Nothing Special   »   [go: up one dir, main page]

EP2937658B1 - Innerer wärmeübertrager - Google Patents

Innerer wärmeübertrager Download PDF

Info

Publication number
EP2937658B1
EP2937658B1 EP15164732.8A EP15164732A EP2937658B1 EP 2937658 B1 EP2937658 B1 EP 2937658B1 EP 15164732 A EP15164732 A EP 15164732A EP 2937658 B1 EP2937658 B1 EP 2937658B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
accumulator
tube
heat exchanger
corrugated fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15164732.8A
Other languages
English (en)
French (fr)
Other versions
EP2937658A1 (de
Inventor
David Mayor Tonda
Dr. Günther Feuerecker
Wolfgang Geiger
Karl-Gerd Krumbach
Klaus FÖRSTER
Martin Kaspar
Thomas Bruder
Uwe FÖRSTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2937658A1 publication Critical patent/EP2937658A1/de
Application granted granted Critical
Publication of EP2937658B1 publication Critical patent/EP2937658B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements

Definitions

  • the invention relates to an internal heat exchanger according to the preamble of the first claim.
  • a heat exchanger is known DE 10 2006 017 432 ,
  • the refrigerant R-134a is in future no longer permitted for use in air conditioning systems.
  • R-744 CO 2
  • the refrigerant R-744 is much more environmentally friendly compared to R-134a and still allows for a higher cooling capacity with a comparable volume of the air conditioning system.
  • COP Coefficient of Performance
  • the inner heat exchanger can be integrated as a separate component or designed as a combination element with the so-called accumulator, which acts as a storage device and / or drying device for the refrigerant.
  • the refrigerant on the high pressure side is guided through a line which is arranged on the accumulator and flows around the refrigerant of the low pressure side.
  • the publication DE 198 30 757 A1 discloses an air conditioner, wherein an internal heat exchanger is provided, which is combined with a condenser and a collector.
  • the inner heat exchanger is arranged in the region of the capacitor, whereby a space-saving solution is generated.
  • the air conditioning system thus produced is particularly suitable for use with the refrigerant R-744 (CO 2 ).
  • the accumulator in this case has an outer wall formed from two hollow-cylindrical shaped elements, which has a plurality of flow channels formed between the hollow cylindrical elements. Through these flow channels, the refrigerant can flow. Thus, a heat transfer can take place between the refrigerant flowing through the flow channels, which are formed in the outer wall, and the refrigerant flowing through the accumulator in the interior.
  • the inner heat exchanger is formed by two hollow cylinders arranged one inside the other. In the space between the inner cylinder and the outer cylinder can flow a vapor refrigerant with low pressure.
  • the inner cylinder is designed as a flat tube with a plurality of microchannels, which can be flowed through by a high-pressure refrigerant. In the cavity formed by the inner cylinder, the refrigerant can be further collected with a low pressure. Between the refrigerant with low pressure and the refrigerant with high pressure can be generated by this arrangement, a heat transfer.
  • an internal heat exchanger which has an integrated accumulator.
  • the cylindrical accumulator which can be flowed through by a refrigerant, is surrounded by a tube formed into a helix. Through the pipe can also flow a refrigerant.
  • the tube is arranged between the outer wall of the accumulator and the inner wall of a likewise hollow cylindrical housing. Preferably, a heat transfer between the refrigerant flowing in the pipe and the refrigerant flowing around the pipe can be achieved.
  • the tube is located at the inner heat exchanger or publication US 2008/0000261 A1 both flat on the outer wall of the accumulator and on the inner wall of the housing.
  • a heat exchanger with accumulator known, the accumulator is wrapped by a helical tube.
  • the tube and the accumulator are arranged in a hollow cylindrical housing.
  • the helical tube is flat both on the outer wall of the accumulator and on the inner wall of the housing.
  • the tube, the accumulator and the gap between the accumulator and the housing can be flowed through by a refrigerant.
  • a disadvantage of the solutions of the prior art is in particular that the higher cooling capacity is accompanied by the inner heat exchanger with a higher pressure drop within the refrigerant circuit, which in turn leads to a negative impact on the cooling capacity.
  • the pressure drop occurs, in particular on the low-pressure side in the region in which the line of the high pressure side is flowed around by the refrigerant of the low pressure side.
  • the heat transfer between the high-pressure side refrigerant and the low-pressure side refrigerant is not optimal.
  • a heat exchanger with a calibrated helical finned tube is known.
  • the finned tube is formed into a helix, which comprises an accumulator.
  • the finned tube is formed by a tube which has radially projecting elements. The elements protrude completely circumferentially in the radial direction of the tube from the surface of the tube.
  • the tube is spaced both in the radial direction of the helix to surrounding structures and the individual turns of the tube in the axial direction of the helix to each other.
  • the spiral-shaped tube and the accumulator can be flowed through by a refrigerant. In particular, a heat transfer between the refrigerant flowing inside the helix and the refrigerant flowing around the helix is generated.
  • a disadvantage of this solution from the prior art is in particular that a relative movement of the individual turns of the helix to each other in the axial direction of the helix through the elements is not possible. Also, the elements which protrude into the space between the turns impede fluid flow in this area, thereby creating a higher pressure loss. Furthermore, the handling of finned tubes is particularly complex, since they are difficult to process due to the protruding rib elements. The projecting elements can, for example, interlock with each other, which makes assembly difficult.
  • the object of the present invention to provide an internal heat exchanger, which allows a heat transfer between the refrigerant of the low pressure side and the refrigerant of the high pressure side, wherein the resulting pressure loss should be minimized.
  • the invention relates to an air conditioner with a refrigerant circuit with an internal heat exchanger according to the invention
  • An embodiment of the invention relates to an internal heat exchanger with a cylindrical accumulator, with a cylindrical housing, with a spiral-shaped tube, with first corrugated fins and second corrugated fins, wherein the accumulator compared to the inner diameter of the housing has a smaller outer diameter and within the Housing is arranged, wherein the helix-shaped tube is disposed in the gap between the accumulator and the housing, wherein the first corrugated fins are arranged in the radial direction between the tube and an outer wall of the accumulator and / or the second corrugated fins in the radial direction between the tube and an inner surface of the housing are arranged.
  • the refrigerant flowing through the formed gap can therefore flow through the structure created by the corrugated fins. This causes a much lower pressure loss than the conventional arrangements in which the tube rests directly on the respective inner surfaces and outer surfaces.
  • the refrigerant may only run down the individual turns of the coil on the pipe itself, and more particularly in the optional clearances formed between the adjacent turns.
  • corrugated fins do not fill the free spaces formed between the turns of the helix. Such an arrangement of the corrugated fins is particularly advantageous in order to further reduce the resulting pressure loss.
  • first corrugated ribs and / or in each case a plurality of second corrugated ribs are arranged lined up in the axial direction.
  • the inner jacket and the outer jacket of the corrugated ribs on the helix can be made in one piece in the axial direction or can be formed from a plurality of hollow cylindrical corrugated rib elements, which are successively pushed onto the helix or pushed into the helix. This is particularly advantageous in terms of mounting. Furthermore, in a simple way, a section-wise adaptation of the corrugated ribs can be carried out by using different corrugated rib elements.
  • a preferred embodiment is characterized in that the individual turns of the helix are movable in the axial direction relative to each other, wherein in a relative movement in the axial direction, the helix on inner surfaces of the corrugated fins, which face the tube, or the outer surfaces of the corrugated fins, which the Accumulator or the housing, slide on the outer surface of the accumulator or the inner surface of the housing.
  • the corrugated ribs form a first and a third layer in the radial direction, wherein the tube formed into a helix forms a second layer lying between the two layers.
  • the package of corrugated fins and helix forms a multi-layered in cross-section package.
  • the corrugated ribs thereby form the two outer layers, while the helix is enclosed as a middle layer between the layers of the corrugated ribs.
  • the layers are preferably arranged concentrically to one another. Furthermore, the layers preferably do not protrude into one another in the radial direction but are clearly separated from one another. This is advantageous to produce the corrugated rib-free space between the mutually adjacent turns of the coil. In this way, the pressure loss occurring during the flow is minimized.
  • the accumulator and the gap between the accumulator and the housing with a refrigerant can be flowed through, wherein the pressure level of the refrigerant in the accumulator and in the gap compared to the pressure level of the refrigerant in the helical shaped tube is smaller.
  • the refrigerant in the accumulator and the refrigerant in the gap to each other in countercurrent and / or in the DC are flowable.
  • a flow in countercurrent overall a higher heat transfer can be achieved.
  • a flow in the DC can also be provided.
  • the tube has a plurality of fluidically separated flow channels in the interior. Through a tube with several internal flow channels, the heat transfer due to the larger interfaces between the refrigerant in the interior of the tube and the refrigerant flowing around the pipe can be further increased.
  • first corrugated ribs and / or the second corrugated ribs are designed as ribs which are V-shaped in cross-section and / or ribs which are trapezoidal in cross section and / or ribs provided with bevels.
  • first corrugated ribs and / or second corrugated ribs arranged adjacent to each other in the axial direction have an offset in the circumferential direction relative to each other.
  • first corrugated fins and / or the second corrugated fins are permanently connected to the tube formed into a helix. This can be achieved, for example, by the common joining methods of brazing, welding or gluing. A permanent connection is particularly advantageous in terms of mountability.
  • a further preferred embodiment is characterized in that at the upper end portion of the accumulator, a refrigerant inlet and a refrigerant transfer is arranged, the accumulator can be flowed through in a U-shape, wherein the refrigerant inlet leads from outside the inner heat exchanger through the housing and the gap in the accumulator and a deflection of the refrigerant at the lower end portion of the accumulator is executable, wherein the helical-shaped tube having a first refrigerant port and a second refrigerant port, which pierce the housing to the outside, wherein the housing further comprises a first refrigerant outlet, which from the gap to the outside leads.
  • Such an arrangement is advantageous in order to ensure a guidance of the refrigerant along the low-pressure side through the inner heat exchanger and at the same time a guidance of the refrigerant on the high-pressure side and furthermore a most effective heat exchange between the refrigerants of the two sides.
  • An embodiment of the invention relates to an air conditioning system with a refrigerant circuit and an internal heat exchanger, wherein the accumulator is flowable with a refrigerant, which has a lower pressure level compared to the refrigerant in the tube formed into a helix.
  • An air conditioner with an internal heat exchanger according to the invention is particularly advantageous, since the efficiency of the entire air conditioner can be further increased by, in particular, the cooling capacity can be increased.
  • the Fig. 1 shows a cross section through a bent into a helix tube 3.
  • the tube 3 has a refrigerant port 4, through which a refrigerant can flow into the tube 3 or can flow out of this.
  • first corrugated fins 2 are arranged.
  • second corrugated fins 1 are arranged.
  • the corrugated fins 1, 2 are in each case arranged adjacent to the tube 3 in the radial direction and, in particular, do not engage between the individual turns of the tube 3.
  • the corrugated fins 1, 2 are arranged completely circumferentially on the outer circumference or on the inner circumference of the tube 3.
  • the first corrugated fins 2 thus form an axially extending jacket, which is surrounded by the tube 3, which is shaped as a helix.
  • the second corrugated fins 1 are formed as a jacket, which surrounds the tube 3 on the outer circumference.
  • the Fig. 2 shows a perspective view of a helix-shaped tube 3 with a refrigerant port 4, as already in Fig. 1 was shown. At least a portion of the tube 3 is surrounded with first corrugated fins 2 on the inner circumference and surrounded with second corrugated fins 1 on the outer circumference.
  • the corrugated fins 1, 2 may extend over the entire axial extent of the helix or be formed of a plurality of subregions, which are successively inserted in the axial direction of the helix or in the helix.
  • the corrugated fins 1, 2 can be pushed onto the helix without further locking or permanently connected thereto by joining methods, such as joining, soldering, welding or gluing.
  • the tube 3 forms with the corrugated fins 1, 2 a three-layer structure, wherein the middle layer is formed by the tube 3 and both corrugated fins 1, 2 are arranged both on the outer circumference and in the inner circumference.
  • the resulting in the helix free spaces in the axial direction between adjacent turns are not filled in particular by the corrugated fins 1, 2.
  • This is particularly advantageous in terms of mounting, since the corrugated fins can be formed into cylindrical bodies and can be inserted into the coil without great installation effort or can be pushed over the coil. Alternatively, it may also be advantageous if these clearances are not present and touch the windings.
  • tube 3 in particular simple smooth tubes can be used, which are formed in a corresponding shaping process into a helix.
  • special tubes can be used, which will be discussed in the following figures.
  • the Fig. 3 shows a cross section through an inner heat exchanger 21.
  • This is essentially formed by a cylindrical housing 6, which has mutually parallel outer walls, which form the long side of the housing 6 and two opposite narrow sides, which act as a lid and the housing 6 complete.
  • Inside the housing 6 is an accumulator 7 is arranged, which is also formed cylindrically.
  • the accumulator is used primarily for storing and / or drying and / or filtering a refrigerant which can flow through the accumulator 7.
  • the accumulator 7 has a smaller outer diameter than the inner diameter of the housing 6. In this way arises between the housing 6 and the accumulator 7, a gap 9. Within this gap is in the Fig.
  • the accumulator 7 is supported via spacer elements 8 in the right region of the figure with respect to an inner surface of the housing 6. In this way, a completely circumferential gap between the accumulator 7 and the housing 6 is generated.
  • the pipe 3 has a first refrigerant connection 4 and a second refrigerant connection 5.
  • the refrigerant connections 4, 5 serve as a fluid inlet or as a rempliidablauf.
  • the helix, which is formed from the tube 3, is in each case completely flowed through by the refrigerant.
  • an end portion of the housing 6 can be separated to realize a insertion opening.
  • the Fig. 4 shows a further sectional view through the inner heat exchanger 21.
  • the inner heat exchanger 21 has a refrigerant inlet 10 at the left end region, via which a refrigerant can flow through the housing 6 into the accumulator 7 along the flow direction 12.
  • the refrigerant in the right area of the Fig. 4 flow and are deflected along the arrow 13, before it flows back to the left end of the accumulator 7 again.
  • an overflow region is shown, through which the refrigerant from the accumulator 7 can flow into the gap 9 between the housing 6 and the accumulator 7.
  • the refrigerant can flow along the entire circumference in the gap 9 and from left to right, the tube 3 and the corrugated fins 1, 2 flow around.
  • the refrigerant flows at a pressure which is higher than the pressure of the refrigerant, which flows through the accumulator 7 and the gap 9.
  • a refrigerant outlet 11 is further arranged, via which the refrigerant can flow out of the housing 6 after the flow through the gap 9.
  • the pipe 3 is supplied along the flow direction 17 through the refrigerant port 5 with a refrigerant. Via the refrigerant connection 4, the refrigerant can flow out of the tube 3 in the direction of the flow arrow 18.
  • Fig. 4 a flow through the inner heat exchanger is shown, wherein the refrigerant flows in the pipe 3 in a counterflow to the refrigerant in the gap 9. This is particularly advantageous in order to realize a higher heat transfer.
  • the Fig. 5 shows a sectional view through an internal heat exchanger 21 analogous to Fig. 4 ,
  • the reference numerals therefore come, as far as the same elements are designated, match.
  • the refrigerant of the higher pressure which flows through the pipe 3
  • the refrigerant finally flows out along the flow arrow 20 from the refrigerant connector 5 at the right end region.
  • the flow through the accumulator 7 and the gap 9 has not changed thereby.
  • the tube 3 and the gap 9 are flowed through in direct current.
  • the Fig. 6 shows a perspective view of a coil, which is formed from the circularly wound tube 3, which further comprises the refrigerant port 4 at the left end portion and the refrigerant port 5 at the right end portion.
  • the Fig. 7 shows by the reference numeral 30, an alternative cross-sectional shape for the tube 3.
  • the reference numeral 30 in particular an oval or elliptical cross-sectional shape of the tube 3 is shown.
  • a slot-like cross-sectional shape is shown, which is formed essentially of two mutually parallel broad sides, which are completed by rounded semicircular narrow sides to a closed pipe contour.
  • the Fig. 8 shows two cross sections of flat tubes 32, 34.
  • the flat tube 32 has in its interior a plurality of circular cross-sectional flow channels 33, which are arranged in a row adjacent to each other.
  • the flat tube 34 which is arranged underneath, has an alternative embodiment, in which a plurality of flow channels 35, which have a square cross section, are arranged in a row next to one another.
  • the flat tubes 32, 34 may also form the base material for forming the helix, which is arranged in the gap 9 of the inner heat exchanger 21.
  • the number of flow channels 33, 35 in the flat tubes 32, 34 of the in Fig. 8 differ from the example shown.
  • the Fig. 9 shows a sectional view through a corrugated fin 36, wherein the rib elements are each arranged W-shaped, in particular, the kink of the corrugated fins, which are arranged in the upper end region or in the lower end of the corrugated fins 36, provided with a Kire 37.
  • the material of the corrugated rib is pressed against one another.
  • the Fig. 10 shows a turbulence insert 38, which can be used as an alternative to the corrugated fins 1 and 2.
  • the turbulence insert 38 in this case has first flow channels 39, 40 and 41, which are also found in the right adjacent elements of the turbulence insert 38 each.
  • the flow channels 39, 40 and 41 are formed in particular by an offset of the sections 42 and 43 of the turbulence insert to each other.
  • the turbulence insert 38 can be produced in particular by a partial deflection of partial regions from one plane only.
  • various methods for producing a corresponding turbulence insert are known in the prior art.
  • Fig. 1 to 10 Embodiments shown are merely exemplary and serve to illustrate the inventive concept.
  • the choice of materials and the arrangement of the individual elements to each other have the Fig. 1 to 10 no limiting character.
  • the tube formed into a helix is surrounded both on the outer circumference and on the inner periphery by a sheath-like corrugated rib structure, whereby the tube can be spaced to inner surfaces or outer surfaces of the housing or the accumulator.
  • the gap generated by the corrugated fins between the tube 3 and the inner walls or outer walls of the housing 6 and the accumulator 7 is preferably flowed through by the refrigerant, whereby in particular a lower pressure drop is generated than in the known in the prior art solutions which no spacing of Provide pipe to the inner wall of the housing or to the outer wall of the accumulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen inneren Wärmeübertrager nach der Oberbegriff des ersten Anspruchs. Solch ein Wärmeüberträger ist bekannt aus DE 10 2006 017 432 .
  • Stand der Technik
  • Aufgrund gesetzlicher Vorgaben ist das Kältemittel R-134a zukünftig für die Nutzung in Klimaanlagen nicht mehr zulässig. Als alternatives Kältemittel wird unter anderem R-744 (CO2) als Kältemittel verwendet. Das Kältemittel R-744 ist im Vergleich zu R-134a wesentlich umweltfreundlicher und ermöglicht weiterhin bei einem vergleichbaren Bauvolumen der Klimaanlage eine höhere Kälteleistung. Außerdem wird eine höhere Effizienz (COP = Coefficient of Performance) hinsichtlich der Kälteleistung im Vergleich zur Verdichterleistung erreicht.
  • Diese Wirkungsgradsteigerung ist bei der Verwendung von R-744 als Kältemittel jedoch nur unter der Verwendung von einem zusätzlichen Wärmeübertrager, einem sogenannten inneren Wärmeübertrager, möglich. Das Kältemittel wird in diesem inneren Wärmeübertrager weiter abgekühlt, indem ein Wärmeübertrag zwischen dem Kältemittel auf der Niederdruckseite des Kältemittelkreislaufs und dem wärmeren Kältemittel auf der Hochdruckseite des Kältemittelkreislaufs stattfindet.
  • Der innere Wärmeübertrager kann dabei als ein separates Bauteil integriert werden oder als ein Kombielement mit dem sogenannten Akkumulator, welcher als Bevorratungseinrichtung und/oder Trocknungseinrichtung für das Kältemittel fungiert, ausgeführt sein. Das Kältemittel auf der Hochdruckseite wird dabei durch eine Leitung geführt, welche am Akkumulator angeordnet ist und mit dem Kältemittel der Niederdruckseite umströmt wird.
  • Die Druckschrift DE 198 30 757 A1 offenbart eine Klimaanlage, wobei ein innerer Wärmeübertrager vorgesehen ist, der mit einem Kondensator und einem Sammler kombiniert ist. Der innere Wärmeübertrager ist dabei im Bereich des Kondensators angeordnet, wodurch eine platzsparende Lösung erzeugt wird. Die so erzeugte Klimaanlage eignet sich besonders zur Verwendung von dem Kältemittel R-744 (CO2).
  • Aus der Druckschrift DE 60 2005 002 995 T2 ist weiterhin eine Vorrichtung bekannt, welche einen inneren Wärmetauscher und einen Akkumulator für den Einsatz in einer Klimaanlage kombiniert. Der Akkumulator weist dabei eine aus zwei hohlzylindrisch geformten Elementen gebildete Außenwandung auf, welche eine Mehrzahl von zwischen den hohlzylindrischen Elementen ausgebildeten Strömungskanälen aufweist. Durch diese Strömungskanäle kann das Kältemittel strömen. Zwischen dem durch die Strömungskanäle, welche in der Außenwandung gebildet sind, strömenden Kältemittel und dem durch den Akkumulator im Inneren strömenden Kältemittel kann somit ein Wärmeübertrag stattfinden.
  • Weiterhin ist aus der Druckschrift DE 103 48 141 B3 ein innerer Wärmeübertrager für Hochdruckkältemittel mit einem Akkumulator bekannt. Der innere Wärmeübertrager ist durch zwei ineinander angeordnete Hohlzylinder gebildet. Im Zwischenraum zwischen dem Innenzylinder und dem Außenzylinder kann ein dampfförmiges Kältemittel mit Niederdruck strömen. Der Innenzylinder ist als Flachrohr mit einer Mehrzahl von Mikrokanälen ausgebildet, welche von einem Kältemittel mit Hochdruck durchströmt werden können. Im vom Innenzylinder ausgebildeten Hohlraum kann weiterhin das Kältemittel mit einem Niederdruck gesammelt werden. Zwischen dem Kältemittel mit Niederdruck und dem Kältemittel mit Hochdruck kann durch diese Anordnung ein Wärmeübertrag erzeugt werden.
  • Aus der Druckschrift US 2008/0000261 A1 ist weiterhin ein innerer Wärmeübertrager bekannt, welcher einen integrierten Akkumulator aufweist. Der zylinderförmige Akkumulator, welcher von einem Kältemittel durchströmt werden kann ist von einem zu einer Wendel geformten Rohr umgeben. Durch das Rohr kann ebenfalls ein Kältemittel strömen. Das Rohr ist zwischen der Außenwandung des Akkumulators und der Innenwandung eines ebenfalls hohlzylindrischen Gehäuses angeordnet. Es kann bevorzugt ein Wärmeübertrag zwischen dem im Rohr strömenden Kältemittel und dem um das Rohr strömenden Kältemittel erreicht werden. Das Rohr liegt bei dem inneren Wärmeübertrager oder Druckschrift US 2008/0000261 A1 sowohl an der Außenwandung des Akkumulators als auch an der Innenwandung des Gehäuses flächig an.
  • Auch aus der Druckschrift DE 10 2006 031 197 A1 ist ein Wärmeübertrager mit Akkumulator bekannt, wobei der Akkumulator von einem wendelförmigen Rohr umschlungen ist. Das Rohr und der Akkumulator sind in einem hohlzylindrischen Gehäuse angeordnet. Das wendelförmige Rohr liegt sowohl an der Außenwandung des Akkumulators als auch an den Innenwandung des Gehäuses flächig an. Das Rohr, der Akkumulator und der Spalt zwischen Akkumulator und Gehäuse können von einem Kältemittel durchströmt werden.
  • Nachteilig an den genannten Lösungen aus dem Stand der Technik ist insbesondere, dass die höhere Kälteleistung durch den inneren Wärmeübertrager mit einem höheren Druckabfall innerhalb des Kältemittelkreislaufs einhergeht, was wiederrum zu einer negativen Beeinträchtigung der Kälteleistung führt. Hierbei entsteht der Druckabfall insbesondere auf der Niederdruckseite in dem Bereich, in dem die Leitung der Hochdruckseite von dem Kältemittel der Niederdruckseite umströmt wird. Außerdem ist der Wärmeübertrag zwischen dem Kältemittel der Hochdruckseite und dem Kältemittel der Niederdruckseite nicht optimal.
  • Aus der DE 10 2006 017 432 A1 ist außerdem ein Wärmeübertrager mit einem kalibriertem wendelförmigen Rippenrohr bekannt. Das Rippenrohr ist dabei zu einer Wendel geformt, welche einen Akkumulator umfasst. Das Rippenrohr ist durch ein Rohr gebildet, welches radial abstehende Elemente aufweist. Die Elemente ragen dabei vollständig umlaufend in radialer Richtung des Rohres von der Oberfläche des Rohres ab. Dadurch wird das Rohr sowohl in radialer Richtung der Wendel zu umliegenden Strukturen beabstandet als auch die einzelnen Windungen des Rohres in axialer Richtung der Wendel zueinander. Das zu einer Wendel geformte Rohr und der Akkumulator können dabei von einem Kältemittel durchströmt werden. Insbesondere wird dabei ein Wärmeübertrag zwischen dem innerhalb der Wendel strömenden Kältemittel und dem um die Wendel strömenden Kältemittel erzeugt.
  • Nachteilig an dieser Lösung aus dem Stand der Technik ist insbesondere, dass eine Relativbewegung der einzelnen Windungen der Wendel zueinander in axialer Richtung der Wendel durch die Elemente nicht möglich ist. Auch behindern die Elemente, welche in den Freiraum zwischen den Windungen hineinragen den Fluidfluss in diesem Bereich, wodurch ein höherer Druckverlust erzeugt wird. Weiterhin ist die Handhabung von Rippenrohren besonders aufwändig, da sie aufgrund der abstehenden Rippenelemente schwierig zu verarbeiten sind. Die abragenden Elemente können sich beispielsweise ineinander verhaken, wodurch die Montage erschwert wird.
  • Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
  • Daher ist es die Aufgabe der vorliegenden Erfindung einen inneren Wärmeübertrager bereitzustellen, welcher einen Wärmeübertrag zwischen dem Kältemittel der Niederdruckseite und dem Kältemittel der Hochdruckseite ermöglicht, wobei der dabei entstehende Druckverlust minimiert werden soll. Außerdem betrifft die Erfindung eine Klimaanlage mit einem Kältemittelkreislauf mit einem erfindungsgemäßen inneren Wärmeübertrager
  • Die Aufgabe hinsichtlich des inneren Wärmeübertragers wird durch einen inneren Wärmeübertrager mit den Merkmalen des Anspruchs 1 gelöst.
  • Ein Ausführungsbeispiel der Erfindung betrifft einen inneren Wärmeübertrager mit einem zylinderförmigen Akkumulator, mit einem zylinderförmigen Gehäuse, mit einem zu einer Wendel geformten Rohr, mit ersten Wellrippen und mit zweiten Wellrippen, wobei der Akkumulator im Vergleich zum innendurchmesser des Gehäuses einen geringeren Außendurchmesser aufweist und innerhalb des Gehäuses angeordnet ist, wobei das zu einer Wendel geformte Rohr in dem Spalt zwischen dem Akkumulator und dem Gehäuse angeordnet ist, wobei die ersten Wellrippen in radialer Richtung zwischen dem Rohr und einer Außenwandung des Akkumulators angeordnet sind und/oder die zweiten Wellrippen in radialer Richtung zwischen dem Rohr und einer Innenfläche des Gehäuses angeordnet sind.
  • Durch die Anordnung der Wellrippen in einer axialen Richtung innerhalb und außerhalb der Wendel, kann eine vorteilhafte Beabstandung des Rohres gegenüber den Innenwandungen des Gehäuses und den Außenwandungen des Akkumulators erreicht werden. Das Kältemittel, welches durch den ausgebildeten Spalt strömt, kann daher durch die von den Wellrippen erzeugte Struktur fließen. Dies verursacht einen wesentlich geringeren Druckverlust als die herkömmlichen Anordnungen, bei denen das Rohr direkt an den betreffenden Innenflächen und Außenflächen anliegt. In einer solchen konventionellen Anordnung kann das Kältemittel lediglich am Rohr selbst, und insbesondere in den zwischen den zueinander benachbart angeordneten Windungen ausgebildeten optionalen Freiräumen, entlang der einzelnen Windungen der Wendel herablaufen.
  • Dabei ist es besonders vorteilhaft, wenn die in axialer Richtung zwischen den einzelnen Windungen des Rohres ausgebildeten Freiräume wellrippenfrei ausgebildet sind. Dadurch kann das Kältemittel um die einzelnen Windungen strömen, was den Wärmetausch fördert.
  • Es ist insbesondere vorteilhaft, wenn die Wellrippen die zwischen den Windungen der Wendel ausgebildeten Freiräume nicht ausfüllen. Eine solche Anordnung der Wellrippen ist besonders vorteilhaft, um den entstehenden Druckverlust weiter zu verringern.
  • Alternativ ist es aber auch vorteilhaft, wenn die einzelnen Windungen des Rohres sich ohne Freiräume zu bilden einander berühren.
  • Auch ist es vorteilhaft, wenn in axialer Richtung jeweils mehrere erste Wellrippen und/oder jeweils mehrere zweite Wellrippen aneinandergereiht angeordnet sind.
  • Der innenliegende Mantel und der außenliegende Mantel der Wellrippen an der Wendel kann in axialer Richtung einteilig ausgeführt sein oder aus einer Mehrzahl hohlzylindrischer Wellrippenelemente gebildet sein, welche nacheinander auf die Wendel aufgeschoben beziehungsweise in die Wendel eingeschoben werden. Dies ist insbesondere hinsichtlich der Montage vorteilhaft. Weiterhin kann so auf einfache Art und Weise eine abschnittsweise Anpassung der Wellrippen erfolgen, indem unterschiedliche Wellrippenelemente verwendet werden.
  • Ein bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass die einzelnen Windungen der Wendel in axialer Richtung relativ zueinander bewegbar sind, wobei bei einer Relativbewegung in axialer Richtung die Wendel an Innenflächen der Wellrippen, welche dem Rohr zugewandt sind, abgleiten oder die Außenflächen der Wellrippen, welche dem Akkumulator oder dem Gehäuse zugewandt sind, an der Außenfläche des Akkumulators oder der Innenfläche des Gehäuses abgleiten.
  • Durch die wellrippenfreie Ausbildung der Freiräume zwischen den Windungen, kann eine Relativbewegung der Windungen zueinander stattfinden, wodurch insbesondere Längenänderungen infolge von thermischen Schwankungen ausgeglichen werden können. Je nachdem, ob die Wellrippen fest mit dem Rohr verbunden sind oder lose an dem Rohr angeordnet sind, gleitet dabei das Rohr mit den Wellrippen an den Innenflächen und Außenflächen des Gehäuses beziehungsweise des Akkumulators ab oder an den Wellrippen selbst.
  • Auch ist es zu bevorzugen, wenn die Wellrippen in radialer Richtung eine erste und eine dritte Schicht ausbilden, wobei das zu einer Wendel geformte Rohr eine zwischen den beiden Schichten liegende zweite Schicht ausbildet.
  • Das Paket aus den Wellrippen und der Wendel bildet ein im Querschnitt mehrschichtiges Paket. Die Wellrippen bilden dabei die beiden äußeren Schichten, während die Wendel als mittlere Schicht zwischen den Schichten der Wellrippen eingefasst ist. Die Schichten sind dabei bevorzugt konzentrisch zueinander angeordnet. Weiterhin ragen die Schichten bevorzugt in radialer Richtung nicht ineinander hinein sondern sind klar voneinander getrennt. Dies ist vorteilhaft, um den wellrippenfreien Freiraum zwischen den zueinander benachbart angeordneten Windungen der Wendel zu erzeugen. Auf diese Weise wird der bei der Durchströmung entstehende Druckverlust minimiert.
  • Darüber hinaus ist es vorteilhaft, wenn der Akkumulator und der Spalt zwischen dem Akkumulator und dem Gehäuse mit einem Kältemittel durchströmbar sind, wobei das Druckniveau des Kältemittels im Akkumulator und im Spalt im Vergleich zu dem Druckniveau des Kältemittels im zu einer Wendel geformten Rohr geringer ist. Durch ein Durchströmen des Spaltes mit dem Kältemittel aus dem Akkumulator, welches der Niederdruckseite des Kältemittelkreislaufs zugeordnet ist, und dem Durchströmen der Wendel mit dem Kältemittel, welches der Hochdruckseite des Kältemittelkreislaufs zugeordnet ist, kann ein zusätzlicher Wärmeübertrag innerhalb des Kältemittelkreislaufs erzeugt werden, wodurch die Leistungsfähigkeit insgesamt erhöht werden kann.
  • Auch ist es vorteilhaft, wenn das Kältemittel im Akkumulator und das Kältemittel im Spalt zueinander im Gegenstrom und/oder im Gleichstrom strömbar sind. Durch eine Strömung im Gegenstrom kann insgesamt ein höherer Wärmeübertrag erreicht werden. Je nach Bauraumvorgaben und der Anordnung der einzelnen Elemente kann jedoch auch eine Strömung im Gleichstrom vorgesehen werden.
  • Auch ist es zwecksmäßig, wenn das Rohr im Inneren mehrere voneinander fluidisch getrennte Strömungskanäle aufweist. Durch ein Rohr mit mehreren innenliegenden Strömungskanälen kann der Wärmeübertrag aufgrund der größeren Grenzflächen zwischen dem Kältemittel im Inneren des Rohres und dem das Rohr umströmenden Kältemittel weiter erhöht werden.
  • Darüber hinaus ist es vorteilhaft, wenn die ersten Wellrippen und/oder die zweiten Wellrippen als im Querschnitt V-förmige Rippen und/oder als im Querschnitt trapezförmige Rippen und/oder mit Kimmen versehene Rippen ausgebildet sind.
  • Weiterhin ist es zweckmäßig, wenn die jeweils in axialer Richtung zueinander benachbart angeordneten ersten Wellrippen und/oder zweiten Wellrippen einen Versatz in Umfangsrichtung zueinander aufweisen.
  • Durch einen Versatz zueinander in axialer Richtung benachbarter Wellrippen in Umfangsrichtung kann erreicht werden, dass eine Mehrzahl von Strömungskanälen ausgebildet wird, welche von dem Kältemittel durchströmt werden. Durch die Umlenkungen des Kältemittels zwischen den einzelnen Strömungskanälen kann der maximale Wärmeübertrag weiter erhöht werden.
  • Auch ist es vorteilhaft, wenn die ersten Wellrippen und/oder die zweiten Wellrippen mit dem zu einer Wendel geformten Rohr dauerhaft verbunden sind. Dies kann beispielsweise durch die gängigen Fügeverfahren Lösten, Schweißen oder Kleben erreicht werden. Eine dauerhafte Verbindung ist insbesondere hinsichtlich der Montierbarkeit vorteilhaft.
  • Ein weiteres bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass am oberen Endbereich des Akkumulators ein Kältemitteleintritt und ein Kältemittelübertritt angeordnet ist, wobei der Akkumulator U-förmig durchströmbar ist, wobei der Kältemitteleintritt von außerhalb des inneren Wärmeübertragers durch das Gehäuse und den Spalt in den Akkumulator führt und eine Umlenkung des Kältemittels am unteren Endbereich des Akkumulators ausführbar ist, wobei das zu einer Wendel geformte Rohr einen ersten Kältemittelanschluss und einen zweiten Kältemittelanschluss aufweist, welche das Gehäuse nach außen durchstoßen, wobei das Gehäuse weiterhin einen ersten Kältemittelaustritt aufweist, welcher aus dem Spalt nach außen führt.
  • Eine solche Anordnung ist vorteilhaft, um eine Führung des Kältemittels entlang der Niederdruckseite durch den inneren Wärmeübertrager zu gewährleisten und gleichzeitig eine Führung des Kältemittels auf der Hochdruckseite sowie weiterhin einen möglichst effektiven Wärmeaustausch zwischen den Kältemitteln der beiden Seiten.
  • Die Aufgabe hinsichtlich der Klimaanlage wird durch eine Klimaanlage mit den Merkmalen des Anspruchs 12 gelöst.
  • Ein Ausführungsbeispiel der Erfindung betrifft eine Klimaanlage mit einem Kältemittelkreislauf und einem inneren Wärmeübertrager wobei der Akkumulator mit einem Kältemittel durchstrombar ist, welches im Vergleich zu dem Kältemittel in dem zu einer Wendel geformten Rohr ein niedrigeres Druckniveau aufweist.
  • Eine Klimaanlage mit einem erfindungsgemäßen inneren Wärmeübertrager ist besonders vorteilhaft, da die Effizienz der gesamten Klimaanlage dadurch weiter erhöht werden kann, indem insbesondere die Kälteleistung vergrößert werden kann.
  • Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben.
  • Kurze Beschreibung der Zeichnungen
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
  • Fig. 1
    einen Querschnitt durch ein zu einer Wendel geformtes Rohr, wobei in radialer Richtung innerhalb der Wendel und außerhalb der Wendel Wellrippen angeordnet sind,
    Fig. 2
    eine perspektivische Ansicht einer Wendel mit in radialer Richtung innerhalb und außerhalb angeordneten Wellrippen,
    Fig. 3
    einen Querschnitt durch ein zylindrisches Gehäuse, wobei im Inneren ein zylindrischer Akkumulator angeordnet ist und in dem zwischen dem Gehäuse und dem Akkumulator entstehenden Spalt eine von Wellrippen beidseitig in radialer Richtung umgebene Wendel angeordnet ist,
    Fig. 4
    einen Querschnitt durch einen inneren Wärmeübertrager, wobei die Durchströmung des Akkumulators, des Spalts und des zu einer Wendel geformten Rohrs dargestellt ist, wobei die Kältemittelströmung im Rohr im Gegenstrom zur Kältemittelströmung im Spalt verläuft,
    Fig. 5
    einen Querschnitt durch einen inneren Wärmeübertrager gemäß Fig. 4, wobei die Kältemittelströmung im Rohr im Gleichstrom zu der Kältemittelströmung im Spalt verläuft,
    Fig. 6
    eine perspektivische Ansicht eines zu einer Wendel geformten Rohres,
    Fig. 7
    alternative Querschnitte für ein Rohr, aus dem die Wendel geformt werden, kann, wobei im oberen Bereich ein ovaler Querschnitt gezeigt ist und im unteren Bereich ein langlochförmiger Querschnitt gezeigt ist,
    Fig: 8
    zwei unterschiedliche Querschnitte eines Rohres, wobei innehalb der Rohre mehrere einzelne fluidisch voneinander getrennte Strömungskanäle angeordnet sind,
    Fig. 9
    eine Schnittansicht durch eine wellenförmig ausgeformte Wellrippe, wobei die Wellrippe an ihren Knickstellen eine Kimme aufweist, und
    Fig. 10
    eine Turbulenzeinlage, welche als Wellrippenersatz zwischen der Wendel und dem Akkumulator beziehungsweise dem Gehäuse angeordnet werden kann.
    Bevorzugte Ausführung der Erfindung
  • Die Fig. 1 zeigt einen Querschnitt durch ein zu einer Wendel gebogenes Rohr 3. Das Rohr 3 weist einen Kältemittelanschluss 4 auf, durch welchen ein Kältemittel in das Rohr 3 einströmen kann oder aus diesem ausströmen kann.
  • Am inneren Umfang des Rohres 3 sind erste Wellrippen 2 angeordnet. Am äußeren Umfang des Rohres 3 sind zweite Wellrippen 1 angeordnet. Die Wellrippen 1, 2 sind dabei jeweils in radialer Richtung benachbart zu dem Rohr 3 angeordnet und greifen insbesondere nicht zwischen die einzelnen Windungen des Rohres 3 ein. Die Wellrippen 1, 2 sind jeweils am Außenumfang beziehungsweise am Innenumfang des Rohres 3 vollständig umlaufend angeordnet. Die ersten Wellrippen 2 bilden somit einen sich in axialer Richtung erstreckenden Mantel, welcher von dem Röhr 3, welches als Wendel geformt ist, umgeben ist. Weiterhin sind die zweiten Wellrippen 1 als Mantel ausgebildet, welcher das Rohr 3 am Außenumfang umgibt.
  • Die Fig. 2 zeigt eine perspektivische Ansicht eines zu einer Wendel geformten Rohres 3 mit einem Kältemittelanschluss 4, wie es bereits in Fig. 1 gezeigt wurde. Zumindest ein Teilbereich des Rohres 3 ist mit ersten Wellrippen 2 am Innenumfang umgeben und mit zweiten Wellrippen 1 am Außenumfang umgeben. Die Wellrippen 1, 2 können dabei sich über die gesamte axiale Erstreckung der Wendel erstrecken oder aus mehreren Teilbereichen gebildet sein, welche in axialer Richtung nacheinander auf die Wendel beziehungsweise in die Wendel eingesteckt sind. Die Wellrippen 1, 2 können ohne weitere Arretierung auf die Wendel aufgeschoben sein oder mit dieser dauerhaft durch fügende Verfahren, wie beispielsweise Fügen, Löten, Schweißen oder Kleben verbunden sein.
  • Das Rohr 3 bildet mit den Wellrippen 1, 2 einen dreischichtigen Aufbau, wobei die mittlere Schicht durch das Rohr 3 gebildet ist und sowohl am Außenumfang als auch im Innenumfang jeweils Wellrippen 1, 2 angeordnet sind. Die sich in der Wendel ergebenden Freiräume in axialer Richtung zwischen zueinander benachbarten Windungen werden insbesondere nicht von den Wellrippen 1, 2 ausgefüllt. Dies ist insbesondere hinsichtlich der Montage vorteilhaft, da die Wellrippen zu zylindrischen Körpern geformt werden können und ohne großen Montageaufwand in die Wendel eingesteckt werden können beziehungsweise über die Wendel geschoben werden können. Alternativ kann es auch vorteilhaft sein, wenn diese Freiräume nicht vorliegen und sich die Windungen berühren.
  • Als Rohr 3 können insbesondere einfache Glattrohre verwendet werden, welche in einem entsprechenden formgebenden Verfahren zu einer Wendel geformt werden. In alternativen Ausführungsformen können auch besondere Rohre verwendet werden, auf welche in den nachfolgenden Figuren eingegangen wird.
  • Die Fig. 3 zeigt einen Querschnitt durch einen inneren Wärmeübertrager 21. Dieser ist im Wesentlichen durch ein zylindrisches Gehäuse 6 gebildet, welches zueinander parallel verlaufende Außenwandungen aufweist, welche die Langseite des Gehäuses 6 bilden und zwei sich gegenüberliegende Schmalseiten, welche als Deckel fungieren und das Gehäuse 6 abschließen. Im Inneren des Gehäuses 6 ist ein Akkumulator 7 angeordnet, welcher ebenfalls zylindrisch ausgeformt ist. Der Akkumulator dient in erster Linie zur Bevorratung und/oder Trocknung und/oder Filterung eines Kältemittels, welches durch den Akkumulator 7 strömen kann. Der Akkumulator 7 weist einen geringeren Außendurchmesser auf als der Innendurchmesser des Gehäuses 6. Auf diese Weise entsteht zwischen dem Gehäuse 6 and dem Akkumulators 7 ein Spalt 9. Innerhalb dieses Spaltes ist das in den Fig. 1 und 2 beschriebene Paket, welche durch das Rohr 3 und die das Rohr 3 umgebenden Wellrippen 1, 2 gebildet ist, angeordnet. Das Rohr 3 ist in erster Linie durch die ersten Wellrippen 2 zu dem Akkumulator 7 beabstandet und durch die zweiten Wellrippen 1 zu der Innenfläche des Gehäuses 6.
  • Der Akkumulator 7 ist über Distanzelemente 8 im rechten Bereich der Figur gegenüber einer innenfläche des Gehäuses 6 abgestützt. Auf diese Weise wird ein vollständig umlaufender Spalt zwischen dem Akkumulator 7 und dem Gehäuse 6 erzeugt.
  • Das Rohr 3 weist einen ersten Kältemittelanschlüss 4 und einen zweiten Kältemittelanschluss 5 auf. Je nach Durchströmungsrichtung können die Kältemittelanschlüsse 4, 5 als Fluidzulauf beziehungsweise als Flüidablauf dienen. Die Wendel, welche aus dem Rohr 3 gebildet ist, wird jeweils vollständig von dem Kältemittel durchströmt.
  • Zur Montage des Akkumulators 7 der Wellrippen 1, 2 und dem Rohr 3 kann vorzugsweise ein Endbereich des Gehäuses 6 abgetrennt werden, um eine Einschüböffnung zu realisieren.
  • Die Fig. 4 zeigt eine weitere Schnittansicht durch den inneren Wärmeübertrager 21. In Ergänzung zur Fig. 3 weist der innere Wärmeübertrager 21 einen Kältemitteleintritt 10 am linken Endbereich auf, über welchen entlang der Strömungsrichtung 12 ein Kältemittel durch das Gehäuse 6 in den Akkumulators 7 einströmen kann. Dort kann das Kältemittel in den rechten Bereich der Fig. 4 strömen und entlang des Pfeils 13 umgelenkt werden, bevor es wieder an den linken Endbereich des Akkumulators 7 zurückströmt. Entlang der Strömungsrichtung 14 ist ein Überströmbereich dargestellt, durch welchen das Kältemittel aus dem Akkumulators 7 in den Spalt 9 zwischen dem Gehäuse 6 und dem Akkumulator 7 einströmen kann. Das Kältemittel kann dabei entlang des gesamten Umfangs in den Spalt 9 einströmen und von links nach rechts das Rohr 3 beziehungsweise die Wellrippen 1, 2 umströmen.
  • In einer endmontierten Position ist der in den Fig. 3 bis 5 jeweils rechts dargestellte Bereich nach unten gerichtet angeordnet und der jeweils linke Endbereich nach oben gerichtet angeordnet.
  • Durch das Rohr 3 fließt insbesondere das Kältemittel mit einem Druck, welcher höher liegt als der Druck des Kältemittels, welches den Akkumulator 7 und den Spalt 9 durchströmt. Am rechten Endbereich des Gehäuses 6 ist weiterhin ein Kältemittelaustritt 11 angeordnet, über welchen das Kältemittel nach der Durchströmung des Spaltes 9 aus dem Gehäuse 6 ausströmen kann. Das Rohr 3 ist entlang der Strömungsrichtung 17 durch den Kältemittelanschluss 5 mit einem Kältemittel beaufschlagt. Über den Kältemittelanschluss 4 kann das Kältemittel in Richtung des Strömungspfeils 18 aus dem Rohr 3 ausströmen.
  • In Fig. 4 ist eine Durchströmung des inneren Wärmeübertragers dargestellt, wobei das Kältemittel im Rohr 3 in einem Gegenstrom zum Kältemittel im Spalt 9 strömt. Dies ist insbesondere vorteilhaft, um einen höheren Wärmeübertrag zu realisieren.
  • Die Fig. 5 zeigt eine Schnittansicht durch einen-inneren Wärmeübertrager 21 analog der Fig. 4. Die Bezugszeichen stammen daher, sofern gleiche Elemente bezeichnet sind, überein. Im Unterschied zur Fig. 4 strömt das Kältemittel des höheren Drucks, welches das Rohr 3 durchströmt, entlang des links liegenden Fluidanschlusses 4 entlang des Strömungspfeils 19 in das Rohr 3 ein. Das Kältemittel strömt schließlich entlang des Strömungspfeils 20 aus dem Kältemittelahschluss 5 am rechten Endbereich aus. Die Durchströmung des Akkumulators 7 und des Spaltes 9 hat sich dabei nicht veränderf. Dadurch werden das Rohr 3 und der Spalt 9 im Gleichstrom durchströmt.
  • Die Fig. 6 zeigt eine perspektivische Ansicht einer Wendel, welche aus dem kreisförmig aufgewickelten Rohr 3 gebildet ist, welches weiterhin den Kältemittelanschluss 4 am linken Endbereich und den Kältemittelanschluss 5 am rechten Endbereich aufweist.
  • Die Fig. 7 zeigt mit dem Bezugszeichen 30 eine alternative Querschnittsform für das Rohr 3. Mit dem Bezugszeichen 30 ist dabei insbesondere eine ovale beziehungsweise elliptische Querschnittsform des Rohres 3 dargestellt. Mit dem Bezugszeichen 31 ist eine langlochartige Querschnittsform dargestellt, welchen im Wesentlichen aus zwei zueinander parallel verlaufenden Breitseiten gebildet ist, welche über abgerundete halbkreisförmige Schmalseiten zu einer geschlossenen Rohrkontur vervollständigt sind.
  • Die Fig. 8 zeigt zwei Querschnitte von Flachrohren 32, 34. Das Flachrohr 32 weist in seinem Inneren eine Mehrzahl von im Querschnitt kreisrunden Strömungskanälen 33 auf, welche in einer Reihe benachbart zueinander angeordnet sind. Das Flachrohr 34, welches darunter angeordnet ist, weist eine alternative Ausgestaltung auf, in der mehrere Strömungskanäle 35, welche einen quadratischen Querschnitt aufweisen, in einer Reihe nebeneinander angeordnet sind.
  • Die Flachrohre 32, 34 können ebenfalls das Grundmaterial zur Ausformung der Wendel, welche im Spalt 9 des inneren Wärmeübertragers 21 angeordnet ist, bilden. Insbesondere die Anzahl der Strömungskanäle 33, 35 in den Flachrohren 32, 34 können von dem in Fig. 8 gezeigten Beispiel abweichen.
  • Die Fig. 9 zeigt eine Schnittansicht durch eine Wellrippe 36, wobei die Rippenelemente jeweils W-förmig angeordnet sind, wobei insbesondere die Knickstelle der Wellrippen, welche im oberen Endbereich beziehungsweise im unteren Endbereich der Wellrippen 36 angeordnet sind, mit einer Komme 37 versehen sind. Im Bereich der Kimme 37 ist insbesondere das Material der Wellrippe aufeinander gepresst.
  • Die Fig. 10 zeigt eine Turbulenzeinlage 38, welche alternativ zu den Wellrippen 1 und 2 verwendet werden kann. Die Turbulenzeinlage 38 weist dabei erste Strömungskanäle 39, 40 und 41 auf, welche sich auch in den rechts benachbarten Elementen der Turbulenzeinlage 38 jeweils wiederfinden. Die Strömungskanäle 39, 40 und 41 sind dabei insbesondere durch einen Versatz der Abschnitte 42 und 43 der Turbulenzeinlage zueinander ausgebildet. Die Turbulenzeinlage 38 kann dabei insbesondere durch eine jeweils nur partielle Auslenkung von Teilbereichen aus einer Ebene erzeugt werden. Hierzu sind im Stand der Technik vielfältige Verfahren zum Erzeugen einer entsprechenden Turbulenzeinlage bekannt.
  • Die in den Fig. 1 bis 10 gezeigten Ausführungsbeispiele sind lediglich beispielhaft und dienen zur Verdeutlichung des Erfindungsgedankens. Insbesondere hinsichtlich der Ausgestaltung, der Materialwahl und der Anordnung der einzelnen Elemente zueinander besitzen die Fig. 1 bis 10 keinen beschränkenden Charakter.
  • Wesentlich für die Erfindung ist, dass das zu einer Wendel geformte Rohr sowohl am Außenumfang als auch am Innenumfang von einer mantelartigen Wellrippenstruktur umgeben ist, wodurch das Rohr zu Innenflächen beziehungsweise Außenflächen des Gehäuses beziehungsweise des Akkumulators beabstandet werden kann.
  • Der durch die Wellrippen zwischen dem Rohr 3 und den Innenwandungen beziehungsweise Außenwandungen des Gehäuses 6 beziehungsweise des Akkumulators 7 erzeugte Spalt wird bevorzugt von dem Kältemittel durchströmt, wodurch insbesondere ein niedrigerer Druckabfall erzeugt wird als bei den im Stand der Technik bekannten Lösungen, welche keine Beabstandung des Rohres zu der Innenwandung des Gehäuses beziehungsweise zur Außenwandung des Akkumulators vorsehen.

Claims (14)

  1. Innerer Wärmeübertrager (21) mit einem zylinderförmigen Akkumulator (7), mit einem zylinderförmigen Gehäuse (6), mit einem zu einer Wendel geformten Rohr (3), mit ersten Wellrippen (2) und mit Weiten Wellrippein (1), wobei der Akkumulator (7) im Vergleich zum Innendurchmesser des Gehäuses (6) einen geringeren Aüßendürchmesser aufweist und innerhalb des Gehäuses (6) angeordnet ist, wobei das zu einer Wendel geformte Rohr (3) in dem Spalt (9) zwischen dem Akkumulator (7) und dem Gehäuse (6) angeordnet ist, dadurch gekennzeichnet, dass die ersten Wellrippen (2) in radialer Richtung zwischen dem Rohr (3) und einer Außenwandung des Akkumulators (7) angeordnet sind und/oder die zweiten Wellrippen (1) in radialer Richtung zwischen dem Rohr (3) und einer Innenfläche des Gehäuses (6) angeordnet sind.
  2. Innerer Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die in axialer Richtung zwischen den einzelnen Windungen des Rohres (3) ausgebildeten Freiräume wellrippenfrei ausgebildet sind.
  3. Innerer Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die einzelnen Windungen des Rohres sich ohne Freiräume zu bilden einander berühren.
  4. Innerer Wärmeübertrager (21) nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass in axialer Richtung jeweils mehrere erste Wellrippen (2) und/oder jeweils mehrere zweite Wellrippen (1) aneinandergereiht angeordnet sind.
  5. Innerer Wärmeübertrager (21) nach einem der \/orhergehehden Ansprüche, dadurch gekennzeichnet, dass die einzelnen Windungen der Wendel in axialer Richtung retativ zueinander bewegbar sind, wobei hereiner Relativbewegung in axialer Richtung die Windungen an Innenflächen der Wellrippen (1, 2), welche dem Röhr (3) zugewandt sind, abgleiten oder die Außenflächen der Wellrippen (1, 2), welche dem Akkumulator (7) oder dem Gehäuse (6) zugewandt sind, an der Außenflächen des Akkumulators (7) oder der Innenfläche des Gehäuses (6) abgleiten.
  6. Innerer Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellrippen (1, 2) in radialer Richtung eine erste und eine dritte Schicht ausbilden, wobei das zu einer Wendel geformte Rohr (3) eine zwischen den beiden Schichten liegende zweite Schicht ausbildet.
  7. Innerer Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet; dass der Akkumulator (7) und der Spalt (9) zwischen dem Akkumulator (7) und dem Gehäuse (6) mit einem Kältemittel durchströmbar sind, wobei das Druckniveau des Kältemittels im Akkumulator (7) und im Spalt (9) im Vergleich zu dem Druckniveau des Kättemittels im zu einer Wendel geformten Rohr (3) geringer ist.
  8. Innerer Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kältemittel im Akkumulator (7) und das Kältemittel im Spalt (9) zueinander im Gegenstrom und/oder im Gleichstrom strömbar sind.
  9. Innerer Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Rohr (32, 34) im Inneren mehrere voneinander fluidisch getrennte Strömungskanäle (33, 35) aufweist.
  10. Innerer Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Wellrippen (2) und/oder die zweiten Wellrippen (1) als im Querschnitt V-förmige Rippen und/oder als im Querschnitt trapezförmige Rippen und/öder mit Kimmen versehene Rippen ausgebildet sind.
  11. Innerer Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die jeweils in axialer Richtung zueinander benachbart angeordneten ersten Wellrippen (2) und/oder zweiten Wellrippen (1) einen Versatz in Umfangsrichtung zueinander aufweisen.
  12. Innerer Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Wellrippen (2) und/oder die zweiten Wellrippen (1) mit dem zu einer Wendel geformten Rohr (3) dauerhaft verbunden sind.
  13. Innerer Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass am oberen Endbereich des Akkumulators (7) ein Kältemitteleintritt (10) und ein Kältemittelübertritt angeordnet ist, wobei der Akkumulator (7) U-förmig durchstrombar ist wobei der Kältemitteleintritt (10) von außerhalb des inneren Wärmeübertragers (21) durch das Gehäuse (6) und den Spalt (9) in den Akkumulator (7) führt und eine Umlenkung (13) des Kältemittels am unteren Endbereich des Akkumulators (7) ausführbar ist, wobei das zur einer Wendel geformte Rohr (3) einen ersten Kältemittelanschluss (4) und einen zweiten Kältemittelanschluss (5) aufweist, welche das Gehäuse (6) nach außen durchstoßen, wobei das Gehäuse (6) weiterhin einen ersten Kältemittelaustritt (11) aufweist, welcher aus dem Spalt (9) nach außen führt.
  14. Klimaanlage mit einem Kältemittelkreislauf und einem inneren Wärmeübertrager (21) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Akkumulator (7) mit einem Kältemittel durchströmbar ist, welches im Vergleich zu dem Kältemittel in dem zu einer Wendel geformten Rohr (3) ein niedrigeres Druckniveau aufweist.
EP15164732.8A 2014-04-23 2015-04-22 Innerer wärmeübertrager Not-in-force EP2937658B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014207660.9A DE102014207660A1 (de) 2014-04-23 2014-04-23 Innerer Wärmeübertrager

Publications (2)

Publication Number Publication Date
EP2937658A1 EP2937658A1 (de) 2015-10-28
EP2937658B1 true EP2937658B1 (de) 2016-12-07

Family

ID=53008321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15164732.8A Not-in-force EP2937658B1 (de) 2014-04-23 2015-04-22 Innerer wärmeübertrager

Country Status (2)

Country Link
EP (1) EP2937658B1 (de)
DE (1) DE102014207660A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019161785A1 (zh) * 2018-02-24 2019-08-29 三花控股集团有限公司 气液分离器及换热系统
CN109556325A (zh) * 2018-12-19 2019-04-02 珠海格力电器股份有限公司 换热器和空调器
CN113928574A (zh) * 2021-11-19 2022-01-14 中国直升机设计研究所 一种直升机冷却系统的热交换器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830757A1 (de) 1998-07-09 2000-01-13 Behr Gmbh & Co Klimaanlage
JP2001066022A (ja) * 1999-08-25 2001-03-16 Showa Alum Corp 熱交換器
DE19944950B4 (de) * 1999-09-20 2008-01-31 Behr Gmbh & Co. Kg Klimaanlage mit innerem Wärmeübertrager
US20030121648A1 (en) * 2001-12-28 2003-07-03 Visteon Global Technologies, Inc. Counter-flow heat exchanger with optimal secondary cross-flow
DE10348141B3 (de) 2003-10-09 2005-02-03 Visteon Global Technologies, Inc., Dearborn Innerer Wärmeübertrager für Hochdruckkältemittel mit Akkumulator
FR2875894B1 (fr) * 2004-09-24 2006-12-15 Valeo Climatisation Sa Dispositif combine d'echangeur de chaleur interne et d'accumulateur pour un circuit de climatisation
DE102005021787A1 (de) * 2005-05-11 2006-11-16 Modine Manufacturing Co., Racine Vorrichtung zur Behandlung des Kältemittels
JP4251172B2 (ja) * 2005-10-14 2009-04-08 パナソニック株式会社 ヒートポンプ給湯装置
DE102006017432B4 (de) 2006-04-06 2009-05-28 Visteon Global Technologies Inc., Van Buren Innerer Wärmeübertrager mit kalibriertem wendelförmigen Rippenrohr
DE102006031197B4 (de) 2006-07-03 2012-09-27 Visteon Global Technologies Inc. Innerer Wärmeübertrager mit Akkumulator
DE102008028853A1 (de) * 2008-06-19 2009-12-24 Behr Gmbh & Co. Kg Integrierte, einen Sammler und einen inneren Wärmeübertrager umfassende Baueinheit sowie ein Verfahren zur Herstellung der Baueinheit
DE102008059543A1 (de) * 2008-11-30 2010-06-02 Solarhybrid Ag Wärmetauscher
AU2012200524B2 (en) * 2009-07-06 2014-01-16 Frederick Mark Webb Heat Exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2937658A1 (de) 2015-10-28
DE102014207660A1 (de) 2015-10-29

Similar Documents

Publication Publication Date Title
DE3780648T2 (de) Kondensator.
EP1036296A1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
DE112019003711B4 (de) Integrierter Flüssigkeits-/Luftgekühlter Kondensator und Niedertemperatur-Kühler
DE102008062486A1 (de) Doppelwandrohr-Wärmetauscher
DE10060104A1 (de) Kältemittelverflüssiger zur Nutzung für eine Kraftfahrzeugklimaanlage
DE102010025400A1 (de) Doppelwandrohrwärmetauscher
DE102006017432A1 (de) Innerer Wärmeübertrager mit kalibriertem wendelförmigen Rippenrohr
DE102008017805A1 (de) Wärmetauscher mit Verbinder und Verfahren zur Herstellung des Verbinders
DE102013217287A1 (de) Innerer Wärmeübertrager für einen Kältemittelkreislauf, insbesondere für eine Klimaanlage eines Kraftfahrzeuges, und einen Kältemittelkreislauf mit einem Verdampfer
DE102011113453A1 (de) Kühler
DE102013218174A1 (de) Wärmetauscher
DE102011086066A1 (de) Wärmetauscher
DE102015110974B4 (de) Abgaswärmeübertrager mit mehreren Wärmeübertragerkanälen
EP2937658B1 (de) Innerer wärmeübertrager
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
DE102006002932A1 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
DE102017218973A1 (de) Gegenstrom-Wärmeübertrager
DE102009023954A1 (de) Sammelrohr für einen Kondensator
DE102009041773A1 (de) Wärmetauscherrohr, Wärmetauscher und raumlufttechnische Anlage
EP3175195B1 (de) Wärmeübertrager und verfahren zur herstellung des wärmeübertragers
DE102004047304A1 (de) Unterkühlender Kondensator
EP2167895B1 (de) Wärmetauscher
DE102007001430A1 (de) Wärmetauscher
DE112005001950T5 (de) Flachrohr, plattenförmiger Körper zur Herstellung des Flachrohrs und Wärmetauscher
EP3009780B1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FOERSTER, UWE

Inventor name: KASPAR, MARTIN

Inventor name: MAYOR TONDA, DAVID

Inventor name: GEIGER, WOLFGANG

Inventor name: FEUERECKER, DR. GUENTHER

Inventor name: FOERSTER, KLAUS

Inventor name: BRUDER, THOMAS

Inventor name: KRUMBACH, KARL-GERD

17P Request for examination filed

Effective date: 20160428

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 7/02 20060101AFI20160520BHEP

Ipc: F25B 43/00 20060101ALI20160520BHEP

INTG Intention to grant announced

Effective date: 20160627

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20161024

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 852116

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015000370

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015000370

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170422

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190619

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190423

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015000370

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 852116

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200422