EP3180288A1 - Hermetically sealed package having stress reducing layer - Google Patents
Hermetically sealed package having stress reducing layerInfo
- Publication number
- EP3180288A1 EP3180288A1 EP14755503.1A EP14755503A EP3180288A1 EP 3180288 A1 EP3180288 A1 EP 3180288A1 EP 14755503 A EP14755503 A EP 14755503A EP 3180288 A1 EP3180288 A1 EP 3180288A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bonding material
- substrate
- layer
- stress relief
- metal ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000463 material Substances 0.000 claims abstract description 148
- 239000000758 substrate Substances 0.000 claims abstract description 99
- 229910052751 metal Inorganic materials 0.000 claims abstract description 88
- 239000002184 metal Substances 0.000 claims abstract description 88
- 239000010936 titanium Substances 0.000 claims description 26
- 229910052719 titanium Inorganic materials 0.000 claims description 24
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- 230000000873 masking effect Effects 0.000 claims description 16
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 152
- 235000012431 wafers Nutrition 0.000 description 61
- 229910000679 solder Inorganic materials 0.000 description 43
- 239000004065 semiconductor Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 238000004806 packaging method and process Methods 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 8
- 238000005240 physical vapour deposition Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- 229910001935 vanadium oxide Inorganic materials 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- -1 (here for example Inorganic materials 0.000 description 1
- 229910016347 CuSn Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical group [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000001814 effect on stress Effects 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0032—Packages or encapsulation
- B81B7/0045—Packages or encapsulation for reducing stress inside of the package structure
- B81B7/0051—Packages or encapsulation for reducing stress inside of the package structure between the package lid and the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
- H01L23/10—Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/562—Protection against mechanical damage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0207—Bolometers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/01—Packaging MEMS
- B81C2203/0109—Bonding an individual cap on the substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C2203/00—Forming microstructural systems
- B81C2203/03—Bonding two components
- B81C2203/033—Thermal bonding
- B81C2203/035—Soldering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- This disclosure relates generally to electronic packaging and more particularly to Microelectromechanical system (MEMS) packaging.
- MEMS Microelectromechanical system
- MEMS Microelectromechanical systems
- MEMS devices may be fabricated using, for example, standard integrated circuit batch processing techniques.
- Exemplary applications for MEMS devices include sensing, controlling, and actuating on the micro scale.
- Such MEMS devices may function individually or in arrays to generate effects on a macro scale.
- MEMS devices have been individually packaged in vacuum compatible packages after fabrication and dicing of the MEMS device wafer. Often, however, the cost of packaging MEMS devices in traditional metal or ceramic packages may be on the order of about 10 to 100 times the device fabrication cost. This is especially true if a vacuum is required in the package.
- infrared detectors Many include a substrate having thereon a focal plane array, the focal plane array including a plurality of detector elements (detector devices) that each correspond to a respective pixel.
- the substrate contains an integrated circuit which is electrically coupled to the detector elements, and which is commonly known as a read out integrated circuit (ROIC) and which is used to integrate the signal from each detector element and multiplex the signals off the chip with appropriate signal conditioning and processing.
- ROIC read out integrated circuit
- bolometers may need to be hermetically packaged in vacuum or other controlled environment conditions for best performance.
- Exemplary requirements for the packaging of bolometer arrays include reliable hermetic sealing capable of maintaining a high vacuum for an extended period of time, the integration of IR window material with good infrared transmission, and high yield/low cost packaging. Both the reliability and the cost of MEMS devices depend upon encapsulation (packaging) techniques chosen. For MEMS based bolometers, packaging may be done at the chip level or at the wafer level.
- a common way of packaging in this instance is to fabricate a protective, IR-transmitting cap wafer, or Window Cap Wafer (WCW), and bond it to an exposed surface of the semiconductor substrate, or device wafer, containing the active IR detector bolometer areas prior to dicing.
- the cap wafer sometimes, also referred to as a window or lid structure, is formed with cavities therein such that when the cap wafer is flipped and bonded to the device wafer, the cavities provide sufficient clearance to accommodate and protect the MEMS devices therein as described in U. S. Patent No. 5701008, entitled Integrated infrared microlens and gas molecule getter grating in a vacuum package, inventors Ray et al, issued December 23, 1997.
- a package assembly is shown having a readout integrated circuit (ROIC) substrate 2 of a semiconductor material, preferably silicon.
- An IR detector array 14 is positioned on the substrate 2 and includes a plurality of individual detector elements, also called pixels, 6.
- FIG. 2 shows only a 5x6 rectangular array of detector pixels 6 in detector region 10, it is understood that a typical IR integrated circuit generally includes a planar IR detector array with up to several hundred or even thousand by several hundred or even thousand pixels 6.
- IR detectors are usually uncooled and detect the intensity of IR radiation by sensing increases in temperature which result from the heat imparted to the detectors by the IR radiation.
- a typical example of an uncooled IR detector is a vanadium oxide (VOx) microbolometer (MB), in which a plurality of individual detectors are usually formed in an array on the ROIC substrate 2 by conventional semiconductor manufacturing processes.
- the MB array detects IR radiation by sensing the IR-generated heat, and is also called a focal plane array (FPA) or a sensor chip assembly (SCA).
- the substrate 2 is an integrated circuit used to process the signal produced by the bolometers.
- the bolometer is a microbridge resistor that changes its resistance when its temperature changes. The incoming radiation causes a change in the temperature of the microbridge.
- VOx is a commonly available and cost effective material that is used in most commercial IR detection applications.
- the vacuum-sealed assembly includes a hermetic seal 8 surrounding the IR detector array to seal off the detector array from the atmosphere.
- the seal 8 can be, for example, an indium, gold-tin, or other solder, with the height of the seal precisely controlled when it is deposited on the substrate 2 or preferably wafer 10.
- the seal 8 supports a second substrate, a cap wafer, here an IR transparent window 10, here for example, silicon so that with wafer level packaging the window wafer 10 must have a compatible thermal expansion coefficient with the FPA wafer which is also silicon.
- the wafer 10 may include a gettering material, not shown formed, on a predetermined region of the surface of the wafer 10 having a predetermined surface area as described in the above-referenced U. S. Patent No.
- Wafer Level Packaging was developed to address the high cost of packaging of MEMS by eliminating the traditional packages.
- WLP Wafer Level Packaging
- One such WLP package is described in U. S. Patent No. 6,521,477, entitled Vacuum package fabrication of integrated circuit components, inventors Gooch et al, issued February 18, 2003.
- two wafers may be bonded together using a joining material to yield bonded wafers.
- one of the wafers is a semiconductor (for example, silicon) device wafer having therein the detector devices in a detector region of the wafer, the detector region being disposed in a central interior region of the device wafer along with a read out integrated circuit (ROIC) which is bonded to the other wafer, the lid wafer using an seal metal ring of solder disposed about the detector region of the device wafer.
- the wafer includes a thin overglass layer, such as silicon nitride or silicon oxynitride (SiON).
- the seal ring metal is formed using conventional photolithographic processing to form a bottom layer of titanium, which serves as a substrate adhesion layer to the ROIC overglass, then an intermediate layer of Nickel, which serves as a diffusion barrier followed by a layer of gold to prevent oxide formation and enhance solder bonding, which will subsequently be referred to as the "seal ring".
- a similar set of layers is formed on the lid wafer which provides a mating surface for the solder seal between the device and lid wafer.
- solder for example Au 80% and Sn20%, is applied to either or both the device and lid wafer.
- the inventors have recognized that in the prior art the seal ring metal stack (about 0.5um thick) and the solder (up to 1 lum thick) have a coincident edge. As the solder cools below its -280 degree Centigrade melting temperature the solder shrinks faster than the underlying seal ring and ROIC (solder CTE ⁇ 16ppm, silicon CTE
- the stress relief buffer layer of, for example, titanium
- the abrupt edge that conducts the stress down to a localized region on the ROIC surface is terminated above the ROIC's surface and covered with a more ductile material.
- a structure having: a substrate; a metal ring disposed on a surface portion of the substrate around a surface region of the substrate; a bonding material disposed on the metal ring, the bonding material having inner and outer edges; and wherein the metal ring extends laterally beyond at least one of the inner and outer edges of the bonding material.
- a first layer of the metal ring includes a stress relief buffer layer disposed on the surface portion of the substrate, the first layer having a higher ductility than that of the surface portion at a predetermined temperature, ⁇ and a width greater than the width of the bonding material, the stress relief buffer layer extending laterally beyond at least one of the inner and outer edges of the bonding material.
- the stress relief buffer layer has a coefficient of thermal expansion greater than the coefficient of expansion of the surface portion of the substrate and less than the coefficient of expansion of the bonding material.
- outer regions of a top surface of the metal ring comprise material inhibiting adhesion of the bonding material to the top surface, and wherein portions of the metal ring extend laterally beyond at least one of the inner and outer edges of the bonding material
- a bonding material masking layer on the top surface of the metal ring the bonding material passing through a window in the masking layer exposing a portion of the top surface of the metal layer and wherein a portion of the bonding material passes through the window onto the exposed portion of the top surface of the metal layer.
- portions of the metal ring extend laterally beyond at least one of the inner and outer edges of the bonding material.
- the stress relief buffer layer adheres effectively to the substrate and is not wetted by the bonding material. Furthermore, the stress relief buffer layer has a Coefficient of Thermal Expansion (CTE) preferably midway between the CTE of the surface portion of the substrate bonded to the stress relief buffer layer and the CTE of the solder or bonding material and has the property of a ductile material to locally yield in regions of high stress instead of fracturing as in the case of brittle materials such as SiON and Silicon.
- An exemplary stress relief buffer layer material is titanium.
- the stress relief buffer layer serves as a stress reducing layer, shifting the region of high stress from the brittle overglass to the more ductile underlying layer.
- the stress relief buffer layer 1 isolates the high stress region at the edge of the solder joint from the underlying brittle semiconductor wafer, interposing the material of the stress relief buffer layer having a higher level of ductility than the ductility of the semiconductor wafer, and a thermal contraction rate less than the solder yet higher than the underlying wafer.
- the stress relief buffer layer has a thermal expansion between that of the solder layer and the surface of the wafer and reduces the stress in the more brittle wafer.
- the disclosure enables the integration of a high CTE solder or other bonding material with a brittle overglass layer on a semiconductor structure. Further, the process may be used on the device wafer, lid or both.
- the term ring-shaped refers to and includes shape enclosing a space; it may be circular, rectangular, square oval or may have an irregular shape, such as a serpentine or meandering shape
- FIG. 1 is a simplified cutaway perspective view of a vacuum package for an IR detector array in accordance with the PRIOR ART;
- FIG. 2 is a simplified plan view of the IR detector array used in the assembly of FIG. 1 according to the PRIOR ART;
- FIG. 3 is a cross sectional view of the IR detector array of FIG. 2, such cross section being taken along line 3-3 in FIG. 2 according to the PRIOR ART;
- FIG. 4 is a cross sectional, plan view, of a hermetically sealed package according to the disclosure, the cross section being taken along line 4-4 in FIG. 5;
- FIG. 5 is a cross section elevation view of the package of FIG. 4, such cross section being taken along line 5-5 in FIG. 4;
- FIG. 5A is an enlarged portion of the cross section elevation view of FIG. 5, the enlarged portion being enclosed by arrow 5A-5A in FIG. 5;
- FIG. 6 is a cross section elevation view of a hermetically sealed package according to another embodiment of the disclosure.
- FIG. 6A is an enlarged portion of the cross section elevation view of FIG. 5, the enlarged portion being enclosed by arrow 6A-6A in FIG. 6.
- a hermetically sealed package 100 is shown for hermetically sealing a device 102.
- the package 100 includes: substrate 104 having, in a central region 106 thereof, the device 102; a cap wafer 108 (FIG. 5); and a pair of metal rings, here for example, multi-layer metal rings, 107DW metal ring, 107CW; metal ring 107DW being disposed on a surface of the substrate 104 around a surface region 106 of the substrate 104, and the other metal ring 107CW being disposed on the surface of the cap wafer 108 around the central region 106. It should be understood that in some applications the metal ring 107CW may not be needed.
- the metal ring 107DW includes: a ring-shaped stress relief buffer layer 109DW disposed on, and in direct contact with, the surface of the substrate 104 (more particularly on and in direct contact with an overglass layer 116 of the substrate 104), as shown more clearly in FIG. 5 A; and a seal ring structure 110DW (FIG. 5), on the upper surface of the ring-shaped stress relief buffer layer 109DW.
- the metal ring 107CW includes: a ring-shaped stress relief buffer layer 109CW on the surface of the cap wafer 108 around the central region 106; and a seal ring structure 110CW, on the upper surface of the a ring-shaped stress relief buffer layer 109CW.
- a bonding material 1 18 is disposed between, the two seal ring structures 110DW, 1 10CW, as shown in FIG. 5.
- the ring-shaped stress relief buffer layer 109CW is an underlying material of the ring seal structure 110CW
- the ring-shaped stress relief buffer layer 109DW is an underlying material of the ring seal structure 110DW.
- Each of the stress relief buffer layers 109CW and 109DW serves as a ring-shaped bonding material stress relief buffer layer for the cap wafer 108 and the device wafer ( or substrate 104), respectively.
- the substrate 104 includes: a semiconductor device wafer 112, here for example, silicon, providing a Read Only Integrated Circuit ROIC; interlayer dielectric layers (ILD) 114 on the upper surface of the device wafer 112 having metal interconnecting electrically conductive traces for the ROIC components; and an overglass layer 116 disposed over the layers 114, as shown.
- the device 102 is here, for example, an array of Infrared (IR) detectors, here for example, a bolometer, is disposed in the central region 106 on the overglass 116, as shown.
- the cap wafer 108 is any IR transparent material and has a cavity disposed over the device 102, as shown, and may include a getter material, not shown.
- Each of the pair of ring-shaped stress relief buffer layers 109DW, CW is, for reasons to be described, a highly ductile material, here, for example, titanium.
- the ring- shaped stress relief buffer layer 109DW is disposed on the overglass layer 116, as described above.
- Each one of the two seal ring structures 110DW and 110CW includes, as shown more clearly in FIG.
- a lower, substrate adhesion layer 122 here, for example, titanium, disposed on the stress relief buffer layer 109 on the overglass 116 and the cap wafer 108, respectively; a diffusion barrier layer 124, here for example, Ni or Pt, disposed on the substrate adhesion layer 122, as shown, to prevent the bonding material 118 from diffusing into (or interacting) with the substrate adhesion layer 122; and an oxidation blocking/bonding material adhesion layer 126, here for example, gold (AU), disposed on the diffusion barrier layer 124, as shown, for preventing oxide formation and to promote solder wetting.
- AU oxidation blocking/bonding material adhesion layer
- each one of the pair of ring-shaped stress relief buffer layers 109CW, 109DW is wider than the seal ring structures 110CW, 110DW, respectively, and the bonding material 118.
- the inner and outer edges 109a, 109b, respectively, of the ring-shaped stress relief buffer layers 109CW, 109DW extend beyond at least one of the inner and outer, here beyond both the inner and outer edges 110a, 110b, respectively, of the seal ring structures 110CW, 110DW, respectively, a length L to form steps 224 on either side of the seal rings structures 110CW, 110DW, respectively, as shown more clearly in FIG. 5A for stress relief buffer layer 109DW and seal ring structure 110DW.
- the overglass layer 116 is, here for example, a 2000 Angstrom thick silicon oxynitride (SiON) layer
- each one of the pair of ring- shaped stress relief buffer layers 109CW, 109DW is here, for example, a layer of titanium having a thickness greater than 500 Angstroms, here, for example, a thickness of 2500 Angstrom.
- each one of the ring-shaped stress relief buffer layers 109CW, 109DW is formed using a photolithographic lift-off process.
- the ring-shaped stress relief buffer layers 109DW is here, for example, formed by first forming a layer of photoresist, not shown, over the overglass layer 116. The regions of the photoresist layer inside and outside of the region of the device where the ring-shaped stress relief buffer layer 109DW remains, and thereby leaving the ring-shaped region of the wafer surface where the ring-shaped stress relief buffer layer 109DW is to be formed exposed.
- the entire surface of the wafer is coated with the titanium using either an evaporation or physical vapor deposition (PVD) process; it being noted that one portion of the titanium will become deposited on the patterned photoresist and other portions will be deposited on the exposed ring-shaped portions of the wafer.
- PVD physical vapor deposition
- the photoresist is lifted off the wafer thereby removing the portions of the titanium on the photoresist and leaving on the wafer the ring- shaped stress relief buffer layer 109DW.
- the material can also be fabricated using a mechanical mask without the need for a photolithography process.
- the seal ring structure 110DW here titanium having a thickness of, for example, 2000 Angstroms deposited using either an evaporation or physical vapor deposition (PVD) process, followed by nickel having a thickness of 2500 Angstroms is deposited using either an evaporation or physical vapor deposition (PVD) process and gold having a thickness of 2500 Angstroms is deposited using either an evaporation or physical vapor deposition (PVD) process.
- PVD evaporation or physical vapor deposition
- the width of the ring-shaped stress relief buffer layer 109DW is here in the range of 300 micrometers
- the width of the ring-shaped seal ring structure 110DW is here, for example narrower (200 micrometers) than the width of the ring-shaped stress relief buffer layer 109DW and is set back from the inner and outer edges 109a, 109b, respectively, of the ring-shaped stress relief buffer layer 109DW (FIG. 5 A).
- the inner and outer edges 110a, 110b, respectively of the seal ring structure 110DW is each set back the length L, here, for example, 50 micrometers from the inner and outer edges 109a, 109b, respectively, of the ring-shaped stress relief buffer layer 109DW, to form the steps 224 as indicated in FIG 5A.
- a 50 micrometer wide step 224 is formed.
- the abrupt edge of the bonding material 118 for example solder, (here for example, gold/tin (here, for example, Au 80% SN 20%)) solder is set back from the edge of the ring-shaped stress relief buffer layer 109DW and lifted above the surface of the substrate 104 and cap wafer 108, respectively.
- the high stress point described in FIG. 3 is shifted (elevated away from the overglass layer 1 16); and, the stress relief buffer layer 109DW is effectively inserted in the path of the high stress point thereby reducing stress in the brittle SiON overglass layer 116.
- the stress relief buffer layer 109DW has a higher ductility than the ductility of the SiON overglass layer 116 at a predetermined
- the Coefficient of Thermal Expansion (CTE) of the stress relief buffer layer 109DW which is inserted between the solder 118 and the substrate 118, has a value between the value of the CTE of the solder and the value of the CTE of the overglass layer 1 16.
- the stress relief buffer layer 109DW having a higher ductility relative to the SiON overglass layer 1 16 allows for small levels of local deformation, further reducing stress in the brittle SiON overglass layer 116.
- the high stress point SP is shifted out of the brittle SiON layer 116 (where it was located in the FIG. 3) and into the more ductile stress relief buffer layer 109DW.
- the stress point associated with the abrupt end of the stress relief buffer layer 109DW is reduced to the point of insignificance due to the stress relief buffer layer 109DW having a CTE closer to that of the underlying substrate 104 combined with the relative thinness (here, for example, 2500 Angstrom) of the stress relief buffer layer 109DW increasing its ductility.
- 109CW and 109DW is titanium which oxidizes quickly into titanium oxide and titanium oxide is a material that inhibits adhesion of the bonding material 118 to it.
- CTE Coefficient of Thermal Expansion
- the stress relief buffer layer 109DW has a Coefficient of Thermal Expansion (CTE) preferably midway between the CTE of the overglass layer 116 and the CTE of the solder or bonding material 118 and such that the ductile stress relief buffer layer 109DW is able to locally yield in regions of high stress instead of fracturing as in the case of brittle materials such as SiON and Silicon.
- CTE Coefficient of Thermal Expansion
- the stress relief buffer layer 109CW has a higher ductility than the ductility of the silicon cap wafer 108 and that the Coefficient of Thermal Expansion (CTE) of the stress relief buffer layer 109CW, which is inserted between the solder 118 and the silicon cap wafer 108.
- CTE Coefficient of Thermal Expansion
- substrate adhesion/diffusion barrier layer 122' is titanium thickened to, in effect, an approximately 4000 Angstroms thick layer to serve a dual purpose of a substrate adhesion layer 122 and stress relief layer 109DW.
- a solder mask 150 here for example titanium or titanium nitride, has a window formed therein using photolithographic-etching processing or liftoff lithography to expose an underlying portion of bonding material adhesion layer 126. It is noted that if titanium is used for the solder mask 150, the titanium oxidizes quickly into titanium oxide and titanium oxide is a material that inhibits adhesion of the bonding material 118 to it. Likewise, titanium nitride is a material that inhibits adhesion of the bonding material to it.
- the bonding material 118 here for example, solder, is deposited into the window onto the exposed portion of bonding material adhesion layer 126. It is noted that the seal material 118 is narrower than metal ring 107DW which here includes: the seal ring structure 110DW and the solder mask 150, as shown, to set back the edges of the bonding material 118 from the edges of the metal ring 107DW. It is also noted that this set back forms a solder dam equivalent to the step 224 described above in connection with FIGS. 5 and 5A. It should be understood that a similar structure is, in this example, used for the metal ring on the cap wafer 108.
- a structure according to the disclosure includes: a substrate; a metal ring disposed on a surface portion of the substrate around a surface region of the substrate; a bonding material disposed on the metal ring, the bonding material having inner and outer edges; and wherein the metal ring extends laterally beyond at least one of the inner and outer edges of the bonding material.
- a first layer of the metal ring includes a stress relief buffer layer disposed on the surface portion of the substrate, the first layer having a higher ductility than that of the surface portion at a predetermined temperature and a width greater than the width of the bonding material, the stress relief buffer layer extending laterally beyond at least one of the inner and outer edges of the bonding material; wherein the stress relief buffer layer has a coefficient of thermal expansion greater than the coefficient of expansion of the surface portion of the substrate and less than the coefficient of expansion of the bonding material; wherein regions of a top surface of the metal ring comprise material inhibiting adhesion of the bonding material to the top surface, and wherein portions of the metal ring extend laterally beyond at least one of the inner and outer edges of the bonding material; the structure including a bonding material masking layer on the top surface of the metal ring, the bonding material passing through a window in the masking layer exposing a portion of the top surface of the metal layer and where
- a first layer of the metal ring includes a stress relief buffer layer disposed on the surface portion of the substrate; wherein a first metal of the metal ring is titanium; wherein the first metal of the metal ring is copper or aluminum; wherein an upper surface of the substrate is silicon oxynitride; wherein the substrate comprises silicon; wherein a first layer of the metal ring is titanium having a thickness greater than 500 Angstroms.
- a structure according to the disclosure includes: a substrate; a stress relief buffer layer; a seal ring disposed over the stress relief buffer layer and around a surface region of the substrate; wherein the stress relief buffer layer has a higher ductility than the ductility of the surface portion of the substrate at a predetermined temperature; a bonding material disposed on the seal ring, the bonding material having inner and outer edges; and wherein the stress relief buffer layer extends laterally beyond at least one of the inner and outer edges of the bonding material.
- the ring- shaped stress relief layer may have a Coefficient of Thermal Expansion (CTE) between the CTE of the surface portion of the substrate and the CTE of the bonding material on the seal ring.
- CTE Coefficient of Thermal Expansion
- a structure according to the disclosure includes: a substrate; a device disposed on the substrate; a seal ring disposed over the substrate around the device; a bonding material disposed on the seal ring; a layer disposed between the bonding material and the substrate; and wherein the layer extends laterally beyond at least one of an inner and outer edge of the bonding material; a lid; and wherein the bonding material bonds the substrate to the lid.
- the layer may have a Coefficient of Thermal Expansion (CTE) between the CTE of the surface portion of the substrate and the CTE of the bonding material on the seal ring.
- CTE Coefficient of Thermal Expansion
- a package according to the disclosure includes: a substrate; a device on a surface of the package; a metal ring disposed on a surface portion of the substrate around the device; a lid; a bonding material disposed on opposing ends of the metal ring; wherein the metal ring extends laterally beyond at least one of an inner and outer edge of the bonding material; and wherein the bonding material bonds the lid to the substrate.
- a first layer of the metal ring includes a stress relief buffer layer disposed on the surface portion of the substrate, the first layer having a higher ductility than that of the surface portion at a predetermined temperature and a width greater than the width of the bonding material, the stress relief buffer layer extending laterally beyond at least one of the inner and outer edges of the bonding material; wherein the stress relief buffer layer has a coefficient of thermal expansion greater than the coefficient of expansion of the surface portion of the substrate and less than the coefficient of expansion of the bonding material; wherein regions of a top surface of the metal ring comprise material inhibiting adhesion of the bonding material to the top surface, and wherein portions of the metal ring extend laterally beyond at least one of the inner and outer edges of the bonding material; a bonding material masking layer on the top surface of the metal ring, the bonding material passing through a window in the masking layer exposing a portion of the top surface of the metal layer and wherein a
- the hermetically sealed package may be used for a wide variety of devices including, without limitation, infrared MEMS such as bolometers, sometimes referred to as microbolometers, and certain inertial MEMS such as gyros and accelerometers, bonding discrete devices to a package, wafer bonding MEMS in a non-evacuated application (like a DLP) or vacuum packaging.
- infrared MEMS such as bolometers, sometimes referred to as microbolometers
- certain inertial MEMS such as gyros and accelerometers
- bonding discrete devices to a package wafer bonding MEMS in a non-evacuated application (like a DLP) or vacuum packaging.
- other materials may be used for the stress relief buffer layers 109DW and/or 109CW, such as, for example copper or aluminum.
- the substrate adhesion layer 122 may be used for the substrate adhesion layer 122, such as, for example TiN.
- TiN titanium
- both Ti and Ni act as a diffusion barrier for different stages of the fabrication process.
- other materials may be used for the diffusion barrier such as Pt.
- other materials may be used for the bonding material, such as for example, CuSn.
- Still further other overglass materials may be used, such as, for example SiN. Accordingly, other embodiments are within the scope of the following claims.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Micromachines (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2014/050589 WO2016024946A1 (en) | 2014-08-11 | 2014-08-11 | Hermetically sealed package having stress reducing layer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3180288A1 true EP3180288A1 (en) | 2017-06-21 |
Family
ID=51398909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14755503.1A Withdrawn EP3180288A1 (en) | 2014-08-11 | 2014-08-11 | Hermetically sealed package having stress reducing layer |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP3180288A1 (en) |
JP (1) | JP6487032B2 (en) |
KR (1) | KR101931010B1 (en) |
CN (1) | CN106414309B (en) |
CA (1) | CA2946526C (en) |
IL (2) | IL248686B (en) |
WO (1) | WO2016024946A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016122318A1 (en) | 2016-11-21 | 2018-05-24 | Infineon Technologies Ag | Connection structure of a power semiconductor device |
US10453832B2 (en) * | 2016-12-15 | 2019-10-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Seal ring structures and methods of forming same |
DE102017118899B4 (en) | 2016-12-15 | 2020-06-18 | Taiwan Semiconductor Manufacturing Co. Ltd. | Sealing ring structures and processes for their manufacture |
FR3061549B1 (en) * | 2016-12-30 | 2020-10-02 | Commissariat Energie Atomique | ELECTROMAGNETIC RADIATION DETECTOR AND ESPECIALLY INFRARED RADIATION DETECTOR AND PROCESS FOR ITS REALIZATION |
US10163974B2 (en) | 2017-05-17 | 2018-12-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming absorption enhancement structure for image sensor |
US10438980B2 (en) | 2017-05-31 | 2019-10-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Image sensor with a high absorption layer |
US10559563B2 (en) | 2017-06-26 | 2020-02-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for manufacturing monolithic three-dimensional (3D) integrated circuits |
US10304782B2 (en) * | 2017-08-25 | 2019-05-28 | Infineon Technologies Ag | Compressive interlayer having a defined crack-stop edge extension |
US11127693B2 (en) | 2017-08-25 | 2021-09-21 | Infineon Technologies Ag | Barrier for power metallization in semiconductor devices |
KR102040593B1 (en) * | 2018-02-14 | 2019-11-06 | 주식회사 오킨스전자 | Filter chip package and wafer level package having improved bonding feature, and method for manufacturing the same |
CN112368824B (en) * | 2018-07-10 | 2024-06-18 | 日本电气硝子株式会社 | Package, method for manufacturing package, lid with bonding material, and method for manufacturing lid with bonding material |
US10734320B2 (en) | 2018-07-30 | 2020-08-04 | Infineon Technologies Austria Ag | Power metallization structure for semiconductor devices |
US11031321B2 (en) | 2019-03-15 | 2021-06-08 | Infineon Technologies Ag | Semiconductor device having a die pad with a dam-like configuration |
CN110265521B (en) * | 2019-04-29 | 2020-10-27 | 华灿光电(苏州)有限公司 | Flip light-emitting diode chip and manufacturing method thereof |
KR102328922B1 (en) * | 2019-05-27 | 2021-11-22 | 주식회사 아이디피 | Wafer level packaging method with solderball for Cap wafer, and Cap wafer |
CN114270497A (en) * | 2019-08-20 | 2022-04-01 | 三菱电机株式会社 | Semiconductor package |
CN110577186A (en) * | 2019-09-12 | 2019-12-17 | 南通大学 | Three-dimensional packaging structure of MEMS infrared detector and manufacturing method thereof |
CN111446212A (en) * | 2020-04-16 | 2020-07-24 | 中国电子科技集团公司第四十三研究所 | Ceramic integrated packaging shell and manufacturing process thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013084689A (en) * | 2011-10-06 | 2013-05-09 | Omron Corp | Wafer bonding method and bonding part structure |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69009958T2 (en) * | 1989-12-19 | 1994-09-22 | Fujitsu Ltd | Adhesive structure for semiconductor device and method for their production. |
JP2788672B2 (en) * | 1989-12-19 | 1998-08-20 | 富士通株式会社 | Semiconductor device |
JPH06140527A (en) * | 1992-10-28 | 1994-05-20 | Sumitomo Electric Ind Ltd | Sealing device component for semiconductor |
US5701008A (en) | 1996-11-29 | 1997-12-23 | He Holdings, Inc. | Integrated infrared microlens and gas molecule getter grating in a vacuum package |
JPH11307688A (en) * | 1998-04-17 | 1999-11-05 | Ngk Spark Plug Co Ltd | Wiring board and its manufacture |
US6521477B1 (en) | 2000-02-02 | 2003-02-18 | Raytheon Company | Vacuum package fabrication of integrated circuit components |
US6342407B1 (en) * | 2000-12-07 | 2002-01-29 | International Business Machines Corporation | Low stress hermetic seal |
EP1571704A1 (en) * | 2004-03-04 | 2005-09-07 | Interuniversitair Microelektronica Centrum Vzw | Method for depositing a solder material on a substrate in the form of a predetermined pattern |
JP2009200093A (en) * | 2008-02-19 | 2009-09-03 | Murata Mfg Co Ltd | Hollow type electronic component |
JPWO2010021267A1 (en) * | 2008-08-21 | 2012-01-26 | 株式会社村田製作所 | Electronic component device and manufacturing method thereof |
US7948178B2 (en) * | 2009-03-04 | 2011-05-24 | Global Oled Technology Llc | Hermetic seal |
US8809784B2 (en) * | 2010-10-21 | 2014-08-19 | Raytheon Company | Incident radiation detector packaging |
-
2014
- 2014-08-11 JP JP2017507405A patent/JP6487032B2/en not_active Expired - Fee Related
- 2014-08-11 CA CA2946526A patent/CA2946526C/en active Active
- 2014-08-11 WO PCT/US2014/050589 patent/WO2016024946A1/en active Application Filing
- 2014-08-11 EP EP14755503.1A patent/EP3180288A1/en not_active Withdrawn
- 2014-08-11 CN CN201480079309.2A patent/CN106414309B/en not_active Expired - Fee Related
- 2014-08-11 KR KR1020167032332A patent/KR101931010B1/en active IP Right Grant
-
2016
- 2016-11-01 IL IL248686A patent/IL248686B/en active IP Right Grant
-
2020
- 2020-07-26 IL IL276281A patent/IL276281B/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013084689A (en) * | 2011-10-06 | 2013-05-09 | Omron Corp | Wafer bonding method and bonding part structure |
Also Published As
Publication number | Publication date |
---|---|
JP6487032B2 (en) | 2019-03-20 |
IL248686A0 (en) | 2017-01-31 |
WO2016024946A1 (en) | 2016-02-18 |
IL248686B (en) | 2020-09-30 |
CA2946526A1 (en) | 2016-02-18 |
CA2946526C (en) | 2021-03-23 |
JP2017527113A (en) | 2017-09-14 |
KR101931010B1 (en) | 2018-12-19 |
CN106414309A (en) | 2017-02-15 |
CN106414309B (en) | 2020-02-28 |
IL276281B (en) | 2021-05-31 |
IL276281A (en) | 2020-09-30 |
KR20160146879A (en) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2946526C (en) | Hermetically sealed package having stress reducing layer | |
US9708181B2 (en) | Hermetically sealed package having stress reducing layer | |
JP7045430B2 (en) | Thermal infrared sensor array in wafer level package | |
US10262913B2 (en) | Wafer level package solder barrier used as vacuum getter | |
US5895233A (en) | Integrated silicon vacuum micropackage for infrared devices | |
US20160097681A1 (en) | Microbolometer supported by glass substrate | |
US20030062480A1 (en) | Infrared ray detector having a vacuum encapsulation structure | |
CN108982973B (en) | Electromagnetic radiation detector encapsulated by thin layer transfer | |
US20140267756A1 (en) | Microbolometer supported by glass substrate | |
CN111044158B (en) | Method for manufacturing a device for detecting electromagnetic radiation with improved packaging structure | |
KR101569350B1 (en) | Wafer Level Packaging Device | |
JP6891203B2 (en) | Sealed package with stress reduction layer | |
JP6891202B2 (en) | Sealed package with stress reduction layer | |
US11988561B2 (en) | Method for producing a thermal infrared sensor array in a vacuum-filled wafer-level housing | |
JPH04158584A (en) | Infrared-ray detecting element | |
WO2024123827A2 (en) | Enhanced area getter architecture for wafer-level vacuum packaged uncooled focal plane array | |
JP2013026465A (en) | Electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170119 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20200525 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220826 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TRACY, GREGORY D. Inventor name: KOCIAN, THOMAS ALLAN Inventor name: WONG, TSE E. Inventor name: BLACK, STEPHEN H. Inventor name: DIEP, BUU Q. Inventor name: KENNEDY, ADAM M. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20230106 |