Nothing Special   »   [go: up one dir, main page]

EP2627578B1 - Emballage transparent de compositions détergentes - Google Patents

Emballage transparent de compositions détergentes Download PDF

Info

Publication number
EP2627578B1
EP2627578B1 EP11767424.2A EP11767424A EP2627578B1 EP 2627578 B1 EP2627578 B1 EP 2627578B1 EP 11767424 A EP11767424 A EP 11767424A EP 2627578 B1 EP2627578 B1 EP 2627578B1
Authority
EP
European Patent Office
Prior art keywords
particles
coating
packaged product
product according
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11767424.2A
Other languages
German (de)
English (en)
Other versions
EP2627578A1 (fr
Inventor
Judith Maria Bonsall
Andrew Paul Chapple
John Francis Hubbard
Stephen Thomas Keningley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Priority to EP11767424.2A priority Critical patent/EP2627578B1/fr
Publication of EP2627578A1 publication Critical patent/EP2627578A1/fr
Application granted granted Critical
Publication of EP2627578B1 publication Critical patent/EP2627578B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means

Definitions

  • the present invention relates to concentrated particulate detergent compositions in visually appealing packaging according to the preamble of claim 1.
  • Concentrated particulate formulations offer huge environmental and cost savings. A major saving arises from the reduced package size, however, this itself presents the problem that the package is therefore less noticeable on shelf in a retail establishment. In order to overcome this visually interesting packaging can be employed however this often involves additional material which itself negates any environmental savings achieved by increased concentration of the particulate composition.
  • D 1 US 4 269 722 A discloses a bottled particulate detergent of certain particle sizes, bulk density and flowability contained in a necked bottle in which the the neck opening is sufficiently small as to allow ready sealing with screwcaps conventionally employed to close bottles while also allowing pouring from the bottle of the particulate detergent of the described characteristics.
  • D2 US 7 022 660 discloses a process for preparing a detergent particle having a coating layer of a water-soluble material is provided.
  • the process comprises providing a particle core of a detergent active material and the particle core is then at least partially covered by a particle coating layer of a water soluble coating material including double salt combinations of alkali metal carbonates and sulfates that reduces the surface area of the particle
  • D3 EP 1 081 219 A2 discloses a process for preparing a detergent particle having a coating layer of a water-soluble material.
  • the process comprises providing a particle core of a detergent active material and the particle core is then at least partially covered by a particle coating layer of a water soluble coating material including double salt combinations of alkali metal carbonates and sulfates that reduces the surface area of the particle.
  • An object of the invention is therefore to provide a packaged concentrated particulate detergent product which has visual interest but which reduces package material waste.
  • a packaged product according to claim 1 According to one aspect of the invention, a packaged product according to claim 1.
  • the combination according to the invention is advantageous in that it provides visually appealing concentrated particulate packaged product without excessive material. This is achieved by the combination of the coated particles and the transparent packaging.
  • the inner surfaces of the reservoir become coated with a fine dusting, which would affect the transparency. For this reason, traditionally powders are mostly sold in opaque cartons or pouches.
  • the large hard-coated particles of the invention do not for film over the reservoir surface.
  • the coating reduces the stickiness of the hygroscopic surfactant core to a point where the particles are free flowing across a surface. This together with the particle size means that any composition left in the package after tipping/pouring etc. are present in minor and localised amounts - which does not alter the transparency. A gentle tap releases them from the surface.
  • the or each transparent portion includes a base portion of the pack.
  • the or each transparent portion may extend longitudinally to include a base portion.
  • the or each transparent portion may comprise the as such that in plan view the package appears totally transparent. This has the advantage of communicating to the consumer the lack of fines whilst at the same time presenting a visually appealing pack, even if the package is tipped over to pour composition into a receptacle.
  • the package is sufficiently rigid in material or construction such that a portion e.g. the base or a side wall, can be tapped to move the particles throughout the reservoir. Such tapping creates audible feedback to the user to guide them as to the movement of the particles.
  • a rigid plastic bottle or tub or even a sachet would be advantageous.
  • the or each transparent portion comprises at least a part of the front face, such that the composition contained within is visible when viewed looking at front face (being the face normally front facing when placed on shelf either in a retail establishment or even at home).
  • the or each transparent portion comprises more than 50% of the surface area of the pack. More preferably the or each transparent portion comprises more than 60% of the surface area of the pack. Most preferably the or each transparent portion comprises more than 75% of the surface area of the pack.
  • transparent means that its light transmittance is greater than 25% at wavelength of about 410-800 nm.
  • the or each transparent portion according to the invention preferably has a transmittance of more than 25%, more preferably more than 30%, more preferably more than 40%, more preferably more than 50% in the visible part of the spectrum (approx. 410-800 nm).
  • absorbency of transparent layer may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 10 absorbency ⁇ 100 %
  • absorbency of the opaque layer may be measured as more than 0.6.
  • the container is considered to be transparent.
  • absorbency of bottle may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 10 absorbency x 100% and corresponding absorbency levels for the remaining preferred levels above.
  • Suitable materials for the package include, but are not limited to: polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyamides (PA) and/or polyethylene terephthalate (PETE), polyvinylchloride (PVC); and polystyrene (PS).
  • the container may formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding.
  • the packaged particles are substantially the same shape and size as one another.
  • This homogeneity can be viewed through the or each transparent portions and has great visual appeal.
  • the amount of coating on each coated particle is advantageously from 10 to 45, more preferably 20 to 35% by weight of the particles.
  • the number percentage of the packaged composition of particles comprising the core and coating is preferably at least 85%.
  • the coating comprises water soluble inorganic salt.
  • the coated particles preferably comprise from 0.001 to 3 wt% perfume.
  • the core of the coated particles preferably comprises less than 5 wt%, even more preferably less than 2.5 wt% inorganic materials.
  • the coating is preferably sodium carbonate, optionally in admixture with a minor amount of SCMC and further optionally in admixture with one or more of sodium silicate, water soluble fluorescer, water soluble or dispersible shading dye and pigment or coloured dye.
  • Each particle has perpendicular dimensions x, y and z, wherein x is from 0.2 to 2 mm, y is from 2.5 to 8mm (preferably 3 to 8 mm), and z is from 2.5 to 8 mm (preferably 3 to 8 mm),
  • the particles are desirably oblate spheroids with diameter of 3 to 6 mm and thickness of 1 to 2 mm.
  • At least some, and preferably a major portion by number of the particles are coloured other than white which has a greater visual effect. Multicoloured, e.g. some blue and some white, particles have been found to provide even higher visual appeal.
  • the cooled dried output from the evaporator or drier stage (b) comprising at least 95 wt% preferably 96 wt%, more preferably 97 wt%, most preferably 98 wt% surfactant to be transferred to a mill and milled to particles of less than 1.5 mm, preferably less than 1 mm average diameter before it is fed to the extrusion step (c).
  • a powdered flow aid such as Aerosil®, Alusil®, or Microsil®, with a particle diameter of from 0.1 to 10 ⁇ m may be added to the mill in an amount of 0.5 to 5 wt%, preferably 0.5 to 3 wt% (based on output from the mill) and blended into the particles during milling.
  • step b or the intermediate milling step, if used, is fed to the extruder, optionally along with minor amounts (less than 10 wt% total) of other materials such as perfume and/or fluorescer, and the mixture of materials fed to the extruder is extruded to form an extrudate with a diameter of greater than 2 mm, preferably greater than 3 mm, most preferably greater than 4 mm and preferably with a diameter of less than 7 mm, most preferably less than 5 mm, while periodically cutting the extrudate to form hard detergent particles with a maximum thickness of greater than 0.2 mm and less than 3 mm, preferably less than 2 mm, most preferably less than about 1.5 mm and more than about 0.5 mm, even 0.7 mm.
  • the invention also encompasses other cross sections such as triangular, rectangular and even complex cross sections, such as one mimicking a flower with rotationally symmetrical "petals".
  • the invention can be operated on any extrudate that can be forced through a hole in the extruder or extruder plate; the key being that the average thickness of the extrudate should be kept below the level where dissolution will be slow. As discussed above this is a thickness of about 2 mm. Desirably multiple extrusions are made simultaneously and they may all have the same cross section or may have different cross sections. Normally they will all have the same length as they are cut off by the knife.
  • the cutting knife should be as thin as possible to allow high speed extrusion and minimal distortion of the extrudate during cutting.
  • the extrusion should preferably take place at a temperature of less than 45°C, more preferably less than 40°C to avoid stickiness and facilitate cutting.
  • the extrudates according to the present process are cut so that their major dimension is across the extruder and the minor dimension is along the axis of the extruder. This is the opposite to the normal extrusion of surfactants. Cutting in this way increases the surface area that is a "cut" surface. It also allows the extruded particle to expand considerably along its axis after cutting, whilst maintaining a relatively high surface to volume ratio, which is believed to increase its solubility and also results in an attractive biconvex, or lentil, appearance. Elsewhere we refer to this shape as an oblate spheroid. This is essentially a rotation of an ellipse about its minor axis.
  • the LAS containing surfactant blends can be extruded to make solid detergent particles that are hard enough to be used without any need to be structured by inorganic materials or other structurants as commonly found in prior art extruded detergent particles.
  • the amount of surfactant in the detergent particle can be much higher and the amount of builder in the detergent particle can be much lower.
  • the blend in step (a) comprises at least about 60 wt%, most preferably at least about 70 wt% surfactant and preferably at most about 40 wt%, most preferably at most 30 wt% water, the surfactant part consisting of at least 51 wt% linear alkyl benzene sulphonate salt (LAS) and at least one co-surfactant;
  • the co-surfactant is chosen from the group consisting of: SLES, and nonionic, together with optional soap and mixtures thereof.
  • the upper limit for the amount of nonionic surfactant has been found to be 20 wt% of the total surfactant to avoid the dried material being too soft and cohesive to extrude because it has a hardness value less than 0.5 MPa.
  • the surfactant blend is dried in step (b) to a moisture content of less than 1.2 wt%, more preferably less than 1.1 wt%, and most preferably less than 1 wt%.
  • Drying may suitably be carried out using a wiped film evaporator or a Chemithon Turbo Tube® drier.
  • the extruded hard detergent particles may be coated by transferring them to a fluid bed and spraying onto them up to 40 wt% (based on coated detergent particle) of inorganic material in aqueous solution and drying off the water.
  • the coating material is not contributing to the wash performance of the composition then it is desirable to keep the level of coating as low as possible, preferably less than 35 wt% even less than 30 wt%, especially for larger extruded particles with a surface area to volume ratio of greater than 4 mm -1 .
  • the detergent composition comprises at least 70 wt%, preferably at least 85 wt% of coated particles made using the process. However, compositions with up to 100 wt% of the particles are possible when basic additives are incorporated into the extruded particles, or into their coating.
  • the composition may also comprise, for example, an antifoam granule.
  • the coating is coloured. Particles of different colours may be used in admixture, or they can be blended with contrasting powder. Of course, particles of the same colour as one another may also be used to form a full composition. As described above the coating quality and appearance is very good due to the excellent surface of the cut extrudates onto which the coating is applied in association with the large particle size and S/V ratios of the preferred particles.
  • the detergent particles comprise perfume.
  • the perfume may be added into the extruder or premixed with the surfactant blend in the mill, or in a mixer placed after the mill, either as a liquid or as encapsulated perfume particles.
  • the perfume may be mixed with a nonionic material and blended. Such a blend may alternatively be applied by coating the extruded particles, for example by spraying it mixed with molten nonionic surfactant.
  • Perfume may also be introduced into the composition by means of a separate perfume granule and then the detergent particle does not need to comprise any perfume.
  • the composition comprises greater than 50 wt% detergent surfactant.
  • Surfactant blends that do not require builders to be present for effective detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. Thus, it may be advantageous if the extruded core is made using a calcium tolerant surfactant blend according to the test herein described.
  • the detergent may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used.
  • LAS can be at least partially replaced by MES, or, less preferably, partially replaced by up to 20 wt% PAS.
  • the surfactants are mixed together before being input to the drier. Conventional mixing equipment is used.
  • scraped film devices may be used.
  • a preferred form of scraped film device is a wiped film evaporator.
  • One such suitable wiped film evaporator is the "Dryex system" based on a wiped film evaporator available from Ballestra S.p.A..
  • Alternative drying equipment includes tube-type driers, such as a Chemithon Turbo Tube® drier, and soap driers.
  • the hot material exiting the scraped film drier is subsequently cooled and broken up into suitable sized pieces to feed to the extruder. Simultaneous cooling and breaking into flakes may conveniently be carried out using a chill roll. If the flakes from the chill roll are not suitable for direct feed to the extruder then they can be milled in a milling apparatus and/or they can be blended with other liquid or solid ingredients in a blending and milling apparatus, such as a ribbon mill. Such milled or blended material is desirably of particle size 1 mm or less for feeding to the extruder.
  • Particulate material with a mean particle size of 10 nm to 10 ⁇ m is preferred for use as a milling aid.
  • materials there may be mentioned, by way of example: aerosil®, alusil®, and microsil®.
  • the extruder provides further opportunities to blend in ingredients other than surfactants, or even to add further surfactants.
  • all of the anionic surfactant, or other surfactant supplied in admixture with water; i.e. as paste or as solution, is added into the drier to ensure that the water content can then be reduced and the material fed to and through the extruder is sufficiently dry.
  • Additional materials that can be blended into the extruder are thus mainly those that are used at very low levels in a detergent composition: such as fluorescer, shading dye, enzymes, perfume, silicone antifoams, polymeric additives and preservatives.
  • Solid additives are generally preferred. Liquids, such as perfume may be added at levels up to 2.5 wt%, preferably up to 1.5 wt%. Solid particulate structuring (liquid absorbing) materials or builders, such as zeolite, carbonate, silicate are preferably not added to the blend being extruded. These materials are not needed due to the self structuring properties of the very dry LAS-based feed material. If any is used the total amount should be less than 5 wt%, preferably less than 4 wt%, most preferably less than 3 wt%. At such levels no significant structuring occurs and the inorganic particulate material is added for a different purpose, for instance as a flow aid to improve the feed of particles to the extruder.
  • the output from the extruder is shaped by the die plate used.
  • the extruded material has a tendency to swell up in the centre relative to the periphery.
  • An advantageous variant of the process takes the sliced extruded particles and coats them. This allows the particles to be coloured easily. It also further reduces the stickiness of the hygroscopic surfactant core to a point where the particles are free flowing. Coating makes them more suitable for use in detergent compositions that may be exposed to high humidity for long periods.
  • the thickness of coating obtainable by use of a coating level of say 5 wt% is much greater than would be achieved on typically sized detergent granules (0.5-2mm diameter sphere).
  • the extruded particles can be considered as oblate spheroids with a major radius "a” and minor radius "b".
  • this surface area to volume ratio must be greater than 3 mm-1.
  • the coating thickness is inversely proportional to this coefficient and hence for the coating the ratio "Surface area of coated particle" divided by "Volume of coated particle” should be less than 15 mm-1.
  • any known coating may be used, for instance organic, including polymer
  • An aqueous spray-on of coating solution in a fluidised bed may also generate a further slight rounding of the detergent particles during the fluidisation process.
  • Suitable inorganic coating solutions include sodium carbonate, possibly in admixture with sodium sulphate, and sodium chloride. Food dyes, shading dyes, fluorescer and other optical modifiers can be added to the coating by dissolving them in the spray-on solution or dispersion.
  • Use of a builder salt such as sodium carbonate is particularly advantageous because it allows the detergent particle to have an even better performance by buffering the system in use at an ideal pH for maximum detergency of the anionic surfactant system. It also increases ionic strength, which is known to improve cleaning in hard water, and it is compatible with other detergent ingredients that may be admixed with the coated extruded detergent particles.
  • the amount of coating should lie in the range 3 to 50 wt% of the particle, preferably 20 to 40 wt% for the best results in terms of anti-caking properties of the detergent particles.
  • the coated particles dissolve easily in water and leave very low or no residues on dissolution, due to the absence of insoluble structurant materials such as zeolite.
  • the coated particles have an exceptional visual appearance, due to the smoothness of the coating coupled with the smoothness of the underlying particles, which is also believed to be a result of the lack of particulate structuring material in the extruded particles.
  • the coated detergent particle is curved.
  • the size is such that y and z are at least 3 mm, preferably 4 mm, most preferably 5 mm and x lies in the range 1 to 2 mm.
  • the coated detergent detergent particle may be shaped as a disc.
  • the core is primarily surfactant. It may also include detergency additives, such as perfume, shading dye, enzymes, cleaning polymers and soil release polymers.
  • the coated detergent particle preferably comprises between 50 to 90 wt% of a surfactant, most preferably 70 to 90 wt %.
  • a surfactant most preferably 70 to 90 wt %.
  • the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described " Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of " McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
  • the surfactants used are saturated.
  • Suitable anionic detergent compounds that may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C8 to C18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C9 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • anionic surfactants are sodium lauryl ether sulphate (SLES), particularly preferred with 1 to 3 ethoxy groups, sodium C10 to C15 alkyl benzene sulphonates and sodium C12 to C18 alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides. The chains of the surfactants may be branched or linear.
  • the fatty acid soap used preferably contains from about 16 to about 22 carbon atoms, preferably in a straight chain configuration.
  • the anionic contribution from soap may be from 0 to 30 wt% of the total anionic. Use of more than 10 wt% soap is not preferred.
  • At least 50 wt% of the anionic surfactant is selected from: sodium C11 to C15 alkyl benzene sulphonates; and, sodium C12 to C18 alkyl sulphates.
  • the anionic surfactant is present in the coated detergent particle at levels between 15 to 85 wt%, more preferably 50 to 80 wt%.
  • Suitable non-ionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
  • Preferred nonionic detergent compounds are C6 to C22 alkyl phenolethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C8 to C18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 50 EO.
  • the non-ionic is 10 to 50 EO, more preferably 20 to 35 EO. Alkyl ethoxylates are particularly preferred.
  • the non-ionic surfactant is present in the coated detergent particle at levels between 5 to 75 wt%, more preferably 10 to 40 wt%.
  • Cationic surfactant may be present as minor ingredients at levels preferably between 0 to 5 wt%.
  • surfactants are mixed together before being dried. Conventional mixing equipment may be used.
  • the surfactant core of the detergent particle may be formed by roller compaction and subsequently coated with an inorganic salt.
  • the core is calcium tolerant and this is a preferred aspect because this reduces the need for a builder.
  • Surfactant blends that do not require builders to be present for effective detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. However, the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used.
  • Suitable calcium tolerant co-surfactants include SLES 1-7EO, and alkyl ethoxylate non-ionic surfactants, particularly those with melting points less than 40°C.
  • a LAS/SLES surfactant blend has a superior foam profile to a LAS Nonionic surfactant blend and is therefore preferred for hand washing formulations requiring high levels of foam.
  • SLES may be used at levels of up to 30%.
  • a LAS/NI surfactant blend provides a harder particle and its lower foam profile makes it more suited for automatic washing machine use.
  • the main component of the coating is the water soluble inorganic salt.
  • Other water compatible ingredients may be included in the coating.
  • fluorescer for example fluorescer, SCMC, shading dye, silicate, pigments and dyes.
  • the water soluble inorganic salts are preferably selected from sodium carbonate, sodium chloride, sodium silicate and sodium sulphate, or mixtures thereof, most preferably 70 to 100 wt% sodium carbonate.
  • the water soluble inorganic salt is present as a coating on the particle.
  • the water soluble inorganic salt is preferably present at a level that reduces the stickiness of the detergent particle to a point where the particles are free flowing.
  • the amount of coating should lay in the range 1 to 40 wt % of the particle, preferably 20 to 40 wt %, even more preferably 25 to 35 wt % for the best results in terms of anti-caking properties of the detergent particles.
  • the coating is applied to the surface of the surfactant core, by crystallisation from an aqueous solution of the water soluble inorganic salt.
  • the aqueous solution preferably contains greater than 50g/L, more preferably 200 g/L of the salt.
  • An aqueous spray-on of the coating solution in a fluidised bed has been found to give good results and may also generate a slight rounding of the detergent particles during the fluidisation process. Drying and/or cooling may be needed to finish the process.
  • the thickness of coating obtainable by use of a coating level of say 5 wt% is much greater than would be achieved on typically sized detergent granules (0.5-2 mm diameter sphere).
  • this surface area to volume ratio must be greater than 3 mm -1 .
  • the coating thickness is inversely proportional to this coefficient and hence for the coating the ratio "Surface area of coated particle" divided by "Volume of coated particle” should be less than 15 mm -1 .
  • a preferred calcium tolerant coated detergent particle comprises 15 to 100 wt% anionic surfactant of which 20 to 30 wt % is sodium lauryl ether sulphate.
  • Dye may advantageously be added to the coating, as noted above it may also be added to the surfactant mix in the core. In that case preferably the dye is dissolved in the surfactant before the core is formed.
  • Dyes are selected from anionic and non-ionic dyes
  • Anionic dyes are negatively charged in an aqueous medium at pH 7.
  • Examples of anionic dyes are found in the classes of acid and direct dyes in the Color Index (Society of Dyers and Colourists and American Association of Textile Chemists and Colorists).
  • Anionic dyes preferably contain at least one sulphonate or carboxylate groups.
  • Non-ionic dyes are uncharged in an aqueous medium at pH 7, examples are found in the class of disperse dyes in the Color Index.
  • the dyes may be alkoxylated.
  • Alkoxylated dyes are preferably of the following generic form: Dye-NR1 R2.
  • the NR1 R2 group is attached to an aromatic ring of the dye.
  • R1 and R2 are independently selected from polyoxyalkylene chains having 2 or more repeating units and preferably having 2 to 20 repeating units. Examples of polyoxyalkylene chains include ethylene oxide, propylene oxide, glycidol oxide, butylene oxide and mixtures thereof.
  • a preferred alkoxylated dye for use in the invention is:
  • the dye is selected from acid dyes; disperse dyes and alkoxylated dyes.
  • the dye is a non-ionic dye.
  • the dye is selected from those having: anthraquinone; mono-azo; bisazo; xanthene; phthalocyanine; and, phenazine chromophores. More preferably the dye is selected from those having: anthraquinone and, mono-azo chromophores.
  • the dye is added to the coating slurry and agitated before applying to the core of the particle.
  • Application may be by any suitable method, preferably spraying on to the core particle as detailed above.
  • the dye may be any colour, preferable the dye is blue, violet, green or red. Most preferably the dye is blue or violet.
  • the dye is selected from: acid blue 80, acid blue 62, acid violet 43, acid green 25, direct blue 86, acid blue 59, acid blue 98, direct violet 9, direct violet 99, direct violet 35, direct violet 51, acid violet 50, acid yellow 3, acid red 94, acid red 51, acid red 95, acid red 92, acid red 98, acid red 87, acid yellow 73, acid red 50, acid violet 9, acid red 52, food black 1, food black 2, acid red 163, acid black 1, acid orange 24, acid yellow 23, acid yellow 40, acid yellow 11, acid red 180, acid red 155, acid red 1, acid red 33, acid red 41, acid red 19, acid orange 10, acid red 27, acid red 26, acid orange 20, acid orange 6, sulphonated Al and Zn phthalocyanines, solvent violet 13, disperse violet 26, disperse violet 28, solvent green 3, solvent blue 63, disperse blue 56, disperse violet 27, solvent yellow 33, disperse blue 79:1.
  • the dye is preferably a shading dye for imparting a perception of whiteness to a detergent textile.
  • the dye may be covalently bound to polymeric species.
  • a combination of dyes may be used.
  • the coated detergent particle comprises from 70 to 100 wt%, more preferably 85 to 90 wt%, of a detergent composition in a package.
  • the coated detergent particles are substantially the same shape and size by this is meant that at least 90 to 100% of the coated detergent particles in the in the x, y and z dimensions are within a 20%, preferably 10%, variable from the largest to the smallest coated detergent particle in the corresponding dimension.
  • the particle preferably comprises from 0 to 15 wt % water, more preferably 0 to 10 wt %, most preferably from 1 to 5 wt % water, at 293K and 50% relative humidity. This facilitates the storage stability of the particle and its mechanical properties.
  • ingredients described below may be present in the coating or the core.
  • the coated detergent particle preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Suitable Fluorescers for use in the invention are described in chapter 7 of Industrial Dyes edited by K. Hunger 2003 Wiley-VCH ISBN 3-527-30426-6 .
  • Preferred fluorescers are selected from the classes distyrylbiphenyls, triazinylaminostilbenes, bis(1,2,3-triazol-2-yl)stilbenes, bis(benzo[b]furan-2-yl)biphenyls, 1,3-diphenyl-2-pyrazolines and courmarins.
  • the fluorescer is preferably sulphonated.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
  • Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
  • Pyrazoline compounds e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • Tinopal® DMS is the disodium salt of disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate.
  • Tinopal® CBS is the disodium salt of disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co .
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the coated detergent particles do not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • the composition may comprise one or more further polymers.
  • further polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polyethylene imines, ethoxylated polyethylene imines, water soluble polyester polymers polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • One or more enzymes are preferably present in the composition.
  • the level of each enzyme is from 0.0001 wt% to 0.5 wt% protein.
  • enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
  • lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 , WO 09/107091 and WO09/111258 .
  • Preferred lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM (Novozymes A/S) and LipocleanTM.
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme that has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes that participate in the hydrolysis of phospholipids.
  • phospholipases A1 and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • Suitable protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverIaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • the method may be carried out in the presence of cutinase. classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
  • Suitable amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
  • Cellulases include CelluzymeTM, CarezymeTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation).
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618 , WO 951106 Il2, and WO 98/15257 . Peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • Sequestrants may be present in the detergent particles.
  • coated large detergent particles are manufactured, following the process in PCT/EP2010/055256 .
  • Surfactant raw materials were mixed together to give a 67 wt% active paste comprising 85 parts LAS (linear alkyl benzene sulphonate), 15 parts Nonionic Surfactant.
  • the raw materials used were:
  • the dried surfactant blend dropped onto a chill roll, where it was cooled to less than 30°C.
  • the cooled dried surfactant blend particles were milled using a hammer mill, 2% Alusil® was also added to the hammer mill as a mill aid.
  • the resulting milled material is hygroscopic and so it was stored in sealed containers.
  • the average particle diameter and thickness of samples of the extruded particles were found to be 4.46 mm and 1.13 mm respectively.
  • the standard deviation was acceptably low.
  • Coated particles composition is given in Table 4.
  • coated extruded particles have an excellent appearance due to their high surface smoothness. Without wishing to be bound by theory it is thought that this is because the uncoated particles are larger and more flattened than usual detergent particles and that their core has a much lower solids content than usual (indeed it is free of solid structuring materials, unlike prior art coated extruded particles).
  • the BD container was fitted with a removable collar to extend the height of the container. This extended container was then filled via the poured BD technique. The extended container was then placed on a Retsch Sieve Shaker and allowed to vibrate/tap for 5 min using the 0.2mm/"g" setting on the instrument. The collar was then removed and the excess powder levelled as per the standard BD measurement, the mass of the container measured and the Tapped BD calculated in the usual way.
  • Standard DFR Dynamic Flow Rate
  • a cylindrical glass tube having an internal diameter of 35 mm and a length of 600 mm.
  • the tube is securely clamped with its longitudinal axis vertical. Its lower end is terminated by means of a smooth cone of polyvinyl chloride having an internal angle of 15 DEG and a lower outlet orifice of diameter 22.5 mm.
  • a beam sensor is positioned 150 mm above the outlet, and a second beam sensor is positioned 250 mm above the first sensor.
  • the outlet orifice is temporarily closed, for example, by covering with a piece of card, and detergent composition is poured into the top of the cylinder until the detergent composition level is about 100 mm above the upper sensor.
  • the outlet is then opened and the time t (seconds) taken for the detergent composition level to fall from the upper sensor to the lower sensor is measured electronically.
  • the DFR is the tube volume between the sensors, divided by the time measured.
  • Uncoated crystals do however, flow much better than the uncoated prior art powders. It is thus feasible to use a small proportion of uncoated crystals in the composition, say up to 30% of the total particles, preferably up to 15 % by number.
  • the coated crystals despite their superior appearance to the uncoated crystals have a lower DFR then the uncoated ones, hence the coating is improving appearance but not the flow.
  • the coated crystals do have a very consistent DFR as seen in table 3 (in fact they seem to flow the same way reliably no matter what their history).
  • both packages 1 and 3 package contain a particulate detergent composition 5, wherein the composition 5 comprises any of the above examples.
  • the sachet comprises a compressible reservoir structure 11 for containing the composition 5.
  • the reservoir is compressible by means of a flexible plastic sheet material together with the side gusseting 13, so as to be compressible to a substantially flat structure (not shown).
  • the bottle 1 comprises a rigid reservoir 17 and narrow aperture 19 (shown more clearly in Figure 2 ).
  • a narrow aperture would not normally be desirable in a refillable package for conventional laundry compositions.
  • the reliable and predictable flow of the particulate composition via a narrow dispensing aperture allows for dispensing of the composition into a narrow aperture. This in turn prevents the ingress of large amounts of moisture which might affect the particulate composition.
  • the narrow refilling aperture approximately 4 cm in diameter. Circular shaped apertures allow filling from any angle and are advantageous. Alternatively or additionally apertures with corners locating means for supporting the refill package in position during loading.
  • the refillable container is a totally transparent PET bottle.
  • Other embodiments not shown incorporate labels to bear information, graphics but the visual appeal of the transparency and the particles means expensive graphics are not as necessary as with conventional laundry particulate products. Even if labels are incorporated, preferably the transparency extends to the base and covers at least 60%.
  • the bottle 1 is resealable with a closure mechanism, to avoid the flow properties being affected by ingress of large amounts of moisture, which could lead to stickiness.
  • the closure mechanism comprises a screw-fit mechanism or a snap-fit mechanism. It comprises audible feedback to signal positively to the consumer that the package is closed.
  • the refillable package is resealable by zip or other means.
  • the sachet also comprises a transparent portion, being window 7.
  • Transparency combined with the size (no fines), colour, and homogenity of the composition provides a striking visual impact for the compact package.
  • "transparent" means that its light transmittance is greater than 25% at wavelength of about 410-800 nm.
  • the transparent layer of the package according to the invention preferably has a transmittance of more than 25%, more preferably more than 30%, more preferably more than 40%, more preferably more than 50% in the visible part of the spectrum (approx. 410-800 nm).
  • absorbency of transparent layer may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 10 absorbency ⁇ 100 %
  • absorbency of the opaque layer may be measured as more than 0.6.
  • the container is considered to be transparent.
  • absorbency of bottle may be measured as less than 0.6 (approximately equivalent to 25% transmitting) or by having transmittance greater than 25% wherein % transmittance equals: 1 10 absorbency x 100% and corresponding absorbency levels for the remaining preferred levels above.
  • Suitable materials for the package include, but are not limited to: polypropylene (PP), polyethylene (PE), polycarbonate (PC), polyamides (PA) and/or polyethylene terephthalate (PETE), polyvinylchloride (PVC); and polystyrene (PS).
  • the container may formed by extrusion, moulding e.g. blow moulding from a preform or by thermoforming or by injection moulding.
  • Both package types embodied here are rigid such that the base 21 can be tapped to move the particles throughout the reservoir.
  • a major portion by number of the particles are coloured blue other than white, which increases visual appeal as well as making them easier to see to determine that the required dose level has been reached in any dosing devices (caps, shuttles etc).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Detergent Compositions (AREA)

Claims (10)

  1. Produit emballé comprenant une combinaison composée d'une composition de détergent particulaire concentré et d'un emballage, ledit emballage comprenant un réservoir contenant la composition, le réservoir comprenant au moins une partie transparente et dans lequel au moins 70 % en nombre de particules de la composition comprennent un noyau dur très tensio-actif et un revêtement et dans lequel la ou chaque partie transparente comprend une partie de base de l'emballage et dans lequel l'emballage est suffisamment rigide du point de vue du matériau ou de la construction de sorte qu'une partie, par exemple la base ou une paroi latérale, peut être tapotée pour déplacer les particules dans le réservoir et dans lequel le tapotement crée un retour audible pour l'utilisateur afin de les guider par rapport au déplacement des particules, caractérisé en ce que chaque particule a des dimensions perpendiculaires x, y et z, dans lequel x est de 0,2 à 2 mm, y est de 2,5 à 8 mm (de préférence de 3 à 8 mm) et z est de 2,5 à 8 mm (de préférence de 3 à 8 mm) et en ce qu'au moins une certaine partie et de préférence une majeure partie en nombre de particules a une couleur différente du blanc qui a un meilleur effet visuel.
  2. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel la ou chaque partie transparente s'étend longitudinalement pour inclure une partie de base.
  3. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel la ou chaque partie transparente comprend au moins une partie de la face avant, de sorte que la composition contenue à l'intérieur est visible lorsqu'elle est observée au niveau de la face avant (qui est la face qui est normalement orientée à l'avant lorsqu'elle est placée sur une étagère dans un établissement de vente au détail ou même à la maison).
  4. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel la ou chaque partie transparente comprend plus de 50 % de la surface de l'emballage.
  5. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel les particules emballées ont sensiblement la même forme et la même taille, les unes par rapport aux autres.
  6. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel la quantité de revêtement sur chaque particule recouverte représente de 10 à 45, encore de préférence de 20 à 35 % en poids des particules.
  7. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel le pourcentage de la composition de particules emballée comprenant le noyau et le revêtement est de préférence au moins de 85 %.
  8. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel le revêtement comprend un sel inorganique soluble dans l'eau.
  9. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel les particules sont des sphéroïdes aplatis avec un diamètre de 3 à 6 mm et une épaisseur de 1 à 2 mm.
  10. Produit emballé selon l'une quelconque des revendications précédentes, dans lequel les particules sont multicolores, par exemple certaines sont bleues et certaines sont blanches.
EP11767424.2A 2010-10-14 2011-10-05 Emballage transparent de compositions détergentes Active EP2627578B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11767424.2A EP2627578B1 (fr) 2010-10-14 2011-10-05 Emballage transparent de compositions détergentes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10187497 2010-10-14
EP11767424.2A EP2627578B1 (fr) 2010-10-14 2011-10-05 Emballage transparent de compositions détergentes
PCT/EP2011/067392 WO2012049055A1 (fr) 2010-10-14 2011-10-05 Emballage transparent de compositions détergentes

Publications (2)

Publication Number Publication Date
EP2627578A1 EP2627578A1 (fr) 2013-08-21
EP2627578B1 true EP2627578B1 (fr) 2016-07-13

Family

ID=43608841

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11767424.2A Active EP2627578B1 (fr) 2010-10-14 2011-10-05 Emballage transparent de compositions détergentes

Country Status (6)

Country Link
EP (1) EP2627578B1 (fr)
CN (1) CN103153812B (fr)
BR (1) BR112013009135B1 (fr)
ES (1) ES2594727T3 (fr)
WO (1) WO2012049055A1 (fr)
ZA (1) ZA201302296B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3649057B1 (fr) * 2017-07-07 2021-01-20 Unilever N.V. Emballage hydrosoluble

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (fr) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
US4269722A (en) * 1976-09-29 1981-05-26 Colgate-Palmolive Company Bottled particulate detergent
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
GR76189B (fr) 1981-07-13 1984-08-03 Procter & Gamble
US4933287A (en) 1985-08-09 1990-06-12 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
ES2058119T3 (es) 1986-08-29 1994-11-01 Novo Nordisk As Aditivo detergente enzimatico.
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
ATE125865T1 (de) 1987-08-28 1995-08-15 Novo Nordisk As Rekombinante humicola-lipase und verfahren zur herstellung von rekombinanten humicola-lipasen.
GB8803036D0 (en) 1988-02-10 1988-03-09 Unilever Plc Liquid detergents
JP3079276B2 (ja) 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
JP2728531B2 (ja) 1988-03-24 1998-03-18 ノボ ノルディスク アクティーゼルスカブ セルラーゼ調製品
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
KR100236540B1 (ko) 1990-04-14 2000-01-15 레클로우크스 라우에르 알카리성 바실러스-리파제, 이를 코-딩하는 dna 서열 및 리파제를 생산하는 바실러스 균주
KR930702514A (ko) 1990-09-13 1993-09-09 안네 제케르 리파제 변체
AU666660B2 (en) 1991-04-30 1996-02-22 Procter & Gamble Company, The Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
EP0511456A1 (fr) 1991-04-30 1992-11-04 The Procter & Gamble Company Détergents liquides contenant un ester aromatique de l'acide borique pour inhibition d'enzyme protéolitique
DK72992D0 (da) 1992-06-01 1992-06-01 Novo Nordisk As Enzym
DK88892D0 (da) 1992-07-06 1992-07-06 Novo Nordisk As Forbindelse
WO1994025578A1 (fr) 1993-04-27 1994-11-10 Gist-Brocades N.V. Nouveaux variants de lipase utilises dans des detergents
JP2859520B2 (ja) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物
US5817495A (en) 1993-10-13 1998-10-06 Novo Nordisk A/S H2 O2 -stable peroxidase variants
JPH07143883A (ja) 1993-11-24 1995-06-06 Showa Denko Kk リパーゼ遺伝子及び変異体リパーゼ
WO1995022615A1 (fr) 1994-02-22 1995-08-24 Novo Nordisk A/S Procede pour preparer un variant d'une enzyme lipolytique
WO1995026397A1 (fr) 1994-03-29 1995-10-05 Novo Nordisk A/S Amylase alcaline issue d'un bacille
DE69528524T2 (de) 1994-05-04 2003-06-26 Genencor International, Inc. Lipasen mit verbesserten tensiostabilitaet
AU2884595A (en) 1994-06-20 1996-01-15 Unilever Plc Modified pseudomonas lipases and their use
AU2884695A (en) 1994-06-23 1996-01-19 Unilever Plc Modified pseudomonas lipases and their use
BE1008998A3 (fr) 1994-10-14 1996-10-01 Solvay Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci.
CA2203398A1 (fr) 1994-10-26 1996-05-09 Thomas Sandal Enzyme a activite lipolytique
JPH08228778A (ja) 1995-02-27 1996-09-10 Showa Denko Kk 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法
NZ303162A (en) 1995-03-17 2000-01-28 Novo Nordisk As Enzyme preparations comprising an enzyme exhibiting endoglucanase activity appropriate for laundry compositions for textiles
ATE282087T1 (de) 1995-07-14 2004-11-15 Novozymes As Modifiziertes enzym mit lipolytischer aktivität
EP0851913B1 (fr) 1995-08-11 2004-05-19 Novozymes A/S Nouvelles enzymes lipolytiques
JP3532576B2 (ja) 1996-09-17 2004-05-31 ノボザイムス アクティーゼルスカブ セルラーゼ変異体
DE69718351T2 (de) 1996-10-08 2003-11-20 Novozymes A/S, Bagsvaerd Diaminobenzoesäure derivate als farbstoffvorläufer
BR9808409A (pt) * 1997-03-20 2000-05-16 Procter & Gamble Partìcula de aditivo para a lavagem de roupas tendo múltiplos revestimentos de superfìcie
GB9712580D0 (en) 1997-06-16 1997-08-20 Unilever Plc Production of detergent granulates
US7022660B1 (en) * 1999-03-09 2006-04-04 The Procter & Gamble Company Process for preparing detergent particles having coating or partial coating layers
KR20010108379A (ko) 1999-03-31 2001-12-07 피아 스타르 리파제 변이체
WO2000060060A2 (fr) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides presentant une activite alcaline alpha-amylase et acides nucleiques les codant
CN1357035A (zh) 1999-06-21 2002-07-03 宝洁公司 在硫化床中涂布洗涤剂粒剂的方法
EP1208754A1 (fr) * 2000-11-21 2002-05-29 Givaudan SA Substance particulaire
CN101426895A (zh) * 2006-04-20 2009-05-06 宝洁公司 包含香料颗粒的固体粒状衣物洗涤剂组合物
DE602006020852D1 (de) 2006-07-07 2011-05-05 Procter & Gamble Waschmittelzusammensetzungen
BRPI0822220A2 (pt) 2008-01-04 2015-06-23 Procter & Gamble Composições contendo enzima e agente de matiz para tecidos
EP2085070A1 (fr) 2008-01-11 2009-08-05 Procter & Gamble International Operations SA. Compositions de nettoyage et/ou de traitement
MX2010009456A (es) 2008-02-29 2010-09-24 Procter & Gamble Composicion detergente que comprende lipasa.
JP2011513539A (ja) 2008-02-29 2011-04-28 ザ プロクター アンド ギャンブル カンパニー リパーゼを含む洗剤組成物
WO2009148983A1 (fr) 2008-06-06 2009-12-10 The Procter & Gamble Company Composition détergente comprenant un variant de xyloglucanase de la famille 44
EP2166077A1 (fr) * 2008-09-12 2010-03-24 The Procter and Gamble Company Particules contenant un azurant optique

Also Published As

Publication number Publication date
EP2627578A1 (fr) 2013-08-21
ES2594727T3 (es) 2016-12-22
BR112013009135A2 (pt) 2016-07-26
CN103153812B (zh) 2016-04-06
CN103153812A (zh) 2013-06-12
WO2012049055A1 (fr) 2012-04-19
BR112013009135B1 (pt) 2021-01-05
ZA201302296B (en) 2015-06-24

Similar Documents

Publication Publication Date Title
AU2011316078B2 (en) Packaged particulate detergent composition
EP2639291A1 (fr) Composition de détergent particulaire conditionnée
US9062281B2 (en) Particulate detergent compositions comprising fluorescer
AU2011315788A1 (en) Particulate detergent compositions comprising fluorescer
EP2627759B1 (fr) Conditionnement et distribution de compositions de détergent
EP2627577B1 (fr) Emballage comprenant une composition de lessive, et procédé de lavage au moyen de l'emballage
EP2627755B1 (fr) Composition de détergent particulaire conditionnée
EP2627578B1 (fr) Emballage transparent de compositions détergentes
WO2018234003A1 (fr) Emballage et distribution de compositions détergentes
WO2012049032A1 (fr) Recharge et emballages rechargeables de compositions détergentes particulaires concentrées
EP2627576B1 (fr) Composition de détergent particulaire concentrée conditionnée
WO2012049034A1 (fr) Emballage et distribution de compositions détergentes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140903

17Q First examination report despatched

Effective date: 20150526

INTG Intention to grant announced

Effective date: 20160216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 812093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011028154

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 812093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160713

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2594727

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011028154

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20170418

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161005

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011028154

Country of ref document: DE

Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB

Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: UNILEVER IP HOLDINGS B.V.

Effective date: 20211228

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220127 AND 20220202

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231002

Year of fee payment: 13

Ref country code: FR

Payment date: 20231025

Year of fee payment: 13

Ref country code: DE

Payment date: 20231020

Year of fee payment: 13