EP3047131A1 - Verfahren zum betreiben einer brennkraftmaschine - Google Patents
Verfahren zum betreiben einer brennkraftmaschineInfo
- Publication number
- EP3047131A1 EP3047131A1 EP14749739.0A EP14749739A EP3047131A1 EP 3047131 A1 EP3047131 A1 EP 3047131A1 EP 14749739 A EP14749739 A EP 14749739A EP 3047131 A1 EP3047131 A1 EP 3047131A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cylinder
- combustion
- specific
- value
- actual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 160
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000007789 gas Substances 0.000 claims description 67
- 238000002347 injection Methods 0.000 claims description 25
- 239000007924 injection Substances 0.000 claims description 25
- 239000000446 fuel Substances 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 8
- 230000003993 interaction Effects 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 2
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0085—Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B5/00—Engines characterised by positive ignition
- F02B5/02—Methods of operating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B77/00—Component parts, details or accessories, not otherwise provided for
- F02B77/08—Safety, indicating, or supervising devices
- F02B77/085—Safety, indicating, or supervising devices with sensors measuring combustion processes, e.g. knocking, pressure, ionization, combustion flame
- F02B77/086—Sensor arrangements in the exhaust, e.g. for temperature, misfire, air/fuel ratio, oxygen sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
- F02D41/1443—Plural sensors with one sensor per cylinder or group of cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1461—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
Definitions
- the invention relates to a method for operating an internal combustion engine having a plurality of cylinders, namely a method for cylinder-specific combustion control on at least some cylinders, preferably on all cylinders of the internal combustion engine.
- DE 10 2005 058 820 A1 discloses a method for operating an internal combustion engine, in particular a self-igniting internal combustion engine, in which at least one variable which characterizes a respective course of combustion in an associated combustion chamber is calculated individually for each cylinder, depending on this at least a parameter characterizing the course of combustion is influenced by the regulation of cylinder-individual fuel injection parameters.
- the procedure is such that a cylinder pressure measurement is carried out on the cylinders in order to calculate a variable characterizing the combustion in the respective cylinder as a function of the cylinder pressure measurement.
- calculated actual combustion values are compared with corresponding combustion target values in order to influence fuel injection parameters for each individual cylinder as a function of a control deviation.
- the actual combustion values are calculated, for example, from the measured cylinder pressure
- the combustion in the cylinders of the internal combustion engine can be optimized only to a limited extent for compliance with emission limit values. This is due, inter alia, to the fact that, for example, from the cylinder pressure no conclusions about wear or a change in the injection characteristics of fuel injectors can be obtained.
- the present invention has the object to provide a novel method for operating an internal combustion engine, by means of which a cylinder-specific control of the cylinder of the internal combustion engine can be improved.
- a combustion actual value is individually recorded for the respective cylinder and the respective metrologically sensed actual combustion value is compared with a combustion target value, for each of the cylinders , for which a cylinder-specific combustion control takes place, to determine at least one cylinder-specific control deviation between the desired combustion value and the actual combustion value, wherein for each cylinder for which a cylinder-specific combustion control takes place, at least one cylinder-specific control variable is determined on the basis of the or each cylinder-specific control deviation, on the basis of these the respective cylinder is driven or operated to the respective actual combustion value the respective combustion setpoint and minimizing de r approximate the respective control deviation.
- a combustion actual value is not calculated from other measured variables, but rather measured individually for each cylinder.
- Such a measured, cylinder-individual combustion actual value of the respective cylinder is then compared with a corresponding combustion target value to determine a control deviation for each cylinder, and to determine a cylinder-specific control variable for the respective cylinder on the basis of this cylinder-specific control deviation so that the actual combustion value matches the combustion target value of the respective cylinder can be tracked.
- the operation of an internal combustion engine compared to known cylinder-specific regulations can be significantly improved.
- the or each actual combustion value is detected by means of at least one cylinder-specific exhaust gas sensor for each cylinder, wherein the respective actual combustion value at the respective exhaust gas sensor of the respective cylinder is exclusively in a cylinder-specific crankshaft angle range is detected in order to minimize the interaction with the exhaust gas discharged from other cylinders in the cylinder-individual combustion actual detection.
- the or each combustion actual value is detected by measurement with the aid of a common exhaust gas sensor for a plurality of cylinders for which the exhaust gas of several cylinders is always supplied exclusively to a cylinder, in order to minimize interaction with the exhaust gas expelled from other cylinders in the cylinder-specific combustion value detection.
- the combustion target value of the cylinder is dependent on the operating point of the internal combustion engine.
- the use of operating-point-dependent combustion nominal values is preferred, since optimum operation of the internal combustion engine can then be ensured in each case for different operating points via a cylinder-specific combustion control.
- a NOx actual value is detected with the aid of an exhaust gas sensor embodied as a NOx sensor.
- a fuel / air ratio or residual oxygen content is detected as a combustion actual value for each cylinder for which a cylinder-specific combustion control takes place with the aid of an exhaust-gas sensor designed as a lambda sensor.
- the metrological detection of the cylinder-specific actual combustion values via NOx sensors or lambda sensors is preferred.
- Fig. 1 a schematic representation of an internal combustion engine with several
- the invention relates to a method for operating an internal combustion engine, namely a method for cylinder-specific combustion control on the alleviate an internal combustion engine.
- FIG. 1 shows a highly schematic diagram of an internal combustion engine 10 having a plurality of cylinders 11.
- the number shown in Fig. 1 of six cylinders 1 1 and the grouping of these cylinders 1 1 in two cylinder groups is purely exemplary nature.
- the turbine 15 of the exhaust-gas turbocharger 14 can be supplied with the exhaust gas leaving the cylinders 11 via an exhaust-gas line 16.
- a cylinder-specific combustion control on an internal combustion engine 10, for which purpose with the aid of at least one exhaust gas sensor 17 on the exhaust gas of each cylinder 1 1, for which a cylinder-specific combustion control is to take place, for the respective cylinder 1 1 individually at least one combustion actual value is detected metrologically.
- This respective metrologically detected actual combustion value of the respective cylinder 1 1 is compared with a corresponding desired combustion value in order to determine a cylinder-specific control deviation between the combustion target value and the measured combustion actual value for the respective cylinder for which a cylinder-specific combustion control is to take place.
- a cylinder-specific control variable is then determined for each cylinder for which cylinder-specific combustion control is to be carried out, on the basis of which the respective cylinder 1 1 is controlled or operated in order to reduce the respective combustion actual value to the respective combustion target value while minimizing the approximate the respective control deviation.
- each cylinder 1 1 of the internal combustion engine 10 is assigned an individual exhaust gas sensor 17.
- Each cylinder-specific exhaust gas sensor 17 is arranged in the flow direction of the exhaust gas downstream of the respective cylinder 1 1 and upstream of a junction 18 of a cylinder-individual exhaust gas outlet 19 with the exhaust pipe 16. It is also possible that the exhaust gas sensors 17 protrude into combustion chambers of the cylinder 1 1.
- each cylinder-specific exhaust gas sensor 17 the exhaust gas of the respective cylinder 1 1 is subjected to a cylinder-specific metrological detection, so as to determine at least one cylinder-individual combustion actual value for each cylinder 1 1. It is provided that at the respective exhaust gas sensor 17 of the respective cylinder 1 1, the respective actual combustion value is detected exclusively in a cylinder-specific crankshaft angle range in order to minimize interaction with the exhaust gas expelled from other cylinders during cylinder-specific detection of the combustion actual values or due to valve deletions completely avoid the exhaust valves.
- the exhaust gas conducted via the cylinder-specific exhaust gas sensors 17, as seen in the flow direction of the exhaust gas, is conducted into the exhaust gas line 16 downstream of the turbine 15.
- FIG. 2 shows an alternative embodiment, in which a common exhaust gas sensor 17 is provided for determining the cylinder-specific actual combustion values for the cylinders 11, for which a cylinder-specific combustion control is carried out.
- This exhaust gas sensor 17 is in each case coupled to the cylinder-specific exhaust gas outlet channels 19 with the interposition of valves 20 so as to supply the exhaust gas to the common exhaust gas sensor 17 always exclusively of a cylinder 1 1.
- the actuation of the valves 20 again takes place as a function of the cylinder-specific crankshaft angle range in order to supply exhaust gas of the respective cylinder 11 to the common exhaust gas sensor 17 when the exhaust valves of the respective cylinder 1 1 discharge exhaust gas by opening the valve 20 assigned to this cylinder 11
- the exhaust gas conducted via the common exhaust gas sensor 17 is conducted downstream of the turbine 15 of the exhaust gas turbocharger 14 into the exhaust gas line 16.
- run times of the exhaust gas from the cylinders 11 to the exhaust gas sensors 17 can be taken into account in the variants of FIGS.
- these may be NOx sensors and / or lambda sensors.
- an NOx sensor is used as exhaust gas sensors 17 and in FIG. 2 as a common exhaust gas sensor, a difference between a desired NOx value and a cylinder-specific, metrologically detected NOx is determined as a cylinder-specific control deviation. actual value determined.
- an injection pressure of the respective cylinder is preferably increased as a manipulated variable for the respective cylinder 1 1 and / or an injection start into the respective cylinder Cylinder 1 1 shifted late and / or an ignition timing of the respective cylinder 1 1 retarded and / or deactivates a pilot injection into the respective cylinder 1 1 and / or activates a post-injection into the respective cylinder 1 1.
- the injection pressure of the respective cylinder 1 becomes the cylinder-specific control variable 1 and / or the start of injection into the respective cylinder 1 1 is postponed and / or the Zündzeitung of the respective cylinder 1 1 shifted early and / or the pilot injection into the respective cylinder 1 1 activated and / or the post-injection into the respective cylinder 1 1 deactivated.
- the selection of the manipulated variable depends on the design of the respective internal combustion engine 10, in particular whether a self-igniting or spark-ignited internal combustion engine 10 is to be operated.
- a lambda sensor is used as the exhaust gas sensors 17 in FIG. 1 or as the common exhaust gas sensor 17 in FIG. 2, preferably fuel / air ratios or residual oxygen contents are determined as cylinder-specific combustion actual values. Then, if a cylinder-specific control deviation between the setpoint and the actual value of the cylinder-individual fuel / air ratio is greater than zero, a fuel injection quantity is preferably increased as a control variable in the respective cylinder 1 1 and / or throttling a charge air to the respective cylinder 1 1 reduced , On the other hand, if the cylinder-specific control deviation between the desired value and the actual value of the fuel / air ratio is less than zero, the fuel injection quantity into the respective cylinder 11 is preferably reduced as a cylinder-specific actuating variable and / or the throttling of the charge air supply to the respective cylinder 1 1 increased.
- a turning point as a cylinder-specific combustion actual value within a measuring interval.
- combustion target values which are dependent on the operating point of the internal combustion engine 10 are used as combustion target values for the cylinders 11 of the internal combustion engine 10.
- the desired combustion values may be cylinder-specific combustion nominal values or also nominal values which are identical for all cylinders 11 of the internal combustion engine 10. It is also possible to determine a plurality of combustion actual values for each cylinder 1 1 in order to compare them with corresponding combustion target values and, depending thereon, to determine at least one cylinder-specific manipulated variable on the basis of which the respective cylinder 11 is operated. In this case, NOx actual values in combination with actual values of the residual oxygen content or air / fuel ratio can be determined and compared with corresponding desired values. In this context, NOx sensors and lambda sensors can form a non-destructively separable unit.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013012568.5A DE102013012568A1 (de) | 2013-07-29 | 2013-07-29 | Verfahren zum Betreiben einer Brennkraftmaschine |
PCT/EP2014/066207 WO2015014809A1 (de) | 2013-07-29 | 2014-07-28 | Verfahren zum betreiben einer brennkraftmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3047131A1 true EP3047131A1 (de) | 2016-07-27 |
Family
ID=51300706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14749739.0A Withdrawn EP3047131A1 (de) | 2013-07-29 | 2014-07-28 | Verfahren zum betreiben einer brennkraftmaschine |
Country Status (7)
Country | Link |
---|---|
US (1) | US9920700B2 (de) |
EP (1) | EP3047131A1 (de) |
JP (1) | JP6426735B2 (de) |
KR (1) | KR20160035072A (de) |
CN (1) | CN105408605B (de) |
DE (1) | DE102013012568A1 (de) |
WO (1) | WO2015014809A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016219577B4 (de) * | 2016-10-10 | 2018-09-27 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
DE102017205034B4 (de) * | 2017-03-24 | 2021-12-02 | Mtu Friedrichshafen Gmbh | Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine |
DE102018006312B4 (de) * | 2018-08-10 | 2021-11-25 | Mtu Friedrichshafen Gmbh | Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine |
EP4183997A1 (de) * | 2021-11-18 | 2023-05-24 | Scania CV AB | Verfahren zur steuerung eines verbrennungsmotors, steuerungsanordnung, verbrennungsmotor und fahrzeug |
WO2023230344A1 (en) * | 2022-05-27 | 2023-11-30 | Cummins Power Generation Inc. | Control system for internal combustion engine, internal combustion engine configured to control combustion, and method of control thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6012282A (en) * | 1996-06-21 | 2000-01-11 | Ngk Insulators, Ltd. | Method for controlling engine exhaust gas system |
EP1471222A1 (de) * | 2003-04-22 | 2004-10-27 | Siemens Aktiengesellschaft | Regenerationsverfahren für einen Speicherkatalysator einer Brennkraftmaschine |
EP1529944A1 (de) * | 2003-11-06 | 2005-05-11 | Toyota Jidosha Kabushiki Kaisha | Abgassteuerungsvorrichtung und Verfahren für eine Brennkraftmaschine |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0192587A (ja) | 1987-09-30 | 1989-04-11 | Nissan Motor Co Ltd | 内燃機関の点火時期制御装置 |
JPH01203622A (ja) | 1988-02-08 | 1989-08-16 | Mitsubishi Electric Corp | 内燃機関の空燃比制御装置 |
WO1990002874A1 (en) | 1988-09-10 | 1990-03-22 | Robert Bosch Gmbh | Engine misfire detection and engine exhaust systems |
JPH02264137A (ja) | 1989-04-05 | 1990-10-26 | Japan Electron Control Syst Co Ltd | 燃料噴射装置 |
DE3940752A1 (de) * | 1989-12-09 | 1991-06-13 | Bosch Gmbh Robert | Verfahren zum steuern eines ottomotors ohne drosselklappe |
JP3162524B2 (ja) * | 1992-12-29 | 2001-05-08 | 本田技研工業株式会社 | 内燃機関の空燃比制御装置 |
US5651353A (en) | 1996-05-03 | 1997-07-29 | General Motors Corporation | Internal combustion engine control |
DE19903721C1 (de) * | 1999-01-30 | 2000-07-13 | Daimler Chrysler Ag | Betriebsverfahren für eine Brennkraftmaschine mit Lambdawertregelung und Brennkraftmaschine |
DE10048808A1 (de) * | 2000-09-29 | 2002-04-18 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Steuerung von Betriebsabläufen |
JP2005273532A (ja) | 2004-03-24 | 2005-10-06 | Nissan Diesel Motor Co Ltd | エンジンの空燃比制御装置 |
DE102004036034B3 (de) * | 2004-07-24 | 2005-11-24 | Robert Bosch Gmbh | Verfahren zur Steuerung einer Brennkraftmaschine |
US7089922B2 (en) * | 2004-12-23 | 2006-08-15 | Cummins, Incorporated | Apparatus, system, and method for minimizing NOx in exhaust gasses |
DE102005058820B4 (de) | 2005-12-09 | 2016-11-17 | Daimler Ag | Verfahren zur Regelung einer Brennkraftmaschine, insbesondere einer selbstzündenden Brennkraftmaschine |
DE102006016020B3 (de) * | 2006-04-05 | 2007-02-15 | Audi Ag | Verfahren zur Bestimmung zylinderindividueller Füllungsluftunterschiede |
AT506085B1 (de) * | 2008-04-07 | 2009-06-15 | Ge Jenbacher Gmbh & Co Ohg | Brennkraftmaschine |
DE102008001081B4 (de) * | 2008-04-09 | 2021-11-04 | Robert Bosch Gmbh | Verfahren und Motorsteuergerät zum Steuern eines Verbrennungsmotors |
JP4693896B2 (ja) * | 2008-12-10 | 2011-06-01 | 三菱電機株式会社 | 内燃機関制御装置 |
JP2010196526A (ja) | 2009-02-24 | 2010-09-09 | Nissan Motor Co Ltd | 圧縮着火式内燃機関の燃焼制御装置 |
DE102009035579A1 (de) * | 2009-07-28 | 2011-02-03 | Beru Ag | Verfahren zum Betreiben eines Verbrennungsmotors |
JP5287697B2 (ja) | 2009-12-24 | 2013-09-11 | 株式会社デンソー | 内燃機関の異常診断装置及び制御装置 |
JP2011247214A (ja) | 2010-05-28 | 2011-12-08 | Isuzu Motors Ltd | 内燃機関の燃料噴射制御装置 |
GB2484745A (en) * | 2010-10-18 | 2012-04-25 | Gm Global Tech Operations Inc | A method for feed-forward controlling fuel injection into a cylinder of an internal combustion engine |
DE102011011337B3 (de) * | 2011-02-16 | 2012-02-16 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Verfahren zur Zylindergleichstellung einer Mehrzylinder-Verbrennungskraftmaschine |
GB2488371A (en) * | 2011-02-28 | 2012-08-29 | Gm Global Tech Operations Inc | Feed-forward control of fuel injection in an internal combustion engine |
JP5660319B2 (ja) | 2011-04-07 | 2015-01-28 | 株式会社デンソー | 内燃機関の制御装置 |
-
2013
- 2013-07-29 DE DE102013012568.5A patent/DE102013012568A1/de active Pending
-
2014
- 2014-07-28 US US14/908,594 patent/US9920700B2/en active Active
- 2014-07-28 JP JP2016530479A patent/JP6426735B2/ja active Active
- 2014-07-28 KR KR1020167005317A patent/KR20160035072A/ko not_active Application Discontinuation
- 2014-07-28 WO PCT/EP2014/066207 patent/WO2015014809A1/de active Application Filing
- 2014-07-28 EP EP14749739.0A patent/EP3047131A1/de not_active Withdrawn
- 2014-07-28 CN CN201480043134.XA patent/CN105408605B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6012282A (en) * | 1996-06-21 | 2000-01-11 | Ngk Insulators, Ltd. | Method for controlling engine exhaust gas system |
EP1471222A1 (de) * | 2003-04-22 | 2004-10-27 | Siemens Aktiengesellschaft | Regenerationsverfahren für einen Speicherkatalysator einer Brennkraftmaschine |
EP1529944A1 (de) * | 2003-11-06 | 2005-05-11 | Toyota Jidosha Kabushiki Kaisha | Abgassteuerungsvorrichtung und Verfahren für eine Brennkraftmaschine |
Non-Patent Citations (1)
Title |
---|
See also references of WO2015014809A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP6426735B2 (ja) | 2018-11-21 |
CN105408605B (zh) | 2019-11-12 |
US9920700B2 (en) | 2018-03-20 |
KR20160035072A (ko) | 2016-03-30 |
DE102013012568A1 (de) | 2015-01-29 |
WO2015014809A1 (de) | 2015-02-05 |
US20160169134A1 (en) | 2016-06-16 |
CN105408605A (zh) | 2016-03-16 |
JP2016525656A (ja) | 2016-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007028900B4 (de) | Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine | |
DE102019102513A1 (de) | Verfahren und systeme zur steuerung des luft-kraftstoff-verhältnisses für einzelne zylinder in einer brennkraftmaschine | |
EP2156039B1 (de) | Verfahren und vorrichtung zur ermittlung des verbrennungs-lambdawerts einer brennkraftmaschine | |
WO2007065573A1 (de) | Verfahren zur regelung einer brennkraftmaschine, insbesondere einer selbstzündenden brennkraftmaschine | |
AT516620B1 (de) | Dual-Fuel-Brennkraftmaschine | |
EP2148070A2 (de) | Verfahren zur Bestimmung der eingespritzten Kraftstoffmasse einer Einzeleinspritzung und Vorrichtung zur Durchführung des Verfahrens | |
WO2015014809A1 (de) | Verfahren zum betreiben einer brennkraftmaschine | |
DE102006009920A1 (de) | Bestimmung zylinderindividueller Korrekturwerte der Einspritzmenge einer Brennkraftmaschine | |
DE102011113605A1 (de) | Verfahren zur Vorwärtsregelung der Kraftstoffeinspritzung in einen Zylinder eines Verbrennungsmotors | |
DE102016110517A1 (de) | Kraftstoffschätzvorrichtung | |
EP3042062B1 (de) | Verfahren zum betreiben einer brennkraftmaschine | |
DE102010038625A1 (de) | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine | |
DE102011006752B4 (de) | Verfahren und Vorrichtung zur Steuerung eines variablen Ventiltriebs einer Brennkraftmaschine | |
EP2601397A2 (de) | Adaptionsverfahren zur einspritzventilansteuerung und zylindergleichstellung | |
DE102006016484A1 (de) | Verfahren zum Betrieb einer Brennkraftmaschine | |
DE10256241A1 (de) | Verfahren und Vorrichtung zur Steuerung einer eine Abgasrückführung aufweisenden Brennkraftmaschine | |
DE102019110524A1 (de) | System und verfahren für verbrennungsmotor mit variablem verdichtungsverhältnis | |
DE112011102608T5 (de) | Cetanzahl-Bestimmungsvorrrichtung | |
DE102006005503A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm-Produkt, Computerprogramm und Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine | |
EP2268915A1 (de) | Brennkraftmaschine | |
DE102012204332A1 (de) | Vorrichtung zum Betreiben einer Brennkraftmaschine | |
DE102007060937A1 (de) | Verfahren und Vorrichtung zur Erkennung der Kraftstoffqualität bei laufender Brennkraftmaschine | |
DE102009021793B4 (de) | Verfahren zum Bestimmen der Stickoxidemission im Brennraum eines Dieselmotors | |
DE102007051552A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine mit mehreren Zylindern | |
DE102011105546A1 (de) | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20160303 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAN ENERGY SOLUTIONS SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210423 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DOERING, ANDREAS |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DOERING, ANDREAS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20240105 |