EP3067435A1 - Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines - Google Patents
Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines Download PDFInfo
- Publication number
- EP3067435A1 EP3067435A1 EP16153407.8A EP16153407A EP3067435A1 EP 3067435 A1 EP3067435 A1 EP 3067435A1 EP 16153407 A EP16153407 A EP 16153407A EP 3067435 A1 EP3067435 A1 EP 3067435A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- component
- temperature
- phase
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 26
- 239000000956 alloy Substances 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 229910021324 titanium aluminide Inorganic materials 0.000 title claims abstract description 6
- OQPDWFJSZHWILH-UHFFFAOYSA-N [Al].[Al].[Al].[Ti] Chemical compound [Al].[Al].[Al].[Ti] OQPDWFJSZHWILH-UHFFFAOYSA-N 0.000 title abstract 2
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 18
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 17
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 14
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 13
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 13
- 239000010936 titanium Substances 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 11
- 229910010038 TiAl Inorganic materials 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims abstract description 9
- 230000008018 melting Effects 0.000 claims abstract description 9
- 230000009466 transformation Effects 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 37
- 238000001953 recrystallisation Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 8
- 238000010146 3D printing Methods 0.000 claims description 2
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 239000003779 heat-resistant material Substances 0.000 claims description 2
- 238000001746 injection moulding Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 6
- 238000005242 forging Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229910006281 γ-TiAl Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/30—Stress-relieving
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0068—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/002—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
Definitions
- the invention relates to a method for producing a heavy-duty component of an ⁇ + ⁇ -titanium aluminide alloy for reciprocating engines and gas turbines, in particular aircraft engines.
- TiAl-based alloys belong to the group of intermetallic materials which have been developed for applications in the field of application temperatures of superalloys. Due to its low density of about 4 g / cm 3 , this material offers considerable potential for saving weight and reducing the loads on moving components, eg blades and disks of gas turbines or components of piston engines, at temperatures up to approx. 700 ° C. State of the art is the investment casting of z. B. turbine blades for aircraft engines. For applications with higher load such. As in high-speed turbines for novel geared turbofan aircraft engines, the properties of the cast structure are no longer sufficient.
- thermomechanical treatment by means of plastic forming with a defined degree of deformation and subsequent heat treatment, the static and dynamic properties of TiAl alloys can be increased to the required values.
- TiAl alloys are not conventionally forgeable because of their high resistance to deformation. Therefore, the forming processes at high temperatures in the region of the ⁇ + ⁇ or ⁇ -phase region must be carried out in a protective atmosphere at low forming speeds. In order to achieve the desired final geometry of the forging part id usually several consecutive forging steps are required.
- the invention is thus the task of specifying a method for producing a highly loaded component of an ⁇ + ⁇ -Titanaluminid-alloy, which is easier to implement compared to previously known methods.
- the inventive method is characterized by a single-stage, isothermal forming process of the component in the ⁇ -phase region at slow forming speed, wherein a specific TiAl alloy is used, which makes it possible to stabilize the component in the ⁇ -phase region, so that there is the forming can.
- the alloy contains a corresponding proportion of at least one ⁇ -phase stabilizing element selected from Mo, V, Ta, Cr, Mn, Ni, Cu, Fe or Si, although mixtures thereof can also be used.
- ⁇ -phase stabilizing elements Mo, V or Ta are used, which can be used individually or as a mixture.
- the content of the ⁇ -phase stabilizing element is preferably 0.1-2%, in particular 0.8-1.2%. This in particular when Mo, V and / or Ta are used, since they have a particularly high stabilizing property and therefore their content can be kept relatively low.
- the forming temperature in the ⁇ -phase range is preferably 1070-1250 ° C., wherein as described, the deformation takes place isothermally, that is, that the forming tools are kept at the forming temperature so as not to leave the required narrow temperature window.
- the logarithmic deformation rate is 10 -3 s -1 to 10 -1 s -1 .
- the preform used has a volume distribution which varies over the longitudinal axis, ie that a given three-dimensional basic shape is already given, from which the finished component is forged by the single-stage forming according to the invention.
- This preform is preferably produced by casting, metal injection molding (MIM) or additive processes (3D printing, laser deposition welding, etc.) or a combination of the abovementioned possibilities.
- forming tools are preferably used from a highly heat-resistant material, preferably from a Mo alloy.
- the tools are protected during the forming process by an inert atmosphere against oxidation.
- they are preferably actively heated, for example inductively or by resistance heating.
- the preform is heated before the forming process, for example in an oven, inductively or by resistance heating.
- the deformation is followed by a heat treatment of the formed component in order to set the required performance properties and to convert the ⁇ -phase, which is favorable for the transformation, into a fine-lamellar ⁇ + ⁇ -structure by means of a suitable heat treatment.
- the heat treatment may comprise a recrystallization annealing at a temperature of 1230-1270 ° C.
- the holding time during the recrystallization annealing is preferably 50-100 min.
- the recrystallization annealing takes place in the region of the ⁇ / ⁇ transformation temperature. If, as is further provided according to the invention, after the recrystallization annealing, the component is cooled to a temperature of 900-950 ° C. in 120 s or faster, small ⁇ finite pitches of the ⁇ + ⁇ phase occur.
- a second heat treatment step follows, in which the component is first cooled to room temperature and then heated to a stabilizing or relaxation temperature of 850-950 ° C.
- the stabilization and relaxation temperature of 850 ° -950 ° C. can also be gone directly from the temperature of 900-950 ° C. which has been reached rapidly after the recrystallization annealing as described above.
- the preferred holding time at the stabilizing and relaxing temperature, regardless of how it is achieved, is preferably 300-360 min.
- the component temperature is preferably reduced to a temperature below 300 ° C. with a defined cooling rate.
- the cooling rate is preferably 0.5-2 K / min, that is, the cooling is relatively slow, which serves to stabilize and relax the structure.
- the cooling rate is preferably 1.5 K / min.
- the respective cooling may take place in a liquid, e.g. in oil, or in air or in an inert gas.
- the invention further relates to a component of an ⁇ + ⁇ -titanium aluminide alloy, in particular for a piston engine, an aircraft engine or a gas turbine, which is produced in a method of the type described.
- a component may for example be a blade or a disk of a gas turbine or the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Child & Adolescent Psychology (AREA)
- Health & Medical Sciences (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Powder Metallurgy (AREA)
- Forging (AREA)
Abstract
Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer ±+³-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke, dadurch gekennzeichnet, dass als Legierung eine TiAl-Legierung folgender Zusammensetzung verwendet wird (in Atom%): 40-48% Al, 2-8% Nb, 0,1-9% wenigstens eines die ²-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si, 0-0,5% B, sowie einem Rest aus Ti und erschmelzungsbedingten Verunreinigungen, wobei die Umformung einstufig ausgehend von einer Vorform mit über die Längsachse variierender Volumenverteilung erfolgt, wobei das Bauteil im ²-Phasenbereich isotherm mit einer logarithmischen Umformgeschwindigkeit von 0,01 - 0,5 1/s umgeformt wird.Method for producing a high-strength component from a ± + 3 titanium aluminide alloy for reciprocating engines and gas turbines, in particular aircraft engines, characterized in that the alloy used is a TiAl alloy of the following composition (in atom%): 40-48% Al, 2-8% Nb, 0.1-9% of at least one ²-phase stabilizing element selected from Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si, 0-0.5% B, and a remainder of Ti and impurities caused by melting, wherein the transformation takes place in one stage starting from a preform having a volume distribution varying over the longitudinal axis, the component being isothermally transformed in the ²-phase region with a logarithmic deformation rate of 0.01-0.5 1 / s ,
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer α+γ-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke.The invention relates to a method for producing a heavy-duty component of an α + γ-titanium aluminide alloy for reciprocating engines and gas turbines, in particular aircraft engines.
Legierungen auf TiAl-Basis gehören zur Gruppe der intermetallischen Werkstoffe, die für Anwendungen im Bereich der Einsatztemperaturen der Superlegierungen entwickelt wurden. Aufgrund ihrer geringen Dichte von etwa 4 g/cm3 bietet dieser Werkstoff ein erhebliches Potenzial zur Gewichtseinsparung sowie zur Reduzierung der Belastungen bewegter Bauteile, z.B. Schaufeln und Scheiben von Gasturbinen oder Bauteile von Kolbenmotoren, bei Temperaturen bis ca. 700 °C. Stand der Technik ist das Feingießen von z. B. Turbinenschaufeln für Flugtriebwerke. Für Anwendungen mit größerer Belastung wie z. B. in schnell laufenden Turbinen für neuartige Getriebefan-Flugtriebwerke sind die Eigenschaften des Gussgefüges nicht mehr ausreichend. Durch thermomechanische Behandlung mittels plastischer Umformung mit definiertem Umformgrad und nachfolgender Wärmebehandlung lassen sich die statischen und dynamischen Eigenschaften von TiAI-Legierungen auf die geforderten Werte steigern. Allerdings sind TiAI-Legierungen wegen ihres hohen Umformwiderstands nicht konventionell schmiedbar. Daher müssen die Umformprozesse bei hohen Temperaturen im Bereich des α+γ- oder α-Phasengebiets in schützender Atmosphäre bei niedrigen Umformgeschwindigkeiten durchgeführt werden. Zum Erreichen der gewünschten Endgeometrie des Schmiedeteils sind dabei i. d. Regel mehrere aufeinander folgende Schmiedeschritte erforderlich.TiAl-based alloys belong to the group of intermetallic materials which have been developed for applications in the field of application temperatures of superalloys. Due to its low density of about 4 g / cm 3 , this material offers considerable potential for saving weight and reducing the loads on moving components, eg blades and disks of gas turbines or components of piston engines, at temperatures up to approx. 700 ° C. State of the art is the investment casting of z. B. turbine blades for aircraft engines. For applications with higher load such. As in high-speed turbines for novel geared turbofan aircraft engines, the properties of the cast structure are no longer sufficient. By thermomechanical treatment by means of plastic forming with a defined degree of deformation and subsequent heat treatment, the static and dynamic properties of TiAl alloys can be increased to the required values. However, TiAl alloys are not conventionally forgeable because of their high resistance to deformation. Therefore, the forming processes at high temperatures in the region of the α + γ or α-phase region must be carried out in a protective atmosphere at low forming speeds. In order to achieve the desired final geometry of the forging part id usually several consecutive forging steps are required.
Ein Beispiel eines solchen Verfahrens zur Herstellung hochbelastbarer Bauteile aus α+γ-TiAl-Legierungen ist aus
Der Erfindung liegt damit die Aufgabenstellung zugrunde, ein Verfahren zur Herstellung eines hochbelasteten Bauteils aus einer α+γ-Titanaluminid-Legierung anzugeben, das im Vergleich zu bisher bekannten Verfahren einfacher zu realisieren ist.The invention is thus the task of specifying a method for producing a highly loaded component of an α + γ-Titanaluminid-alloy, which is easier to implement compared to previously known methods.
Zur Lösung dieses Problems dient erfindungsgemäß ein Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer α+γ-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke, das sich dadurch auszeichnet, dass als Legierung eine TiAI-Legierung folgender Zusammensetzung verwendet wird (in Atom%):
- 40 - 48 % Al,
- 2-8%Nb,
- 0,1 - 9 % wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
- 0 - 0,5 % B,
- 40 - 48% Al,
- 2-8% Nb,
- 0.1-9% of at least one β-phase stabilizing element selected from Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
- 0 - 0.5% B,
Das erfindungsgemäße Verfahren zeichnet sich durch einen einstufigen, isothermen Umformvorgang des Bauteils im β-Phasenbereich bei langsamer Umformgeschwindigkeit aus, wobei eine spezifische TiAI-Legierung verwendet wird, die es ermöglicht, das Bauteil im β-Phasenbereich zu stabilisieren, so dass dort die Umformung erfolgen kann. Zu diesem Zweck enthält die Legierung einen entsprechenden Anteil wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe oder Si, wobei auch Mischungen davon verwendet werden können. Während der langsamen Umformung mit einer logarithmischen Umformgeschwindigkeit von 0,01 - 0,5 1/s bei hoher Temperatur werden die in der kubisch-raumzentrierten β-Phase existenten 12 Gleitebenen aktiviert und eine dynamische Rekristallisation angestoßen. Durch stetig weiter zugeführte Umformenergie wird diese über den gesamten Umformweg aufrechterhalten. Hierbei entsteht bei niedrigerer Fließspannung ein feinkörniges Mikrogefüge. Dagegen ist bei einer Umformung im α+γ- oder α-Phasengebiet, wie in
Besonders bevorzugt werden als die β-Phase stabilisierende Elemente Mo, V oder Ta verwendet, die einzeln oder als Mischung eingesetzt werden können.Particularly preferred as the β-phase stabilizing elements Mo, V or Ta are used, which can be used individually or as a mixture.
Bevorzugt beträgt der Gehalt des die β-Phase stabilisierenden Elements 0,1 - 2 %, insbesondere 0,8 - 1,2 %. Dies insbesondere, wenn Mo, V und/oder Ta verwendet werden, da diese eine besonders hohe stabilisierende Eigenschaft besitzen und daher deren Gehalt relativ niedrig gehalten werden kann.The content of the β-phase stabilizing element is preferably 0.1-2%, in particular 0.8-1.2%. This in particular when Mo, V and / or Ta are used, since they have a particularly high stabilizing property and therefore their content can be kept relatively low.
Bevorzugt wird eine Legierung folgender Zusammensetzung verwendet:
- 41 - 47 % Al,
- 1,5-7 % Nb,
- 0,2 - 8 % wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
- 0 - 0,3 % B,
- 41 - 47% Al,
- 1.5-7% Nb,
- 0.2-8% of at least one β-phase stabilizing element selected from Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
- 0 - 0.3% B,
In weiterer Konkretisierung wird bevorzugt eine Legierung folgender Zusammensetzung verwendet:
- 42 - 46 % Al,
- 2 - 6,5 % Nb,
- 0,4 - 5 % wenigstens eines die β-Phase stabilisierenden Elements, gewählt aus Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
- 0 - 0,2 % B,
- 42 - 46% Al,
- 2 - 6.5% Nb,
- 0.4-5% of at least one β-phase stabilizing element selected from Mo, V, Ta, Cr, Mn, Ni, Cu, Fe, Si,
- 0 - 0.2% B,
Besonders bevorzugt wird eine Legierung folgender Zusammensetzung verwendet:
- 42,8 - 44,2 % Al,
- 3,7 - 4,3 % Nb,
- 0,8 - 1,2 % Mo,
- 0,07 - 0,13 % B,
- 42.8 - 44.2% Al,
- 3.7 - 4.3% Nb,
- 0.8-1.2% Mo,
- 0.07 - 0.13% B,
Die Umformtemperatur im β-Phasenbereich beträgt bevorzugt 1070 - 1250°C, wobei wie beschrieben die Umformung isotherm erfolgt, das heißt, dass die Umformwerkzeuge auf der Umformtemperatur gehalten sind, um das geforderte enge Temperaturfenster nicht zu verlassen. Die logarithmische Umformgeschwindigkeit beträgt 10-3 s-1 bis 10-1 s-1.The forming temperature in the β-phase range is preferably 1070-1250 ° C., wherein as described, the deformation takes place isothermally, that is, that the forming tools are kept at the forming temperature so as not to leave the required narrow temperature window. The logarithmic deformation rate is 10 -3 s -1 to 10 -1 s -1 .
Die verwendete Vorform weist eine über die Längsachse variierende Volumenverteilung auf, d.h. dass bereits eine vorgegebene dreidimensionale Grundform gegeben ist, aus der durch die erfindungsgemäße einstufige Umformung das fertige Bauteil geschmiedet wird. Diese Vorform wird bevorzugt durch Gießen, Metallformspritzen (MIM) oder additive Verfahren (3D-Druck, Laserauftragsschweißen, etc.) oder eine Kombination der genannten Möglichkeiten hergestellt.The preform used has a volume distribution which varies over the longitudinal axis, ie that a given three-dimensional basic shape is already given, from which the finished component is forged by the single-stage forming according to the invention. This preform is preferably produced by casting, metal injection molding (MIM) or additive processes (3D printing, laser deposition welding, etc.) or a combination of the abovementioned possibilities.
Zur Umformung werden bevorzugt Werkzeuge aus einem höchst-warmfesten Werkstoff verwendet, bevorzugt aus einer Mo-Legierung. Zweckmäßigerweise werden die Werkzeuge während des Umformvorgangs durch eine inerte Atmosphäre gegen Oxidation geschützt. Um die Werkzeuge auf der Umformtemperatur zu halten werden sie bevorzugt aktiv beheizt, beispielsweise induktiv oder durch Widerstandsheizung.For forming tools are preferably used from a highly heat-resistant material, preferably from a Mo alloy. Advantageously, the tools are protected during the forming process by an inert atmosphere against oxidation. In order to keep the tools at the forming temperature, they are preferably actively heated, for example inductively or by resistance heating.
Auch die Vorform wird vor dem Umformvorgang erwärmt, beispielsweise in einem Ofen, induktiv oder durch Widerstandsbeheizung.The preform is heated before the forming process, for example in an oven, inductively or by resistance heating.
Bevorzugt folgt der Umformung eine Wärmebehandlung des umgeformten Bauteils, um die geforderten Gebrauchseigenschaften einzustellen und hierfür die für die Umformung günstige β-Phase durch eine geeignete Wärmebehandlung in ein feinlamellares α+γ-Gefüge umzuwandeln. Hierzu kann die Wärmebehandlung eine Rekristallisationsglühung bei einer Temperatur von 1230 - 1270°C umfassen. Die Haltezeit während der Rekristallisationsglühung beträgt bevorzugt 50 - 100 min. Die Rekristallisationsglühung erfolgt im Bereich der γ/α-Umwandlungstemperatur. Wird, wie erfindungsgemäß ferner vorgesehen, nach der Rekristallisationsglühung das Bauteil auf eine Temperatur von 900 - 950°C in 120 s oder schneller abgekühlt, so kommt es zur Bildung kleiner Lamellenabstände der α+γ-Phase.Preferably, the deformation is followed by a heat treatment of the formed component in order to set the required performance properties and to convert the β-phase, which is favorable for the transformation, into a fine-lamellar α + γ-structure by means of a suitable heat treatment. For this purpose, the heat treatment may comprise a recrystallization annealing at a temperature of 1230-1270 ° C. The holding time during the recrystallization annealing is preferably 50-100 min. The recrystallization annealing takes place in the region of the γ / α transformation temperature. If, as is further provided according to the invention, after the recrystallization annealing, the component is cooled to a temperature of 900-950 ° C. in 120 s or faster, small α finite pitches of the α + γ phase occur.
Bevorzugt schließt sich ein zweiter Wärmebehandlungsschritt an, in dem das Bauteil zunächst auf Raumtemperatur abgekühlt und anschließend auf eine Stabilisierungs- oder Entspannungstemperatur von 850 - 950°C erwärmt wird. Alternativ kann auch direkt von der nach der Rekristallisationsglühung schnell erreichten Temperatur von 900 - 950 °C wie zuvor beschrieben auf die Stabilisierungs- und Entspannungstemperatur von 850 - 950°C gegangen werden. Die bevorzugte Haltezeit auf der Stabilisierungs- und Entspannungstemperatur, unabhängig davon, wie diese erreicht wird, beträgt bevorzugt 300 - 360 min.Preferably, a second heat treatment step follows, in which the component is first cooled to room temperature and then heated to a stabilizing or relaxation temperature of 850-950 ° C. Alternatively, the stabilization and relaxation temperature of 850 ° -950 ° C. can also be gone directly from the temperature of 900-950 ° C. which has been reached rapidly after the recrystallization annealing as described above. The preferred holding time at the stabilizing and relaxing temperature, regardless of how it is achieved, is preferably 300-360 min.
Nach Ablauf der Haltezeit wird bevorzugt mit einer definierten Abkühlrate die Bauteiltemperatur auf eine Temperatur unterhalb 300°C reduziert. Die Abkühlrate beträgt bevorzugt 0,5 - 2 K/min, das heißt, die Abkühlung erfolgt relativ langsam, was zur Stabilisierung und Entspannung des Gefüges dient. Bevorzugt beträgt die Abkühlrate 1,5 K/min.After the holding time has expired, the component temperature is preferably reduced to a temperature below 300 ° C. with a defined cooling rate. The cooling rate is preferably 0.5-2 K / min, that is, the cooling is relatively slow, which serves to stabilize and relax the structure. The cooling rate is preferably 1.5 K / min.
Die jeweilige Abkühlung kann in einer Flüssigkeit, z.B. in Öl, oder in Luft oder einem Inertgas erfolgen.The respective cooling may take place in a liquid, e.g. in oil, or in air or in an inert gas.
Neben dem erfindungsgemäßen Verfahren betrifft die Erfindung ferner ein Bauteil aus einer α+γ-Titanaluminid-Legierung, insbesondere für eine Kolbenmaschine, ein Flugtriebwerk oder eine Gasturbine, das in einem Verfahren der beschriebenen Art hergestellt ist. Ein solches Bauteil kann beispielsweise eine Schaufel oder eine Scheibe einer Gasturbine oder ähnliches sein.In addition to the method according to the invention, the invention further relates to a component of an α + γ-titanium aluminide alloy, in particular for a piston engine, an aircraft engine or a gas turbine, which is produced in a method of the type described. Such a component may for example be a blade or a disk of a gas turbine or the like.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL16153407T PL3067435T5 (en) | 2015-03-09 | 2016-01-29 | Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015103422.0A DE102015103422B3 (en) | 2015-03-09 | 2015-03-09 | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3067435A1 true EP3067435A1 (en) | 2016-09-14 |
EP3067435B1 EP3067435B1 (en) | 2017-07-26 |
EP3067435B2 EP3067435B2 (en) | 2021-11-24 |
Family
ID=55310669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16153407.8A Active EP3067435B2 (en) | 2015-03-09 | 2016-01-29 | Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines |
Country Status (5)
Country | Link |
---|---|
US (1) | US10196725B2 (en) |
EP (1) | EP3067435B2 (en) |
JP (1) | JP6200985B2 (en) |
DE (1) | DE102015103422B3 (en) |
PL (1) | PL3067435T5 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015103422B3 (en) | 2015-03-09 | 2016-07-14 | LEISTRITZ Turbinentechnik GmbH | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines |
WO2018043187A1 (en) | 2016-09-02 | 2018-03-08 | 株式会社Ihi | Tial alloy and method for producing same |
KR101888049B1 (en) * | 2016-12-14 | 2018-08-13 | 안동대학교 산학협력단 | Method for preparing Ti-Al-Nb-Fe alloy improved fracture toughness and creep properties |
KR101890642B1 (en) * | 2016-12-14 | 2018-08-22 | 안동대학교 산학협력단 | Method for preparing Ti-Al-Nb-V alloy improved fracture toughness and creep properties |
EP3372700B1 (en) | 2017-03-10 | 2019-10-09 | MTU Aero Engines GmbH | Method for making forged tial components |
DE102017212082A1 (en) * | 2017-07-14 | 2019-01-17 | MTU Aero Engines AG | FORGING AT HIGH TEMPERATURES, IN PARTICULAR OF TITANALUMINIDES |
DE102018101194A1 (en) | 2018-01-19 | 2019-07-25 | Otto Fuchs - Kommanditgesellschaft - | Method for producing a highly loadable component from an at least two-phase metallic or intermetallic material |
DE102018202723A1 (en) * | 2018-02-22 | 2019-08-22 | MTU Aero Engines AG | METHOD FOR PRODUCING A COMPONENT FROM A GRADIENT TIAL ALLOY AND COMPONENT PRODUCED ACCORDINGLY |
WO2019191450A1 (en) * | 2018-03-29 | 2019-10-03 | Arconic Inc. | Titanium aluminide alloys and titanium aluminide alloy products and methods for making the same |
DE102018209315A1 (en) * | 2018-06-12 | 2019-12-12 | MTU Aero Engines AG | Process for producing a component from gamma - TiAl and corresponding manufactured component |
JP7233659B2 (en) * | 2019-03-18 | 2023-03-07 | 株式会社Ihi | Titanium aluminide alloy material for hot forging, method for forging titanium aluminide alloy material, and forged body |
WO2020235203A1 (en) * | 2019-05-23 | 2020-11-26 | 株式会社Ihi | Tial alloy production method and tial alloy |
DE102020214700A1 (en) | 2020-11-23 | 2022-05-25 | MTU Aero Engines AG | METHOD OF MANUFACTURING A COMPONENT FROM A TIAL ALLOY AND COMPONENT MADE ACCORDINGLY |
DE102021000614A1 (en) | 2021-02-08 | 2022-08-11 | Access E.V. | Mold for the crack-free production of a metal object with at least one undercut, in particular from intermetallic alloys such as TiAl, FeAl and other brittle or crack-prone materials, as well as a corresponding method. |
WO2022219991A1 (en) * | 2021-04-16 | 2022-10-20 | 株式会社神戸製鋼所 | Tial alloy for forging, tial alloy material, and method for producing tial alloy material |
CN113355619B (en) * | 2021-06-04 | 2022-08-09 | 西安交通大学 | Heat treatment method for preventing thermal mechanical processing cracking of zirconium alloy |
US11807911B2 (en) * | 2021-12-15 | 2023-11-07 | Metal Industries Research & Development Centre | Heat treatment method for titanium-aluminum intermetallic and heat treatment device therefor |
CN115679231B (en) * | 2022-09-16 | 2024-03-19 | 中南大学 | Process for improving high-temperature plasticity of titanium-aluminum-based alloy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328530A (en) * | 1993-06-07 | 1994-07-12 | The United States Of America As Represented By The Secretary Of The Air Force | Hot forging of coarse grain alloys |
DE10150674A1 (en) | 2000-12-15 | 2002-07-04 | Thyssen Krupp Automotive Ag | Production of components with a high load capacity used in aircraft engines or stationary gas turbines comprises preforming encapsulated titanium-aluminum blanks, shaping, solution annealing and cooling off rapidly |
DE102007051499A1 (en) * | 2007-10-27 | 2009-04-30 | Mtu Aero Engines Gmbh | Material for a gas turbine component, method for producing a gas turbine component and gas turbine component |
EP2386663A1 (en) * | 2010-05-12 | 2011-11-16 | Böhler Schmiedetechnik GmbH & Co KG | Method for producing a component and component from a gamma-titanium-aluminium base alloy |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0112799A1 (en) | 1982-12-06 | 1984-07-04 | Ciba-Geigy Ag | Herbicidal agent for selective weed control in cereals |
US4836982A (en) * | 1984-10-19 | 1989-06-06 | Martin Marietta Corporation | Rapid solidification of metal-second phase composites |
JPH03285051A (en) * | 1990-03-30 | 1991-12-16 | Sumitomo Light Metal Ind Ltd | Method for forging titanium aluminide |
JPH0543958A (en) * | 1991-01-17 | 1993-02-23 | Sumitomo Light Metal Ind Ltd | Production of oxidation resistant titanium aluminide |
DE59106047D1 (en) * | 1991-05-13 | 1995-08-24 | Asea Brown Boveri | Process for manufacturing a turbine blade. |
JPH08283890A (en) † | 1995-04-13 | 1996-10-29 | Nippon Steel Corp | Tial-base intermetallic compound excellent in creep resistance and its production |
DE19756354B4 (en) * | 1997-12-18 | 2007-03-01 | Alstom | Shovel and method of making the blade |
JP4287991B2 (en) † | 2000-02-23 | 2009-07-01 | 三菱重工業株式会社 | TiAl-based alloy, method for producing the same, and moving blade using the same |
WO2002048420A2 (en) * | 2000-12-15 | 2002-06-20 | Thyssenkrupp Automotive Ag | Method for producing components with a high load capacity from tial alloys |
DE10346953A1 (en) † | 2003-10-09 | 2005-05-04 | Mtu Aero Engines Gmbh | Tool for making cast components, method of making the tool, and method of making cast components |
US20060083653A1 (en) * | 2004-10-20 | 2006-04-20 | Gopal Das | Low porosity powder metallurgy produced components |
JP2009215631A (en) * | 2008-03-12 | 2009-09-24 | Mitsubishi Heavy Ind Ltd | Titanium-aluminum-based alloy and production method therefor, and moving blade using the same |
AT508323B1 (en) | 2009-06-05 | 2012-04-15 | Boehler Schmiedetechnik Gmbh & Co Kg | METHOD FOR PRODUCING A FORGING PIECE FROM A GAMMA TITANIUM ALUMINUM BASE ALLOY |
DE102009050603B3 (en) * | 2009-10-24 | 2011-04-14 | Gfe Metalle Und Materialien Gmbh | Process for producing a β-γ-TiAl base alloy |
DE102011110740B4 (en) † | 2011-08-11 | 2017-01-19 | MTU Aero Engines AG | Process for producing forged TiAl components |
US10208360B2 (en) † | 2013-06-19 | 2019-02-19 | National Institute For Materials Science | Hot-forged TiAl-based alloy and method for producing the same |
JP6202556B2 (en) † | 2013-06-19 | 2017-09-27 | 国立研究開発法人物質・材料研究機構 | Hot forging type TiAl based alloy |
DE102015103422B3 (en) | 2015-03-09 | 2016-07-14 | LEISTRITZ Turbinentechnik GmbH | Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines |
-
2015
- 2015-03-09 DE DE102015103422.0A patent/DE102015103422B3/en not_active Withdrawn - After Issue
-
2016
- 2016-01-29 PL PL16153407T patent/PL3067435T5/en unknown
- 2016-01-29 EP EP16153407.8A patent/EP3067435B2/en active Active
- 2016-03-08 JP JP2016044588A patent/JP6200985B2/en active Active
- 2016-03-09 US US15/065,328 patent/US10196725B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328530A (en) * | 1993-06-07 | 1994-07-12 | The United States Of America As Represented By The Secretary Of The Air Force | Hot forging of coarse grain alloys |
DE10150674A1 (en) | 2000-12-15 | 2002-07-04 | Thyssen Krupp Automotive Ag | Production of components with a high load capacity used in aircraft engines or stationary gas turbines comprises preforming encapsulated titanium-aluminum blanks, shaping, solution annealing and cooling off rapidly |
DE10150674B4 (en) | 2000-12-15 | 2008-02-07 | Leistritz Ag | Process for the production of heavy-duty components made of TiAl alloys |
DE102007051499A1 (en) * | 2007-10-27 | 2009-04-30 | Mtu Aero Engines Gmbh | Material for a gas turbine component, method for producing a gas turbine component and gas turbine component |
EP2386663A1 (en) * | 2010-05-12 | 2011-11-16 | Böhler Schmiedetechnik GmbH & Co KG | Method for producing a component and component from a gamma-titanium-aluminium base alloy |
Also Published As
Publication number | Publication date |
---|---|
US10196725B2 (en) | 2019-02-05 |
US20160265096A1 (en) | 2016-09-15 |
JP2016166418A (en) | 2016-09-15 |
EP3067435B1 (en) | 2017-07-26 |
JP6200985B2 (en) | 2017-09-20 |
PL3067435T5 (en) | 2022-03-14 |
DE102015103422B3 (en) | 2016-07-14 |
EP3067435B2 (en) | 2021-11-24 |
PL3067435T3 (en) | 2018-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3067435B1 (en) | Method for producing a heavy-duty component made of an alpha+gamma titanium aluminide alloy for piston engines and gas turbines, in particular jet engines | |
DE69017574T2 (en) | High strength fatigue crack resistant alloy workpiece. | |
EP2386663B1 (en) | Method for producing a component and component from a gamma-titanium-aluminium base alloy | |
DE69017339T2 (en) | Alloys resistant to creep, breaking load and fatigue cracking. | |
DE69707027T2 (en) | Regulation of the grain size of nickel-based superalloys | |
EP2851445B1 (en) | Creep-resistant TiAl alloy | |
EP2742162B1 (en) | Method for producing forged tial components | |
DD232071A5 (en) | METHOD FOR INCREASING THE MOLDABILITY OF NICKEL BASE SUPER ALLOYS AND OBJECTS MADE ACCORDING TO THE PROCEDURE | |
JPH0798989B2 (en) | Method for producing titanium alloy parts comprising improved hot working and resulting parts | |
DE102013002483A1 (en) | Nickel-cobalt alloy | |
EP3336209A1 (en) | Heat-resistant ti alloy and process for producing the same | |
EP2807281B1 (en) | Method for producing forged components from a tial alloy and component produced thereby | |
EP3144402A1 (en) | Process for the production of a alpha+gamma titanium-aluminide alloy preform for the manufacture of a high load capacity component for piston engines and turbines, in particular aircraft turbines | |
EP3269838B1 (en) | High temperature resistant tial alloy, method for production of a composent from a corresponding tial alloy, component from a corresponding tial alloy | |
EP3037194A1 (en) | Turbine wheel and method for its production | |
EP3581668A1 (en) | Method for producing a component from gamma tial and correspondingly manufactured component | |
EP3427858A1 (en) | Forging at high temperatures, in particular of titanium aluminides | |
DE102008055546A1 (en) | A method for improving mechanical properties of a beta-treated titanium alloy article | |
EP0398121B1 (en) | Process for producing coarse columnar grains directionally oriented along their length in an oxide dispersion hardened nickel base superalloy | |
DE10150674B4 (en) | Process for the production of heavy-duty components made of TiAl alloys | |
EP3584334A1 (en) | Method for producing a forged component from a tial alloy and correspondingly manufactured component | |
DE10355892B4 (en) | Process for producing Ti, Zr, Hf-containing drop forgings | |
DE102013020460A1 (en) | Process for the production of TiAl components | |
CH263074A (en) | Alloy. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20160916 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22F 1/18 20060101ALI20170321BHEP Ipc: C22C 14/00 20060101AFI20170321BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170413 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 912460 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016000064 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170726 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171026 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171027 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171026 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502016000064 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: LISI AEROSPACE Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
26 | Opposition filed |
Opponent name: MTU AERO ENGINES GMBH Effective date: 20180426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180129 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180129 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160129 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170726 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20211124 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502016000064 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230512 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240118 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240116 Year of fee payment: 9 Ref country code: GB Payment date: 20240124 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240123 Year of fee payment: 9 Ref country code: PL Payment date: 20240117 Year of fee payment: 9 Ref country code: IT Payment date: 20240131 Year of fee payment: 9 Ref country code: FR Payment date: 20240123 Year of fee payment: 9 |