Nothing Special   »   [go: up one dir, main page]

EP2855723B1 - Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance - Google Patents

Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance Download PDF

Info

Publication number
EP2855723B1
EP2855723B1 EP13731273.2A EP13731273A EP2855723B1 EP 2855723 B1 EP2855723 B1 EP 2855723B1 EP 13731273 A EP13731273 A EP 13731273A EP 2855723 B1 EP2855723 B1 EP 2855723B1
Authority
EP
European Patent Office
Prior art keywords
alloy
content
alloy according
max
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13731273.2A
Other languages
German (de)
French (fr)
Other versions
EP2855723A1 (en
Inventor
Heike Hattendorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VDM Metals International GmbH
Original Assignee
VDM Metals International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDM Metals International GmbH filed Critical VDM Metals International GmbH
Publication of EP2855723A1 publication Critical patent/EP2855723A1/en
Application granted granted Critical
Publication of EP2855723B1 publication Critical patent/EP2855723B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention relates to a nickel-chromium-aluminum alloy having excellent high temperature corrosion resistance, creep resistance and improved processability.
  • Austenitic nickel-chromium-aluminum alloys with different nickel, chromium and aluminum contents have long been used in furnace construction and in the chemical and petrochemical industries. For this application, a good high-temperature corrosion resistance is required even in carburizing atmospheres and a good heat resistance / creep resistance.
  • the high temperature corrosion resistance of the alloys listed in Table 1 increases with increasing chromium content. All these alloys form a chromium oxide layer (Cr 2 O 3 ) with an underlying, more or less closed, Al 2 O 3 layer. Small additions of strongly oxygen-affinitive elements such as Y or Ce improve the oxidation resistance. The content of chromium is slowly consumed in the course of use in the application area for the formation of the protective layer. Therefore, a higher chromium content increases the life of the material, since a higher content of the protective layer-forming element chromium retards the time at which the Cr content is below the critical limit and forms oxides other than Cr 2 O 3 , eg ferrous and nickel containing oxides are. A further increase in high temperature corrosion resistance can be achieved by adding aluminum and silicon. From a certain minimum content, these elements form a closed layer below the chromium oxide layer and thus reduce the consumption of chromium.
  • High resistance to carburization is achieved by materials with low solubility for carbon and low diffusion rate of carbon.
  • Nickel alloys are therefore generally more resistant to carburization than iron-base alloys because both carbon diffusion and carbon solubility in nickel are lower than in iron.
  • Increasing the chromium content results in a higher carburization resistance by forming a protective chromium oxide layer, unless the oxygen partial pressure in the gas is insufficient to form this protective chromium oxide layer.
  • materials can be used which form a layer of silicon oxide or the even more stable alumina, both of which can form protective oxide layers even at significantly lower oxygen contents.
  • Typical conditions for the occurrence of metal dusting are strongly carburizing CO, H 2 or CH 4 gas mixtures, as they occur in ammonia synthesis, in methanol plants, in metallurgical processes, but also in hardening furnaces.
  • the resistance to metal dusting tends to increase with increasing nickel content of the alloy ( Grabke, HJ, Krajak, R., Müller-Lorenz, EM, Strauss, S .: Materials and Corrosion 47 (1996), p. 495 ), however, nickel alloys are not generally resistant to metal dusting.
  • the chromium and aluminum content has a significant influence on the corrosion resistance under metal dusting conditions (see Figure 1).
  • Low chromium nickel alloys (such as alloy Alloy 600, see Table 1) show comparatively high corrosion rates under metal dusting conditions.
  • the nickel alloy Alloy 602 CA (N06025) with a chromium content of 25% and an aluminum content of 2.3% as well as Alloy 690 (N06690) with a chromium content of 30% is significantly more resistant ( Hermse, CGM and van Wortel, JC: Metal Dusting: relationship between alloy composition and degradation rate. Corrosion Engineering, Science and Technology 44 (2009), p. 182 - 185 ). Resistance to metal dusting increases with the sum Cr + AL.
  • the heat resistance or creep resistance at the specified temperatures is u. a. improved by a high carbon content.
  • high contents of solid solution hardening elements such as chromium, aluminum, silicon, molybdenum and tungsten also improve the heat resistance.
  • additions of aluminum, titanium and / or niobium can improve the strength by excretion of the y'- and / or ⁇ "-phase.
  • Alloys such as Alloy 602 CA (N06025), Alloy 693 (N06693) or Alloy 603 (N06603) are superior in their corrosion resistance compared to Alloy 600 (N06600) or Alloy 601 (N06601) due to the high aluminum content of more than 1.8 % known.
  • Alloy 602 CA (N06025), Alloy 693 (N06693), Alloy 603 (N06603) and Alloy 690 (N06690) show excellent carburization resistance or metal dusting resistance due to their high chromium and / or aluminum content.
  • alloys such as Alloy 602 CA (N06025), Alloy 693 (N06693) or Alloy 603 are shown (N06603), because of the high carbon and aluminum contents, excellent hot strength or creep resistance occurs in the temperature range in the metal dusting.
  • Alloy 602 CA (N06025) and Alloy 603 (N06603) have excellent heat resistance and creep resistance even at temperatures above 1000 ° C.
  • z For example, the high aluminum content impairs processability, and the higher the aluminum content, the stronger the deterioration (for example, for Alloy 693 - N06693).
  • Alloy 602 CA (N06025) or Alloy 603 (N06603) in particular the cold workability is limited by a high proportion of primary carbides.
  • the US 6,623,869B1 discloses a metallic material consisting of not more than 0.2% C, 0.01-4% Si, 0.05-2.0% Mn, not more than 0.04% P, not more than 0.015% S, 10 - 35% Cr, 30 - 78% Ni, 0.005 - ⁇ 4.5% Al, 0.005 - 0.2% N, and at least one of the elements 0.015 - 3% Cu and 0.015 - 3% Co, with the balance consists of 100% iron.
  • the value of 40Si + Ni + 5Al + 40N + 10 (Cu + Co) is not less than 50, the symbols of the elements meaning the content of the corresponding elements.
  • the material has excellent corrosion resistance in an environment where metal dusting can take place and therefore can be used for stovepipes, piping systems, heat exchanger tubes and the like. ⁇ . Used in petroleum refineries or petrochemical plants and can significantly improve the life and safety of the plant.
  • the EP 0 508 058 A1 discloses an austenitic nickel-chromium-iron alloy consisting of (in weight%) C 0.12-0.3%, Cr 23-30%, Fe 8-11%, Al 1.8 2.4% , Y 0.01 - 0.15%, Ti 0.01 - 1.0%, Nb 0.01 - 1.0%, Zr 0.01 - 0.2%, Mg 0.001 - 0.015%, Ca 0.001 - 0.01%, N max. 0.03%, Si max. 0.5%, Mn max. 0.25%, P max. 0.02%, S max. 0.01%, Ni remainder, including unavoidable melt contaminants.
  • the US 4,882,125 B1 discloses a chromium-containing nickel alloy which, with excellent resistance to desulfurization and oxidation at temperatures greater than 1093 ° C, has excellent creep resistance of more than 200 hours at temperatures above 983 ° C and a tension of 2000 PSI, good tensile strength and good Elongation, both at room temperature and elevated temperatures, consisting of (in% by weight) 27-35% Cr, 2.5-5% Al, 2.5-6% Fe, 0.5-2.5% Nb, up to 0.1% C, up to 1% each of Ti and Zr, up to 0.05% Ce, up to 0.05% Y, up to 1% Si, up to 1% Mn and Ni remainder.
  • the EP 0 549 286 B1 discloses a high temperature resistant Ni-Cr alloy including 55-65% Ni, 19-25% Cr1-4.5% Al, 0.045-0.3% Y, 0.15-1% Ti, 0.005-0.5 % C, 0.1-1.5% Si, 0-1% Mn and at least 0.005%, at least one of the elements of the group containing Mg, Ca, Ce, ⁇ 0.5% in total Mg + Ca, ⁇ 1 % Ce, 0.0001 - 0.1% B, 0 - 0.5% Zr, 0.0001 - 0.2% N, 0 - 10% Co, 0 - 0.5% Cu, 0 - 0.5 % Mo, 0-0.3% Nb, 0-0.1% V, 0-0.1% W, balance iron and impurities.
  • a heat-resistant nickel-based alloy comprising ⁇ 0.1% C, 0.01-2% Si, ⁇ 2% Mn, ⁇ 0.005% S, 10-25% Cr, 2.1- ⁇ 4.5% Al, ⁇ 0.055% N, in total 0.001-1% of at least one of the elements B, Zr, Hf, wherein said elements may be present in the following contents: B ⁇ 0.03%, Zr ⁇ 0.2%, Hf ⁇ 0.8 %.
  • Mo and W the following formula must be fulfilled: 2 . 5 ⁇ Not a word + W ⁇ 15
  • Nickel-chromium-aluminum alloy with (in% by weight) 24 to 33% chromium, 1.8 to ⁇ 3.0% aluminum, 0.10 to ⁇ 2.5% iron, 0.001 to 0.50% Silicon, 0.005 to 2.0% manganese, 0.00 to 0.60% titanium, each 0.0002 to 0.05% magnesium and / or calcium, 0.005 to 0.12% carbon, 0.001 to 0.050% nitrogen, 0 , 0001 - 0.020% oxygen, 0.001 to 0.030% phosphorus, max. 0.010% sulfur, max. 2.0% molybdenum, max.
  • the alloy further contains oxygen in amounts between 0.0001 and 0.020%, in particular 0.0001 to 0.010%.
  • Preferred ranges can be set with: fp ⁇ 38 . 4 fp ⁇ 36 . 6
  • Nb is present in the alloy
  • the alloy may also contain from 0.001 to 0.60% tantalum.
  • a maximum of 0.5% Cu may be contained in the alloy.
  • a maximum of 0.5% vanadium may be present in the alloy.
  • impurities may still contain the elements lead, zinc and tin in amounts as follows: pb Max. 0.002% Zn Max. 0.002% sn Max. 0.002%.
  • Preferred ranges can be set with: fa ⁇ 54
  • Preferred ranges can be set with: Fk ⁇ 49 Fk ⁇ 53
  • the alloy of the invention is preferably melted open, followed by treatment in a VOD or VLF plant. But also a melting and pouring in a vacuum is possible. Thereafter, the alloy is poured in blocks or as a continuous casting. If necessary, the block is then at temperatures between Annealed 900 ° C and 1270 ° C for 0.1 h to 70 h. Furthermore, it is possible to remelt the alloy additionally with ESU and / or VAR. Thereafter, the alloy is brought into the desired semifinished product.
  • the surface of the material may optionally (also several times) be removed chemically and / or mechanically in between and / or at the end for cleaning.
  • After the end of the hot forming can optionally be a cold forming with degrees of deformation up to 98% in the desired semi-finished mold, possibly with intermediate anneals between 700 ° C and 1250 ° C for 0.1 min to 70 h, possibly under inert gas such.
  • the alloy according to the invention can be produced and used well in the product forms strip, sheet metal, rod wire, longitudinally welded tube and seamless tube.
  • These product forms are produced with an average particle size of 5 ⁇ m to 600 ⁇ m.
  • the preferred range is between 20 ⁇ m and 200 ⁇ m.
  • the alloy according to the invention should preferably be used in areas in which carburizing conditions prevail, such as. As in components, especially pipes in the petrochemical industry. In addition, it is also suitable for furnace construction.
  • the occurring phases in equilibrium were calculated for the different alloy variants with the program JMatPro from Thermotech.
  • the database used for the calculations was the TTNI7 nickel base alloy database from Thermotech.
  • the formability is determined in a tensile test according to DIN EN ISO 6892-1 at room temperature.
  • the yield strength R p0.2 , the tensile strength R m and the elongation A are determined until the fracture.
  • the experiments were carried out on round samples with a diameter of 6 mm in the measuring range and a measuring length L 0 of 30 mm.
  • the sampling took place transversely to the forming direction of the semifinished product.
  • the forming speed was 10 MPa / s at R p0.2 and 40% / min at R m 6.7 10 -3 .
  • the amount of elongation A in the tensile test at room temperature can be taken as a measure of the deformability.
  • a good workable material should have an elongation of at least 50%.
  • the hot strength is determined in a hot tensile test according to DIN EN ISO 6892-2.
  • the yield strength R p0.2 , the tensile strength R m and the Elongation A until break determined analogously to the tensile test at room temperature (DIN EN ISO 6892-1).
  • the experiments were carried out on round samples with a diameter of 6 mm in the measuring range and an initial measuring length L 0 of 30 mm. The sampling took place transversely to the forming direction of the semifinished product.
  • the forming speed at R p0.2 was 8.33 10 -5 1 / s (0.5% / min) and at R m was 8.33 10 -4 1 / s (5% / min).
  • the respective sample is installed at room temperature in a tensile testing machine and heated to a desired temperature without load with a tensile force. After reaching the test temperature, the sample is held without load for one hour (600 ° C) or two hours (700 ° C to 1100 ° C) for temperature compensation. Thereafter, the sample is loaded with a tensile force to maintain the desired strain rates, and the test begins.
  • the creep resistance of a material improves with increasing heat resistance. Therefore, the hot strength is also used to evaluate the creep resistance of the various materials.
  • the corrosion resistance at higher temperatures was determined in an oxidation test at 1000 ° C in air, the test was interrupted every 96 hours and the mass changes of the samples was determined by the oxidation.
  • the samples were placed in the ceramic crucible in the experiment, so that possibly spalling oxide was collected and by weighing the crucible containing the oxides, the mass of the chipped oxide can be determined.
  • the sum of the mass of the chipped oxide and the mass change of the samples corresponds to the gross mass change of the sample.
  • the specific mass change is the mass change related to the surface of the samples. These are m net for the specific net mass change, m gross for the specific gross mass change, m spall for the following designates specific mass change of the chipped oxides.
  • the experiments were carried out on samples with about 5 mm thickness. 3 samples were removed from each batch, the values given are the mean values of these 3 samples.
  • batch 111389 for N06690 shows computationally the formation of ⁇ -chromium with a low content of Ni and / or Fe (BCC phase in Figure 2) below 720 ° C (T s BCC ) large proportions.
  • this phase is difficult to form because it is very different analytically from the basic material.
  • T s BCC of this phase is very high, then it may well occur, as z.
  • the formation temperature T s BCC should be less than or equal to 939 ° C. - the lowest formation temperature T s BCC under the examples of Alloy 693 in Table 2 (out US 4,88,125 Table 1).
  • An alloy can be hardened by several mechanisms so that it has a high heat resistance or creep resistance.
  • the alloying of another element causes a greater or lesser increase in strength (solid solution hardening).
  • Far more effective is an increase in strength through fine particles or precipitates (particle hardening).
  • This can be z. B. by the ⁇ '-phase, which form with additions of Al and other elements, such as Ti, to a nickel alloy or by carbides which form by the addition of carbon to a chromium-containing nickel alloy ( see eg Ralf Bürgel, Handbuch der Hochtemperaturtechnik, 3rd edition, Vieweg Verlag, Wiesbaden, 2006, pages 358 - 369 ).
  • strains A5 in the tensile test at room temperature of ⁇ 50%, but at least ⁇ 45%, are aimed for.
  • the yield strength, or the tensile strength, at higher temperatures should at least reach the values of Alloy 601 (see Table 4).
  • 600 ° C Yield point R p 0 . 2 > 150 MPA ;
  • Tensile strength R m > 500 MPA 800 ° C Yield point R p 0 . 2 > 130 MPA ;
  • the yield strength or tensile strength prefferably in the range of Alloy602 CA (see Table 4). At least 3 of the 4 following relations should be fulfilled: 600 ° C : Yield point R p 0 . 2 > 230 MPA ; Tensile strength R m > 550 MPA 800 ° C : Yield point R p 0 . 2 > 180 MPA ; Tensile strength R m > 190 MPA
  • Tables 3a and 3b show the analyzes of laboratory-scale molten batches along with some prior art large scale molten batches of Alloy 602CA (N06025) used for comparison. Alloy 690 (N06690), Alloy 601 (N06601). The prior art batches are marked with a T, those of the invention with an E. The batches marked on the laboratory scale are marked with an L, the large-scale blown batches with a G.
  • the blocks of laboratory-scale molten alloys in Tables 3a and b were annealed between 900 ° C and 1270 ° C for 8 hours and hot rolled and further intermediate anneals between 900 ° C and 1270 ° C for 0.1 to 1 hour Final thickness of 13 mm or 6 mm hot rolled.
  • the sheets produced in this way were solution-annealed between 900 ° C. and 1270 ° C. for 1 h. From these sheets, the samples required for the measurements were produced.
  • All alloy variants typically had a particle size of 70 to 300 ⁇ m.
  • Table 4 shows the yield strength R p0.2 , the tensile strength R m and the elongation A 5 for room temperature (RT) and for 600 ° C, furthermore the tensile strength R m for 800 ° C.
  • the values for Fa and Fk are entered.
  • Example batches 156817 and 160483 of the prior art alloy Alloy 602 CA have in Table 4 a relatively low elongation A5 at room temperature of 36 and 42%, respectively, which are below the requirements for good formability.
  • Fa is> 60, which is above the range that indicates good formability.
  • All inventive alloys (E) show an elongation> 50%. They thus fulfill the requirements.
  • Fa is ⁇ 60 for all alloys according to the invention. They are therefore in the range of good formability. The elongation is particularly high when Fa is comparatively small.
  • Example Example 156658 of the prior art Alloy 601 in Table 4 is an example of the minimum requirements for yield strength and tensile strength at 600 ° C and 800 ° C, respectively.
  • Example lots 156817 and 160483 of the prior art Alloy 602 CA alloy on the other hand are examples of very good values of yield strength and tensile strength at 600 ° C and 800 ° C, respectively.
  • Alloy 601 represents a material that meets the minimum requirements Creep resistance described in Relation 9a to 9d shows Alloy 602 CA a material exhibiting excellent creep strength described in Relation 10a to 10d.
  • the value for Fk is significantly greater for both alloys than 45 and for Alloy 602 CA additionally significantly higher than the value of Alloy 601, reflecting the increased strength values of Alloy 602 CA.
  • the alloys (E) according to the invention all exhibit a yield strength and tensile strength at 600 ° C. or 800 ° C. in the region or significantly above that of Alloy 601, ie they have fulfilled the relations 9a to 9d. They are in the range of the values of Alloy 602 CA and also meet the desirable requirements, ie 3 of the 4 relations 10a to 10d. Also for all alloys according to the invention in the examples in Table 4, Fk is greater than 45, and even most greater than 54, and thus in the range characterized by good heat resistance or creep resistance.
  • the batches 2297 and 2300 are an example that the relations 9a to 9d are not fulfilled and also a Fk ⁇ 45 is given.
  • Table 5 shows the specific mass changes after an oxidation test at 1100 ° C in air after 11 cycles of 96 h, for a total of 1056 h. Given in Table 5 are the specific gross mass change, the net specific mass change and the specific mass change of the chipped oxides after 1056 h.
  • the example batches of the prior art alloys Alloy 601 and Alloy 690 showed a significantly higher gross mass change than Alloy 602 CA, with that of Alloy 601 again being significantly larger than that of Alloy 690. Both form a chromium oxide layer that grows faster than an aluminum oxide layer. Alloy 601 still contains about 1.3% Al.
  • Alloy 602 CA has approx. 2.3% aluminum. This can be below the Chromoxid für form an at least partially closed aluminum oxide layer. This noticeably reduces the growth of the oxide layer and thus also the specific mass increase.
  • All alloys (E) according to the invention contain at least 2% aluminum and thus have a similarly low or lower gross mass increase than Alloy 602 CA. Also, all of the alloys of the invention, similar to the example batches of Alloy 602 CA, exhibit flaking in the area of measurement accuracy, while Alloy 601 and Alloy 690 show large flaking.
  • Si is needed in the production of the alloy. It is therefore necessary a minimum content of 0.001%. Too high levels, in turn, affect processability and phase stability, especially at high levels of aluminum and chromium. The Si content is therefore limited to 0.50%.
  • a minimum content of 0.005% Mn is required to improve processability.
  • Manganese is limited to 2.0% because this element reduces oxidation resistance.
  • Titanium increases the high-temperature strength. From 0.60%, the oxidation behavior can be degraded, which is why 0.60% is the maximum value.
  • Mg and / or Ca contents improve the processing by the setting of sulfur, whereby the occurrence of low-melting NiS Eutektika is avoided.
  • Mg and or Ca therefore, a minimum content of 0.0002% is required. If the contents are too high, intermetallic Ni-Mg phases or Ni-Ca phases may occur, which again significantly impair processability.
  • the Mg and / or Ca content is therefore limited to a maximum of 0.05%.
  • a minimum content of 0.005% C is required for good creep resistance.
  • C is limited to a maximum of 0.12%, since this element reduces the processability by the excessive formation of primary carbides from this content.
  • N A minimum content of 0.001% N is required, which improves the processability of the material. N is limited to a maximum of 0.05%, since this element reduces the processability by forming coarse carbonitrides.
  • the oxygen content must be ⁇ 0.020% to ensure the manufacturability of the alloy. Too low an oxygen content increases the costs. The oxygen content is therefore ⁇ 0.0001%.
  • the content of phosphorus should be less than or equal to 0.030%, since this surfactant affects the oxidation resistance. A too low P content increases the costs. The P content is therefore ⁇ 0.001%.
  • the levels of sulfur should be adjusted as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.010% S set,
  • Molybdenum is reduced to max. 2.0% limited as this element reduces oxidation resistance.
  • Tungsten is limited to max. 2.0% limited as this element also reduces oxidation resistance.
  • the oxidation resistance can be further improved. They do this by incorporating them into the oxide layer and blocking the diffusion paths of the oxygen there on the grain boundaries.
  • a minimum content of 0.01% Y is necessary to obtain the oxidation resistance-enhancing effect of Y.
  • the upper limit is set at 0.20% for cost reasons.
  • a minimum content of 0.001% La is necessary to obtain the oxidation resistance enhancing effect of La.
  • the upper limit is set at 0.20% for cost reasons.
  • a minimum content of 0.001% Ce is necessary to obtain the oxidation resistance-enhancing effect of Ce.
  • the upper limit is set at 0.20% for cost reasons.
  • cerium mischmetal A minimum content of 0.001% cerium mischmetal is necessary to obtain the oxidation resistance enhancing effect of cerium mischmetal.
  • the upper limit is set at 0.20% for cost reasons.
  • niobium can be added, as niobium also increases the high-temperature strength. Higher levels increase costs very much. The upper limit is therefore set at 1.10%.
  • the alloy may also contain tantalum, since tantalum also increases high-temperature strength. Higher levels increase costs very much.
  • the upper limit is therefore set at 0.60%.
  • a minimum level of 0.001% is required to have an effect.
  • the alloy can also be given Zr.
  • a minimum content of 0.01% Zr is necessary to obtain the high-temperature strength and oxidation resistance-enhancing effect of Zr.
  • the upper limit is set at 0.20% Zr for cost reasons.
  • Zr can be wholly or partially replaced by Hf, since this element, such as Zr, also increases high-temperature strength and oxidation resistance. Replacement is possible from 0.001%.
  • the upper limit is set at 0.20% Hf for cost reasons.
  • boron may be added to the alloy because boron improves creep resistance. Therefore, a content of at least 0.0001% should be present. At the same time, this surfactant deteriorates the oxidation resistance. It will therefore max. 0.008% Boron set.
  • Cobalt can be contained in this alloy up to 5.0%. Higher contents considerably reduce the oxidation resistance.
  • Copper is heated to max. 0.5% limited as this element reduces the oxidation resistance.
  • Vanadium is reduced to max. 0.5% limited as this element also reduces oxidation resistance.
  • Pb is set to max. 0.002% limited because this element reduces the oxidation resistance.
  • Zn and Sn are set to max. 0.002% limited because this element reduces the oxidation resistance.
  • Zn and Sn are set to max. 0.002% limited because this element reduces the oxidation resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Fuel Cell (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Die Erfindung betrifft eine Nickel-Chrom-Aluminium-Legierung mit hervorragender Hochtemperaturkorrosionsbeständigkeit, guter Kriechbeständigkeit und verbesserter Verarbeitbarkeit.The invention relates to a nickel-chromium-aluminum alloy having excellent high temperature corrosion resistance, creep resistance and improved processability.

Austenitische Nickel-Chrom-Aluminium-Legierungen mit unterschiedlichen Nickel-, Chrom- und Aluminiumgehalten werden seit langem im Ofenbau und in der chemischen sowie petrochemischen Industrie eingesetzt. Für diesen Einsatz ist eine gute Hochtemperaturkorrosionsbeständigkeit auch in aufkohlenden Atmosphären und eine gute Warmfestigkeit/Kriechbeständigkeit erforderlich.Austenitic nickel-chromium-aluminum alloys with different nickel, chromium and aluminum contents have long been used in furnace construction and in the chemical and petrochemical industries. For this application, a good high-temperature corrosion resistance is required even in carburizing atmospheres and a good heat resistance / creep resistance.

Generell ist zu bemerken, dass die Hochtemperaturkorrosionsbeständigkeit der in Tabelle 1 angegebenen Legierungen mit zunehmendem Chromgehalt steigt. Alle diese Legierungen bilden eine Chromoxidschicht (Cr2O3) mit einer darunter liegenden, mehr oder weniger geschlossenen, Al2O3-Schicht. Geringe Zugaben von stark Sauerstoff affinen Elementen wie z.B. Y oder Ce verbessern die Oxidationsbeständigkeit. Der Chromgehalt wird im Verlauf des Einsatzes im Anwendungsbereich zum Aufbau der schützenden Schicht langsam verbraucht. Deshalb wird durch einen höheren Chromgehalt die Lebensdauer des Werkstoffs erhöht, da ein höherer Gehalt des die Schutzschicht bildenden Elementes Chrom den Zeitpunkt hinauszögert, an dem der Cr-Gehalt unter der kritischen Grenze liegt und sich andere Oxide als Cr2O3 bilden, die z.B. eisenhaltige und nickelhaltige Oxide sind. Eine weitere Steigerung der Hochtemperaturkorrosionsbeständigkeit lässt sich durch Zugaben von Aluminium und Silizium erreichen. Ab einem gewissen Mindestgehalt bilden diese Elemente eine geschlossene Schicht unterhalb der Chromoxidschicht und verringern so den Verbrauch an Chrom.In general, it should be noted that the high temperature corrosion resistance of the alloys listed in Table 1 increases with increasing chromium content. All these alloys form a chromium oxide layer (Cr 2 O 3 ) with an underlying, more or less closed, Al 2 O 3 layer. Small additions of strongly oxygen-affinitive elements such as Y or Ce improve the oxidation resistance. The content of chromium is slowly consumed in the course of use in the application area for the formation of the protective layer. Therefore, a higher chromium content increases the life of the material, since a higher content of the protective layer-forming element chromium retards the time at which the Cr content is below the critical limit and forms oxides other than Cr 2 O 3 , eg ferrous and nickel containing oxides are. A further increase in high temperature corrosion resistance can be achieved by adding aluminum and silicon. From a certain minimum content, these elements form a closed layer below the chromium oxide layer and thus reduce the consumption of chromium.

Bei aufkohlenden Atmosphären (CO, H2, CH4, CO2, H2O-Gemischen kann Kohlenstoff in das Material eindringen, so dass es zur Bildung innerer Karbide kommen kann. Diese bewirken einen Verlust an Kerbschlagzähigkeit. Auch kann der Schmelzpunkt auf sehr niedrige Werte (bis zu 350°C) sinken und es kann zu Umwandlungsvorgängen durch Chromverarmung der Matrix kommen.In carburizing atmospheres (CO, H 2 , CH 4 , CO 2 , H 2 O mixtures, carbon can penetrate into the material, resulting in the formation of internal carbides, resulting in loss of notched impact strength the melting point drops to very low levels (up to 350 ° C) and chromium depletion of the matrix can occur.

Eine hohe Beständigkeit gegen Aufkohlung wird durch Werkstoffe mit geringer Löslichkeit für Kohlenstoff und geringer Diffusionsgeschwindigkeit des Kohlenstoffs erreicht. Nickellegierungen sind deshalb generell beständiger gegen Aufkohlung als Eisenbasislegierungen, da sowohl die Kohlenstoffdiffusion als auch die Kohlenstofflöslichkeit in Nickel geringer sind als im Eisen. Eine Erhöhung des Chromgehaltes bewirkt eine höhere Aufkohlungsbeständigkeit durch Bildung einer schützenden Chromoxidschicht, es sei denn, dass der Sauerstoffpartialdruck im Gas zur Bildung dieser schützenden Chromoxidschicht nicht ausreicht. Bei sehr geringeren Sauerstoffpartialdrücken, können Werkstoffe eingesetzt werden, die eine Schicht aus Siliziumoxid bzw. des noch stabileren Aluminiumoxids bilden, die beide noch bei deutlich geringeren Sauerstoffgehalten schützende Oxidschichten bilden können.High resistance to carburization is achieved by materials with low solubility for carbon and low diffusion rate of carbon. Nickel alloys are therefore generally more resistant to carburization than iron-base alloys because both carbon diffusion and carbon solubility in nickel are lower than in iron. Increasing the chromium content results in a higher carburization resistance by forming a protective chromium oxide layer, unless the oxygen partial pressure in the gas is insufficient to form this protective chromium oxide layer. At very low oxygen partial pressures, materials can be used which form a layer of silicon oxide or the even more stable alumina, both of which can form protective oxide layers even at significantly lower oxygen contents.

In dem Fall, dass die Kohlenstoffaktivität >1 ist, kann es bei Nickel-, Eisen- oder Kobaltbasislegierungen zum so genannten "Metal Dusting" kommen. In Kontakt mit dem übersättigten Gas können die Legierungen große Mengen an Kohlenstoff aufnehmen. Die in der an Kohlenstoff übersättigten Legierung stattfindenden Entmischungsvorgänge führen zur Materialzerstörung. Dabei zerfällt die Legierung in ein Gemisch aus Metallpartikeln, Graphit, Karbiden und/oder Oxiden. Diese Art der Materialzerstörung tritt im Temperaturbereich von 500°C bis 750°C auf.In the case that the carbon activity is> 1, so-called "metal dusting" can occur with nickel-, iron- or cobalt-base alloys. In contact with the supersaturated gas, the alloys can absorb large amounts of carbon. The segregation processes occurring in the carbon-supersaturated alloy lead to material destruction. The alloy decomposes into a mixture of metal particles, graphite, carbides and / or oxides. This type of material destruction occurs in the temperature range of 500 ° C to 750 ° C.

Typische Bedingungen für das Auftreten von Metal Dusting sind stark aufkohlende CO, H2 oder CH4-Gasgemische, wie sie in der Ammoniaksynthese, in Methanolanlagen, in metallurgischen Prozessen, aber auch in Härtereiöfen auftreten.Typical conditions for the occurrence of metal dusting are strongly carburizing CO, H 2 or CH 4 gas mixtures, as they occur in ammonia synthesis, in methanol plants, in metallurgical processes, but also in hardening furnaces.

Tendenziell steigt die Beständigkeit gegen Metal Dusting mit zunehmendem Nickelgehalt der Legierung ( Grabke, H.J., Krajak, R., Müller-Lorenz, E.M., Strauß, S.: Materials and Corrosion 47 (1996), p. 495 ), allerdings sind auch Nickellegierungen nicht generell resistent gegen Metal Dusting.The resistance to metal dusting tends to increase with increasing nickel content of the alloy ( Grabke, HJ, Krajak, R., Müller-Lorenz, EM, Strauss, S .: Materials and Corrosion 47 (1996), p. 495 ), however, nickel alloys are not generally resistant to metal dusting.

Einen deutlichen Einfluss auf die Korrosionsbeständigkeit unter Metal Dusting Bedingungen haben der Chrom- und der Aluminiumgehalt (siehe Bild 1). Nickellegierungen mit niedrigem Chromgehalt (wie die Legierung Alloy 600, siehe Tabelle 1) zeigen vergleichsweise hohe Korrosionsraten unter Metal Dusting Bedingungen. Deutlich resistenter sind die Nickellegierung Alloy 602 CA (N06025) mit einem Chromgehalt von 25 % und einem Aluminiumgehalt von 2,3 % sowie Alloy 690 (N06690) mit einem Chromgehalt von 30 % ( Hermse, C.G.M. and van Wortel, J.C.: Metal Dusting: relationship between alloy composition and degradation rate. Corrosion Engineering, Science and Technology 44 (2009), p. 182 - 185 ). Die Widerstandsfähigkeit gegen Metal Dusting steigt mit der Summe Cr +AL.The chromium and aluminum content has a significant influence on the corrosion resistance under metal dusting conditions (see Figure 1). Low chromium nickel alloys (such as alloy Alloy 600, see Table 1) show comparatively high corrosion rates under metal dusting conditions. The nickel alloy Alloy 602 CA (N06025) with a chromium content of 25% and an aluminum content of 2.3% as well as Alloy 690 (N06690) with a chromium content of 30% is significantly more resistant ( Hermse, CGM and van Wortel, JC: Metal Dusting: relationship between alloy composition and degradation rate. Corrosion Engineering, Science and Technology 44 (2009), p. 182 - 185 ). Resistance to metal dusting increases with the sum Cr + AL.

Die Warmfestigkeit bzw. Kriechfestigkeit bei den angegebenen Temperaturen wird u. a. durch einen hohen Kohlenstoffgehalt verbessert. Aber auch hohe Gehalte an Mischkristallverfestigenden Elementen wie Chrom, Aluminium, Silizium, Molybdän und Wolfram verbessern die Warmfestigkeit. Im Bereich von 500°C bis 900°C können Zugaben von Aluminium, Titan und/oder Niob die Festigkeit verbessern und zwar durch Ausscheidung der y'- und/oder γ"-Phase.The heat resistance or creep resistance at the specified temperatures is u. a. improved by a high carbon content. However, high contents of solid solution hardening elements such as chromium, aluminum, silicon, molybdenum and tungsten also improve the heat resistance. In the range of 500 ° C to 900 ° C, additions of aluminum, titanium and / or niobium can improve the strength by excretion of the y'- and / or γ "-phase.

Beispiele nach dem Stand der Technik sind in Tabelle 1 aufgelistet.Examples of the prior art are listed in Table 1.

Legierungen wie Alloy 602 CA (N06025), Alloy 693 (N06693) oder Alloy 603 (N06603) sind für ihre hervorragende Korrosionsbeständigkeit im Vergleich zu Alloy 600 (N06600) oder Alloy 601 (N06601) auf Grund des hohen Aluminiumgehalts von mehr als 1,8 % bekannt. Alloy 602 CA (N06025), Alloy 693 (N06693), Alloy 603 (N06603) und Alloy 690 (N06690) zeigen auf Grund Ihrer hohen Chrom- und/oder Aluminiumgehalte eine hervorragende Aufkohlungsbeständigkeit bzw. Metal Dusting Beständigkeit. Zugleich zeigen Legierungen wie Alloy 602 CA (N06025), Alloy 693 (N06693) oder Alloy 603 (N06603) auf Grund des hohen Kohlenstoff- bzw. Aluminiumgehalts eine hervorragende Warmfestigkeit bzw. Kriechfestigkeit in dem Temperaturbereich in dem Metal Dusting auftritt. Alloy 602 CA (N06025) und Alloy 603 (N06603) haben selbst bei Temperaturen oberhalb von 1000°C noch eine hervorragende Warmfestigkeit bzw. Kriechfestigkeit. Allerdings wird z. B. durch die hohen Aluminiumgehalte die Verarbeitbarkeit beeinträchtigt, wobei die Beeinträchtigung umso stärker wird, je höher der Aluminiumgehalt ist (Zum Beispiel bei Alloy 693 - N06693). Gleiches gilt in erhöhtem Maß für Silizium, das niedrig schmelzende intermetallische Phasen mit Nickel bildet. In Alloy 602 CA (N06025) oder Alloy 603 (N06603) ist insbesondere die Kaltumformbarkeit durch einen hohen Anteil an Primärkarbiden begrenzt.Alloys such as Alloy 602 CA (N06025), Alloy 693 (N06693) or Alloy 603 (N06603) are superior in their corrosion resistance compared to Alloy 600 (N06600) or Alloy 601 (N06601) due to the high aluminum content of more than 1.8 % known. Alloy 602 CA (N06025), Alloy 693 (N06693), Alloy 603 (N06603) and Alloy 690 (N06690) show excellent carburization resistance or metal dusting resistance due to their high chromium and / or aluminum content. At the same time, alloys such as Alloy 602 CA (N06025), Alloy 693 (N06693) or Alloy 603 are shown (N06603), because of the high carbon and aluminum contents, excellent hot strength or creep resistance occurs in the temperature range in the metal dusting. Alloy 602 CA (N06025) and Alloy 603 (N06603) have excellent heat resistance and creep resistance even at temperatures above 1000 ° C. However, z. For example, the high aluminum content impairs processability, and the higher the aluminum content, the stronger the deterioration (for example, for Alloy 693 - N06693). The same applies to an increased degree for silicon, which forms low-melting intermetallic phases with nickel. In Alloy 602 CA (N06025) or Alloy 603 (N06603) in particular the cold workability is limited by a high proportion of primary carbides.

Die US 6,623,869B1 offenbart ein metallisches Material, das aus nicht mehr als 0,2 % C, 0,01 - 4 % Si, 0,05 - 2,0 % Mn, nicht mehr als 0,04 % P, nicht mehr als 0,015 % S, 10 - 35 % Cr, 30 - 78 % Ni, 0,005 - <4,5 % Al, 0,005 - 0,2 % N, und mindestens einem der Elemente 0,015 - 3 % Cu bzw. 0,015 - 3 % Co, mit dem Rest zu 100% Eisen besteht. Dabei liegt der Wert von 40Si+Ni+5Al+40N+10 (Cu+Co) nicht unter 50, wobei die Symbole der Elemente den Gehalt der entsprechenden Elemente bedeuten. Das Material hat eine ausgezeichnete Korrosionsbeständigkeit in einer Umgebung, in der Metal Dusting stattfinden kann und kann deshalb für Ofenrohre, Rohrsysteme, Wärmetauscherrohre u. ä. in Petroleumraffinerien oder petrochemischen Anlagen verwendet werden und kann die Lebensdauer und die Sicherheit der Anlage merklich verbessern.The US 6,623,869B1 discloses a metallic material consisting of not more than 0.2% C, 0.01-4% Si, 0.05-2.0% Mn, not more than 0.04% P, not more than 0.015% S, 10 - 35% Cr, 30 - 78% Ni, 0.005 - <4.5% Al, 0.005 - 0.2% N, and at least one of the elements 0.015 - 3% Cu and 0.015 - 3% Co, with the balance consists of 100% iron. In this case, the value of 40Si + Ni + 5Al + 40N + 10 (Cu + Co) is not less than 50, the symbols of the elements meaning the content of the corresponding elements. The material has excellent corrosion resistance in an environment where metal dusting can take place and therefore can be used for stovepipes, piping systems, heat exchanger tubes and the like. Ä. Used in petroleum refineries or petrochemical plants and can significantly improve the life and safety of the plant.

Die EP 0 508 058 A1 offenbart eine austenitische Nickel-Chrom-Eisen-Legierung, bestehend aus (in Gewichts-%) C 0,12 - 0,3 %, Cr 23 - 30 %, Fe 8 - 11 %, Al 1,8 - 2,4 %, Y 0,01 - 0,15 %, Ti 0,01 - 1,0 %, Nb 0,01 - 1,0 %, Zr 0,01 - 0,2 %, Mg 0,001 - 0,015 %, Ca 0,001 - 0,01 %, N max. 0,03 %, Si max. 0,5 %, Mn max. 0,25 %, P max. 0,02 %, S max. 0,01 %, Ni Rest, einschließlich unvermeidbarer erschmelzungsbedingter Verunreinigungen.The EP 0 508 058 A1 discloses an austenitic nickel-chromium-iron alloy consisting of (in weight%) C 0.12-0.3%, Cr 23-30%, Fe 8-11%, Al 1.8 2.4% , Y 0.01 - 0.15%, Ti 0.01 - 1.0%, Nb 0.01 - 1.0%, Zr 0.01 - 0.2%, Mg 0.001 - 0.015%, Ca 0.001 - 0.01%, N max. 0.03%, Si max. 0.5%, Mn max. 0.25%, P max. 0.02%, S max. 0.01%, Ni remainder, including unavoidable melt contaminants.

Die US 4,882,125 B1 offenbart eine hochchromhaltige Nickel-Legierung, die durch eine ausgezeichnete Beständigkeit gegen Aufschwefelung und Oxidation bei Temperaturen größer 1093°C eine ausgezeichnete Kriechbeständigkeit von mehr als 200 h bei Temperaturen oberhalb von 983°C und einer Spannung von 2000 PSI, eine gute Zugfestigkeit und eine gute Dehnung, beides bei Raumtemperatur und erhöhten Temperaturen gekennzeichnet ist, bestehend aus (in Gew.-%) 27 - 35 % Cr, 2,5 - 5 % Al, 2,5 - 6 % Fe, 0,5 - 2,5 % Nb, bis zu 0,1 % C, jeweils bis zu 1 % Ti und Zr, bis zu 0,05 % Ce, bis zu 0,05 % Y, bis zu 1 % Si, bis zu 1 % Mn und Ni Rest.The US 4,882,125 B1 discloses a chromium-containing nickel alloy which, with excellent resistance to desulfurization and oxidation at temperatures greater than 1093 ° C, has excellent creep resistance of more than 200 hours at temperatures above 983 ° C and a tension of 2000 PSI, good tensile strength and good Elongation, both at room temperature and elevated temperatures, consisting of (in% by weight) 27-35% Cr, 2.5-5% Al, 2.5-6% Fe, 0.5-2.5% Nb, up to 0.1% C, up to 1% each of Ti and Zr, up to 0.05% Ce, up to 0.05% Y, up to 1% Si, up to 1% Mn and Ni remainder.

Die EP 0 549 286 B1 offenbart eine hochtemperaturbeständige Ni-Cr-Legierung, beinhaltend 55 - 65 % Ni, 19 - 25 % Cr 1 - 4,5 % Al, 0,045 - 0,3 % Y, 0,15 - 1 % Ti, 0,005 - 0,5 % C, 0,1 - 1,5 % Si, 0 - 1 % Mn und mindestens 0,005 %, mindestens eines der Elemente der Gruppe die Mg, Ca, Ce enthält, < 0,5 % in Summe Mg + Ca, < 1 % Ce, 0,0001 - 0,1 % B, 0 - 0,5 % Zr, 0,0001 - 0,2 % N, 0 - 10 % Co, 0 - 0,5 % Cu, 0 - 0,5 % Mo, 0 - 0,3 % Nb, 0 - 0,1 % V, 0 - 0,1 % W, Rest Eisen und Verunreinigungen.The EP 0 549 286 B1 discloses a high temperature resistant Ni-Cr alloy including 55-65% Ni, 19-25% Cr1-4.5% Al, 0.045-0.3% Y, 0.15-1% Ti, 0.005-0.5 % C, 0.1-1.5% Si, 0-1% Mn and at least 0.005%, at least one of the elements of the group containing Mg, Ca, Ce, <0.5% in total Mg + Ca, <1 % Ce, 0.0001 - 0.1% B, 0 - 0.5% Zr, 0.0001 - 0.2% N, 0 - 10% Co, 0 - 0.5% Cu, 0 - 0.5 % Mo, 0-0.3% Nb, 0-0.1% V, 0-0.1% W, balance iron and impurities.

Durch die DE 600 04 737 T2 ist eine hitzebeständige Nickelbasislegierung bekannt geworden, beinhaltend ≤ 0,1 % C, 0,01 - 2 % Si, ≤ 2 % Mn, ≤ 0,005 % S, 10 - 25 % Cr, 2,1 - < 4,5 % Al, ≤ 0,055 % N, insgesamt 0,001 - 1 % mindestens eines der Elemente B, Zr, Hf, wobei die genannten Elemente in folgenden Gehalten vorhanden sein können: B ≤ 0,03 %, Zr ≤ 0,2 %, Hf < 0,8 %. Mo 0,01 - 15 %, W 0,01 - 9 %, wobei ein Gesamtgehalt Mo+W von 2,5 - 15 % gegeben sein kann, Ti 0 - 3 %, Mg 0 - 0,01 %, Ca 0 - 0,01 %, Fe 0 - 10 %, Nb 0 - 1 %, V 0 - 1 %, Y 0 - 0,1 %, La 0 - 0,1 %, Ce 0 - 0,01 %, Nd 0 - 0,1 %, Cu 0 - 5 %, Co 0 - 5 %, Rest Nickel. Für Mo und W muss die folgende Formel erfüllt sein: 2 , 5 Mo + W 15

Figure imgb0001
By the DE 600 04 737 T2 For example, a heat-resistant nickel-based alloy has been known, comprising ≦ 0.1% C, 0.01-2% Si, ≦ 2% Mn, ≦ 0.005% S, 10-25% Cr, 2.1- <4.5% Al, ≤ 0.055% N, in total 0.001-1% of at least one of the elements B, Zr, Hf, wherein said elements may be present in the following contents: B ≤ 0.03%, Zr ≤ 0.2%, Hf ≤ 0.8 %. Mo 0.01 - 15%, W 0.01 - 9%, whereby a total content Mo + W of 2.5 - 15% may be given, Ti 0 - 3%, Mg 0 - 0.01%, Ca 0 - 0.01%, Fe 0-10%, Nb 0-1%, V 0-1%, Y 0-0.1%, La 0-0.1%, Ce 0 0.01%, Nd 0 0.1%, Cu 0-5%, Co 0-5%, remainder nickel. For Mo and W the following formula must be fulfilled: 2 . 5 Not a word + W 15
Figure imgb0001

Der US 5,997,809 ist eine Legierung für Hochtemperatureinsatzfälle zu entnehmen, beinhaltend 27 bis 35 % Chrom, 0 bis 7 % Eisen, 3 bis 4,4 % Aluminium, 0 bis 0,14 % Titan, 0,2 bis 3 % Niob, 0,12 bis 0,5 % Kohlenstoff, 0 bis 0,05 % Zirkon, 0,002 bis 0,05 % in Gesamtheit Cer + Yttrium, 0 bis 1 % Mangan, 0 bis 1 % Silizium, 0 bis 0,5 % Kalzium + Magnesium, 0 bis 0,1 % Bor, Rest Nickel sowie Verunreinigungen.Of the US 5,997,809 For example, consider an alloy for high temperature applications including 27 to 35% chromium, 0 to 7% iron, 3 to 4.4% aluminum, 0 to 0.14% titanium, 0.2 to 3% niobium, 0.12 to 0 , 5% carbon, 0 to 0.05% zirconium, 0.002 to 0.05% in total cerium + yttrium, 0 to 1% manganese, 0 to 1% silicon, 0 to 0.5% calcium + magnesium, 0 to 0.1% boron, balance nickel as well as impurities.

Die der Erfindung zugrunde liegende Aufgabe besteht darin, eine Nickel-Chrom-Aluminium-Legierung zu konzipieren, die bei ausreichend hohen Chrom- und Aluminium-Gehalten eine hervorragende Metal Dusting Beständigkeit gewährleistet, zugleich aber

  • eine gute Phasenstabilität
  • eine gute Verarbeitbarkeit
  • eine gute Korrosionsbeständigkeit an Luft, ähnlich der von Alloy 602 CA (N06025)
  • eine gute Warmfestigkeit / Kriechfestigkeit aufweist.
The object underlying the invention is to design a nickel-chromium-aluminum alloy, which ensures excellent metal dusting resistance at sufficiently high chromium and aluminum contents, but at the same time
  • a good phase stability
  • a good processability
  • good corrosion resistance in air, similar to Alloy 602 CA (N06025)
  • has a good heat resistance / creep resistance.

Nickel-Chrom-Aluminium -Legierung, mit (in Gew.-%) 24 bis 33 % Chrom, 1,8 bis < 3,0 % Aluminium, 0,10 bis < 2,5 % Eisen, 0,001 bis 0,50 % Silizium, 0,005 bis 2,0 % Mangan, 0,00 bis 0,60% Titan, jeweils 0,0002 bis 0,05 % Magnesium und/oder Kalzium, 0,005 bis 0,12 % Kohlenstoff, 0,001 bis 0,050 % Stickstoff, 0,0001 - 0,020 % Sauerstoff, 0,001 bis 0,030 % Phosphor, max. 0,010 % Schwefel, max. 2,0 % Molybdän, max. 2,0 % Wolfram, wahlweise Nb 0,001 - < 0,50 %, des Weiteren optional enthaltend Y mit einem Gehalt von 0,01 bis 0,20 %, La mit einem Gehalt von 0,001 bis 0,20 %, Cer mit einem Gehalt von 0,001 bis 0,20 %, Cer-Mischmetall mit einem Gehalt von 0,001 bis 0,20 %, Zr mit einem Gehalt von 0,01 bis 0,20 %, B mit einem Gehalt von 0,0001 - 0,008 %, Co bis 5,0 %, Cu bis max. 0,5 %, max. 0,5 % V, Rest Nickel und den üblichen verfahrensbedingten Verunreinigungen, wobei die folgenden Beziehungen erfüllt sein müssen: Cr + Al 28

Figure imgb0002
und Fp 39 , 9 mit
Figure imgb0003
Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C
Figure imgb0004
wobei Cr, Fe, Al, Si, Ti, Mo, W und C die Konzentration der betreffenden Elemente in Masse-% sind, wobei bei Einsatz von Nb die Formel 4a um einen Term mit Nb ergänzt wird: Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 1 , 26 * Nb + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C
Figure imgb0005
und Cr, Fe, Al, Si, Ti, Nb, Mo, W und C die Konzentration des betreffenden Elementes in Masse % sind.Nickel-chromium-aluminum alloy, with (in% by weight) 24 to 33% chromium, 1.8 to <3.0% aluminum, 0.10 to <2.5% iron, 0.001 to 0.50% Silicon, 0.005 to 2.0% manganese, 0.00 to 0.60% titanium, each 0.0002 to 0.05% magnesium and / or calcium, 0.005 to 0.12% carbon, 0.001 to 0.050% nitrogen, 0 , 0001 - 0.020% oxygen, 0.001 to 0.030% phosphorus, max. 0.010% sulfur, max. 2.0% molybdenum, max. 2.0% tungsten, optionally Nb 0.001 - <0.50%, further optionally containing Y with a content of 0.01 to 0.20%, La with a content of 0.001 to 0.20%, cerium with a content from 0.001 to 0.20%, cerium misch metal having a content of 0.001 to 0.20%, Zr having a content of from 0.01 to 0.20%, B having a content of from 0.0001 to 0.008%, Co to 5.0%, Cu up to max. 0.5%, max. 0.5% V, balance nickel and the usual process-related impurities, the following relationships must be fulfilled: Cr + al 28
Figure imgb0002
and fp 39 . 9 With
Figure imgb0003
fp = Cr + 0 . 272 * Fe + 2 . 36 * al + 2 . 22 * Si + 2 . 48 * Ti + 0 . 374 * Not a word + 0 . 538 * W - 11 . 8th * C
Figure imgb0004
wherein Cr, Fe, Al, Si, Ti, Mo, W and C are the concentration of the respective elements in mass%, wherein the formula 4a is supplemented by a term with Nb when using Nb: fp = Cr + 0 . 272 * Fe + 2 . 36 * al + 2 . 22 * Si + 2 . 48 * Ti + 1 . 26 * Nb + 0 . 374 * Not a word + 0 . 538 * W - 11 . 8th * C
Figure imgb0005
and Cr, Fe, Al, Si, Ti, Nb, Mo, W and C are the concentration of the respective element in mass%.

Vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind den zugehörigen Unteransprüchen zu entnehmen.Advantageous developments of the subject invention can be found in the associated dependent claims.

Der Spreizungsbereich für das Element Chrom liegt zwischen 24 und 33 %, wobei bevorzugte Bereiche wie folgt eingestellt werden können:

  • > 25 - < 30 %
  • 25 bis 33 %
  • 26 bis 33 %
  • 27 bis 32 %
  • 27 bis 31 %
  • 27 bis 30 %
  • 27,5 bis 29,5 %
  • 29 bis 31 %
The chrome spreading range is between 24 and 33%, with preferred ranges being set as follows:
  • > 25 - <30%
  • 25 to 33%
  • 26 to 33%
  • 27 to 32%
  • 27 to 31%
  • 27 to 30%
  • 27.5 to 29.5%
  • 29 to 31%

Der Aluminiumgehalt liegt zwischen 1,8 und 4,0 %, wobei auch hier, je nach Einsatzbereich der Legierung, bevorzugte Aluminiumgehalte wie folgt gegeben eingestellt können:

  • 1,8 bis 3,2 %
  • 2,0 bis 3,2 %
  • 2,0 bis <3,0 %
    2,0 bis 2,8 %
    2,2 bis 2,8 %
  • 2,2 bis 2,6 %
  • 2,4 bis 2,8 %
  • 2,3 bis 2,7 %
The aluminum content is between 1.8 and 4.0%, whereby here too, depending on the area of use of the alloy, preferred aluminum contents can be set as follows:
  • 1.8 to 3.2%
  • 2.0 to 3.2%
  • 2.0 to <3.0%
    2.0 to 2.8%
    2.2 to 2.8%
  • 2.2 to 2.6%
  • 2.4 to 2.8%
  • 2.3 to 2.7%

Der Eisengehalt liegt zwischen 0,1 und 7,0 %, wobei, abhängig vom Anwendungsbereich, bevorzugte Gehalte innerhalb der folgenden Spreizungsbereiche eingestellt werden können:

  • 0,1 - 4,0 %
  • 0,1 - 3,0 %
  • 0,1 - < 2,5 %
  • 0,1 - 2,0 %
  • 0,1 - 1,0 %
The iron content is between 0.1 and 7.0%, whereby, depending on the field of application, preferred contents can be set within the following spreading ranges:
  • 0.1 - 4.0%
  • 0.1 - 3.0%
  • 0.1 - <2.5%
  • 0.1 - 2.0%
  • 0.1 - 1.0%

Der Siliziumgehalt liegt zwischen 0,001 und 0,50 %. Bevorzugt kann Si innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,001 - 0,20 %
  • 0,001 - <0,10 %
  • 0,001 - <0,05 %.
  • 0,010 - 0,20 %
The silicon content is between 0.001 and 0.50%. Preferably, Si within the spreading range can be set in the alloy as follows:
  • 0.001 - 0.20%
  • 0.001 - <0.10%
  • 0.001 - <0.05%.
  • 0.010 - 0.20%

Gleiches gilt für das Element Mangan, das mit 0,005 bis 2,0 % in der Legierung enthalten sein kann. Alternativ ist auch folgender Spreizungsbereich denkbar:

  • 0,005 - 0,50 %
  • 0,005 - 0,20 %
  • 0,005 - 0,10 %
  • 0,005 - <0,05 %
  • 0,010 - 0,20 %
The same applies to the element manganese, which may be contained in the alloy with 0.005 to 2.0%. Alternatively, the following spread range is conceivable:
  • 0.005 - 0.50%
  • 0.005 - 0.20%
  • 0.005 - 0.10%
  • 0.005 - <0.05%
  • 0.010 - 0.20%

Der Titangehalt liegt zwischen 0,0 und 0,60 %. Bevorzugt kann Ti innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,001 - 0,60 %,
  • 0, 001 - 0,50 %
  • 0,001 - 0,30 %
  • 0,01 - 0,30 %
  • 0,01 - 0,25 %
The titanium content is between 0.0 and 0.60%. Preferably, Ti within the spreading range can be adjusted in the alloy as follows:
  • 0.001 - 0.60%,
  • 0, 001 - 0.50%
  • 0.001 - 0.30%
  • 0.01 - 0.30%
  • 0.01 - 0.25%

Auch Magnesium und/oder Kalzium ist in Gehalten 0,0002 bis 0,05 % enthalten. Bevorzugt besteht die Möglichkeit, diese Elemente wie folgt in der Legierung einzustellen:

  • 0,0002 - 0,03 %
  • 0,0002 - 0,02 %
  • 0,0005 - 0,02 %
Also magnesium and / or calcium is contained in contents of 0.0002 to 0.05%. It is preferably possible to adjust these elements in the alloy as follows:
  • 0.0002 - 0.03%
  • 0.0002 - 0.02%
  • 0.0005 - 0.02%

Die Legierung enthält 0,005 bis 0,12 % Kohlenstoff. Bevorzugt kann dieser innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,01 - 0,10 %
  • 0,02-0,10%
  • 0,03-0,10%
The alloy contains 0.005 to 0.12% carbon. Preferably, this can be adjusted within the spreading range in the alloy as follows:
  • 0.01 - 0.10%
  • 0.02-0.10%
  • 0.03-0.10%

Dies gilt in gleicher Weise für das Element Stickstoff, dass in Gehalten zwischen 0,001 und 0,05 % enthalten ist. Bevorzugte Gehalte können wie folgt gegeben sein:

  • 0,003 - 0,04 %
This applies equally to the element nitrogen, which is contained in contents between 0.001 and 0.05%. Preferred contents can be given as follows:
  • 0.003 - 0.04%

Die Legierung enthält des Weiteren Phosphor in Gehalten zwischen 0,001 und 0,030 %. Bevorzugte Gehalte können wie folgt gegeben sein:

  • 0,001 - 0,020 %
The alloy further contains phosphorus at levels between 0.001 and 0.030%. Preferred contents can be given as follows:
  • 0.001-0.020%

Die Legierung enthält des Weiteren Sauerstoff in Gehalten zwischen 0,0001 und 0,020 %, beinhaltet insbesondere 0,0001 bis 0,010 %.The alloy further contains oxygen in amounts between 0.0001 and 0.020%, in particular 0.0001 to 0.010%.

Das Element Schwefel ist wie folgt in der Legierung gegeben:

  • Schwefel max. 0,010 %
The element sulfur is given in the alloy as follows:
  • Sulfur max. 0.010%

Molybdän und Wolfram sind einzeln oder in Kombination in der Legierung mit einem Gehalt von jeweils maximal 2,0 % enthalten. Bevorzugte Gehalte können wie folgt gegeben sein:

  • Mo max. 1,0 %
  • W max. 1,0 %
  • Mo max. < 0,50 %
  • W max. <0,50 %
  • Mo max. < 0,05 %
  • W max. < 0,05 %
Molybdenum and tungsten are contained singly or in combination in the alloy each containing not more than 2.0%. Preferred contents can be given as follows:
  • Mo max. 1.0%
  • W max. 1.0%
  • Mo max. <0.50%
  • W max. <0.50%
  • Mo max. <0.05%
  • W max. <0.05%

Es muss die folgende Beziehung zwischen Cr und Al erfüllt sein, damit eine ausreichende Beständigkeit gegen Metal Dusting gegeben ist: Cr + Al 28

Figure imgb0006
The following relationship between Cr and Al must be satisfied in order to provide sufficient resistance to metal dusting: Cr + al 28
Figure imgb0006

Wobei Cr und Al die Konzentration der betreffenden Elemente in Masse-% sind. Bevorzugte Bereiche können eingestellt werden mit Cr + Al 29

Figure imgb0007
Cr + Al 30
Figure imgb0008
Cr + Al 31
Figure imgb0009
Wherein Cr and Al are the concentration of the respective elements in mass%. Preferred areas can be set with Cr + al 29
Figure imgb0007
Cr + al 30
Figure imgb0008
Cr + al 31
Figure imgb0009

Darüber hinaus muss die folgende Beziehung erfüllt sein, damit eine ausreichende Phasenstabilität gegeben ist: Fp 39 , 9 mit

Figure imgb0010
Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C
Figure imgb0011
wobei Cr, Fe, Al, Si, Ti, Mo, W und C die Konzentration der betreffenden Elemente in Masse-% sind.In addition, the following relationship must be satisfied for sufficient phase stability: fp 39 . 9 With
Figure imgb0010
fp = Cr + 0 . 272 * Fe + 2 . 36 * al + 2 . 22 * Si + 2 . 48 * Ti + 0 . 374 * Not a word + 0 . 538 * W - 11 . 8th * C
Figure imgb0011
wherein Cr, Fe, Al, Si, Ti, Mo, W and C are the concentration of the respective elements in mass%.

Bevorzugte Bereiche können eingestellt werden mit: Fp 38 , 4

Figure imgb0012
Fp 36 , 6
Figure imgb0013
Preferred ranges can be set with: fp 38 . 4
Figure imgb0012
fp 36 . 6
Figure imgb0013

Wahlweise kann in der Legierung das Element Yttrium in Gehalten von 0,01 bis 0,20 % eingestellt werden. Bevorzugt kann Y innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,01 - 0,15 %
  • 0,01 - 0,10 %
  • 0,01 - 0,08 %
  • 0,01 - 0,05 %
  • 0,01 - <0,045 %
Optionally, in the alloy, the element yttrium may be adjusted in amounts of 0.01 to 0.20%. Preferably, Y within the spreading range can be set in the alloy as follows:
  • 0.01 - 0.15%
  • 0.01 - 0.10%
  • 0.01 - 0.08%
  • 0.01 - 0.05%
  • 0.01 - <0.045%

Wahlweise kann in der Legierung das Element Lanthan in Gehalten von 0,001 bis 0,20 % eingestellt werden. Bevorzugt kann La innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,001 - 0,15 %
  • 0,001 - 0,10 %
  • 0,001 - 0,08%
  • 0,001 - 0,05 %
  • 0,01 - 0,05 %
Optionally, in the alloy, the element lanthanum may be adjusted in amounts of 0.001 to 0.20%. Preferably, within the spreading range, La can be set in the alloy as follows:
  • 0.001 - 0.15%
  • 0.001 - 0.10%
  • 0.001-0.08%
  • 0.001 - 0.05%
  • 0.01 - 0.05%

Wahlweise kann in der Legierung das Element Ce in Gehalten von 0,001 bis 0,20 % eingestellt werden. Bevorzugt kann Ce innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,001 - 0,15 %
  • 0,001-0,10%
  • 0,001 - 0,08%
  • 0,001 - 0,05 %
  • 0,01 - 0,05 %
Optionally, in the alloy, the element Ce may be adjusted in amounts of 0.001 to 0.20%. Preferably, Ce within the spreading range can be adjusted in the alloy as follows:
  • 0.001 - 0.15%
  • 0.001-0.10%
  • 0.001-0.08%
  • 0.001 - 0.05%
  • 0.01 - 0.05%

Wahlweise kann bei gleichzeitiger Zugabe von Ce und La auch Cer-Mischmetall verwendet werden und zwar in Gehalten von 0,001 bis 0,20 %. Bevorzugt kann Cer-Mischmetall innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,001 - 0,15 %
  • 0,001 - 0,10 %
  • 0,001 - 0,08%
  • 0,001 - 0,05 %
  • 0,01 - 0,05 %
Optionally, with the simultaneous addition of Ce and La, it is also possible to use cerium misch metal in amounts of from 0.001 to 0.20%. Preferably, cerium misch metal within the spreading range can be adjusted in the alloy as follows:
  • 0.001 - 0.15%
  • 0.001 - 0.10%
  • 0.001-0.08%
  • 0.001 - 0.05%
  • 0.01 - 0.05%

Wahlweise kann in der Legierung das Element Nb in Gehalten von 0,0 bis 1,10 % eingestellt werden. Bevorzugt kann Nb innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,001 - < 1,10 %
  • 0,001 - <0,70 %
  • 0,001 - <0,50 %
  • 0,001 - 0,30 %
  • 0,01 - 0,30 %
  • 0,10 - 1,10 %
  • 0,20 - 0,70 %
  • 0,10-0,50%
Optionally, in the alloy, the element Nb may be adjusted at levels of from 0.0 to 1.10%. Preferably, Nb within the spreading range can be adjusted in the alloy as follows:
  • 0.001 - <1.10%
  • 0.001 - <0.70%
  • 0.001 - <0.50%
  • 0.001 - 0.30%
  • 0.01 - 0.30%
  • 0.10 - 1.10%
  • 0.20 - 0.70%
  • 0.10-0.50%

Ist Nb in der Legierung enthalten, so muss die Formel 4a wie folgt um einen Term mit Nb ergänzt werden: Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 1 , 26 * Nb + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C

Figure imgb0014
wobei Cr, Fe, Al, Si, Ti, Nb, Mo, W und C die Konzentration des betreffenden Elementes in Masse % sind.If Nb is present in the alloy, formula 4a must be supplemented by a term with Nb as follows: fp = Cr + 0 . 272 * Fe + 2 . 36 * al + 2 . 22 * Si + 2 . 48 * Ti + 1 . 26 * Nb + 0 . 374 * Not a word + 0 . 538 * W - 11 . 8th * C
Figure imgb0014
where Cr, Fe, Al, Si, Ti, Nb, Mo, W and C are the concentration of the respective element in mass%.

Bedarfsweise kann Zirkon in Gehalten zwischen 0,01 und 0,20 % eingesetzt werden. Bevorzugt kann Zr innerhalb des Spreizungsbereichs wie folgt in der Legierung eingestellt werden:

  • 0,01 - 0,15 %
  • 0,01 - <0,10 %
  • 0,01 - 0,07 %
  • 0,01 - 0,05 %
If necessary, zirconium can be used in amounts between 0.01 and 0.20%. Preferably Zr can be adjusted within the spreading range in the alloy as follows:
  • 0.01 - 0.15%
  • 0.01 - <0.10%
  • 0.01 - 0.07%
  • 0.01 - 0.05%

Wahlweise kann Zirkon auch ganz oder teilweise ersetzt werden durch

  • 0,001 - 0,20 % Hafnium.
Optionally, zirconium can also be replaced in whole or in part by
  • 0.001-0.20% hafnium.

Wahlweise kann in der Legierung auch 0,001 bis 0,60 % Tantal enthalten sein.Optionally, the alloy may also contain from 0.001 to 0.60% tantalum.

Wahlweise kann das Elemente Bor wie folgt in der Legierung enthalten sein:

  • 0,0001 - 0,008 %
Optionally, the element boron may be included in the alloy as follows:
  • 0.0001 - 0.008%

Bevorzugte Gehalte können wie folgt gegeben sein:

  • 0,0005 - 0,008 %
  • 0,0005 - 0,004 %
Preferred contents can be given as follows:
  • 0.0005 - 0.008%
  • 0.0005 - 0.004%

Des Weiteren kann die Legierung zwischen 0,0 bis 5,0 % Kobalt enthalten, der darüber hinaus noch wie folgt eingeschränkt werden kann:

  • 0,01 bis 5,0 %
  • 0,01 bis 2,0 %
  • 0,1 bis 2,0 %
  • 0,01 bis 0,5 %
Furthermore, the alloy may contain between 0.0 to 5.0% cobalt, which may be further limited as follows:
  • 0.01 to 5.0%
  • 0.01 to 2.0%
  • 0.1 to 2.0%
  • 0.01 to 0.5%

Des Weiteren kann in der Legierung maximal 0,5 % Cu enthalten sein.Furthermore, a maximum of 0.5% Cu may be contained in the alloy.

Der Gehalt an Kupfer kann darüber hinaus wie folgt eingeschränkt werden:

  • Cu max. <0,05 %
  • Cu max. <0,015 %.
The content of copper may be further limited as follows:
  • Cu max. <0.05%
  • Cu max. <0.015%.

Ist Cu in der Legierung enthalten, so muss die Formel 4a wie folgt um einen Term mit Cu ergänzt werden: Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 0 , 477 * Cu + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C

Figure imgb0015
wobei Cr, Fe, Al, Si, Ti, Cu, Mo, W und C die Konzentration des betreffenden Elementes in Masse % sind.If Cu is contained in the alloy, formula 4a must be supplemented by a term with Cu as follows: fp = Cr + 0 . 272 * Fe + 2 . 36 * al + 2 . 22 * Si + 2 . 48 * Ti + 0 . 477 * Cu + 0 . 374 * Not a word + 0 . 538 * W - 11 . 8th * C
Figure imgb0015
wherein Cr, Fe, Al, Si, Ti, Cu, Mo, W and C are the concentration of the respective element in mass%.

Sind Nb und Cu in der Legierung enthalten, so muss die Formel 4a wie folgt um einen Term mit Nb und einen Term mit Cu ergänzt werden: Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 1 , 26 * Nb + 0 , 477 * Cu + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C

Figure imgb0016
wobei Cr, Fe, Al, Si, Ti, Nb, Cu, Mo, W und C die Konzentration des betreffenden Elementes in Masse % sind.If Nb and Cu are contained in the alloy, formula 4a must be supplemented by a term with Nb and a term with Cu as follows: fp = Cr + 0 . 272 * Fe + 2 . 36 * al + 2 . 22 * Si + 2 . 48 * Ti + 1 . 26 * Nb + 0 . 477 * Cu + 0 . 374 * Not a word + 0 . 538 * W - 11 . 8th * C
Figure imgb0016
wherein Cr, Fe, Al, Si, Ti, Nb, Cu, Mo, W and C are the concentration of the respective element in mass%.

Des Weiteren kann in der Legierung maximal 0,5 % Vanadium enthalten sein.Furthermore, a maximum of 0.5% vanadium may be present in the alloy.

Schließlich können an Verunreinigungen noch die Elemente Blei, Zink und Zinn in Gehalten wie folgt gegeben sein: Pb max. 0,002 % Zn max. 0,002 % Sn max. 0,002 %. Finally, impurities may still contain the elements lead, zinc and tin in amounts as follows: pb Max. 0.002% Zn Max. 0.002% sn Max. 0.002%.

Des Weiteren kann wahlweise die folgende Beziehung erfüllt sein, die eine besonders gute Verarbeitbarkeit beschreibt: Fa 60 mit

Figure imgb0017
Fa = Cr + 20 , 4 * Ti + 201 * C
Figure imgb0018
wobei Cr, Ti und C die Konzentration der betreffenden Elemente in Masse-% sind.Furthermore, optionally, the following relationship can be satisfied, which describes a particularly good processability: fa 60 With
Figure imgb0017
fa = Cr + 20 . 4 * Ti + 201 * C
Figure imgb0018
where Cr, Ti and C are the concentration of the respective elements in mass%.

Bevorzugte Bereiche können eingestellt werden mit: Fa 54

Figure imgb0019
Preferred ranges can be set with: fa 54
Figure imgb0019

Ist Nb in der Legierung enthalten, so muss die Formel 6a wie folgt um einen Term mit Nb ergänzt werden: Fa = Cr + 6 , 15 * Nb + 20 , 4 * Ti + 201 * C

Figure imgb0020
wobei Cr, Nb, Ti und C die Konzentration der betreffenden Elemente in Masse-% sind.If Nb is included in the alloy, the formula 6a must be supplemented by a term with Nb as follows: fa = Cr + 6 . 15 * Nb + 20 . 4 * Ti + 201 * C
Figure imgb0020
wherein Cr, Nb, Ti and C are the concentration of the respective elements in mass%.

Des Weiteren kann wahlweise die folgende Beziehung erfüllt sein, die eine besonders gute Warmfestigkeit bzw. Kriechfestigkeit beschreibt: Fk 45 mit

Figure imgb0021
Fk = Cr + 19 * Ti + 10 , 2 * Al + 12 , 5 * Si + 98 * C
Figure imgb0022
wobei Cr, Ti, Al, Si und C die Konzentration der betreffenden Elemente in Masse-% sind.Furthermore, optionally the following relationship can be fulfilled, which describes a particularly good hot strength or creep resistance: Fk 45 With
Figure imgb0021
Fk = Cr + 19 * Ti + 10 . 2 * al + 12 . 5 * Si + 98 * C
Figure imgb0022
wherein Cr, Ti, Al, Si and C are the concentration of the respective elements in mass%.

Bevorzugte Bereiche können eingestellt werden mit: Fk 49

Figure imgb0023
Fk 53
Figure imgb0024
Preferred ranges can be set with: Fk 49
Figure imgb0023
Fk 53
Figure imgb0024

Ist Nb und/ oder B in der Legierung enthalten, so muss die Formel 8a wie folgt um einen Term mit Nb und/oder B ergänzt werden: Fk = Cr + 19 * Ti + 34 , 3 * Nb + 10 , 2 * Al + 12 , 5 * Si + 98 * C + 2245 * B

Figure imgb0025
wobei Cr, Ti, Nb, Al, Si, C und B die Konzentration der betreffenden Elemente in Masse-% sind.If Nb and / or B are contained in the alloy, formula 8a must be supplemented by a term with Nb and / or B as follows: Fk = Cr + 19 * Ti + 34 . 3 * Nb + 10 . 2 * al + 12 . 5 * Si + 98 * C + 2245 * B
Figure imgb0025
wherein Cr, Ti, Nb, Al, Si, C and B are the concentration of the respective elements in mass%.

Die erfindungsgemäße Legierung wird bevorzugt offen erschmolzen, gefolgt von einer Behandlung in einer VOD oder VLF Anlage. Aber auch ein Erschmelzen und Abgießen im Vakuum ist möglich. Danach wird die Legierung in Blöcken oder als Strangguss abgegossen. Ggf wird der Block dann bei Temperaturen zwischen 900°C und 1270°C für 0,1 h bis 70 h geglüht. Des Weiteren ist es möglich die Legierung zusätzlich mit ESU und/oder VAR umzuschmelzen. Danach wird die Legierung in die gewünschte Halbzeugform gebracht. Dafür wird ggf. bei Temperaturen zwischen 900°C und 1270°C für 0,1 h bis 70 h geglüht, danach warm umgeformt, ggf. mit Zwischenglühungen zwischen 900°C und 1270°C für 0,05 h bis 70 h. Die Oberfläche des Materials kann ggf. (auch mehrmals) zwischendurch und/oder am Ende zur Säuberung chemisch und/oder mechanisch abgetragen werden. Nach Ende der Warmformgebung kann ggf. eine Kaltformgebung mit Umformgraden bis zu 98% in die gewünschte Halbzeugform, ggf. mit Zwischenglühungen zwischen 700°C und 1250°C für 0,1 min bis 70 h, ggf. unter Schutzgas, wie z. B. Argon oder Wasserstoff, gefolgt von einer Abkühlung an Luft, in der bewegten Glühatmosphäre oder im Wasserbad erfolgen. Danach findet eine Lösungsglühung im Temperaturbereich von 700°C bis 1250°C für 0,1 min bis 70 h, ggf. unter Schutzgas, wie z. B. Argon oder Wasserstoff, gefolgt von einer Abkühlung an Luft, in der bewegten Glühatmosphäre oder im Wasserbad statt. Ggf. können zwischendurch und/oder nach der letzten Glühung chemische und/oder mechanische Reinigungen der Materialoberfläche erfolgen.The alloy of the invention is preferably melted open, followed by treatment in a VOD or VLF plant. But also a melting and pouring in a vacuum is possible. Thereafter, the alloy is poured in blocks or as a continuous casting. If necessary, the block is then at temperatures between Annealed 900 ° C and 1270 ° C for 0.1 h to 70 h. Furthermore, it is possible to remelt the alloy additionally with ESU and / or VAR. Thereafter, the alloy is brought into the desired semifinished product. For this, if necessary, annealed at temperatures between 900 ° C and 1270 ° C for 0.1 h to 70 h, then thermoformed, optionally with intermediate anneals between 900 ° C and 1270 ° C for 0.05 h to 70 h. The surface of the material may optionally (also several times) be removed chemically and / or mechanically in between and / or at the end for cleaning. After the end of the hot forming can optionally be a cold forming with degrees of deformation up to 98% in the desired semi-finished mold, possibly with intermediate anneals between 700 ° C and 1250 ° C for 0.1 min to 70 h, possibly under inert gas such. As argon or hydrogen, followed by cooling in air, carried out in the moving annealing atmosphere or in a water bath. Thereafter, a solution annealing in the temperature range of 700 ° C to 1250 ° C for 0.1 min to 70 h, optionally under inert gas, such as. As argon or hydrogen, followed by cooling in air, in the moving annealing atmosphere or in a water bath instead. Possibly. In between and / or after the last annealing chemical and / or mechanical cleaning of the material surface can take place.

Die erfindungsgemäße Legierung lässt sich gut in den Produktformen Band, Blech, Stange Draht, längsnahtgeschweißtes Rohr und nahtloses Rohr herstellen und verwenden.The alloy according to the invention can be produced and used well in the product forms strip, sheet metal, rod wire, longitudinally welded tube and seamless tube.

Diese Produktformen werden mit einer mittleren Korngröße von 5 µm bis 600 µm hergestellt. Der bevorzugte Bereich liegt zwischen 20 µm und 200 µm.These product forms are produced with an average particle size of 5 μm to 600 μm. The preferred range is between 20 μm and 200 μm.

Die erfindungsgemäße Legierung soll bevorzugt in Bereichen eingesetzt werden, in denen aufkohlende Bedingungen vorherrschen, wie z. B. bei Bauteilen, insbesondere Rohren in der petrochemischen Industrie. Darüber hinaus ist sie auch für den Ofenbau geeignet.The alloy according to the invention should preferably be used in areas in which carburizing conditions prevail, such as. As in components, especially pipes in the petrochemical industry. In addition, it is also suitable for furnace construction.

Durchgeführte Tests:Accomplished tests:

Die auftretenden Phasen im Gleichgewicht wurden für die verschiedenen Legierungsvarianten mit dem Programm JMatPro von Thermotech berechnet. Als Datenbasis für die Berechnungen wurde die Datenbank TTNI7 für Nickelbasislegierungen von Thermotech verwendet.The occurring phases in equilibrium were calculated for the different alloy variants with the program JMatPro from Thermotech. The database used for the calculations was the TTNI7 nickel base alloy database from Thermotech.

Die Umformbarkeit wird in einem Zugversuch nach DIN EN ISO 6892-1 bei Raumtemperatur bestimmt. Dabei werden die Dehngrenze Rp0,2, die Zugfestigkeit Rm und die Dehnung A bis zum Bruch bestimmt. Die Dehnung A wird an der gebrochenen Probe aus der Verlängerung der ursprünglichen Messstrecke L0 bestimmt: A = L U L 0 / L 0 100 % = ΔL / L 0 100 %

Figure imgb0026
Mit Lu = Messlänge nach dem Bruch. The formability is determined in a tensile test according to DIN EN ISO 6892-1 at room temperature. The yield strength R p0.2 , the tensile strength R m and the elongation A are determined until the fracture. The elongation A is determined on the broken sample from the extension of the original measuring section L 0 : A = L U - L 0 / L 0 100 % = .DELTA.L / L 0 100 %
Figure imgb0026
With L u = measuring length after the break.

Je nach Messlänge wird die Bruchdehnung mit Indizes versehen:

  • Z. B. ist für A5 die Messlänge L0 = 5·d0 mit d0 = Anfangsdurchmesser einer Rundprobe
Depending on the measuring length, the elongation at break is provided with indices:
  • For example, for A 5 the measuring length L 0 = 5 · d 0 with d 0 = initial diameter of a round sample

Die Versuche wurden an Rundproben mit einem Durchmesser von 6 mm im Messbereich und einer Messlänge L0 von 30 mm durchgeführt. Die Probennahme erfolgte quer zur Umformrichtung des Halbzeugs. Die Umformgeschwindigkeit betrug bei Rp0,2 10 MPa/s und bei Rm 6,7 10-3 1/s (40%/min).The experiments were carried out on round samples with a diameter of 6 mm in the measuring range and a measuring length L 0 of 30 mm. The sampling took place transversely to the forming direction of the semifinished product. The forming speed was 10 MPa / s at R p0.2 and 40% / min at R m 6.7 10 -3 .

Die Größe der Dehnung A im Zugversuch bei Raumtemperatur kann als Maß für die Verformbarkeit genommen werden. Ein gut verarbeitbarer Werkstoff sollte eine Dehnung von mindestens 50 % haben.The amount of elongation A in the tensile test at room temperature can be taken as a measure of the deformability. A good workable material should have an elongation of at least 50%.

Die Warmfestigkeit wird in einem Warmzugversuch nach DIN EN ISO 6892-2 bestimmt. Dabei werden die Dehngrenze Rp0,2, die Zugfestigkeit Rm und die Dehnung A bis zum Bruch analog zum Zugversuch bei Raumtemperatur (DIN EN ISO 6892-1) bestimmt. The hot strength is determined in a hot tensile test according to DIN EN ISO 6892-2. The yield strength R p0.2 , the tensile strength R m and the Elongation A until break determined analogously to the tensile test at room temperature (DIN EN ISO 6892-1).

Die Versuche wurden an Rundproben mit einem Durchmesser von 6 mm im Messbereich und einer Anfangsmesslänge L0 von 30 mm durchgeführt. Die Probennahme erfolgte quer zur Umformrichtung des Halbzeuges. Die Umformgeschwindigkeit betrug bei Rp0,2 8,33 10-5 1/s (0,5 %/min) und bei Rm 8,33 10-4 1/s (5 %/min).The experiments were carried out on round samples with a diameter of 6 mm in the measuring range and an initial measuring length L 0 of 30 mm. The sampling took place transversely to the forming direction of the semifinished product. The forming speed at R p0.2 was 8.33 10 -5 1 / s (0.5% / min) and at R m was 8.33 10 -4 1 / s (5% / min).

Die jeweilige Probe wird bei Raumtemperatur in eine Zugprüfmaschine eingebaut und ohne Belastung mit einer Zugkraft auf die gewünschte Temperatur aufgeheizt. Nach Erreichen der Prüftemperatur wird die Probe ohne Belastung eine Stunde (600°C) bzw. zwei Stunden (700°C bis 1100°C) für einen Temperaturausgleich gehalten. Danach wird die Probe mit einer Zugkraft so belastet, dass die gewünschten Dehngeschwindigkeiten eingehalten werden, und die Prüfung beginnt.The respective sample is installed at room temperature in a tensile testing machine and heated to a desired temperature without load with a tensile force. After reaching the test temperature, the sample is held without load for one hour (600 ° C) or two hours (700 ° C to 1100 ° C) for temperature compensation. Thereafter, the sample is loaded with a tensile force to maintain the desired strain rates, and the test begins.

Die Kriechfestigkeit eines Werkstoffes verbessert sich mit zunehmender Warmfestigkeit. Deshalb wird die Warmfestigkeit auch zur Beurteilung der Kriechfestigkeit der verschiedenen Werkstoffe benutzt.The creep resistance of a material improves with increasing heat resistance. Therefore, the hot strength is also used to evaluate the creep resistance of the various materials.

Die Korrosionsbeständigkeit bei höheren Temperaturen wurde in einem Oxidationstest bei 1000°C an Luft bestimmt, wobei der Versuch alle 96 Stunden unterbrochen und die Massenänderungen der Proben durch die Oxidation bestimmt wurde. Die Proben wurden bei dem Versuch in Keramiktiegel gestellt, so dass ggf. abplatzendes Oxid aufgefangen wurde und durch Wiegen des die Oxide enthaltenden Tiegels die Masse des abgeplatzten Oxids bestimmt werden kann. Die Summe der Masse des abgeplatzten Oxids und der Massenänderung der Proben entspricht der Bruttomassenänderung der Probe. Die spezifische Massenänderung ist die auf die Oberfläche der Proben bezogene Massenänderung. Diese werden im Folgenden mNetto für die spezifische Netto-Massenänderung, mBrutto für die spezifische Brutto-Massenänderung, mspall für die spezifische Massenänderung der abgeplatzten Oxide bezeichnet. Die Versuche wurden an Proben mit ca. 5 mm Dicke durchgeführt. Es wurden von jeder Charge 3 Proben ausgelagert, die angegebenen Werte sind die Mittelwerte dieser 3 Proben. The corrosion resistance at higher temperatures was determined in an oxidation test at 1000 ° C in air, the test was interrupted every 96 hours and the mass changes of the samples was determined by the oxidation. The samples were placed in the ceramic crucible in the experiment, so that possibly spalling oxide was collected and by weighing the crucible containing the oxides, the mass of the chipped oxide can be determined. The sum of the mass of the chipped oxide and the mass change of the samples corresponds to the gross mass change of the sample. The specific mass change is the mass change related to the surface of the samples. These are m net for the specific net mass change, m gross for the specific gross mass change, m spall for the following designates specific mass change of the chipped oxides. The experiments were carried out on samples with about 5 mm thickness. 3 samples were removed from each batch, the values given are the mean values of these 3 samples.

Beschreibung der EigenschaftenDescription of the properties

Die erfindungsgemäße Legierung soll neben einer hervorragenden MetalDusting Beständigkeit, zugleich die folgenden Eigenschaften haben:

  • eine gute Phasenstabilität
  • eine gute Verarbeitbarkeit
  • eine gute Korrosionsbeständigkeit an Luft, ähnlich der von Alloy 602CA (N06025)
  • eine gute Warmfestigkeit / Kriechfestigkeit
The alloy according to the invention, in addition to excellent metal-dusting resistance, should at the same time have the following properties:
  • a good phase stability
  • a good processability
  • good corrosion resistance in air, similar to Alloy 602CA (N06025)
  • a good heat resistance / creep resistance

Phasenstabilitätphase stability

Im System Nickel-Chrom-Aluminium-Eisen mit Zusätzen an Ti und/oder Nb können sich je nach Legierungsgehalten verschiedene versprödende TCP-Phasen, wie z.B. die Laves-Phasen, Sigma-Phasen oder die µ-Phasen oder auch die versprödenden η-Phasen oder ε-Phasen bilden. (siehe z. B. Ralf Bürgel, Handbuch der Hochtemperaturwerkstofftechnik, 3. Auflage, Vieweg Verlag, Wiesbaden, 2006, Seite 370 - 374 ). Die Berechnung der Gleichgewichtsphasenanteile in Abhängigkeit von der Temperatur von z. B. die Charge 111389 für N06690 (siehe Tabelle 2 typische Zusammensetzungen) zeigen rechnerisch die Bildung von α-Chrom mit einem geringem Gehalt an Ni und/oder Fe (BCC Phase in Bild 2) unterhalb von 720 °C (Ts BCC) in großen Mengenanteilen. Diese Phase bildet sich aber dadurch, dass sie analytisch vom Grundmaterial sehr verschieden ist, nur schwer. Ist allerdings die Bildungstemperatur Ts BCC dieser Phase sehr hoch, so kann sie durchaus auftreten, wie es z. B. in E. "Slevolden, J.Z. Albertsen. U. Fink, "Tjeldbergodden Methanol Plant: Metal Dusting Investigations, Corrosion/2011, paper no. 11144 (Houston, TX: NACE 2011), p. 15 " für eine Variante von Alloy 693 (UNS 06693) beschrieben wird. Diese Phase ist spröde und führt zu einer unerwünschten Versprödung des Materials. Bild 3 und Bild 4 zeigen die Phasendiagramme der Alloy 693 Varianten (aus US 4,882,125 Table 1) Alloy 3 bzw. Alloy 10 aus Tabelle 2. Alloy 3 hat eine Bildungstemperatur Ts BCC von 1079 °C, Alloy 10 von 639 °C. In " E. Slevolden, J.Z. Albertsen. U. Fink, Tjeldbergodden Methanol Plant: Metal Dusting Investigations, "Corrosion/2011, paper no. 11144 (Houston, TX: NACE 2011), p. 15 " wird die genaue Analyse der Legierung bei der α-Chrom (BCC) auftritt nicht beschrieben. Es ist aber davon auszugehen, dass unter den in Tabelle 2 für Alloy 693 angeführten Beispielen, bei den Analysen, die rechnerisch die höchsten Bildungstemperaturen Ts BCC haben (wie z.B. Alloy 10) sich α-Chrom (BCC Phase) bilden kann. Bei einer korrigierten Analysen (mit reduzierter Bildungstemperatur Ts BCC) wurde in " E. Slevolden, J.Z. Albertsen. U. Fink, Tjeldbergodden Methanol Plant: Metal Dusting Investigations, Corrosion/2011, paper no. 11144 (Houston, TX: NACE 2011), p. 15 " α-Chrom dann nur noch in Oberflächennähe beobachtet. Um das Auftreten einer solchen versprödenden Phase zu vermeiden, sollte, bei der erfindungsgemäßen Legierungen die Bildungstemperatur Ts BCC kleiner gleich 939°C sein - der niedrigsten Bildungstemperatur Ts BCC unter den Beispielen für Alloy 693 in Tabelle 2 (aus US 4,88,125 Table 1).In the system nickel-chromium-aluminum-iron with additions of Ti and / or Nb, various embrittling TCP phases can occur depending on the alloy contents, such as the Laves phases, sigma phases or the μ phases or the embrittling η phases or form ε-phases. (see, for. B. Ralf Bürgel, Handbook of High Temperature Materials, 3rd Edition, Vieweg Verlag, Wiesbaden, 2006, page 370 - 374 ). The calculation of the equilibrium phase components as a function of the temperature of z. For example, batch 111389 for N06690 (see Table 2 for typical compositions) shows computationally the formation of α-chromium with a low content of Ni and / or Fe (BCC phase in Figure 2) below 720 ° C (T s BCC ) large proportions. However, this phase is difficult to form because it is very different analytically from the basic material. However, if the formation temperature T s BCC of this phase is very high, then it may well occur, as z. In E. "Slevolden, JZ Albertsen, U. Fink," Tjeldbergodden methanol Plant: Metal Dusting Investigations, Corrosion / 2011, paper no. 11144 (Houston, TX: NACE 2011), p. 15 for a variant of Alloy 693 (US 06693) This phase is brittle and leads to an undesired embrittlement of the material Figure 3 and Figure 4 show the phase diagrams of the Alloy 693 variants (out US 4,882,125 Table 1) Alloy 3 or Alloy 10 from Table 2. Alloy 3 has a formation temperature T s BCC of 1079 ° C, Alloy 10 of 639 ° C. In " E. Slevolden, JZ Albertsen. U. Fink, Tjeldbergodden Methanol Plant: Metal Dusting Investigations, "Corrosion / 2011, paper no. 11144 (Houston, TX: NACE 2011), p.15 "Although the exact analysis of the alloy in the case of α-chromium (BCC) does not appear, it is to be assumed that among the examples given in Table 2 for Alloy 693, in the analyzes which arithmetically have the highest formation temperatures T s BCC (such as Alloy 10) can form α-chromium (BCC phase) in a corrected analysis (with reduced formation temperature T s BCC ) was in " E. Slevolden, JZ Albertsen. U. Fink, Tjeldbergodden Methanol Plant: Metal Dusting Investigations, Corrosion / 2011, paper no. 11144 (Houston, TX: NACE 2011), p. 15 In order to avoid the occurrence of such an embrittling phase, in the case of the alloys according to the invention the formation temperature T s BCC should be less than or equal to 939 ° C. - the lowest formation temperature T s BCC under the examples of Alloy 693 in Table 2 (out US 4,88,125 Table 1).

Dies ist insbesondere der Fall, wenn die folgende Formel erfüllt ist: Fp 39 , 9 mit

Figure imgb0027
Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C
Figure imgb0028
Wobei Cr, Al, Fe, Si, Ti, Nb, Cu, Mo, W und C die Konzentration der betreffenden Elemente in Masse-% sind.This is especially the case if the following formula is true: fp 39 . 9 With
Figure imgb0027
fp = Cr + 0 . 272 * Fe + 2 . 36 * al + 2 . 22 * Si + 2 . 48 * Ti + 0 . 374 * Not a word + 0 . 538 * W - 11 . 8th * C
Figure imgb0028
Wherein, Cr, Al, Fe, Si, Ti, Nb, Cu, Mo, W and C are the concentration of the respective elements in mass%.

Die Tabelle 2 mit den Legierungen nach dem Stand der Technik zeigt, dass Fp für Alloy 8, Alloy 3 und Alloy 2 >39,9 ist und für Alloy 10 gerade 39,9. Für alle anderen Legierungen mit Ts BCC<939 °C ist Fp ≤ 39,9.Table 2 with the prior art alloys shows that Fp for Alloy 8, Alloy 3 and Alloy 2 is> 39.9 and for Alloy 10 is just 39.9. For all other alloys with T s BCC <939 ° C Fp ≤ 39.9.

Verarbeitbarkeitworkability

Beispielhaft wird hier für die Verarbeitbarkeit die Umformbarkeit betrachtet.By way of example, the formability is considered here for the processability.

Eine Legierung kann durch mehrere Mechanismen gehärtet werden, so dass sie eine hohe Warmfestigkeit bzw. Kriechbeständigkeit hat. So bewirkt die Zulegierung eines anderen Elements, je nach Element, eine mehr oder weniger große Erhöhung der Festigkeit (Mischkristallhärtung). Weitaus effektiver ist eine Erhöhung der Festigkeit durch feine Teilchen oder Ausscheidungen (Teilchenhärtung). Dies kann z. B. durch die γ'-Phase erfolgen, die sich bei Zugaben von Al und weiteren Elementen, wie z.B. Ti, zu einer Nickel-Legierung bilden oder durch Karbide, die sich durch Zugabe von Kohlenstoff zu einer Chrom-haltigen Nickel-Legierung bilden (siehe z. B. Ralf Bürgel, Handbuch der Hochtemperaturwerkstofftechnik, 3. Auflage, Vieweg Verlag, Wiesbaden, 2006, Seite 358 - 369 ).An alloy can be hardened by several mechanisms so that it has a high heat resistance or creep resistance. Thus, the alloying of another element, depending on the element, causes a greater or lesser increase in strength (solid solution hardening). Far more effective is an increase in strength through fine particles or precipitates (particle hardening). This can be z. B. by the γ'-phase, which form with additions of Al and other elements, such as Ti, to a nickel alloy or by carbides which form by the addition of carbon to a chromium-containing nickel alloy ( see eg Ralf Bürgel, Handbuch der Hochtemperaturwerkstofftechnik, 3rd edition, Vieweg Verlag, Wiesbaden, 2006, pages 358 - 369 ).

Die Erhöhung des Gehaltes an die γ'-Phase bildenden Elemente, bzw. des C-Gehalts, erhöht zwar die Warmfestigkeit, beeinträchtigt aber zunehmend die Verformbarkeit, selbst im lösungsgeglühten Zustand.Although the increase in the content of the γ'-phase-forming elements, or the C content, increases the hot strength, but increasingly affects the ductility, even in the solution-annealed state.

Für einen sehr gut umformbaren Werkstoff werden Dehnungen A5 im Zugversuch bei Raumtemperatur von ≥ 50 %, mindestens aber ≥ 45 % angestrebt.For a material that can be formed very easily, strains A5 in the tensile test at room temperature of ≥ 50%, but at least ≥ 45%, are aimed for.

Dies wird insbesondere erreicht, wenn zwischen den Karbid bildenden Elementen Cr, Nb, Ti und C die folgende Beziehung erfüllt ist: Fa 60 mit

Figure imgb0029
Fa = Cr + 6 , 15 * Nb + 20 , 4 * Ti + 201 * C
Figure imgb0030
wobei Cr, Nb, Ti und C die Konzentration der betreffenden Elemente in Masse-% sind.This is achieved in particular if the following relationship is fulfilled between the carbide-forming elements Cr, Nb, Ti and C: fa 60 With
Figure imgb0029
fa = Cr + 6 . 15 * Nb + 20 . 4 * Ti + 201 * C
Figure imgb0030
wherein Cr, Nb, Ti and C are the concentration of the respective elements in mass%.

Warmfestigkeit/KriechfestigkeitTemperature strength / creep

Gleichzeitig soll die Dehngrenze, bzw. die Zugfestigkeit, bei, höheren Temperaturen mindestens die Werte von Alloy 601 erreichen (siehe Tabelle 4). 600 °C : Dehngrenze R p 0 , 2 > 150 MPA ; Zugfestigkeit R m > 500 MPA

Figure imgb0031
800 °C : Dehngrenze R p 0 , 2 > 130 MPA ; Zugfestigkeit R m > 135 MPA
Figure imgb0032
At the same time, the yield strength, or the tensile strength, at higher temperatures should at least reach the values of Alloy 601 (see Table 4). 600 ° C : Yield point R p 0 . 2 > 150 MPA ; Tensile strength R m > 500 MPA
Figure imgb0031
800 ° C : Yield point R p 0 . 2 > 130 MPA ; Tensile strength R m > 135 MPA
Figure imgb0032

Wünschenswert wäre es, das die Dehngrenze bzw. die Zugfestigkeit in den Bereich von Alloy602 CA liegt (siehe Tabelle 4). Es sollten mindestens 3 der 4 folgenden Relationen erfüllt sein: 600 °C : Dehngrenze R p 0 , 2 > 230 MPA ; Zugfestigkeit R m > 550 MPA

Figure imgb0033
800 °C : Dehngrenze R p 0 , 2 > 180 MPA ; Zugfestigkeit R m > 190 MPA
Figure imgb0034
It would be desirable for the yield strength or tensile strength to be in the range of Alloy602 CA (see Table 4). At least 3 of the 4 following relations should be fulfilled: 600 ° C : Yield point R p 0 . 2 > 230 MPA ; Tensile strength R m > 550 MPA
Figure imgb0033
800 ° C : Yield point R p 0 . 2 > 180 MPA ; Tensile strength R m > 190 MPA
Figure imgb0034

Dies wird insbesondere erreicht, wenn die folgende Beziehung zwischen den hauptsächlich härtenden Elementen erfüllt ist: Fk 45 mit

Figure imgb0035
Fk = Cr + 19 * Ti + 34 , 3 * Nb + 10 , 2 * Al + 12 , 5 * Si + 98 * C + 2245 * B
Figure imgb0036
wobei Cr, Ti, Nb, Al, Si, C und B die Konzentration der betreffenden Elemente in Masse-% sind.This is achieved in particular if the following relationship between the main hardening elements is fulfilled: Fk 45 With
Figure imgb0035
Fk = Cr + 19 * Ti + 34 . 3 * Nb + 10 . 2 * al + 12 . 5 * Si + 98 * C + 2245 * B
Figure imgb0036
wherein Cr, Ti, Nb, Al, Si, C and B are the concentration of the respective elements in mass%.

Korrosionsbeständigkeit:

  • Die erfindungsgemäße Legierung soll eine gute Korrosionsbeständigkeit an Luft, ähnlich der von Alloy 602CA (N06025), haben.
Corrosion resistance:
  • The alloy according to the invention is said to have good corrosion resistance in air, similar to Alloy 602CA (N06025).

Beispiele:Examples: Herstellung:production:

Die Tabellen 3a und 3 b zeigen die Analysen der im Labormaßstab erschmolzenen Chargen zusammen mit einigen zum Vergleich herangezogenen großtechnisch erschmolzenen Chargen nach dem Stand der Technik von Alloy 602CA (N06025), Alloy 690 (N06690), Alloy 601 (N06601). Die Chargen nach dem Stand der Technik sind mit einem T gekennzeichnet, die erfindungsgemäßen mit einem E. Die im Labormaßstab gekennzeichneten Chargen sind mit einem L gekennzeichnet, die großtechnisch erschmolzenen Chargen mit einem G.Tables 3a and 3b show the analyzes of laboratory-scale molten batches along with some prior art large scale molten batches of Alloy 602CA (N06025) used for comparison. Alloy 690 (N06690), Alloy 601 (N06601). The prior art batches are marked with a T, those of the invention with an E. The batches marked on the laboratory scale are marked with an L, the large-scale blown batches with a G.

Die Blöcke der im Labormaßstab im Vakuum erschmolzenen Legierungen in Tabelle 3a und b wurden zwischen 900°C und 1270°C für 8 h geglüht und mittels Warmwalzen und weiteren Zwischenglühungen zwischen 900°C und 1270°C für 0,1 bis 1 h an eine Enddicke von 13 mm bzw. 6 mm warmgewalzt. Die so erzeugten Bleche wurden zwischen 900°C und 1270°C für 1 h lösungsgeglüht. Aus diesen Blechen wurden die für die Messungen benötigten Proben hergestellt.The blocks of laboratory-scale molten alloys in Tables 3a and b were annealed between 900 ° C and 1270 ° C for 8 hours and hot rolled and further intermediate anneals between 900 ° C and 1270 ° C for 0.1 to 1 hour Final thickness of 13 mm or 6 mm hot rolled. The sheets produced in this way were solution-annealed between 900 ° C. and 1270 ° C. for 1 h. From these sheets, the samples required for the measurements were produced.

Bei den großtechnisch erschmolzenen Legierungen wurde aus der großtechnischen Fertigung von einem betrieblich gefertigten Blech mit passender Dicke ein Muster entnommen. Aus diesen Blechen wurden die für die Messungen benötigten Proben hergestellt.In the case of the large-scale smelted alloys, a sample was taken from the large-scale production of an industrially manufactured sheet with a suitable thickness. From these sheets, the samples required for the measurements were produced.

Alle Legierungsvarianten hatten typischerweise eine Korngröße von 70 bis 300 µm.All alloy variants typically had a particle size of 70 to 300 μm.

Für die Beispielchargen in Tabelle 3a und b werden die folgenden Eigenschaften verglichen:

  • Metal Dusting Beständigkeit
  • Phasenstabilität
  • Umformbarkeit anhand des Zugversuches bei Raumtemperatur
  • Warmfestigkeit / Kriechbeständigkeit mit Hilfe von Warmzugversuchen
  • Korrosionsbeständigkeit mit Hilfe eines Oxidationstests
For the example batches in Tables 3a and b, the following properties are compared:
  • Metal dusting resistance
  • phase stability
  • Formability based on the tensile test at room temperature
  • Hot strength / creep resistance with the help of hot tensile tests
  • Corrosion resistance with the help of an oxidation test

Bei den im Labormaßstab erschmolzenen Chargen 2297 bis 2308 und 250060 bis 250149, insbesondere aber bei den erfindungsgemäßen mit E gekennzeichneten Chargen (2301, 250129, 250132, 250133, 250134, 250137, 240138, 250147, 250148) ist die Formel (2a) Al + Cr ≥ 28 erfüllt. Sie erfüllen damit die Forderung, die an die Metal Dusting Beständigkeit gestellt worden ist.For the batches 2297 to 2308 and 250060 to 250149 melted on a laboratory scale, but especially for the batches according to the invention marked with E (2301, 250129, 250132, 250133, 250134, 250137, 240138, 250147, 250148), the formula (2a) is Al + Cr ≥ 28 fulfilled. They thus meet the demand that has been placed on the metal dusting resistance.

Für die ausgewählte Legierungen nach dem Stand der Technik in Tabelle 2 und alle Laborchargen (Tabellen 3a und 3b) wurden deshalb die Phasendiagramme berechnet und die Bildungstemperatur Ts BCC in die Tabelle 2 und 3a eingetragen. Für die Zusammensetzungen in den Tabellen 2 bzw. 3a und b wurde auch der Wert für Fp gemäß Formel 4a berechnet. Fp ist umso größer, je größer die Bildungstemperatur Ts BCC ist. Alle Beispiele von N06693 mit einer höheren Bildungstemperatur Ts BCC, als der von Alloy 10, haben ein Fp > 39,9. Die Forderung Fp ≤ 39,9 (Formel 3a) ist also eine gutes Kriterium, um eine ausreichende Phasenstabilität bei einer Legierung zu erhalten. Alle Laborchargen in Tabelle 3a und b erfüllen das Kriterium Fp ≤ 39,9.For the selected prior art alloys in Table 2 and all laboratory lots (Tables 3a and 3b), therefore, the phase diagrams were calculated and the formation temperature T s BCC is plotted in Tables 2 and 3a. For the compositions in Tables 2 and 3a and b also the value of Fp according to formula 4a was calculated. Fp is greater, the larger the formation temperature T s BCC . All examples of N06693 with a higher formation temperature T s BCC than that of Alloy 10 have a Fp> 39.9. The requirement Fp ≦ 39.9 (formula 3a) is thus a good criterion for obtaining a sufficient phase stability in the case of an alloy. All laboratory batches in Tables 3a and b fulfill the criterion Fp ≤ 39.9.

In Tabelle 4 sind die Dehngrenze Rp0,2, die Zugfestigkeit Rm und die Dehnung A5 für Raumtemperatur (RT) und für 600°C eingetragen, weiterhin die Zugfestigkeit Rm für 800°C. Außerdem sind die Werte für Fa und Fk eingetragen.Table 4 shows the yield strength R p0.2 , the tensile strength R m and the elongation A 5 for room temperature (RT) and for 600 ° C, furthermore the tensile strength R m for 800 ° C. In addition, the values for Fa and Fk are entered.

Die Beispielchargen 156817 und 160483 der Legierung nach dem Stand der Technik Alloy 602 CA haben in Tabelle 4 eine vergleichsweise kleine Dehnung A5 bei Raumtemperatur von 36 bzw. 42 %, die unterhalb der Anforderungen für eine gute Umformbarkeit liegen. Fa ist > 60 und damit oberhalb des Bereichs, der eine gute Umformbarkeit kennzeichnet. Alle erfindungsgemäßen Legierungen (E) zeigen eine Dehnung > 50 %. Sie erfüllen damit die Anforderungen. Fa ist für alle erfindungsgemäßen Legierungen < 60. Sie befinden sich damit in dem Bereich einer guten Umformbarkeit. Die Dehnung ist besonders hoch, wenn Fa vergleichsweise klein ist.Example batches 156817 and 160483 of the prior art alloy Alloy 602 CA have in Table 4 a relatively low elongation A5 at room temperature of 36 and 42%, respectively, which are below the requirements for good formability. Fa is> 60, which is above the range that indicates good formability. All inventive alloys (E) show an elongation> 50%. They thus fulfill the requirements. Fa is <60 for all alloys according to the invention. They are therefore in the range of good formability. The elongation is particularly high when Fa is comparatively small.

Die Beispielcharge 156658 der Legierung nach dem Stand der Technik Alloy 601 in Tabelle 4 ist ein Beispiel für die Mindestanforderungen an Dehngrenze und Zugfestigkeit bei 600°C bzw. 800°C, die Beispielchargen 156817 und 160483 der Legierung nach dem Stand der Technik Alloy 602 CA sind dagegen Beispiele für sehr guten Werte von Dehngrenze und Zugfestigkeit bei 600°C bzw. 800°C. Alloy 601 repräsentiert einen Werkstoff, der die Mindestanforderungen an Warmfestigkeit bzw. Kriechfestigkeit zeigt, die in den Relationen 9a bis 9d beschrieben werden, Alloy 602 CA einen Werkstoff, der eine ausgezeichnete Warmfestigkeit bzw. Kriechfestigkeit zeigt, die in den Relationen 10a bis 10d beschreiben werden. Der Wert für Fk ist für beide Legierungen deutlich größer 45 und für Alloy 602 CA zusätzlich noch deutlich höher als der Wert von Alloy 601, was die erhöhten Festigkeitswerte von Alloy 602 CA widerspiegelt. Die erfindungsgemäßen Legierungen (E) zeigen alle eine Dehngrenze und Zugfestigkeit bei 600°C bzw. 800°C im Bereich oder deutlich oberhalb der von Alloy 601, haben also die Relationen 9a bis 9d erfüllt. Sie liegen im Bereich der Werte von Alloy 602 CA und erfüllen auch die wünschenswerten Anforderungen, also 3 der 4 Relationen 10a bis 10d. Auch Fk ist für alle erfindungsgemäßen Legierungen in den Beispielen in Tabelle 4 größer 45, ja sogar meisten größer 54 und damit in dem Bereich, der durch eine gute Warmfestigkeit bzw. Kriechbeständigkeit gekennzeichnet ist. Unter den nicht erfindungsgemäßen Laborchargen sind die Chargen 2297 und 2300 ein Beispiel, dass die Relationen 9a bis 9d nicht erfüllt werden und auch ein Fk < 45 gegeben ist.Example Example 156658 of the prior art Alloy 601 in Table 4 is an example of the minimum requirements for yield strength and tensile strength at 600 ° C and 800 ° C, respectively. Example lots 156817 and 160483 of the prior art Alloy 602 CA alloy on the other hand are examples of very good values of yield strength and tensile strength at 600 ° C and 800 ° C, respectively. Alloy 601 represents a material that meets the minimum requirements Creep resistance described in Relation 9a to 9d shows Alloy 602 CA a material exhibiting excellent creep strength described in Relation 10a to 10d. The value for Fk is significantly greater for both alloys than 45 and for Alloy 602 CA additionally significantly higher than the value of Alloy 601, reflecting the increased strength values of Alloy 602 CA. The alloys (E) according to the invention all exhibit a yield strength and tensile strength at 600 ° C. or 800 ° C. in the region or significantly above that of Alloy 601, ie they have fulfilled the relations 9a to 9d. They are in the range of the values of Alloy 602 CA and also meet the desirable requirements, ie 3 of the 4 relations 10a to 10d. Also for all alloys according to the invention in the examples in Table 4, Fk is greater than 45, and even most greater than 54, and thus in the range characterized by good heat resistance or creep resistance. Among the laboratory batches not according to the invention, the batches 2297 and 2300 are an example that the relations 9a to 9d are not fulfilled and also a Fk <45 is given.

Tabelle 5 zeigt die spezifischen Massenänderungen nach einem Oxidationsversuch bei 1100°C an Luft nach 11 Zyklen von 96 h, also insgesamt 1056 h. Angegeben ist in der Tabelle 5 die spezifische Brutto-Massenänderung, die spezifische Netto-Massenänderung und die spezifische Massenänderung der abgeplatzten Oxide nach 1056 h. Die Beispielchargen der Legierungen nach dem Stand der Technik Alloy 601 und Alloy 690 zeigten eine deutlich höhere Brutto Massenänderung als Alloy 602 CA, wobei die von Alloy 601 noch mal deutlich größer ist als die von Alloy 690. Beide bilden eine Chromoxidschicht, die schneller wächst als eine Aluminumoxidschicht. Alloy 601 enthält noch ca. 1,3 % Al. Dieser Gehalt ist zu gering, um schon eine, wenn auch nur teilweise geschlossene Aluminiumoxidschicht zu bilden, weshalb das Aluminium im Innern des metallischen Materials unterhalb der Oxidschicht oxidiert (innere Oxidation), was eine im Vergleich zum Alloy 690 erhöhte Massenzunahme bewirkt. Alloy 602 CA hat ca. 2,3 % Aluminium. Damit kann sich bei dieser Legierung unterhalb der Chromoxidschicht eine zumindest teilweise geschlossene Aluminiumoxidschicht bilden. Dies reduziert das Wachstum der Oxidschicht merklich und damit auch die spezifische Massenzunahme. Alle erfindungsgemäßen Legierungen (E) enthalten mindestens 2 % Aluminium und haben damit eine ähnlich geringe bzw. geringere Brutto-Massenzunahme, als Alloy 602 CA. Auch zeigen alle erfindungsgemäßen Legierungen, ähnlich der Beispielchargen von Alloy 602 CA, Abplatzungen im Bereich der Messgenauigkeit, während Alloy 601 und Alloy 690 große Abplatzungen zeigen.Table 5 shows the specific mass changes after an oxidation test at 1100 ° C in air after 11 cycles of 96 h, for a total of 1056 h. Given in Table 5 are the specific gross mass change, the net specific mass change and the specific mass change of the chipped oxides after 1056 h. The example batches of the prior art alloys Alloy 601 and Alloy 690 showed a significantly higher gross mass change than Alloy 602 CA, with that of Alloy 601 again being significantly larger than that of Alloy 690. Both form a chromium oxide layer that grows faster than an aluminum oxide layer. Alloy 601 still contains about 1.3% Al. This content is too low to form even if partially closed aluminum oxide layer, which is why the aluminum in the interior of the metallic material below the oxide layer oxidizes (internal oxidation), which causes an increased compared to Alloy 690 mass increase. Alloy 602 CA has approx. 2.3% aluminum. This can be below the Chromoxidschicht form an at least partially closed aluminum oxide layer. This noticeably reduces the growth of the oxide layer and thus also the specific mass increase. All alloys (E) according to the invention contain at least 2% aluminum and thus have a similarly low or lower gross mass increase than Alloy 602 CA. Also, all of the alloys of the invention, similar to the example batches of Alloy 602 CA, exhibit flaking in the area of measurement accuracy, while Alloy 601 and Alloy 690 show large flaking.

Die beanspruchten Grenzen für die erfindungsgemäße Legierung "E" lassen sich daher im Einzelnen wie folgt begründen:

  • Zu geringe Cr-Gehalte bedeuten, dass die Cr-Konzentration an der Grenzfläche Oxid-Metall beim Einsatz der Legierung in einer korrosiven Atmosphäre sehr schnell unter die kritische Grenze sinkt, so dass sich bei einer Beschädigung der Oxidschicht keine geschlossene reine Chromoxidschicht mehr bilden kann, sondern sich auch andere weniger schützende Oxide bilden können. Deshalb ist 24 % Cr die untere Grenze für Chrom. Zu hohe Cr-Gehalte verschlechtern die Phasenstabilität der Legierung insbesondere bei den hohen Aluminiumgehalten von ≥ 1,8 %. Deshalb ist 33 % Cr als obere Grenze anzusehen.
The claimed limits for the alloy "E" according to the invention can therefore be explained in detail as follows:
  • Too low Cr contents mean that the Cr concentration at the oxide-metal interface falls very rapidly below the critical limit when the alloy is used in a corrosive atmosphere, so that when the oxide layer is damaged, a closed, pure chromium oxide layer can no longer form. but also other less protective oxides can form. Therefore, 24% Cr is the lower limit for chromium. Too high Cr contents deteriorate the phase stability of the alloy, in particular with the high aluminum contents of ≥ 1.8%. Therefore, 33% Cr is considered the upper limit.

Die Bildung einer Aluminiumoxidschicht unterhalb der Chromoxidschicht verringert die Oxidationsrate. Unterhalb von 1,8 % Al ist die sich bildende Aluminiumoxidschicht zu lückenhaft, um ihre Wirkung voll zu entfalten. Zu hohe AI-Gehalte beeinträchtigen die Verarbeitbarkeit der Legierung. Deshalb bildet ein AI-Gehalt von 4,0 % die obere Grenze.The formation of an aluminum oxide layer below the chromium oxide layer reduces the oxidation rate. Below 1.8% Al, the forming aluminum oxide layer is too patchy to fully develop its effect. Excessive Al contents impair the processability of the alloy. Therefore, an AI content of 4.0% is the upper limit.

Die Kosten für die Legierung steigen mit der Reduzierung des Eisen-Gehalts. Unterhalb von 0,1 % steigen die Kosten überproportional, da spezielles Vormaterial eingesetzt werden muss. Deshalb ist 0,1 % Fe aus Kostengründen als untere Grenze anzusehen. Mit Erhöhung des Eisengehalts verringert sich die Phasenstabilität (Bildung von versprödenden Phasen), insbesondere bei hohen Chrom- und Aluminiumgehalten. Deshalb ist 7 % Fe eine sinnvolle obere Grenze, um die Phasenstabilität der erfindungsgemäßen Legierung sicher zu stellen.The cost of the alloy increases with the reduction of the iron content. Below 0.1%, the costs increase disproportionately, since special starting material must be used. For this reason, 0.1% Fe is the lower limit for cost reasons. As the iron content increases, the phase stability (formation of embrittling phases) decreases, especially at high levels Chromium and aluminum contents. Therefore, 7% Fe is a useful upper limit to ensure the phase stability of the alloy of the invention.

Si wird bei der Herstellung der Legierung benötigt. Es ist deshalb ein Mindestgehalt von 0,001 % notwendig. Zu hohe Gehalte wiederum beeinträchtigen die Verarbeitbarkeit und die Phasenstabilität, insbesondere bei hohen Aluminium-und Chromgehalten. Der Si-Gehalt ist deshalb auf 0,50 % beschränkt.Si is needed in the production of the alloy. It is therefore necessary a minimum content of 0.001%. Too high levels, in turn, affect processability and phase stability, especially at high levels of aluminum and chromium. The Si content is therefore limited to 0.50%.

Es ist ein Mindestgehalt von 0,005 % Mn zur Verbesserung der Verarbeitbarkeit notwendig. Mangan wird auf 2,0 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.A minimum content of 0.005% Mn is required to improve processability. Manganese is limited to 2.0% because this element reduces oxidation resistance.

Titan steigert die Hochtemperaturfestigkeit. Ab 0,60 % kann das Oxidationsverhalten verschlechtert werden, weshalb 0,60 % der Maximalwert ist.Titanium increases the high-temperature strength. From 0.60%, the oxidation behavior can be degraded, which is why 0.60% is the maximum value.

Schon sehr geringe Mg- und/oder Ca-Gehalte verbessern die Verarbeitung durch das Abbinden von Schwefel, wodurch das Auftreten von niedrig schmelzenden NiS-Eutektika vermieden wird. Für Mg und oder Ca ist deshalb ein Mindestgehalt von 0,0002 %erforderlich. Bei zu hohen Gehalten können intermetallische Ni-Mg-Phasen bzw. Ni-Ca-Phasen auftreten, die die Verarbeitbarkeit wieder deutlich verschlechtern. Der Mg- und/oder Ca-Gehalt wird deshalb auf maximal 0,05 % begrenzt.Already very low Mg and / or Ca contents improve the processing by the setting of sulfur, whereby the occurrence of low-melting NiS Eutektika is avoided. For Mg and or Ca, therefore, a minimum content of 0.0002% is required. If the contents are too high, intermetallic Ni-Mg phases or Ni-Ca phases may occur, which again significantly impair processability. The Mg and / or Ca content is therefore limited to a maximum of 0.05%.

Es ist ein Mindestgehalt von 0,005 % C für eine gute Kriechbeständigkeit notwendig. C wird auf maximal 0,12 % begrenzt, da dieses Element ab diesem Gehalt die Verarbeitbarkeit durch die übermäßige Bildung von Primärkarbiden reduziert.A minimum content of 0.005% C is required for good creep resistance. C is limited to a maximum of 0.12%, since this element reduces the processability by the excessive formation of primary carbides from this content.

Es ist ein Mindestgehalt von 0,001 % N erforderlich, wodurch die Verarbeitbarkeit des Werkstoffs verbessert wird. N wird auf maximal 0,05 % begrenzt, da dieses Element durch Bildung von groben Karbonitriden die Verarbeitbarkeit reduziert. Der Sauerstoffgehalt muss ≤ 0,020 % sein, um die Herstellbarkeit der Legierung zu gewährleisten. Ein zu geringer Sauerstoff-Gehalt erhöht die Kosten. Der Sauerstoff-Gehalt ist deshalb ≥ 0,0001 %.A minimum content of 0.001% N is required, which improves the processability of the material. N is limited to a maximum of 0.05%, since this element reduces the processability by forming coarse carbonitrides. The oxygen content must be ≤ 0.020% to ensure the manufacturability of the alloy. Too low an oxygen content increases the costs. The oxygen content is therefore ≥ 0.0001%.

Der Gehalt an Phosphor sollte kleiner gleich 0,030 % sein, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Ein zu geringer P-Gehalt erhöht die Kosten. Der P-Gehalt ist deshalb ≥ 0,001 %.The content of phosphorus should be less than or equal to 0.030%, since this surfactant affects the oxidation resistance. A too low P content increases the costs. The P content is therefore ≥ 0.001%.

Die Gehalte an Schwefel sollten so gering wie möglich eingestellt werden, da dieses grenzflächenaktive Element die Oxidationsbeständigkeit beeinträchtigt. Es werden deshalb max. 0,010 % S festgelegt,The levels of sulfur should be adjusted as low as possible, since this surfactant affects the oxidation resistance. It will therefore max. 0.010% S set,

Molybdän wird auf max. 2,0 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.Molybdenum is reduced to max. 2.0% limited as this element reduces oxidation resistance.

Wolfram wird auf max. 2,0 % begrenzt, da dieses Element die Oxidationsbeständigkeit ebenfalls reduziert.Tungsten is limited to max. 2.0% limited as this element also reduces oxidation resistance.

Es müssen die folgende Beziehung zwischen Cr und Al erfüllt sein, damit eine ausreichende Beständigkeit gegen Metal Dusting gegeben ist: Cr + Al 28

Figure imgb0037
wobei Cr und Al die Konzentration der betreffenden Elemente in Masse-% sind. Nur dann ist der Gehalt an oxidbildenden Elementen hoch genug, um eine ausreichende Metal Dusting Beständig zu gewährleisten.The following relationship between Cr and Al must be satisfied for sufficient resistance to metal dusting: Cr + al 28
Figure imgb0037
where Cr and Al are the concentration of the respective elements in mass%. Only then is the content of oxide-forming elements high enough to ensure adequate metal dusting resistance.

Darüber hinaus muss die folgende Beziehung erfüllt sein, damit eine ausreichende Phasenstabilität gegeben ist: Fp 39 , 9 mit

Figure imgb0038
Fp = Cr + 0 , 272 * Fe + 2 , 36 * Al + 2 , 22 * Si + 2 , 48 * Ti + 0 , 374 * Mo + 0 , 538 * W 11 , 8 * C
Figure imgb0039
wobei Cr, Fe, Al, Si, Ti, Mo, W und C die Konzentration der betreffenden Elemente in Masse-% sind. Die Grenzen für Fp und die mögliche Einbeziehung weiterer Elemente wurden im vorangegangenen Text ausführlich begründet.In addition, the following relationship must be satisfied for sufficient phase stability: fp 39 . 9 With
Figure imgb0038
fp = Cr + 0 . 272 * Fe + 2 . 36 * al + 2 . 22 * Si + 2 . 48 * Ti + 0 . 374 * Not a word + 0 . 538 * W - 11 . 8th * C
Figure imgb0039
wherein Cr, Fe, Al, Si, Ti, Mo, W and C are the concentration of the respective elements in mass%. The limits for Fp and the possible inclusion of further elements have been explained in detail in the previous text.

Bedarfsweise kann mit Zusätzen von sauerstoffaffinen Elementen die Oxidationsbeständigkeit weiter verbessert werden. Sie tun dies, indem sie in die Oxidschicht mit eingebaut werden und dort auf den Korngrenzen die Diffusionswege des Sauerstoffs blockieren.If necessary, with additions of oxygen-affine elements, the oxidation resistance can be further improved. They do this by incorporating them into the oxide layer and blocking the diffusion paths of the oxygen there on the grain boundaries.

Es ist ein Mindestgehalt von 0,01 % Y notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Y zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,20 % gelegt.A minimum content of 0.01% Y is necessary to obtain the oxidation resistance-enhancing effect of Y. The upper limit is set at 0.20% for cost reasons.

Es ist ein Mindestgehalt von 0,001 % La notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des La zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,20 % gelegt.A minimum content of 0.001% La is necessary to obtain the oxidation resistance enhancing effect of La. The upper limit is set at 0.20% for cost reasons.

Es ist ein Mindestgehalt von 0,001 % Ce notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Ce zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,20 % gelegt.A minimum content of 0.001% Ce is necessary to obtain the oxidation resistance-enhancing effect of Ce. The upper limit is set at 0.20% for cost reasons.

Es ist ein Mindestgehalt von 0,001 % Cer Mischmetall notwendig, um die die Oxidationsbeständigkeit steigernde Wirkung des Cer Mischmetalls zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,20 % gelegt.A minimum content of 0.001% cerium mischmetal is necessary to obtain the oxidation resistance enhancing effect of cerium mischmetal. The upper limit is set at 0.20% for cost reasons.

Bedarfsweise kann Niob zugefügt werden, da auch Niob die Hochtemperaturfestigkeit steigert. Höhere Gehalte erhöhen die Kosten sehr stark. Die Obergrenze wird deshalb auf 1,10 % festgesetzt.If necessary, niobium can be added, as niobium also increases the high-temperature strength. Higher levels increase costs very much. The upper limit is therefore set at 1.10%.

Bedarfsweise kann die Legierung auch Tantal enthalten, da auch Tantal die Hochtemperaturfestigkeit steigert. Höhere Gehalte erhöhen die Kosten sehr stark.If necessary, the alloy may also contain tantalum, since tantalum also increases high-temperature strength. Higher levels increase costs very much.

Die Obergrenze wird deshalb auf 0,60 % festgesetzt. Es ist ein Mindestgehalt von 0,001 % erforderlich, um einen Wirkung zu erzielen.The upper limit is therefore set at 0.60%. A minimum level of 0.001% is required to have an effect.

Bedarfsweise kann die Legierung auch Zr erhalten. Es ist ein Mindestgehalt von 0,01 % Zr notwendig, um die die Hochtemperaturfestigkeit und die Oxidationsbeständigkeit steigernde Wirkung des Zr zu erhalten. Die Obergrenze wird aus Kostengründen bei 0,20 % Zr gelegt.If necessary, the alloy can also be given Zr. A minimum content of 0.01% Zr is necessary to obtain the high-temperature strength and oxidation resistance-enhancing effect of Zr. The upper limit is set at 0.20% Zr for cost reasons.

Zr kann bedarfsweise ganz oder teilweise durch Hf ersetzt werden, da auch dieses Element, wie das Zr, die Hochtemperaturfestigkeit und die Oxidationsbeständigkeit steigert. Das Ersetzen ist ab Gehalten von 0,001 % möglich. Die Obergrenze wird aus Kostengründen bei 0,20 % Hf gelegt.If necessary, Zr can be wholly or partially replaced by Hf, since this element, such as Zr, also increases high-temperature strength and oxidation resistance. Replacement is possible from 0.001%. The upper limit is set at 0.20% Hf for cost reasons.

Bedarfsweise kann der Legierung Bor zugesetzt werden, da Bor die Kriechbeständigkeit verbessert. Deshalb sollte ein Gehalt von mindestens 0,0001 % vorhanden sein. Gleichzeitig verschlechtert dieses grenzflächenaktive Element die Oxidationsbeständigkeit. Es werden deshalb max. 0,008 % Bor festgelegt.If necessary, boron may be added to the alloy because boron improves creep resistance. Therefore, a content of at least 0.0001% should be present. At the same time, this surfactant deteriorates the oxidation resistance. It will therefore max. 0.008% Boron set.

Kobalt kann in dieser Legierung bis zu 5,0 % enthalten sein. Höhere Gehalte reduzieren die Oxidationsbeständigkeit merklich.Cobalt can be contained in this alloy up to 5.0%. Higher contents considerably reduce the oxidation resistance.

Kupfer wird auf max. 0,5 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert.Copper is heated to max. 0.5% limited as this element reduces the oxidation resistance.

Vanadium wird auf max. 0,5 % begrenzt, da dieses Element die Oxidationsbeständigkeit ebenfalls reduziert.Vanadium is reduced to max. 0.5% limited as this element also reduces oxidation resistance.

Pb wird auf max. 0,002 % begrenzt, da dieses Element die Oxidationsbeständigkeit reduziert. Das Gleiche gilt für Zn und Sn.Pb is set to max. 0.002% limited because this element reduces the oxidation resistance. The same applies to Zn and Sn.

Des Weiteren kann wahlweise die folgende Beziehung karbidbildender Elemente Cr, Ti und C erfüllt sein, die eine besonders gute Verarbeitbarkeit beschreibt: Fa 60 mit

Figure imgb0040
Fa = Cr + 20 , 4 * Ti + 201 * C
Figure imgb0041
wobei Cr, Ti und C die Konzentration der betreffenden Elemente in Masse-% sind. Die Grenzen für Fa und die mögliche Einbeziehung weiterer Elemente wurden im vorangegangenen Text ausführlich begründet.Furthermore, optionally, the following relationship of carbide-forming elements Cr, Ti and C can be satisfied, which describes a particularly good processability: fa 60 With
Figure imgb0040
fa = Cr + 20 . 4 * Ti + 201 * C
Figure imgb0041
where Cr, Ti and C are the concentration of the respective elements in mass%. The limits for Fa and the possible inclusion of other elements have been extensively explained in the previous text.

Des Weiteren kann wahlweise die folgende Beziehung bezüglich die Festigkeit steigernden Elementen erfüllt sein, die eine besonders gute Warmfestigkeit bzw. Kriechfestigkeit beschreibt: Fk 45 mit

Figure imgb0042
Fk = Cr + 19 * Ti + 10 , 2 * Al + 12 , 5 * Si + 98 * C
Figure imgb0043
wobei Cr, Ti, Al, Si und C die Konzentration der betreffenden Elemente in Masse-% sind. Die Grenzen für Fa und die mögliche Einbeziehung weiterer Elemente wurden im vorangegangenen Text ausführlich begründet.
Figure imgb0044
Figure imgb0045
Figure imgb0046
Tabelle 3b: Zusammensetzung der Laborchargen, Teil 2. Alle Angaben in Masse-% (Für alle Legierungen gilt: Pb: max. 0,002 %,Zn: max. 0,002 %,Sn: max. 0,002 %) (Bedeutung von T, E, G, L, siehe Tabelle 3a) Name Chg S P Mg Ca V Zr Co Y La_ B Hf Ta Ce O T G Alloy602CA 156817 0,002 0,005 0,004 0,001 0,03 0,08 0,05 0,060 - 0,003 - - - 0,001 T G Alloy602CA 160483 <0,002 0,007 0,010 0,002 - 0,09 0,04 0,070 - 0,003 - - - 0,001 T G Alloy601 156656 0,002 0,008 0,012 <0,01 0,03 0,015 0,04 - - 0,001 - - - 0,0001 T G Alloy690 80116 0,002 0,006 0,030 0,0009 - <0,002 0,02 - - 0,002 - - - 0,0005 T G Alloy690 111389 0,002 0,005 <0,001 0,0005 - - 0,01 - - - - - - 0,001 L Cr30Al1La 2297 0,004 0,003 0,015 <0,01 <0,01 <0,002 - <0,001 0,062 <0,001 <0,001 <0,005 0,001 0,0001 L Cr30Al1LaT 2300 0,003 0,002 0,014 <0,01 <0,01 <0,002 <0,001 <0,001 0,051 <0,001 <0,001 <0,005 0,001 0,0001 L Cr30Al1TiLa 2298 0,004 0,002 0,016 <0,01 <0,01 <0,002 <0,001 <0,001 0,058 <0,001 <0,001 <0,005 0,001 0,002 L Cr30Al1TiNbLa 2308 0,002 0,002 0,014 <0,01 <0,01 <0,002 - <0,001 0,093 <0,001 <0,001 <0,005 0,001 0,002 L Cr30Al1CLaTi 2299 0,003 0,002 0,015 <0,01 <0,01 <0,002 <0,001 <0,001 0,064 <0,001 <0,001 <0,005 0,001 0,002 L Cr30Al1CLa 2302 0,003 0,002 0,013 <0,01 <0,01 <0,002 0,001 <0,001 0,057 <0,001 <0,001 <0,005 0,001 0,0001 E L Cr30Al2La 2301 0,003 0,002 0,015 <0,01 <0,01 <0,002 <0,001 <0,001 0,058 <0,001 <0,001 <0,005 0,001 0,002 L Cr30Al1Ti 250060 0,003 0,002 0,009 <0,01 <0,01 <0,002 <0,001 <0,001 <0,001 <0,001 <0,001 <0,005 <0,001 0,003 L Cr30Al1Ti 250063 0,003 0,003 0,012 <0,01 <0,01 <0,002 <0,001 <0,001 <0,001 <0,001 <0,001 <0,005 <0,001 0,003 L Cr30Al1TiNb 250066 0,002 0,002 0,012 <0,01 <0,01 <0,002 <0,001 <0,001 <0,001 <0,001 <0,001 <0,005 <0,001 0,004 L Cr30Al1TiNb 250065 0,002 0,002 0,012 <0,01 <0,01 <0,002 <0,001 <0,001 <0,001 <0,001 <0,001 <0,005 <0,001 0,005 L Cr30Al1TiNbZr 250067 0,003 0,002 0,010 <0,01 <0,01 0,069 <0,001 <0,001 <0,001 <0,001 <0,001 <0,005 <0,001 0,003 L Cr30Al1TiNb 250068 0,002 <0,002 0,010 <0,01 <0,01 <0,002 <0,001 <0,001 <0,001 <0,001 <0,001 <0,005 <0,001 0,004 E L Cr28Al2 250129 0,004 0,003 0,011 0,0002 <0,01 <0,002 - - - <0,0005 - - - 0,001 E L Cr28Al2Y 250130 0,003 0,003 0,013 <0,0002 <0,01 <0,002 - 0,063 - <0,0005 - - - 0,001 E L Cr28Al2YC1 250132 0,003 0,004 0,009 0,0012 0,01 0,003 <0,01 0,07 - 0,001 - - - 0,001 E L Cr28Al2Nb.5C1 250133 0,005 0,003 0,009 0,0012 <0,01 0,004 0,01 0,01 - - - - - 0,001 E L Cr28Al2Nb.5C1 250148 0,004 0,004 0,010 0,0005 0,01 - <0,01 <0,01 - - - - - 0,003 E L Cr28Al2Nb1C1 250134 0,006 0,002 0,009 0,0009 <0,01 0,006 0,01 0,01 - <0,0005 - - - 0,003 E L Cr28Al2Nb1C1 250147 0,002 0,002 0,010 0,0005 <0,01 0,01 0,01 0,01 - 0,0012 - - - 0,001 E L Cr28Al2Nb1C1Y 250149 0,004 0,005 0,013 <0,0005 <0,01 0,006 <0,01 0,08 - 0,0012 - - - 0,002 E L Cr28Al2TiC1 250137 0,005 0,004 0,008 0,0002 <0,01 0,004 <0,01 <0,01 - 0,0012 - - - 0,001 E L Cr28Al2TiC1 250138 0,005 0,004 0,010 0,0002 <0,01 0,003 0,01 <0,01 - 0,0012 - - - 0,004 Tabelle 4: Ergebnisse der Zugversuche bei Raumtemperatur (RT), 600 °C und 800°C. Die Umformgeschwindigkeit betrug bei R p0,2 8,33 10-5 1/s (0,5%/min) und bei Rm 8,33 10-4 1/s (5%/min); KG = Korngröße. Name Chg KG in µm Rp0,2 in MPa RT Rm in MPa RT A5 in % RT Rp0,2 in MPa 600°C Rm in MPa 600°C A5 in % 600°C Rp0,2 in MPa 800°C Rm in MPa 800°C Fa Fk T Alloy 602 CA 156817 76 292 699 36 256 578 41 186 198 63,0 76,9 T Alloy 602 CA 160483 76 340 721 42 254 699 69 186 197 62,2 79,6 T Alloy601 156656 136 238 645 53 154 509 54 133 136 43,3 56,3 T Aloy 690 80116 92 279 641 56 195 469 48 135 154 36,2 41,6 T Alloy 690 111389 72 285 630 50 188 465 51 - - 36,8 43,6 Cr30Al1La 2297 233 221 637 67 131 460 61 134 167 33,5 43,4 Cr30Al1LaT 2300 205 229 650 71 131 469 65 132 160 33,9 46,3 Cr30Al1TiLa 2298 94 351 704 59 228 490 31 149 161 39,7 51,5 Cr30Al1TiNbLa 2308 90 288 683 55 200 508 39 174 181 41,6 61,0 Cr30Al1CLaTi 2299 253 258 661 62 212 475 59 181 185 42,3 50,0 Cr30Al1CLa 2302 212 353 673 59 233 480 59 189 194 40,0 52,9 E Cr30Al2La 2301 155 375 716 66 298 504 49 275 277 33,2 55,6 Cr30Al1Ti 250060 114 252 662 67 183 509 62 143 154 39,3 50,4 Cr30Al1Ti 250063 118 252 659 70 178 510 57 148 152 39,6 52,9 Cr30Al1TiNb 250066 121 240 666 67 186 498 66 245 255 41,4 63,6 Cr30Al1TiNb 250065 132 285 685 61 213 521 58 264 265 41,8 64,0 Cr30Al1TiNbZr 250067 112 287 692 67 227 532 65 280 280 41,6 64,2 Cr30Al1TiNb 250068 174 261 666 69 205 498 65 297 336 44,9 83,2 E Cr28Al2 250129 269 334 674 66 - - - 191 224 31,8 56,8 E Cr28Al2Y 250130 167 322 693 63 252 522 53 220 244 32,6 57,9 E Cr28Al2YC1 250132 189 301 669 65 - - - 226 226 40,2 64,0 E Cr28Al2Nb.5C1 250133 351 399 725 57 334 522 33 285 353 40,8 78,9 E Cr28Al2Nb.5C1 250148 365 353 704 60 284 523 58 259 344 41,2 79,5 E Cr28Al2Nb1C1 250134 384 448 794 59 410 579 28 343 377 44,4 99,4 E Cr28Al2Nb1 C1 250147 350 372 731 57 306 547 49 309 384 43,0 89,1 E Cr28Al2Nb1C1Y 250149 298 415 784 53 339 528 27 340 400 45,1 99,2 E Cr28Al2TiC1 250137 142 379 745 59 327 542 29 311 314 44,0 70,4 E Cr28Al2TiC1 250138 224 348 705 61 278 510 46 247 296 42,2 66,5 Tabelle 5: Ergebnisse der Oxidationsversuche bei 1000 °C an Luft nach 1056 h. Name Chg Versuch Nr mbrutto in g/m2 mnetto in g/m2 uumspall in g/m2 T Alloy 602 CA 160483 412 8,66 7,83 0,82 T Alloy 602 CA 160483 425 5,48 5,65 -0,18 T Alloy 601 156125 403 51,47 38,73 12,74 T Alloy 690 111389 412 23,61 7,02 16,59 T Alloy 690 111389 421 30,44 -5,70 36,14 T Alloy 690 111389 425 28,41 -0,68 29,09 Cr30Al1La 2297 412 36,08 -7,25 43,33 Cr30Al1LaT 2300 412 41,38 -2,48 43,86 Cr30Al1TiLa 2298 412 49,02 -30,59 79,61 Cr30Al1TiNbLa 2306 412 40,43 16,23 24,20 Cr30Al1CLaTi 2308 412 42,93 -15,54 58,47 Cr30Al1CLa 2299 412 30,51 0,08 30,44 Cr30Al2La 2302 412 27,25 9,57 17,68 E Cr30Al1Ti 2301 412 8,43 6,74 1,69 Cr30Al1Ti 250060 421 43,30 -19,88 63,17 Cr30Al1TiNb 250063 421 32,81 -22,15 54,96 Cr30Al1TiNb 250066 421 26,93 -16,35 43,28 Cr30Al1TiNbZr 250065 421 25,85 -24,27 50,12 Cr30Al1TiNb 250067 421 41,59 -15,56 57,16 Cr28Al2 250068 421 42,69 -39,26 81,95 E Cr28Al2Y 250129 425 3,72 3,55 0,16 E Cr28Al2YC1 250130 425 4,68 4,90 -0,23 E Cr28Al2Nb.5C1 250132 425 3,94 5,01 -1,07 E Cr28Al2Nb.5C1 250133 425 2,56 3,98 -1,42 E Cr28Al2Nb1C1 250148 425 3,15 3,21 -0,07 E Cr28Al2Nb1C1 250134 425 3,34 4,23 -0,89 E Cr28Al2Nb1C1Y 250147 425 2,72 2,62 0,10 E Cr28Al2TiC1 250149 425 3,44 3,84 -0,40 E Cr28Al2TiC1 250137 425 3,62 4,24 -0,62 E Cr30Al1La 250138 425 3,87 4,28 -0,41 Furthermore, optionally, the following relationship with respect to the strength-enhancing elements can be satisfied, which describes a particularly good hot strength or creep resistance: Fk 45 With
Figure imgb0042
Fk = Cr + 19 * Ti + 10 . 2 * al + 12 . 5 * Si + 98 * C
Figure imgb0043
wherein Cr, Ti, Al, Si and C are the concentration of the respective elements in mass%. The limits for Fa and the possible inclusion of other elements have been extensively explained in the previous text.
Figure imgb0044
Figure imgb0045
Figure imgb0046
Table 3b: Composition of laboratory batches, part 2. All data in mass% (For all alloys applies: Pb: max 0.002%, Zn: max 0.002%, Sn: max 0.002%) (meaning of T, E, G, L, see Table 3a) Surname Chg S P mg Ca V Zr Co Y LA_ B Hf Ta Ce O T G Alloy602CA 156817 0,002 0.005 0,004 0.001 0.03 0.08 0.05 0,060 - 0,003 - - - 0.001 T G Alloy602CA 160483 <0.002 0,007 0,010 0,002 - 0.09 0.04 0,070 - 0,003 - - - 0.001 T G Alloy601 156656 0,002 0,008 0,012 <0.01 0.03 0,015 0.04 - - 0.001 - - - 0.0001 T G Alloy690 80116 0,002 0,006 0,030 0.0009 - <0.002 0.02 - - 0,002 - - - 0.0005 T G Alloy690 111389 0,002 0.005 <0.001 0.0005 - - 0.01 - - - - - - 0.001 L Cr30Al1La 2297 0,004 0,003 0,015 <0.01 <0.01 <0.002 - <0.001 0.062 <0.001 <0.001 <0.005 0.001 0.0001 L Cr30Al1LaT 2300 0,003 0,002 0,014 <0.01 <0.01 <0.002 <0.001 <0.001 0,051 <0.001 <0.001 <0.005 0.001 0.0001 L Cr30Al1TiLa 2298 0,004 0,002 0.016 <0.01 <0.01 <0.002 <0.001 <0.001 0.058 <0.001 <0.001 <0.005 0.001 0,002 L Cr30Al1TiNbLa 2308 0,002 0,002 0,014 <0.01 <0.01 <0.002 - <0.001 0.093 <0.001 <0.001 <0.005 0.001 0,002 L Cr30Al1CLaTi 2299 0,003 0,002 0,015 <0.01 <0.01 <0.002 <0.001 <0.001 0.064 <0.001 <0.001 <0.005 0.001 0,002 L Cr30Al1CLa 2302 0,003 0,002 0,013 <0.01 <0.01 <0.002 0.001 <0.001 0.057 <0.001 <0.001 <0.005 0.001 0.0001 e L Cr30Al2La 2301 0,003 0,002 0,015 <0.01 <0.01 <0.002 <0.001 <0.001 0.058 <0.001 <0.001 <0.005 0.001 0,002 L Cr30Al1Ti 250060 0,003 0,002 0.009 <0.01 <0.01 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.001 0,003 L Cr30Al1Ti 250063 0,003 0,003 0,012 <0.01 <0.01 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.001 0,003 L Cr30Al1TiNb 250066 0,002 0,002 0,012 <0.01 <0.01 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.001 0,004 L Cr30Al1TiNb 250065 0,002 0,002 0,012 <0.01 <0.01 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.001 0.005 L Cr30Al1TiNbZr 250067 0,003 0,002 0,010 <0.01 <0.01 0,069 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.001 0,003 L Cr30Al1TiNb 250068 0,002 <0.002 0,010 <0.01 <0.01 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.001 0,004 e L Cr28Al2 250129 0,004 0,003 0.011 0.0002 <0.01 <0.002 - - - <0.0005 - - - 0.001 e L Cr28Al2Y 250130 0,003 0,003 0,013 <0.0002 <0.01 <0.002 - 0.063 - <0.0005 - - - 0.001 e L Cr28Al2YC1 250132 0,003 0,004 0.009 0.0012 0.01 0,003 <0.01 0.07 - 0.001 - - - 0.001 e L Cr28Al2Nb.5C1 250133 0.005 0,003 0.009 0.0012 <0.01 0,004 0.01 0.01 - - - - - 0.001 e L Cr28Al2Nb.5C1 250148 0,004 0,004 0,010 0.0005 0.01 - <0.01 <0.01 - - - - - 0,003 e L Cr28Al2Nb1C1 250134 0,006 0,002 0.009 0.0009 <0.01 0,006 0.01 0.01 - <0.0005 - - - 0,003 e L Cr28Al2Nb1C1 250147 0,002 0,002 0,010 0.0005 <0.01 0.01 0.01 0.01 - 0.0012 - - - 0.001 e L Cr28Al2Nb1C1Y 250149 0,004 0.005 0,013 <0.0005 <0.01 0,006 <0.01 0.08 - 0.0012 - - - 0,002 e L Cr28Al2TiC1 250137 0.005 0,004 0,008 0.0002 <0.01 0,004 <0.01 <0.01 - 0.0012 - - - 0.001 e L Cr28Al2TiC1 250138 0.005 0,004 0,010 0.0002 <0.01 0,003 0.01 <0.01 - 0.0012 - - - 0,004 Surname Chg KG in μm R p0.2 in MPa RT R m in MPa RT A 5 in% RT R p0.2 in MPa 600 ° C R m in MPa 600 ° C A 5 in% 600 ° C R p0.2 in MPa 800 ° C R m in MPa 800 ° C fa Fk T Alloy 602 CA 156817 76 292 699 36 256 578 41 186 198 63.0 76.9 T Alloy 602 CA 160483 76 340 721 42 254 699 69 186 197 62.2 79.6 T Alloy601 156656 136 238 645 53 154 509 54 133 136 43.3 56.3 T Aloy 690 80116 92 279 641 56 195 469 48 135 154 36.2 41.6 T Alloy 690 111389 72 285 630 50 188 465 51 - - 36.8 43.6 Cr30Al1La 2297 233 221 637 67 131 460 61 134 167 33.5 43.4 Cr30Al1LaT 2300 205 229 650 71 131 469 65 132 160 33.9 46.3 Cr30Al1TiLa 2298 94 351 704 59 228 490 31 149 161 39.7 51.5 Cr30Al1TiNbLa 2308 90 288 683 55 200 508 39 174 181 41.6 61.0 Cr30Al1CLaTi 2299 253 258 661 62 212 475 59 181 185 42.3 50.0 Cr30Al1CLa 2302 212 353 673 59 233 480 59 189 194 40.0 52.9 e Cr30Al2La 2301 155 375 716 66 298 504 49 275 277 33.2 55.6 Cr30Al1Ti 250060 114 252 662 67 183 509 62 143 154 39.3 50.4 Cr30Al1Ti 250063 118 252 659 70 178 510 57 148 152 39.6 52.9 Cr30Al1TiNb 250066 121 240 666 67 186 498 66 245 255 41.4 63.6 Cr30Al1TiNb 250065 132 285 685 61 213 521 58 264 265 41.8 64.0 Cr30Al1TiNbZr 250067 112 287 692 67 227 532 65 280 280 41.6 64.2 Cr30Al1TiNb 250068 174 261 666 69 205 498 65 297 336 44.9 83.2 e Cr28Al2 250129 269 334 674 66 - - - 191 224 31.8 56.8 e Cr28Al2Y 250130 167 322 693 63 252 522 53 220 244 32.6 57.9 e Cr28Al2YC1 250132 189 301 669 65 - - - 226 226 40.2 64.0 e Cr28Al2Nb.5C1 250133 351 399 725 57 334 522 33 285 353 40.8 78.9 e Cr28Al2Nb.5C1 250148 365 353 704 60 284 523 58 259 344 41.2 79.5 e Cr28Al2Nb1C1 250134 384 448 794 59 410 579 28 343 377 44.4 99.4 e Cr28Al2Nb1 C1 250147 350 372 731 57 306 547 49 309 384 43.0 89.1 e Cr28Al2Nb1C1Y 250149 298 415 784 53 339 528 27 340 400 45.1 99.2 e Cr28Al2TiC1 250137 142 379 745 59 327 542 29 311 314 44.0 70.4 e Cr28Al2TiC1 250138 224 348 705 61 278 510 46 247 296 42.2 66.5 Surname Chg Experiment No. m gross in g / m 2 m net in g / m 2 uum spall in g / m 2 T Alloy 602 CA 160483 412 8.66 7.83 0.82 T Alloy 602 CA 160483 425 5.48 5.65 -0.18 T Alloy 601 156125 403 51.47 38.73 12.74 T Alloy 690 111389 412 23.61 7.02 16.59 T Alloy 690 111389 421 30.44 -5.70 36.14 T Alloy 690 111389 425 28.41 -0.68 29,09 Cr30Al1La 2297 412 36.08 -7.25 43.33 Cr30Al1LaT 2300 412 41.38 -2.48 43.86 Cr30Al1TiLa 2298 412 49.02 -30.59 79.61 Cr30Al1TiNbLa 2306 412 40.43 16.23 24,20 Cr30Al1CLaTi 2308 412 42.93 -15.54 58.47 Cr30Al1CLa 2299 412 30.51 0.08 30.44 Cr30Al2La 2302 412 27.25 9.57 17.68 e Cr30Al1Ti 2301 412 8.43 6.74 1.69 Cr30Al1Ti 250060 421 43.30 -19.88 63.17 Cr30Al1TiNb 250063 421 32.81 -22.15 54.96 Cr30Al1TiNb 250066 421 26.93 -16.35 43.28 Cr30Al1TiNbZr 250065 421 25.85 -24.27 50.12 Cr30Al1TiNb 250067 421 41,59 -15.56 57.16 Cr28Al2 250068 421 42.69 -39.26 81,95 e Cr28Al2Y 250129 425 3.72 3.55 0.16 e Cr28Al2YC1 250130 425 4.68 4.90 -0.23 e Cr28Al2Nb.5C1 250132 425 3.94 5.01 -1.07 e Cr28Al2Nb.5C1 250133 425 2.56 3.98 -1.42 e Cr28Al2Nb1C1 250148 425 3.15 3.21 -0.07 e Cr28Al2Nb1C1 250134 425 3.34 4.23 -0.89 e Cr28Al2Nb1C1Y 250147 425 2.72 2.62 0.10 e Cr28Al2TiC1 250149 425 3.44 3.84 -0.40 e Cr28Al2TiC1 250137 425 3.62 4.24 -0.62 e Cr30Al1La 250138 425 3.87 4.28 -0.41

BezugszeichenlisteLIST OF REFERENCE NUMBERS

Figur 1FIG. 1
Metallverlust durch Metal Dusting als Funktion des Aluminium- und Chromgehaltes in einem stark aufkohlenden Gas mit 37 % CO, 9 % H2O, 7 % CO2, 46 % H2, das ac= 163 und p(02) = 2,5·10-27 hat.(aus Hermse, C.G.M. and van Wortel, J.C.: Metal dusting: relationship between alloy composition and degradation rate. Corrosion Engineering, Science and Technology 44 (2009), p. 182 - 185 ).Metal loss due to metal dusting as a function of aluminum and chromium content in a high carburizing gas with 37% CO, 9% H 2 O, 7% CO 2 , 46% H 2 , the a c = 163 and p (0 2 ) = 2 , 5 · 10 -27 has Hermse, CGM and van Wortel, JC: Metal dusting: relationship between alloy composition and degradation rate. Corrosion Engineering, Science and Technology 44 (2009), p. 182 - 185 ).
Figur 2FIG. 2
Mengenanteile der Phasen im thermodynamischen Gleichgewicht in Abhängigkeit von der Temperatur von Alloy 690 (N06690) am Beispiel der typischen Charge 111389.Amounts of the phases in the thermodynamic equilibrium as a function of the temperature of Alloy 690 (N06690) using the example of the typical charge 111389.
Figur 3FIG. 3
Mengenanteile der Phasen im thermodynamischen Gleichgewicht in Abhängigkeit von der Temperatur von Alloy 693 (N06693) am Beispiel von Alloy 3 aus Tabelle 2.Amounts of the phases in the thermodynamic equilibrium as a function of the temperature of Alloy 693 (N06693) using the example of Alloy 3 from Table 2.
Figur 4FIG. 4
Mengenanteile der Phasen im thermodynamischen Gleichgewicht in Abhängigkeit von der Temperatur von Alloy 693 (N06693) am Beispiel von Alloy 10 aus Tabelle 2.Amounts of the phases in the thermodynamic equilibrium as a function of the temperature of Alloy 693 (N06693) using the example of Alloy 10 from Table 2.

Claims (18)

  1. A nickel-chromium-aluminum alloy comprising (in % by mass) 24 to 33 % chromium, 1.8 to < 3.0 % aluminum, 0.10 to < 2.5 % iron, 0.001 to 0.50 % silicon, 0.005 to 2.0 % manganese, 0.00 to 0.60 % titanium, respectively 0.0002 to 0.05 % magnesium and/or calcium, 0.005 to 0.12 % carbon, 0.001 to 0.050 % nitrogen, 0.0001 to 0.20 oxygen, 0.001 to 0.030 % phosphorus, max. 0.010 % sulphur, max. 2.0 % molybdenum, max. 2.0 % tungsten, optionally 0.001 to < 0.50 % Nb, furthermore optionally containing a Y content of 0.01 to 0.20 %, a La content of 0.001 to 0.20 %, a cerium content of 0.001 to 0.20 %, a cerium composition metal content of 0.001 to 0.20 %, a zirconium content of 0.01 to 0.20 %, a B content of 0.0001 to 0.008 %, Co up 5.0 %, Cu up to max. 0.5 %, max. 0.5 % V, the remainder being nickel and the usual process-related impurities, wherein the following relations have to be met: Cr + Al 28
    Figure imgb0055
    and Fp 39.9 with
    Figure imgb0056
    Fp = Cr + 0.272 * Fe + 2.36 * Al + 2.22 * Si + 2.48 * Ti + 0.374 * Mo + 0.538 * W 11.8 * C
    Figure imgb0057
    wherein Cr, Fe, Al, Si, Ti, Mo, W and C are the concentrations of the concerning elements in % by mass, wherein if Nb is used, the formula 4a will be complemented by a term with Nb: Fp = Cr + 0.272 * Fe + 2.36 * Al + 2.22 * Si + 2.48 * Ti + 1.26 * Nb + 0.374 * Mo + 0.538 * W 11.8 * C
    Figure imgb0058
    and Cr, Fe, Al, Si, Ti, Nb, Mo, W and C are the concentration of the concerning element in % by mass.
  2. An alloy according to claim 1, comprising a chromium content of 25 to 33 %, in particular 26 to 33 %.
  3. An alloy according to claim 1 or 2, comprising a chromium content of > 25 to < 30 %.
  4. An alloy according to one of the claims 1 through 3, comprising an aluminum content of 2.0 to < 3.0 %.
  5. An alloy according to one of the claims 1 through 4, comprising a silicon content of 0.001 to 0.20 %.
  6. An alloy according to one of the claims 1 through 5, comprising a manganese content of 0.005 to 0.50 %.
  7. An alloy according to one of the claims 1 through 6, comprising a titanium content of 0.001 to 0.60 %.
  8. An alloy according to one of the claims 1 through 7, comprising a carbon content of 0.01 to 0.10 %.
  9. An alloy according to one of the claims 1 through 8, in which zircon is completely or partially substituted by 0.001 to 0.2 % hafnium.
  10. An alloy according to one of the claims 1 through 9, comprising maximum 0.5 % copper, wherein the formula 4a is complemented by a term with Cu: Fp = Cr + 0.272 * Fe + 2.36 * Al + 2.22 * Si + 2.48 * Ti + 0.477 * Cu + 0.374 * Mo + 0.538 * W 11.8 * C
    Figure imgb0059
    and Cr, Fe, Al, Si, Ti, Cu, Mo, W and C are the concentration of the concerning element in % by mass.
  11. An alloy according to one of the claims 1 through 10, wherein impurities in concentrations of max. 0.002 % Pb, max. 0.002 % Zn, max. 0.002 % Sn are set.
  12. An alloy according to one of the claims 1 through 11, in which the following formula is satisfied and thus a high-quality processing is achieved:
    Fa ≤ 60 (5a) < with Fa = Cr + 20.4*Ti + 201*C (6a) for an alloy without Nb, wherein Cr, Ti and C are the concentrations of the concerning elements in % by mass,
    respectively with Fa = Cr + 6.15*Nb + 20.4*Ti + 201*C (6b) for an alloy with Nb, wherein Cr, Nb, Ti and C are the concentrations of the concerning elements in % by mass.
  13. An alloy according to one of the claims 1 through 12, in which the following formula is satisfied and thus a very good high-temperature strength/creep strength is achieved: Fk 45
    Figure imgb0060
    with Fk = Cr + 19 * Ti + 10.2 * Al + 12.5 * Si + 98 * C
    Figure imgb0061
    for an alloy without B and Nb, wherein Cr, Nb, Ti, Al, Si and C are the concentrations of the concerning elements in % by mass,
    respectively with Fk = Cr + 19*Ti + 34.3*Nb + 10.2*Al + 12.5*Si + 98*C + 2245*B (8b) for an alloy with B and Nb,
    wherein Cr, Ti, Nb, Al, Si, C and B are the concentrations of the concerning elements in % by mass.
  14. A utilization of the alloy according to one of the claims 1 through 13 as band, sheet metal, wire, bar, longitudinally welded pipe and seamless pipe.
  15. A utilization of the alloy according to one of the claims 1 through 13 for manufacturing seamless pipes.
  16. A utilization of the alloy according to one of the claims 1 through 15 in heavily carburizing atmospheres.
  17. A utilization of the alloy according to one of the claims 1 through 15 as structural part in the petrochemical industry.
  18. A utilization of the alloy according to one of the claims 1 through 15 in furnace construction.
EP13731273.2A 2012-06-05 2013-05-15 Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance Active EP2855723B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012011161.4A DE102012011161B4 (en) 2012-06-05 2012-06-05 Nickel-chromium-aluminum alloy with good processability, creep resistance and corrosion resistance
PCT/DE2013/000268 WO2013182177A1 (en) 2012-06-05 2013-05-15 Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance

Publications (2)

Publication Number Publication Date
EP2855723A1 EP2855723A1 (en) 2015-04-08
EP2855723B1 true EP2855723B1 (en) 2016-10-05

Family

ID=48698848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13731273.2A Active EP2855723B1 (en) 2012-06-05 2013-05-15 Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance

Country Status (11)

Country Link
US (1) US9657373B2 (en)
EP (1) EP2855723B1 (en)
JP (1) JP6076472B2 (en)
KR (1) KR101668383B1 (en)
CN (1) CN104245978B (en)
BR (1) BR112014024761B1 (en)
DE (1) DE102012011161B4 (en)
ES (1) ES2605948T3 (en)
MX (1) MX362836B (en)
RU (1) RU2599324C2 (en)
WO (1) WO2013182177A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105452A1 (en) * 2011-02-01 2012-08-09 三菱重工業株式会社 Ni-BASED HIGH-CR ALLOY WIRE FOR WELDING, ROD FOR ARC-SHIELDED WELDING, AND METAL FOR ARC-SHIELDED WELDING
CN103725924B (en) * 2014-01-16 2016-01-20 南通波斯佳织造科技有限公司 A kind of nickelalloy and preparation method thereof
DE102014001328B4 (en) * 2014-02-04 2016-04-21 VDM Metals GmbH Curing nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001329B4 (en) 2014-02-04 2016-04-28 VDM Metals GmbH Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001330B4 (en) 2014-02-04 2016-05-12 VDM Metals GmbH Curing nickel-chromium-cobalt-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
CN106661675A (en) * 2014-08-18 2017-05-10 通用电气公司 Enhanced superalloys by zirconium addition
DE102015008322A1 (en) 2015-06-30 2017-01-05 Vdm Metals International Gmbh Process for producing a nickel-iron-chromium-aluminum wrought alloy with an increased elongation in the tensile test
CN105402413A (en) * 2015-11-26 2016-03-16 成都九十度工业产品设计有限公司 Compound gasket for engine
ITUA20161551A1 (en) 2016-03-10 2017-09-10 Nuovo Pignone Tecnologie Srl LEAGUE HAVING HIGH RESISTANCE TO OXIDATION AND APPLICATIONS OF GAS TURBINES THAT USE IT
JP6822563B2 (en) * 2017-06-08 2021-01-27 日本製鉄株式会社 Ni-based alloy pipe for nuclear power
KR20200030035A (en) * 2017-06-21 2020-03-19 오브쉬체스트보 에스 오그라니첸노이 오트벳스트베노스트유 “오베디넨나야 꼼파니야 루살 인제네르노-테크놀로지체스키 첸트르” Aluminum alloy
DE102018107248A1 (en) * 2018-03-27 2019-10-02 Vdm Metals International Gmbh USE OF NICKEL CHROME IRON ALUMINUM ALLOY
KR102142782B1 (en) * 2018-11-29 2020-08-10 주식회사 포스코 Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same
DE102020132193A1 (en) 2019-12-06 2021-06-10 Vdm Metals International Gmbh Use of a nickel-chromium-iron-aluminum alloy with good workability, creep resistance and corrosion resistance
DE102020132219A1 (en) * 2019-12-06 2021-06-10 Vdm Metals International Gmbh Use of a nickel-chromium-aluminum alloy with good workability, creep resistance and corrosion resistance
RU2748445C1 (en) * 2020-06-09 2021-05-25 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Heat resistant nickel based alloy and product made from it
RU208686U1 (en) * 2021-10-03 2021-12-29 Антон Владимирович Новиков Block of three hollow turbine guide vanes for gas turbine engines and power plants
DE102022105658A1 (en) * 2022-03-10 2023-09-14 Vdm Metals International Gmbh Process for producing a component from the semi-finished product of a nickel-chromium-aluminum alloy
DE102022105659A1 (en) * 2022-03-10 2023-09-14 Vdm Metals International Gmbh Process for producing a welded component from a nickel-chromium-aluminum alloy
CN114871624B (en) * 2022-06-09 2023-04-18 上海工程技术大学 Flux-cored wire for additive manufacturing of wagon wheels and preparation method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US488125A (en) 1892-12-13 Hub-blank for metal wheels
US4882125A (en) 1988-04-22 1989-11-21 Inco Alloys International, Inc. Sulfidation/oxidation resistant alloys
DE4111821C1 (en) 1991-04-11 1991-11-28 Vdm Nickel-Technologie Ag, 5980 Werdohl, De
ES2073873T3 (en) 1991-12-20 1995-08-16 Inco Alloys Ltd NI-CR ALLOY WITH HIGH TEMPERATURE RESISTANCE.
JPH0711366A (en) 1993-06-24 1995-01-13 Sumitomo Metal Ind Ltd Alloy excellent in hot workability and corrosion resistance in high temperature water
JPH07216511A (en) 1994-01-31 1995-08-15 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in strength at high temperature
JPH08127848A (en) 1994-11-01 1996-05-21 Sumitomo Metal Ind Ltd High chromium austenitic heat resistant alloy excellent in high temperature strength
RU2125110C1 (en) 1996-12-17 1999-01-20 Байдуганов Александр Меркурьевич High-temperature alloy
US5997809A (en) * 1998-12-08 1999-12-07 Inco Alloys International, Inc. Alloys for high temperature service in aggressive environments
KR100372482B1 (en) 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 Heat resistant Ni base alloy
JP3965869B2 (en) 2000-06-14 2007-08-29 住友金属工業株式会社 Ni-base heat-resistant alloy
JP3952861B2 (en) 2001-06-19 2007-08-01 住友金属工業株式会社 Metal material with metal dusting resistance
JP2003138334A (en) 2001-11-01 2003-05-14 Hitachi Metals Ltd Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
DE60206464T2 (en) 2001-12-21 2006-07-13 Hitachi Metals, Ltd. Ni alloy with improved oxidation resistance, hot strength and hot workability
DE10302989B4 (en) 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Use of a heat and corrosion resistant nickel-chromium steel alloy
JP2006274443A (en) 2005-03-03 2006-10-12 Daido Steel Co Ltd Nonmagnetc high-hardness alloy
US8568901B2 (en) 2006-11-21 2013-10-29 Huntington Alloys Corporation Filler metal composition and method for overlaying low NOx power boiler tubes
FR2910912B1 (en) 2006-12-29 2009-02-13 Areva Np Sas METHOD FOR THE HEAT TREATMENT OF ENVIRONMENTALLY ASSISTED CRACKING DISENSIBILIZATION OF A NICKEL-BASED ALLOY AND PART PRODUCED THEREBY THUS PROCESSED
JP2008214734A (en) * 2007-03-08 2008-09-18 Sumitomo Metal Ind Ltd Metallic material having excellent metal dusting resistance
JP4978790B2 (en) 2007-08-27 2012-07-18 三菱マテリアル株式会社 Mold member for resin molding
DE102008051014A1 (en) 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-chromium alloy
JP4780189B2 (en) * 2008-12-25 2011-09-28 住友金属工業株式会社 Austenitic heat-resistant alloy
JP5284252B2 (en) 2009-12-10 2013-09-11 株式会社神戸製鋼所 Ni-Cr-Fe alloy weld metal with excellent crack resistance

Also Published As

Publication number Publication date
JP2015524023A (en) 2015-08-20
CN104245978B (en) 2016-10-26
JP6076472B2 (en) 2017-02-08
DE102012011161A1 (en) 2013-12-05
US20150050182A1 (en) 2015-02-19
KR20150005706A (en) 2015-01-14
MX2014014557A (en) 2015-03-05
WO2013182177A1 (en) 2013-12-12
ES2605948T3 (en) 2017-03-17
US9657373B2 (en) 2017-05-23
RU2599324C2 (en) 2016-10-10
CN104245978A (en) 2014-12-24
MX362836B (en) 2019-02-19
DE102012011161B4 (en) 2014-06-18
KR101668383B1 (en) 2016-10-21
RU2014153531A (en) 2016-08-10
BR112014024761B1 (en) 2019-03-26
EP2855723A1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
EP2855723B1 (en) Nickel-chromium-aluminium alloy with good formability, creep strength and corrosion resistance
EP2855724B1 (en) Nickel-chromium alloy with good formability, creep strength and corrosion resistance
EP2678458B1 (en) Nickel-chromium-iron-aluminum alloy having good processability
EP3775308B1 (en) Use of a nickel-chromium-iron-aluminium alloy
EP3102710B1 (en) Nickel-chromium-cobalt-titanium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
EP3102711B1 (en) Nickel-chromium-aluminum alloy having good wear resistance, creep resistance, corrosion resistance and processability
EP2882881B1 (en) Usage of a nickel-chromium-iron-aluminium alloy with good workability
WO2017000932A1 (en) Method for producing a nickel-iron-chromium-aluminium wrought alloy with increased elongation in the tensile test
EP3102712B1 (en) Hardened nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and workability
DE2253148C3 (en) Process for the production of a ferritic, corrosion-resistant steel and its use
DE69106372T2 (en) ALLOY WITH LOW THERMAL EXPANSION COEFFICIENT AND ITEM PRODUCED FROM IT.
DE102020132193A1 (en) Use of a nickel-chromium-iron-aluminum alloy with good workability, creep resistance and corrosion resistance
DE102022110383A1 (en) Using a nickel-iron-chromium alloy with high resistance in carburizing and sulfiding and chlorinating environments while maintaining good workability and strength
DE102022110384A1 (en) Using a nickel-iron-chromium alloy with high resistance in highly corrosive environments while maintaining good workability and strength

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141029

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160304

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VDM METALS INTERNATIONAL GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 834743

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013004872

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161005

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2605948

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170205

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170206

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013004872

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170105

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

26N No opposition filed

Effective date: 20170706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170515

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240627

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240522

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240528

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240521

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240524

Year of fee payment: 12