-spiral relativement au piton et, par suite, un encastrement précis du ressort-spiral après soudage du ressort-spiral sur la virole. Le soudage peut être effectué par deux points de soudure s1', s2' qui sont respectivement réalisés au niveau de chacune des surfaces d'appui 10b', 10c' ou en bordure de chacune des surfaces d'appui 10b', 10c'. Préférentiellement, des troisième et quatrième points de soudure s3', s4', sont respectivement réalisés au niveau de chacune des surfaces d'appui 10b', 10c', ou en bordure de chacune des surfaces d'appui 10b', 10c', en complément des points de soudure s1', s2', comme représenté sur la figure 9. Pour assurer ce positionnement précis, lorsqu'une ou deux des surfaces d'appui présentent chacune deux conformations de positionnement, elles sont espacées d'une distance supérieure à la hauteur h de la lame de ressort. Avantageusement, ce jeu en hauteur est inférieur à 0.04 mm, voire inférieur à 0.03 mm. L'ensemble des conformations de positionnement décrit précédemment peut ainsi former une deuxième rainure orientée sensiblement perpendiculairement à la première rainure, de façon à servir d'appui et/ou de guide à la lame du ressort-spiral.
  • Avantageusement, les première et deuxième surfaces d'appui 10b' et 10c' sont prévues pour épouser parfaitement la courbure de la lame du ressort-spiral. Pour ce faire, les première et deuxième surfaces 10b', 10c' peuvent former entre elles un angle a', notamment un angle a' compris entre 150° et 179° vu depuis l'axe A1 du balancier ou du ressort-spiral. Autrement dit, l'axe A1 se trouve dans le dièdre obtus formé par deux demi-plans passant respectivement par les première et deuxième surfaces. Les première et deuxième surfaces peuvent encore être disposées perpendiculairement ou sensiblement perpendiculairement par rapport au plan P1 du spiral. Les première et deuxième surfaces peuvent être des faces planes. Il peut s'agir de faces planes tangentes à une même surface, notamment à un même cylindre de révolution. Le positionnement précis du ressort-spiral relativement à la virole permet également d'atteindre des améliorations chronométriques de même nature que celles obtenues par le positionnement précis du ressort-spiral relativement au piton.
  • Avantageusement, les surfaces 10b', 10c' sont des portions d'un même cylindre de révolution ayant pour directrice le cercle A de centre CA qui est centré ou non sur l'axe A1 du balancier. Dans le mode de réalisation illustré sur la figure 10, le centre CA ne se trouve pas sur l'axe A1 de façon à minimiser, voire à supprimer, le déplacement des surfaces 10b', 10c' sur lesquelles est soudé le ressort-spiral lors du chassage de la virole 1' sur l'axe 5.
  • La virole 1' peut comprendre des bras 1A', 1B', 1C', 1D', déformables ou non, à sections variables ou non, de façon à optimiser la force nécessaire au chassage de la virole sur l'axe de balancier et/ou le couple de tenue de la virole sur l'axe de balancier. Préférentiellement, le contact entre la virole et l'axe est de type cylindre-cylindre. L'ouverture centrale 100' peut se présenter sous la forme d'un alésage circulaire 100' prévu pour épouser la périphérie cylindrique de l'axe 5 de balancier, et ce de façon à minimiser les contraintes au sein de la virole lors de l'opération de chassage de la virole sur l'axe de balancier.
  • Préférentiellement, la virole comporte au moins une portion périphérique ou butée 1E', 1F', 1G', contre laquelle la spire intérieure du ressort-spiral peut venir s'appuyer en cas de choc, avant que la limite élastique du matériau constituant le ressort-spiral ne soit dépassée. Ces butées sont distribuées angulairement, régulièrement ou non, sur la périphérie extérieure de la virole comme illustré sur la figure 11. Préférentiellement, ces butées se présentent sous forme de portions d'arc de cercle tangentes respectivement à des cercles E, F, G de centre CE, CF, CG. Dans le mode de réalisation représenté, les cercles E, F, G présentent des diamètres distincts de façon à suivre au mieux la géométrie de la spire intérieure du ressort-spiral. Les centres CE, CF, CG sont ici confondus et coïncident avec l'axe A1 ou le centre CB de l'axe 5 de balancier, et sont donc distincts du centre CA. Les butées 1E', 1F', 1G', sont situées à des distances respectives RE, RF, RG de l'axe A1 qui sont croissantes dans le sens du spiral allant de l'intérieur vers l'extérieur depuis le point de jonction du ressort-spiral à la virole.
  • Un mode de réalisation d'un procédé de fabrication d'un ensemble 300 comprenant :
    • un ressort-spiral ; et
    • un piton 1 ; et/ou
    • une virole 1',
    est décrit ci-après.
  • Le procédé comprend les étapes suivantes :
    • Fourniture du ressort-spiral tel que décrit précédemment ;
    • Fourniture du piton tel que décrit précédemment et/ou de la virole telle que décrite précédemment ;
    • Fixation du piton et du ressort-spiral et/ou fixation de la virole et du ressort-spiral, la fixation étant réalisée par soudage, notamment par soudage laser.
  • Avantageusement, la ou les étapes de fixation comprennent la sous-étape suivante :
    • Positionnement du piton relativement au ressort-spiral et/ou positionnement de la virole relativement au ressort-spiral ;
  • Avantageusement, la sous-étape de soudage comprend la réalisation d'au moins un point de soudure, en particulier deux points de soudure, sur chacune des première et deuxième surfaces du piton destinées à recevoir le ressort-spiral et/ou la réalisation d'au moins un point de soudure, en particulier deux points de soudure, sur chacune des première et deuxième surfaces de la virole destinées à recevoir le ressort-spiral.
  • La figure 13 montre un graphique comparatif mettant en lumière les gains d'un assemblage réalisé conformément au procédé de fabrication décrit précédemment. Le graphique indique en abscisses différentes situations et en ordonnées l'intensité des efforts d'arrachage. Si on considère une force de référence FA nécessaire à l'arrachage d'un ressort-spiral Nb-Zr comprenant environ 15% en masse de Zr vis-à-vis d'un piton réalisé en acier, les études de la Demanderesse montrent que la force FB nécessaire à l'arrachage d'un même ressort-spiral Nb-Zr vis-à-vis d'un même piton réalisé en titane grade 5 est de l'ordre de 3 fois la force de référence FA, avec les forces FA et FB appliquées directement sur la lame du spiral au voisinage du piton et disposées dans le plan du spiral et orientées sensiblement vers le centre du spiral.
  • Si on considère également une force de référence FC nécessaire à l'arrachage d'un ressort-spiral Nb-Zr comprenant environ 15% en masse de Zr vis-à-vis d'une virole réalisée en acier, les études de la Demanderesse montrent que la force FD nécessaire à l'arrachage d'un même ressort-spiral Nb-Zr vis-à-vis d'une même virole réalisée en titane grade 5 est de l'ordre de 1.1 fois la force FC de référence, avec les efforts FC et FD appliquées directement sur la partie extrémale de la lame du spiral au niveau de la virole et disposées dans le plan du spiral selon une direction sensiblement tangente à la portion d'arc de cercle de la virole qui réceptionne le ressort-spiral.
  • Grâce à l'invention, il est donc possible d'optimiser la tenue de la soudure d'un ressort-spiral réalisé en un alliage paramagnétique, notamment en cas de choc, en choisissant des pièces de fixation dont la portion destinée à venir en contact avec le ressort-spiral est faite en titane ou en alliage de titane ou en tantale ou en alliage de tantale. Un tel couple de matières permet en effet d'obtenir une soudure de qualité grâce à une solubilité totale des phases solides, évitant ainsi l'apparition de composés intermétalliques fragiles, ainsi qu'un faible intervalle de solidification limitant ainsi le risque de fissures de solidification.

Claims (14)

  1. Oscillateur horloger (400) comprenant :
    - un ressort-spiral (2) en alliage paramagnétique, en particulier un ressort-spiral (2) en alliage paramagnétique comprenant au moins l'un des éléments suivants Nb, V, Ta, Ti, Zr et Hf, notamment un alliage comprenant les éléments Nb et Zr avec entre 5% et 25% en masse de Zr et un agent dopant interstitiel comprenant de l'oxygène ; et
    - au moins une pièce (1 ; 1') de fixation d'une extrémité (2a ; 2b) du ressort-spiral (2), l'au moins une pièce (1 ; 1') comprenant une première portion (10 ; 10') destinée à venir en contact avec le ressort-spiral (2) et réalisée en titane ou en alliage de titane ou en tantale ou en alliage de tantale, notamment en titane grade 2 ou en titane grade 5,
    - l'au moins une pièce de fixation comprenant un piton (1) et/ou une virole (1'),
    la première portion (10 ;10') comprenant deux surfaces (10b, 10c ; 10b', 10c') d'appui séparées par une rainure (10a; 10a'), chaque surface d'appui étant destinée à venir en contact avec le ressort-spiral et l'au moins une pièce de fixation du ressort-spiral étant fixée au ressort-spiral par soudage, en particulier par soudage laser.
  2. Oscillateur selon la revendication précédente, caractérisé en ce que la rainure s'étend dans le sens de la hauteur (h) du ressort-spiral, de préférence sur une hauteur (H10; H10') supérieure à celle du ressort-spiral.
  3. Oscillateur selon la revendication 1 ou 2, caractérisé en ce que chaque surface présente, à au moins une de ses extrémités (101b, 102b, 101c, 102c) dans le sens de la hauteur (h) du ressort-spiral, une conformation (103b, 104b, 103c, 104c) de positionnement s'étendant perpendiculairement ou sensiblement perpendiculairement à la surface (10b, 10c).
  4. Oscillateur selon la revendication 1 ou 2, caractérisé en ce que chaque surface présente, à deux de ses extrémités (101b, 102b, 101c, 102c) dans le sens de la hauteur (h) du ressort-spiral, respectivement une première conformation (103b, 103c) de positionnement et une deuxième conformation (104b, 104c) de positionnement, les conformations s'étendant perpendiculairement ou sensiblement perpendiculairement à ladite surface.
  5. Oscillateur selon l'une des revendications précédentes, caractérisé en ce que l'au moins une pièce de fixation comprend une deuxième portion (100 ; 100') destinée à venir en contact avec un porte-piton (3) ou avec un axe de balancier (5).
  6. Oscillateur selon l'une des revendications précédentes, caractérisé en ce que les surfaces (10b, 10c; 10b', 10c') sont disposées sensiblement perpendiculairement par rapport à un plan (P1) du ressort-spiral (2) et forment entre elles un angle (a ; a'), notamment un angle compris entre 150° et 179° vu depuis un axe (A1) du ressort-spiral (2).
  7. Oscillateur selon l'une des revendications 1 à 5, caractérisé en ce que les surfaces (10b, 10c ; 10b', 10c') sont disposées sensiblement perpendiculairement par rapport à un plan (P1) du spiral.
  8. Oscillateur selon l'une des revendications 1 à 5, caractérisé en ce que les surfaces (10b, 10c; 10b', 10c') sont réalisées selon une courbure pour former des parties d'un même cylindre de révolution ou sont réalisées tangentes à un même cylindre de révolution.
  9. Oscillateur selon la revendication précédente, caractérisé en ce que l'au moins une pièce de fixation comprend une virole (1') et en ce que le cylindre de révolution est axé sur un axe (CB) de la virole.
  10. Oscillateur selon l'une des revendications précédentes, caractérisé en ce que l'au moins une pièce de fixation comprend une virole et en ce que la virole comprend au moins une butée (1E', 1F', 1G'), notamment deux, trois, quatre ou cinq butées, distribuées angulairement, notamment distribuées angulairement régulièrement, sur une périphérie extérieure de la virole.
  11. Procédé de fabrication d'un oscillateur (400) selon l'une des revendications précédentes, dans lequel l'au moins une pièce comprend un piton, le procédé comprenant les étapes suivantes :
    - Fourniture du piton ;
    - Fourniture du ressort-spiral ;
    - Fixation du piton et du ressort-spiral, la fixation étant réalisée par soudage, notamment par soudage laser.
  12. Procédé de fabrication d'un oscillateur (400) selon l'une des revendications 1 à 10, le procédé comprenant les étapes suivantes :
    - Fourniture de la virole ;
    - Fourniture du ressort-spiral ;
    - Fixation de la virole et du ressort-spiral, la fixation étant réalisée par soudage, notamment par soudage laser.
  13. Procédé de fabrication d'un oscillateur (400) selon l'une des revendications 1 à 10, dans lequel l'au moins une pièce comprend un piton et une virole, le procédé comprenant les étapes suivantes :
    - Fourniture du piton ;
    - Fourniture du ressort-spiral ;
    - Fourniture de la virole ;
    - Fixation du piton et du ressort-spiral et fixation de la virole et du ressort-spiral, la fixation étant réalisée par soudage, notamment par soudage laser.
  14. Mouvement horloger (500) ou pièce d'horlogerie (600) comprenant un oscillateur (400) selon l'une des revendications 1 à 10
EP16172445.5A 2016-06-01 2016-06-01 Pièce de fixation d'un ressort-spiral horloger Active EP3252542B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16172445.5A EP3252542B1 (fr) 2016-06-01 2016-06-01 Pièce de fixation d'un ressort-spiral horloger
JP2017103454A JP7138415B2 (ja) 2016-06-01 2017-05-25 ひげぜんまい用固着部品
US15/609,749 US10409223B2 (en) 2016-06-01 2017-05-31 Fastening part of a hairspring
CN201710406109.9A CN107450297B (zh) 2016-06-01 2017-06-01 用于游丝的紧固部件
US16/519,735 US12045013B2 (en) 2016-06-01 2019-07-23 Fastening part for a hairspring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16172445.5A EP3252542B1 (fr) 2016-06-01 2016-06-01 Pièce de fixation d'un ressort-spiral horloger

Publications (2)

Publication Number Publication Date
EP3252542A1 EP3252542A1 (fr) 2017-12-06
EP3252542B1 true EP3252542B1 (fr) 2022-05-18

Family

ID=56096581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16172445.5A Active EP3252542B1 (fr) 2016-06-01 2016-06-01 Pièce de fixation d'un ressort-spiral horloger

Country Status (4)

Country Link
US (2) US10409223B2 (fr)
EP (1) EP3252542B1 (fr)
JP (1) JP7138415B2 (fr)
CN (1) CN107450297B (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422116B1 (fr) * 2017-06-26 2020-11-04 Nivarox-FAR S.A. Ressort spiral d'horlogerie
EP3657268A1 (fr) * 2018-11-22 2020-05-27 Blancpain SA Organe resonant pour un mecanisme de sonnerie d'une montre ou d'une boite a musique
EP3889691B1 (fr) * 2019-05-07 2024-02-21 Nivarox-FAR S.A. Spiral horloger en alliage nb-hf

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995098A3 (fr) * 2012-09-04 2014-03-07 Nivarox Sa Dispositif reglant balancier-spiral pour montre mecanique et procede de stabilisation thermique d'un tel dispositif reglant
EP2881804A2 (fr) * 2013-12-09 2015-06-10 Montres Breguet S.A. Piton d'horlogerie

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US224227A (en) 1879-12-11 1880-02-03 Hair-spring stud for watches
US706846A (en) * 1901-10-22 1902-08-12 Page Company Steam-generator or hot-water heater.
GB191216335A (en) * 1911-08-10 1912-11-28 Jules Andrade Improved Regulating Device for Chronometers.
US1523801A (en) * 1922-04-26 1925-01-20 Mead Morrison Mfg Company Endless-chain conveyer
US2057048A (en) * 1929-07-25 1936-10-13 Neuschotz Robert Signal control system
US2057642A (en) * 1935-05-20 1936-10-13 Eddison William Barton Hairspring assembly for timepieces
CH327018A (fr) 1955-09-05 1958-01-15 Ebauches Bettlach Sa Dispositif de fixation, à un piton, d'un spiral, notamment d'un spiral d'horlogerie
US3016688A (en) 1956-08-03 1962-01-16 Hamilton Watch Co Hairspring stud
CH357023A (fr) 1959-07-10 1961-09-15 H Erard Raoul Dispositif de fixation de la spire extérieure du spiral d'une pièce d'horlogerie
US3121307A (en) * 1961-12-19 1964-02-18 Greiner Electronic A G Balance spring collet for fastening the inner end of a balance spring for a timepiece
GB955375A (en) * 1962-07-07 1964-04-15 Roland Alfred Smith Improvements relating to watch and clock balances
CH414468A (fr) * 1963-11-27 1966-01-31 Ebauches Sa Dispositif de fixation de l'extrémité extérieure d'un spiral au bâti d'une pièce d'horlogerie
DE1905488U (de) 1964-08-17 1964-11-26 Staiger Geb Vorrichtung zur befestigung von spiralfedern, insbesondere von unruhen.
GB1109177A (en) * 1964-09-01 1968-04-10 Anglo Celtic Watch Company Ltd Improvements in or relating to hairspring supporting collets
FR1446082A (fr) * 1965-09-01 1966-07-15 Anglo Celtic Watch Company Ltd Bague élastique de forme triangulaire pour horloges et montres
CH468662A (fr) 1966-08-29 1969-03-31 Jean Claude Kullmann Ensemble virole et spiral d'horlogerie
DE1523801C3 (de) 1966-11-03 1974-03-14 Greiner Electronic Gmbh, 7530 Pforzheim Verfahren zur automatisierbaren Befestigung des inneren Hakens einer Spiralfeder an der Unruhe und Vorrichtung zur Durchführung des Verfahrens
FR2017027B1 (fr) 1968-08-26 1973-07-13 Kullmann Jean Claude
CH1304468A4 (fr) 1968-08-30 1971-08-31
DE1940250A1 (de) * 1969-08-07 1971-02-25 Pforzheimer Uhren Rohwerke Spiralfederendbefestigung bei Armbanduhren
JPS4721663U (fr) * 1971-02-19 1972-11-10
CH620809B (fr) * 1972-07-11 Haas Carl Spiralfedernfabrik Procede de fixation par soudage au moyen d'un laser d'un spiral d'horlogerie a une virole, dispositif pour la mise en oeuvre du procede, et virole resultant du procede.
CH561921A (fr) 1972-12-15 1975-05-15
JPS51145358A (en) 1975-05-28 1976-12-14 Haas Carl Balance spring and method of manufacture thereof
FR2315714A1 (fr) 1975-06-27 1977-01-21 Anvar Procede et dispositif pour obtenir la linearite du couple de rappel d'un ressort spiral d'horlogerie ou d'appareillage en fonction de l'angle d'armage
EP0886195B1 (fr) * 1997-06-20 2002-02-13 Montres Rolex Sa Spiral autocompensateur pour oscillateur mécanique balancier-spiral de mouvement d'horlogerie et procédé de fabrication de ce spiral
EP1258786B1 (fr) 2001-05-18 2008-02-20 Rolex Sa Spiral auto-compensateur pour oscillateur mécanique balancier-spiral
US7640506B2 (en) 2003-06-27 2009-12-29 Microsoft Corporation Method and apparatus for viewing and managing collaboration data from within the context of a shared document
DE602005006858D1 (de) * 2004-02-05 2008-07-03 Montres Breguet Sa Unruh für Uhrwerk
DE602004019183D1 (de) * 2004-04-06 2009-03-12 Nivarox Sa Spiralrolle ohne Deformation des Fixierungsradius der Spiralfeder und Herstellungsverfahren derartige Spiralrolle
GB0509886D0 (en) * 2005-05-14 2005-06-22 Levingston Gideon R Balance wheel mass and regulating element assembly and balance wheel and balance spring manufacturing processes for horolongical oscillator mechanisms
US8147127B2 (en) * 2008-12-18 2012-04-03 Manufacture Roger Dubuis S.A. Fixation of a spiral spring in a watch movement
JP5210193B2 (ja) * 2009-02-04 2013-06-12 セイコーインスツル株式会社 ひげぜんまい支持構造、該支持構造を備えたてんぷ構造体及び該構造体を備えた機械式時計
EP2397919B1 (fr) * 2010-06-21 2017-11-08 Montres Breguet SA Procédé de fabrication d'un ensemble spiral de pièce d'horlogerie en matériau micro-usinable ou en silicium
EP2405312A1 (fr) * 2010-07-09 2012-01-11 Montres Breguet S.A. Spiral de balancier à deux niveaux et à centre de masse immobile
CH705464B1 (fr) 2011-09-05 2016-09-15 Nivarox Far Sa Virole de fixation d'un spiral d'horlogerie.
CH706846B1 (fr) 2012-08-17 2017-01-31 Richemont Int Sa Virole pour un organe régulateur balancier-spiral.
EP2765705B1 (fr) * 2013-02-07 2015-08-19 The Swatch Group Research and Development Ltd. Résonateur thermocompensé par un métal à mémoire de forme
EP2781968A1 (fr) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Résonateur moins sensible aux variations climatiques
EP2881803B1 (fr) * 2013-12-09 2017-10-04 Montres Breguet SA Chaussée d'horlogerie
CH708945A2 (fr) * 2013-12-09 2015-06-15 Montres Breguet Sa Piton d'horlogerie.
WO2015189278A2 (fr) 2014-06-11 2015-12-17 Cartier Création Studio Sa Oscillateur pour un ensemble de balancier-spiral d'une pièce d'horlogerie
EP3106930A1 (fr) * 2015-06-16 2016-12-21 Nivarox-FAR S.A. Procédé de fabrication comportant une étape d'usinage modifiée

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995098A3 (fr) * 2012-09-04 2014-03-07 Nivarox Sa Dispositif reglant balancier-spiral pour montre mecanique et procede de stabilisation thermique d'un tel dispositif reglant
EP2881804A2 (fr) * 2013-12-09 2015-06-10 Montres Breguet S.A. Piton d'horlogerie

Also Published As

Publication number Publication date
US20170351216A1 (en) 2017-12-07
US10409223B2 (en) 2019-09-10
US12045013B2 (en) 2024-07-23
JP7138415B2 (ja) 2022-09-16
JP2018036249A (ja) 2018-03-08
US20190369561A1 (en) 2019-12-05
EP3252542A1 (fr) 2017-12-06
CN107450297A (zh) 2017-12-08
CN107450297B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
EP2407831B1 (fr) Spiral pour oscillateur balancier de pièce d&#39;horlogerie et son procédé de fabrication
EP1612627B1 (fr) Spiral autocompensateur bi-matière
EP2469357B1 (fr) Palier amortisseur de chocs pour un mobile tournant d&#39;un mouvement d&#39;horlogerie
EP3112953B1 (fr) Composant horloger avec une pièce à surface de soudage découplée
CH700059A2 (fr) Spiral à élévation de courbe en matériau à base de silicium.
EP2476028A1 (fr) Ressort spiral
EP1562087B1 (fr) Balancier pour mouvement d&#39;horlogerie
EP3252542B1 (fr) Pièce de fixation d&#39;un ressort-spiral horloger
EP3115852B1 (fr) Composant horloger avec une piece a surface de soudage amelioree
EP2107433B1 (fr) Procédé d&#39;assemblage d&#39;une pièce sur un axe
EP3112951B1 (fr) Procédé de fabrication comportant une étape d&#39;usinage modifiée
EP3112950B1 (fr) Procédé de fabrication comportant une étape de décolletage modifiée
EP3042250B1 (fr) Mobile horloger a rattrapage de jeu
EP2917792B1 (fr) Mise d&#39;inertie ou d&#39;équilibrage d&#39;un ensemble balancier-spiral d&#39;horlogerie
EP3252541A1 (fr) Pièce de fixation d&#39;un ressort-spiral horloger
EP3112955B1 (fr) Procédé de fabrication d&#39;une piéce comportant une étape de brunissage modifiée
CH708553B1 (fr) Mobile horloger à rattrapage de jeu.
EP3391154B1 (fr) Système oscillant pour montre
EP4016195B1 (fr) Tourbillon pour mouvement horloger
EP3615470A1 (fr) Procédé de fabrication d&#39;un mécanisme
WO2022258810A1 (fr) Procédé de fabrication d&#39;un assemblage horloger et assemblage horloger
CH706834B1 (fr) Procédé d&#39;assemblage d&#39;une pièce sur un axe.
EP3742236A1 (fr) Dispositif horloger comprenant un premier composant fixé sur un deuxième composant par déformation plastique
CH707884B1 (fr) Spiral d&#39;horlogerie en matériau fragile.
CH711214B1 (fr) Procédé de fabrication d&#39;une pièce comportant une étape de brunissage.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180606

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016072203

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1493517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220518

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1493517

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220818

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016072203

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

26N No opposition filed

Effective date: 20230221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240613

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240624

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240704

Year of fee payment: 9