EP2719869A1 - Axial sealing in a housing structure for a turbomachine - Google Patents
Axial sealing in a housing structure for a turbomachine Download PDFInfo
- Publication number
- EP2719869A1 EP2719869A1 EP12188322.7A EP12188322A EP2719869A1 EP 2719869 A1 EP2719869 A1 EP 2719869A1 EP 12188322 A EP12188322 A EP 12188322A EP 2719869 A1 EP2719869 A1 EP 2719869A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cavity
- housing structure
- flow channel
- housing wall
- structure according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000007789 sealing Methods 0.000 title claims description 22
- 239000012530 fluid Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 15
- 239000003570 air Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 12
- 239000000567 combustion gas Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/127—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/246—Fastening of diaphragms or stator-rings
Definitions
- the present invention relates to a housing structure for a turbomachine, in particular for a gas turbine or an aircraft engine.
- turbomachines such as gas turbines or aircraft engines
- air is drawn along a flow channel, compressed, and combusted in a combustion chamber along with fuel, and then the combustion gases are discharged through the flow channel, thereby driving in a turbine rotors.
- the flow channel is circumferentially surrounded by a housing structure, wherein in particular in the region of the combustion chamber and the subsequent turbine, prevail by the combustion gases very high temperatures in the flow channel, so that surrounding the flow channel housing structure must be efficiently cooled in order to achieve that the lowest possible operating temperatures are present in order to use materials with lower requirements for high-temperature properties.
- cooling air is passed into the area of the outer housing structure in order to bring about heat dissipation.
- insulators and heat shields are used in such housing structures to protect the outer components from excessive temperatures.
- the solution should be easy to implement.
- the invention is based on the consideration that through cavities in the housing structure a pressure equalization in the axial direction, ie along the flow direction of the hot gas in the flow channel can be effected by the pressure equalization corresponding gas flows are caused, such as the outflow of hot gas from the flow channel in the housing structure or the inflow of cooling air from the housing structure in the flow channel.
- a pressure equalization in the axial direction ie along the flow direction of the hot gas in the flow channel can be effected by the pressure equalization corresponding gas flows are caused, such as the outflow of hot gas from the flow channel in the housing structure or the inflow of cooling air from the housing structure in the flow channel.
- the present invention proposes to provide an axial seal in a corresponding cavity between an inner housing wall and an outer housing wall of a housing structure of a turbomachine, so that an axial pressure equalization is prevented as much as possible.
- the axial sealing at least two areas are created in a cavity, which are arranged one behind the other in the axial direction.
- the axial sealing takes place in such a way that different pressure conditions can be established in the regions which correspond to the different pressure conditions in the flow channel along the axial direction. This means, for example, that the pressure in the flow channel before a blade stage is higher than after a blade stage, so that correspondingly in a cavity in the housing structure in a region axially corresponding to the region before a blade stage, the pressure ratios are higher than in a region corresponding in position to a blade stage in its axial position ,
- the axial seal can be arranged in an axial position in the cavity, which corresponds to the axial position between an inlet edge and a trailing edge of a blade, in particular between a first and a second sealing tip of a blade.
- the leading edge of the blade upstream is understood as the leading edge, which therefore first comes into contact with the flowing hot gases.
- the trailing edge is the last region of the blade at which the flow gases leave the blade again.
- axial seals for a cavity In addition to a single axial seal for a cavity of course, several axial seals for a single cavity can be provided and a plurality of cavities with axial seals.
- the axial sealing can be realized by a cooperating with structural components sealing element, such as a flexible, heat-resistant sealing cord, which can cooperate with appropriately provided sealing walls.
- structural components sealing element such as a flexible, heat-resistant sealing cord, which can cooperate with appropriately provided sealing walls.
- other suitable structural components for producing the axial seal can be provided.
- the cavity which is provided with the axial seal, may be a cavity disposed directly on the inner housing wall, which may be separated from the outer housing wall and in particular spaced apart.
- that cavity is provided with an axial seal, which is arranged radially inwardly on the inner housing wall.
- the cavity may be an annular space around the flow channel circumferential cavity or a cavity which is provided only in segments around the flow channel.
- such cavities can be provided with axial seals, which have a cooling air supply.
- the attached figure shows in a purely schematic way a part of a housing structure according to the invention in a sectional view.
- the partial sectional view of the attached figure by an aircraft engine shows an outer housing wall 1 and an inner housing wall 2, which annularly surround a flow channel 15, in the blades 4 and vanes 5 are arranged.
- the inner housing wall 2 is formed by a lining with a scuffing pad 3, wherein sealing tips 6, 7, which may also be referred to as sealing fins, are arranged on the moving blade 4 in order to provide, together with the scraper pad 3, a seal which may also be referred to as "outer Air seal "is called.
- seal carrier 8 or heat shields 9, 10 are arranged, which should ensure that the outer housing wall 1 is as low as possible temperature, so as to select the material for the outer housing wall 1 not be limited by taking into account certain operating temperatures.
- a cavity 11 is formed, which extends along the inner housing wall 2 and which is at least separated from the outer housing wall 1 by the heat shield 10, and at least partially by the outer housing wall 1 is spaced.
- the cavity 11 is arranged in an annular manner around the flow channel 15 and is formed substantially closed, that is, that no defined openings are provided. Nevertheless, it comes due to the conditions prevailing in the flow channel 15 conditions and by the strong temperature change between operation and non-operation of the turbomachine and consequent structural conditions to a flow of hot gas from the flow channel 15 into the cavity 11. In addition, ambient air or in the Housing structure guided cooling air also penetrate into the cavity 11. Moreover, it is conceivable that the cavity 11 is also designed to guide cooling air and has corresponding openings for the entry of cooling air.
- a seal is provided in the cavity 11, which comprises two sealing plates 12, 13 and a sealing cord 14, wherein the axial seal 12, 13, 14 divides the cavity 11 into two areas 16, 17.
- the axial seal with the sealing walls 12 and 13 and the sealing cord 14 is arranged in an axial position corresponding to the axial position between the first and front sealing tip 6 and the second or rear sealing tip 7, so that the first region 16 with the flow channel in front of the Blade 4 corresponds, while the second region 17 corresponds to the region of the flow channel 15 after the blade.
- the seal 12,13,14 ensures that in the areas 16, 17 different pressure conditions can be adjusted, as in the flow channel in the area in front of the blade 4 and in the area after the blade 4. This avoids that in the cavity 11th a pressure equalization between an axially forward position and an axially rearward position may occur, which could cause exchange flows between the hot gas passage and a possible cooling air flow.
- the amount of hot gas that flows from the flow channel into the housing structure thus also reducing losses of cooling air, so that the efficiency of the machine is increased, and the temperatures in the housing structure can be lowered, or less cooling air is needed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Gehäusestruktur für eine Strömungsmaschine, insbesondere für eine Gasturbine oder ein Flugtriebwerk.The present invention relates to a housing structure for a turbomachine, in particular for a gas turbine or an aircraft engine.
Bei Strömungsmaschinen, wie Gasturbinen oder Flugtriebwerken, wird Luft entlang eines Strömungskanals angesaugt, verdichtet, und in einer Brennkammer zusammen mit Brennstoff verbrannt, wobei anschließend die Verbrennungsgase über den Strömungskanal ausgegeben werden, um dabei in einer Turbine Rotoren anzutreiben.In turbomachines, such as gas turbines or aircraft engines, air is drawn along a flow channel, compressed, and combusted in a combustion chamber along with fuel, and then the combustion gases are discharged through the flow channel, thereby driving in a turbine rotors.
Der Strömungskanal wird umlaufend von einer Gehäusestruktur umgeben, wobei insbesondere im Bereich der Brennkammer und der nachfolgenden Turbine, durch die Verbrennungsgase sehr hohe Temperaturen im Strömungskanal herrschen, sodass die den Strömungskanal umgebende Gehäusestruktur effizient gekühlt werden müssen, um zu erreichen, dass möglichst niedrige Betriebstemperaturen vorliegen, um so Werkstoffe mit geringeren Anforderungen an die Hochtemperatureigenschaften einsetzen zu können.The flow channel is circumferentially surrounded by a housing structure, wherein in particular in the region of the combustion chamber and the subsequent turbine, prevail by the combustion gases very high temperatures in the flow channel, so that surrounding the flow channel housing structure must be efficiently cooled in order to achieve that the lowest possible operating temperatures are present in order to use materials with lower requirements for high-temperature properties.
Hierzu wird Kühlluft in den Bereich der äußeren Gehäusestruktur geleitet, um eine Wärmeableitung zu bewirken. Zudem werden in derartigen Gehäusestrukturen Isolierungen und Hitzeschilde eingesetzt, die die äußeren Komponenten vor zu hohen Temperaturen schützen sollen.For this purpose, cooling air is passed into the area of the outer housing structure in order to bring about heat dissipation. In addition, insulators and heat shields are used in such housing structures to protect the outer components from excessive temperatures.
Allerdings kommt es bei bekannte Gehäusestrukturen aufgrund der im Strömungskanal herrschenden Verhältnisse und der konstruktiven Gegebenheiten, die beispielsweise die Temperaturwechsel zwischen einem Betriebszustand und einem Nicht-Betriebszustand ermöglichen müssen, zu einem Ausströmen von Heißgas aus dem Strömungskanal in die Gehäusestruktur und zu einem Einströmen von Kühlluft in den Strömungskanal. Da jedoch dadurch Wirkungsgradverluste entstehen und die Temperaturbelastung der Gehäusestruktur ansteigt, gilt es derartige Austauschströmungen zu vermeiden bzw. zu verringern.However, due to the conditions prevailing in the flow channel and the structural conditions which must allow, for example, the temperature changes between an operating state and a non-operating state, a leakage of hot gas from the flow channel into the housing structure and an inflow of cooling air occur in known housing structures the flow channel. However, as a result of efficiency losses arise and the temperature load of the housing structure increases, it is necessary to avoid such exchange flows or reduce.
Es ist deshalb Aufgabe der vorliegenden Erfindung, eine Gehäusestruktur für eine Strömungsmaschine, insbesondere für eine stationäre Gasturbine oder ein Flugtriebwerk bereitzustellen, bei welchem die Gehäusetemperatur verringert und der Wirkungsgrad der Strömungsmaschine durch Vermeidung von Heißgasverlusten in die Gehäusestruktur verbessert werden kann. Hierbei soll die Lösung einfach realisierbar sein.It is therefore an object of the present invention to provide a housing structure for a turbomachine, in particular for a stationary gas turbine or an aircraft engine, in which the housing temperature can be reduced and the efficiency of the turbomachine can be improved by avoiding hot gas losses in the housing structure. Here, the solution should be easy to implement.
Diese Aufgabe wird gelöst durch eine Gehäusestruktur mit den Merkmalen des Anspruchs 1, sowie eine Strömungsmaschine mit den Merkmalen des Anspruchs 8. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved by a housing structure with the features of
Die Erfindung geht aus von der Überlegung, dass durch Hohlräume in der Gehäusestruktur ein Druckausgleich in axialer Richtung, also entlang der Strömungsrichtung des Heißgases im Strömungskanal erfolgen kann, wobei durch den Druckausgleich entsprechende Gasströmungen verursacht werden, wie beispielsweise das Ausströmen von Heißgas aus dem Strömungskanal in die Gehäusestruktur oder das Einfließen von Kühlluft aus der Gehäusestruktur in den Strömungskanal. Um diese Austauschströmungen zu verringern oder zu vermeiden, ist es sinnvoll, den Druckausgleich über Hohlräume in der Gehäusestruktur zu unterdrücken, sodass dadurch die Austauschströmungen verhindert werden. Hierzu schlägt die vorliegende Erfindung vor, eine axiale Abdichtung in einem entsprechenden Hohlraum zwischen einer inneren Gehäusewand und einer äußeren Gehäusewand einer Gehäusestruktur einer Strömungsmaschine vorzusehen, sodass ein axialer Druckausgleich möglichst weitgehend verhindert wird.The invention is based on the consideration that through cavities in the housing structure a pressure equalization in the axial direction, ie along the flow direction of the hot gas in the flow channel can be effected by the pressure equalization corresponding gas flows are caused, such as the outflow of hot gas from the flow channel in the housing structure or the inflow of cooling air from the housing structure in the flow channel. In order to reduce or avoid these exchange flows, it is useful to suppress the pressure equalization through cavities in the housing structure, thereby preventing the exchange flows. For this purpose, the present invention proposes to provide an axial seal in a corresponding cavity between an inner housing wall and an outer housing wall of a housing structure of a turbomachine, so that an axial pressure equalization is prevented as much as possible.
Durch die axiale Abdichtung werden mindestens zwei Bereiche in einem Hohlraum geschaffen, die in axialer Richtung hintereinander angeordnet sind. Die axiale Abdichtung erfolgt dabei so, dass sich in den Bereichen unterschiedliche Druckverhältnisse einstellen können, die mit den unterschiedlichen Druckverhältnissen im Strömungskanal entlang der axialen Richtung korrespondieren. Dies bedeutet beispielsweise, dass der Druck im Strömungskanal vor einer Laufschaufelstufe höher ist, als nach einer Laufschaufelstufe, sodass entsprechend in einem Hohlraum in der Gehäusestruktur in einem Bereich, der axial dem Bereich vor einer Laufschaufelstufe entspricht, die Druckverhältnisse höher sind, als in einem Bereich, der in seiner axialen Position der Position nach einer Laufschaufelstufe entspricht.By the axial sealing at least two areas are created in a cavity, which are arranged one behind the other in the axial direction. The axial sealing takes place in such a way that different pressure conditions can be established in the regions which correspond to the different pressure conditions in the flow channel along the axial direction. This means, for example, that the pressure in the flow channel before a blade stage is higher than after a blade stage, so that correspondingly in a cavity in the housing structure in a region axially corresponding to the region before a blade stage, the pressure ratios are higher than in a region corresponding in position to a blade stage in its axial position ,
Entsprechend kann die axiale Abdichtung in einer axialen Position in dem Hohlraum angeordnet sein, die der axialen Position zwischen einer Eintrittskante und einer Austrittskante einer Laufschaufel, insbesondere zwischen einer ersten und einer zweiten Dichtspitze einer Laufschaufel entspricht. Unter Eintrittskante wird hierbei die vorderste Kante der Laufschaufel stromaufwärts verstanden, die also zuerst mit den strömenden Heißgasen in Berührung kommt. Entsprechend ist die Austrittskante der letzte Bereich der Laufschaufel, an dem die Strömungsgase die Schaufel wieder verlassen. Durch die Anordnung einer entsprechenden axialen Abdichtung in einem Hohlraum der Gehäusestruktur können sich in den abgetrennten Bereichen des Hohlraums zu den Druckverhältnissen im Strömungskanal korrespondierende Druckverhältnisse einstellen und ein Druckausgleich mit entsprechenden Austauschströmungen wird vermieden bzw. zumindest verringert.Accordingly, the axial seal can be arranged in an axial position in the cavity, which corresponds to the axial position between an inlet edge and a trailing edge of a blade, in particular between a first and a second sealing tip of a blade. In this case, the leading edge of the blade upstream is understood as the leading edge, which therefore first comes into contact with the flowing hot gases. Accordingly, the trailing edge is the last region of the blade at which the flow gases leave the blade again. By arranging a corresponding axial seal in a cavity of the housing structure, corresponding pressure conditions can be established in the separated regions of the cavity relative to the pressure conditions in the flow channel and pressure equalization with corresponding exchange flows is avoided or at least reduced.
Neben einer einzigen axialen Abdichtung für einen Hohlraum können selbstverständlich mehrere axiale Abdichtungen für einen einzigen Hohlraum vorgesehen werden sowie mehrere Hohlräume mit axialen Abdichtungen.In addition to a single axial seal for a cavity of course, several axial seals for a single cavity can be provided and a plurality of cavities with axial seals.
Die axiale Abdichtung kann durch ein mit Strukturbauteilen zusammenwirkendes Dichtelement realisiert werden, wie beispielsweise eine flexible, hitzebeständige Dichtschnur, die mit entsprechend vorgesehenen Dichtwänden zusammenwirken kann. Neben Dichtwänden können auch andere geeignete Strukturbauteile zur Herstellung der axialen Abdichtung vorgesehen werden.The axial sealing can be realized by a cooperating with structural components sealing element, such as a flexible, heat-resistant sealing cord, which can cooperate with appropriately provided sealing walls. In addition to sealing walls, other suitable structural components for producing the axial seal can be provided.
Der Hohlraum, der mit der axialen Abdichtung versehen wird, kann ein unmittelbar an der inneren Gehäusewand angeordneter Hohlraum sein, der von der äußeren Gehäusewand getrennt und insbesondere beabstandet ausgebildet sein kann. Somit wird beim Vorliegen von mehreren Hohlräumen in radialer Richtung hintereinander vorzugsweise derjenige Hohlraum mit einer axialen Abdichtung versehen, der radial innenliegend an der inneren Gehäusewand angeordnet ist.The cavity, which is provided with the axial seal, may be a cavity disposed directly on the inner housing wall, which may be separated from the outer housing wall and in particular spaced apart. Thus, in the presence of a plurality of cavities in the radial direction one behind the other, preferably that cavity is provided with an axial seal, which is arranged radially inwardly on the inner housing wall.
Der Hohlraum kann ein ringförmig um den Strömungskanal umlaufender Hohlraum sein oder ein Hohlraum, der lediglich segmentweise um den Strömungskanal vorgesehen ist.The cavity may be an annular space around the flow channel circumferential cavity or a cavity which is provided only in segments around the flow channel.
Neben geschlossenen Hohlräumen, die keine definierten Öffnungen aufweisen, wie beispielsweise Eintrittsöffnungen für Kühlluft, können auch derartige Hohlräume mit axialen Abdichtungen versehen werden, die eine Kühlluftzufuhr aufweisen.In addition to closed cavities which have no defined openings, such as inlet openings for cooling air, such cavities can be provided with axial seals, which have a cooling air supply.
Die beigefügte Figur zeigt in rein schematischer Weise einen Teil einer erfindungsgemäßen Gehäusestruktur in einer Schnittdarstellung.The attached figure shows in a purely schematic way a part of a housing structure according to the invention in a sectional view.
Weitere Vorteile, Kennzeichen und Merkmale der vorliegenden Erfindung werden bei der nachfolgenden detaillierten Beschreibung eins Ausführungsbeispiels deutlich. Allerdings ist die Erfindung nicht auf dieses Ausführungsbeispiel beschränkt.Further advantages, characteristics and features of the present invention will become apparent in the following detailed description of an embodiment. However, the invention is not limited to this embodiment.
Die teilweise Schnittdarstellung der beigefügten Figur durch ein Flugtriebwerk zeigt eine äußere Gehäusewand 1 und eine innere Gehäusewand 2, die ringförmig einen Strömungskanal 15 umgeben, in dem Laufschaufeln 4 und Leitschaufeln 5 angeordnet sind. Die innere Gehäusewand 2 ist durch eine Auskleidung mit einem Anstreifbelag 3 ausgebildet, wobei Dichtspitzen 6, 7, die auch als Dichtfins bezeichnet werden können, an der Laufschaufel 4 angeordnet sind, um zusammen mit dem Anstreifbelag 3 eine Abdichtung bereitzustellen, die auch als "outer air seal" bezeichnet wird. Durch das Anstreifen bzw. Einschleifen der Dichtspitzen 6,7 der Laufschaufel 4 in den Anstreifbelag 3 kann erreicht werden, dass in radialer Richtung möglichst keine quer dazu verlaufenden Spalten und Zwischenräume vorliegen, die es dem Heißgasstrom im Strömungskanal 15 erlauben würde, außen an den Schaufelblättern der Laufschaufeln 4 vorbeizuströmen, was zu Leistungseinbußen führen würde.The partial sectional view of the attached figure by an aircraft engine shows an
Zwischen der inneren und der äußeren Gehäusewand sind verschiedenen Komponenten, wie beispielsweise Dichtungsträger 8 oder Hitzeschilde 9, 10 angeordnet, die dafür sorgen sollen, dass an der äußeren Gehäusewand 1 eine möglichst niedrige Temperatur vorliegt, um so in der Auswahl des Werkstoffs für die äußere Gehäusewand 1 nicht durch Berücksichtigung bestimmter Einsatztemperaturen eingeschränkt zu sein.Between the inner and the outer housing wall, various components, such as
Durch die Hitzeschilde 9, 10 und den Dichtungsträger 8 ist ein Hohlraum 11 ausgebildet, der sich entlang der inneren Gehäusewand 2 erstreckt und der durch das Hitzeschild 10 zumindest getrennt von der äußeren Gehäusewand 1 ist, und zumindest teilweise auch von der äußeren Gehäusewand 1 beabstandet ist. Der Hohlraum 11 ist ringförmig um den Strömungskanal 15 angeordnet und ist im Wesentlichen geschlossen ausgebildet, d.h., dass keine definierten Öffnungen vorgesehen sind. Gleichwohl kommt es aufgrund der im Strömungskanal 15 herrschenden Bedingungen sowie durch den starken Temperaturwechsel zwischen Betrieb und Nicht-Betrieb der Strömungsmaschine und den dadurch bedingten konstruktiven Gegebenheiten zu einem Einströmen von Heißgas aus dem Strömungskanal 15 in den Hohlraum 11. Darüber hinaus kann Umgebungsluft oder in der Gehäusestruktur geführte Kühlluft ebenfalls in den Hohlraum 11 eindringen. Darüber hinaus ist es vorstellbar, dass der Hohlraum 11 ebenfalls zur Führung von Kühlluft ausgebildet ist und entsprechende Öffnungen zum Eintritt von Kühlluft aufweist.Through the
Im Hinblick auf den Wirkungsgrad der Strömungsmaschine und die Temperaturbelastung der Bauteile der Gehäusestruktur ist es weder wünschenswert, dass Heißgas aus dem Strömungskanal 15 in den Zwischenraum zwischen innerer Gehäusewand 2 und äußerer Gehäusewand 1 und insbesondere in den Hohlraum 11 gelangt, noch, dass Kühlluft möglicherweise in den Strömungskanal einströmt.In view of the efficiency of the turbomachine and the temperature loading of the components of the housing structure, it is neither desirable that hot gas from the
Zur Verbesserung der Dichteigenschaften der Gehäusestruktur ist in dem Hohlraum 11 eine Abdichtung vorgesehen, die zwei Abdichtbleche 12,13 und eine Dichtschnur 14 umfasst, wobei die axiale Abdichtung 12,13,14 den Hohlraum 11 in zwei Bereiche 16 und 17 unterteilt.To improve the sealing properties of the housing structure, a seal is provided in the
Die axiale Abdichtung mit den Dichtwänden 12 und 13 sowie der Dichtschnur 14 ist in einer axialen Position entsprechend der axialen Position zwischen der ersten bzw. vorderen Dichtspitze 6 und der zweiten bzw. hinteren Dichtspitze 7 angeordnet, sodass der erste Bereich 16 mit dem Strömungskanal vor der Laufschaufel 4 korrespondiert, während der zweite Bereich 17 mit dem Bereich des Strömungskanals 15 nach der Laufschaufel korrespondiert. Durch die Dichtung 12,13,14 ist sichergestellt, dass sich in den Bereichen 16, 17 unterschiedliche Druckverhältnisse einstellen können, wie im Strömungskanal im Bereich vor der Laufschaufel 4 und im Bereich nach der Laufschaufel 4. Dadurch wird vermieden, dass in dem Hohlraum 11 ein Druckausgleich zwischen einer axial vorderen Position und einer axial hinteren Position erfolgen kann, was Austauschströmungen zwischen dem Heißgaskanal sowie eine eventuellen Kühlluftströmung verursachen könnte. Dadurch lässt sich somit die Menge an Heißgas, die aus dem Strömungskanal in die Gehäusestruktur strömt, also auch Verluste von Kühlluft verringern, sodass der Wirkungsgrad der Maschine erhöht wird, und die Temperaturen in der Gehäusestruktur abgesenkt werden können, bzw. weniger Kühlluft benötigt wird.The axial seal with the
Obwohl die vorliegende Erfindung anhand des Ausführungsbeispiels detailliert beschrieben worden ist, ist die Erfindung nicht auf dieses Ausführungsbeispiels beschränkt, sondern es sind vielmehr Abwandlungen in der Weise möglich, das einzelne Merkmale weggelassen oder andersartige Kombinationen von Merkmalen verwirklicht werden, ohne dass der Schutzbereich der beigefügten Ansprüche verlassen wird. Die vorliegende Offenbarung umfasst sämtliche Kombinationen aller vorgestellter Einzelmerkmale.Although the present invention has been described in detail with reference to the embodiment, the invention is not limited to this embodiment, but rather variations in the manner are possible, the individual features omitted or other types of combinations of features are realized, without the scope of the appended claims will leave. The present disclosure includes all combinations of all presented individual features.
Claims (8)
dadurch gekennzeichnet, dass
der Hohlraum in axialer Richtung in mindestens zwei Bereiche (16,17) unterteilt ist, die mit einer axialen Abdichtung (12,13,14) so voneinander getrennt sind, dass sich entsprechend der axialen Position der Bereiche zu den Druckverhältnissen im Strömungskanal korrespondierende, unterschiedliche Druckverhältnisse einstellen.Housing structure for a turbomachine, in particular for a gas turbine or an aircraft engine, with an outer housing wall (1) and an inner housing wall (2), wherein the inner and outer housing wall annularly surround a flow channel (15) of the turbomachine and in the radial direction relative to the flow channel are spaced, wherein between the inner and outer housing wall at least one cavity (11) is formed,
characterized in that
the cavity in the axial direction is subdivided into at least two regions (16, 17) which are separated from one another by an axial seal (12, 13, 14) in such a way that corresponding to the axial position of the regions corresponding to the pressure conditions in the flow channel are different Adjust pressure conditions.
dadurch gekennzeichnet, dass
die axiale Abdichtung an einer axialen Position angeordnet ist, die der axialen Position zwischen einer Eintrittskante und einer Austrittskante einer Laufschaufel (4), insbesondere zwischen einer ersten und einer zweiten Dichtspitze (6,7) einer Laufschaufel entspricht.Housing structure according to claim 1,
characterized in that
the axial seal is arranged at an axial position which corresponds to the axial position between an entry edge and an exit edge of a blade (4), in particular between a first and a second sealing tip (6, 7) of a blade.
dadurch gekennzeichnet, dass
die axiale Abdichtung durch mindestens ein mit Strukturbauteilen (12,13) zusammenwirkendes Dichtelement (14) realisiert ist, insbesondere durch flexible, hitzebeständige Dichtschnüre.Housing structure according to claim 1 or 2,
characterized in that
the axial seal is realized by at least one sealing element (14) cooperating with structural components (12, 13), in particular by flexible, heat-resistant sealing cords.
dadurch gekennzeichnet, dass
der Hohlraum (11) von der äußeren Gehäusewand (1) getrennt und insbesondere beabstandet ausgebildet ist.Housing structure according to one of the preceding claims,
characterized in that
the cavity (11) separated from the outer housing wall (1) and in particular spaced.
dadurch gekennzeichnet, dass
der Hohlraum (11) ein ringförmig um den Strömungskanal umlaufender Hohlraum ist.Housing structure according to one of the preceding claims,
characterized in that
the cavity (11) is an annular ring around the flow channel circumferential cavity.
dadurch gekennzeichnet, dass
der Hohlraum (11) ein geschlossener Hohlraum ist.Housing structure according to one of the preceding claims,
characterized in that
the cavity (11) is a closed cavity.
dadurch gekennzeichnet, dass
der Hohlraum (11) unmittelbar an der inneren Gehäusewand (1) angeordnet ist.Housing structure according to one of the preceding claims,
characterized in that
the cavity (11) is arranged directly on the inner housing wall (1).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12188322.7A EP2719869A1 (en) | 2012-10-12 | 2012-10-12 | Axial sealing in a housing structure for a turbomachine |
US14/048,169 US9605551B2 (en) | 2012-10-12 | 2013-10-08 | Axial seal in a casing structure for a fluid flow machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12188322.7A EP2719869A1 (en) | 2012-10-12 | 2012-10-12 | Axial sealing in a housing structure for a turbomachine |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2719869A1 true EP2719869A1 (en) | 2014-04-16 |
Family
ID=47080314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12188322.7A Ceased EP2719869A1 (en) | 2012-10-12 | 2012-10-12 | Axial sealing in a housing structure for a turbomachine |
Country Status (2)
Country | Link |
---|---|
US (1) | US9605551B2 (en) |
EP (1) | EP2719869A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3179053A1 (en) * | 2015-12-07 | 2017-06-14 | MTU Aero Engines GmbH | Casing structure of a turbomachine with heat protection shield |
EP2725203B1 (en) * | 2012-10-23 | 2019-04-03 | MTU Aero Engines AG | Cool air guide in a housing structure of a fluid flow engine |
EP3000990B1 (en) | 2014-09-26 | 2019-05-29 | Rolls-Royce plc | A shroud segment retainer of a turbine |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014168804A1 (en) * | 2013-04-12 | 2014-10-16 | United Technologies Corporation | Blade outer air seal with secondary air sealing |
EP3090138B1 (en) * | 2013-12-03 | 2019-06-05 | United Technologies Corporation | Heat shields for air seals |
US10196912B2 (en) * | 2014-10-24 | 2019-02-05 | United Technologies Corporation | Bifurcated sliding seal |
US10370994B2 (en) | 2015-05-28 | 2019-08-06 | Rolls-Royce North American Technologies Inc. | Pressure activated seals for a gas turbine engine |
US20180347399A1 (en) * | 2017-06-01 | 2018-12-06 | Pratt & Whitney Canada Corp. | Turbine shroud with integrated heat shield |
DE102021124357A1 (en) | 2021-09-21 | 2023-03-23 | MTU Aero Engines AG | Heat protection element for a bearing chamber of a gas turbine |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3656862A (en) * | 1970-07-02 | 1972-04-18 | Westinghouse Electric Corp | Segmented seal assembly |
US4053254A (en) * | 1976-03-26 | 1977-10-11 | United Technologies Corporation | Turbine case cooling system |
DE2745130A1 (en) * | 1977-10-07 | 1979-04-12 | Motoren Turbinen Union | Sealing gap stabiliser for gas turbine engine - has internal cylinders supporting seal carrying rings opposite rotor blade tips |
US4925365A (en) * | 1988-08-18 | 1990-05-15 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Turbine stator ring assembly |
GB2226365A (en) * | 1988-12-22 | 1990-06-27 | Rolls Royce Plc | Turbomachine clearance control |
GB2261708A (en) * | 1991-11-20 | 1993-05-26 | Snecma | Turbo-shaft engine casing and blade mounting |
EP0937864A2 (en) * | 1998-02-20 | 1999-08-25 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Guidevane assembly for an axial turbomachine |
EP0940562A2 (en) * | 1998-03-03 | 1999-09-08 | Mitsubishi Heavy Industries, Ltd. | Gas turbine |
EP1106785A1 (en) * | 1999-12-07 | 2001-06-13 | Rolls-Royce Deutschland Ltd & Co KG | Channel for leakage air in the rotor of a turbomachine |
US20050232752A1 (en) * | 2004-04-15 | 2005-10-20 | David Meisels | Turbine shroud cooling system |
US8011879B2 (en) * | 2006-10-06 | 2011-09-06 | Snecma | Transition channel between two turbine stages |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4728257A (en) * | 1986-06-18 | 1988-03-01 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thermal stress minimized, two component, turbine shroud seal |
GB9027986D0 (en) | 1990-12-22 | 1991-02-13 | Rolls Royce Plc | Gas turbine engine clearance control |
DE10122464C1 (en) | 2001-05-09 | 2002-03-07 | Mtu Aero Engines Gmbh | Mantle ring for low pressure turbine stage of gas turbine uses segments each having seal carrier and relatively spaced security element with minimum contact between them |
US6997673B2 (en) * | 2003-12-11 | 2006-02-14 | Honeywell International, Inc. | Gas turbine high temperature turbine blade outer air seal assembly |
-
2012
- 2012-10-12 EP EP12188322.7A patent/EP2719869A1/en not_active Ceased
-
2013
- 2013-10-08 US US14/048,169 patent/US9605551B2/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3656862A (en) * | 1970-07-02 | 1972-04-18 | Westinghouse Electric Corp | Segmented seal assembly |
US4053254A (en) * | 1976-03-26 | 1977-10-11 | United Technologies Corporation | Turbine case cooling system |
DE2745130A1 (en) * | 1977-10-07 | 1979-04-12 | Motoren Turbinen Union | Sealing gap stabiliser for gas turbine engine - has internal cylinders supporting seal carrying rings opposite rotor blade tips |
DE2745130C2 (en) * | 1977-10-07 | 1980-01-03 | Mtu Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen | Sealing device for the free blade ends of axial turbines |
US4925365A (en) * | 1988-08-18 | 1990-05-15 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" | Turbine stator ring assembly |
GB2226365A (en) * | 1988-12-22 | 1990-06-27 | Rolls Royce Plc | Turbomachine clearance control |
GB2261708A (en) * | 1991-11-20 | 1993-05-26 | Snecma | Turbo-shaft engine casing and blade mounting |
EP0937864A2 (en) * | 1998-02-20 | 1999-08-25 | Mtu Motoren- Und Turbinen-Union MàNchen Gmbh | Guidevane assembly for an axial turbomachine |
EP0937864B1 (en) * | 1998-02-20 | 2003-08-13 | MTU Aero Engines GmbH | Guidevane assembly for an axial turbomachine |
EP0940562A2 (en) * | 1998-03-03 | 1999-09-08 | Mitsubishi Heavy Industries, Ltd. | Gas turbine |
EP0940562B1 (en) * | 1998-03-03 | 2006-10-18 | Mitsubishi Heavy Industries, Ltd. | Gas turbine |
EP1106785A1 (en) * | 1999-12-07 | 2001-06-13 | Rolls-Royce Deutschland Ltd & Co KG | Channel for leakage air in the rotor of a turbomachine |
EP1106785B1 (en) * | 1999-12-07 | 2004-01-14 | Rolls-Royce Deutschland Ltd & Co KG | Channel for leakage air in the rotor of a turbomachine |
US20050232752A1 (en) * | 2004-04-15 | 2005-10-20 | David Meisels | Turbine shroud cooling system |
US8011879B2 (en) * | 2006-10-06 | 2011-09-06 | Snecma | Transition channel between two turbine stages |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2725203B1 (en) * | 2012-10-23 | 2019-04-03 | MTU Aero Engines AG | Cool air guide in a housing structure of a fluid flow engine |
EP3000990B1 (en) | 2014-09-26 | 2019-05-29 | Rolls-Royce plc | A shroud segment retainer of a turbine |
EP3179053A1 (en) * | 2015-12-07 | 2017-06-14 | MTU Aero Engines GmbH | Casing structure of a turbomachine with heat protection shield |
US10422247B2 (en) | 2015-12-07 | 2019-09-24 | MTU Aero Engines AG | Housing structure of a turbomachine with heat protection shield |
Also Published As
Publication number | Publication date |
---|---|
US9605551B2 (en) | 2017-03-28 |
US20140105731A1 (en) | 2014-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2719869A1 (en) | Axial sealing in a housing structure for a turbomachine | |
DE69937652T2 (en) | Brush seal for a turbo machine | |
EP1736635B1 (en) | Air transfer system between compressor and turbine of a gas turbine engine | |
EP2696037B1 (en) | Sealing of the flow channel of a fluid flow engine | |
DE3338082A1 (en) | GAS TURBINE WITH IMPROVED COOLING AIR CIRCUIT | |
CH708646A2 (en) | Inner-cooled transition duct rear frame. | |
DE102010017362A1 (en) | Mechanical connection for a gas turbine engine | |
EP2596213B1 (en) | Steam turbine with an internal cooling | |
DE1475702B2 (en) | Labyrinth seal for bypass gas turbine jet engines | |
DE1601554A1 (en) | Rotor for gas turbine engines | |
DE102014103081A1 (en) | Flow sleeve assembly for a combustion module of a gas turbine combustor | |
DE102009021384A1 (en) | Flow device with cavity cooling | |
CH702000B1 (en) | Device with swirl chambers to the gap flow control in a turbine stage. | |
CH707830A2 (en) | Reconciliation channel with improved cooling for a turbomachine. | |
CH708854A2 (en) | Ansaugflächendichtung a rotary machine and method for assembling the same. | |
EP1876335A1 (en) | Secondary-air system for turbocharger turbine | |
CH708796A2 (en) | Sealing component for reducing secondary airflow in a turbine system. | |
EP2718545B1 (en) | Steamturbine comprising a dummy piston | |
EP1724526A1 (en) | Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine. | |
EP3307988A1 (en) | Rotor cooling for a steam turbine | |
EP0928364A1 (en) | Method of compensating pressure loss in a cooling air guide system in a gas turbine plant | |
DE102014110749A1 (en) | Systems and methods relating to the axial positioning of turbine housings and the blade tip gap in gas turbines | |
DE102011057131A1 (en) | Combustor assemblies for use in turbines and methods of assembling same | |
DE102014118426A1 (en) | Turbine blade and method for cooling a turbine blade of a gas turbine | |
CH702543A2 (en) | Turbo engine with an injector nozzle assembly. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MTU AERO ENGINES GMBH |
|
17P | Request for examination filed |
Effective date: 20140918 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MTU AERO ENGINES AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190212 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAV | Appeal reference deleted |
Free format text: ORIGINAL CODE: EPIDOSDREFNE |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20240620 |