EP2399262B1 - Verfahren zur dekontamination radioaktiv kontaminierter oberflächen - Google Patents
Verfahren zur dekontamination radioaktiv kontaminierter oberflächen Download PDFInfo
- Publication number
- EP2399262B1 EP2399262B1 EP10709987A EP10709987A EP2399262B1 EP 2399262 B1 EP2399262 B1 EP 2399262B1 EP 10709987 A EP10709987 A EP 10709987A EP 10709987 A EP10709987 A EP 10709987A EP 2399262 B1 EP2399262 B1 EP 2399262B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- treatment solution
- treatment
- component
- solution
- decontamination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000011282 treatment Methods 0.000 claims description 52
- 238000005202 decontamination Methods 0.000 claims description 38
- 230000003588 decontaminative effect Effects 0.000 claims description 35
- 239000004094 surface-active agent Substances 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 15
- 150000002500 ions Chemical class 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910021645 metal ion Inorganic materials 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 150000007513 acids Chemical class 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000003945 anionic surfactant Substances 0.000 claims description 3
- 150000003009 phosphonic acids Chemical class 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims 2
- 239000002535 acidifier Substances 0.000 claims 1
- 150000004653 carbonic acids Chemical class 0.000 claims 1
- 238000005260 corrosion Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000000243 solution Substances 0.000 description 35
- 230000000694 effects Effects 0.000 description 14
- 239000002826 coolant Substances 0.000 description 13
- 230000005855 radiation Effects 0.000 description 10
- 230000002285 radioactive effect Effects 0.000 description 10
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 6
- 150000001735 carboxylic acids Chemical class 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910018828 PO3H2 Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910052695 Americium Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052768 actinide Inorganic materials 0.000 description 2
- 150000001255 actinides Chemical class 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- -1 oxygen ions Chemical class 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 229910052685 Curium Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- LXQXZNRPTYVCNG-UHFFFAOYSA-N americium atom Chemical compound [Am] LXQXZNRPTYVCNG-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-BJUDXGSMSA-N cobalt-58 Chemical compound [58Co] GUTLYIVDDKVIGB-BJUDXGSMSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- IIRVGTWONXBBAW-UHFFFAOYSA-M disodium;dioxido(oxo)phosphanium Chemical compound [Na+].[Na+].[O-][P+]([O-])=O IIRVGTWONXBBAW-UHFFFAOYSA-M 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- FTMKAMVLFVRZQX-UHFFFAOYSA-N octadecylphosphonic acid Chemical compound CCCCCCCCCCCCCCCCCCP(O)(O)=O FTMKAMVLFVRZQX-UHFFFAOYSA-N 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/001—Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/001—Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
- G21F9/002—Decontamination of the surface of objects with chemical or electrochemical processes
- G21F9/004—Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
Definitions
- the invention relates to a method for the decontamination of radioactively contaminated surfaces of nuclear installations.
- a nuclear power plant which is hereinafter referred to by way of example
- the surfaces of components of the coolant system are exposed to up to about 350 ° C hot water as a coolant in power operation, even classified as corrosion-free CrNi steels and Ni alloys in some Extent be oxidized.
- an oxide layer is formed, which contains oxygen ions and metal ions.
- metal ions in dissolved form or as a constituent of oxide particles pass from the oxide layer into the cooling water and are transported by it to the reactor pressure vessel in which fuel elements are located. Due to the nuclear reactions taking place in the fuel elements, neutron radiation is generated which converts part of the metal ions into radioactive elements. For example, the nickel of the above-mentioned materials produces radioactive cobalt-58.
- the nuclear reactions taking place in the nuclear fuel give rise to alpha-emitting transuranic substances such as Am-241, for example, which leak into the coolant as oxides due to leaks of the fuel rods that receive the nuclear fuel.
- the radioactive elements are distributed by the circulating cooling water in the primary circuit and deposit on the oxide layer of component surfaces, such as on the surfaces of the tubes of the coolant system again or be incorporated into the oxide layer.
- the radioactive elements With increasing operating time increases the amount of deposited and / or incorporated radioactive nuclides and, accordingly, the radioactive radiation in the environment of the systems and components of the primary circuit. If you want to reduce this, such as in the case of decommissioning of a nuclear power plant, essentially all the contaminated oxide layer must be removed by means of a decontamination measure.
- the removal of the oxide layer on component surfaces is carried out, for example, by bringing the component surfaces into contact with a treatment solution containing an organic acid, in the case of a coolant system this being done by filling it with said solution.
- the organic acid is one which forms water-soluble complex compounds with the metal ions present in the oxide layer.
- the alloy that makes up a component contains chromium.
- an oxide layer present on the component contains hardly soluble chromium-III oxides.
- the surfaces are treated with a strong oxidizing agent such as potassium permanganate or permanganic acid prior to the said acid treatment.
- the spent cleaning solution containing the components of the oxide layer in dissolved form is either evaporated to a residual amount or passed through ion exchangers. In the latter case, the constituents of the oxide layer present in ionic form are retained by the ion exchanger and thus removed from the cleaning solution.
- the ion exchange material loaded with the partially radioactive ionic constituents and the residual amount of the cleaning solution remaining on evaporation are respectively supplied in suitable form to an intermediate or final storage.
- Such a routine such as in the course of maintenance work on the coolant system performed decontamination treatment essentially only gamma radiation emitting nuclides such as Cr-51 and Co-60 are recorded.
- These nuclides are to a large extent, for example incorporated in an oxide layer of a component, in the form of their oxides, which are relatively easily dissolved by the active substances of conventional decontamination solutions, for example of complexing acids.
- the oxides of the transuranic elements, such as the Am-241 already mentioned above, are less soluble than the oxides formed from the metals and their radioactive nuclides.
- oxide particles that are not visible to the naked eye therefore, in comparison with the original oxide layer of the components, enriched with alpha emitters.
- the particles in question only adhere loosely to the component surface, so that they can be wiped off, for example, in the course of a wipe test with a cloth.
- the components of the coolant system to be supplied to a recycling or at least can be handled without complex protective measures.
- the in question adhering to the component surfaces particles can easily peel off and get into the human body via the respiratory tract, which can only be prevented by very complex respiratory protection measures.
- the measured at a component Radioactivity with regard to gamma and beta radiation as well as with regard to alpha radiation must therefore remain below specified limits, so that the components are no longer subject to the restrictions of radiation protection.
- a practical problem accompanying any surface decontamination is the further treatment or disposal of the spent decontamination solution containing the radioactive constituents of the detached oxide layer.
- a feasible way is to pass a spent decontamination solution through an ion exchanger to remove charged components contained therein.
- the object underlying the invention is to liberate a surface of radioactive particles with the aid of an active component present in aqueous solution, in such a way that the particles are easily removable from the solution.
- the surfactants mentioned on the one hand in particular metal oxide particles with high efficiency, especially from metallic surfaces can replace and that the particles together with the surfactant an anion exchanger or a mixed-bed ion exchanger, a combination of anion and cation exchanger adhere. If, as is to be striven for, a solution is used which, apart from at least one surfactant, contains no further chemical substances, a particularly simple disposal is ensured after the decontamination has been carried out, since there is no decomposition of the further substances, for example with the aid of UV light, or their removal with the aid of an ion exchanger, which would require an additional amount to be disposed of ion-immersion resin, is required. Further advantageous embodiments are given in the dependent claims.
- the sample material used for the following examples or experiments comes from dismantled components of the primary coolant circuit of a German pressurized water reactor. These are cut coupons made of niobium-stabilized stainless steel, material number 1.4551, which have an oxide layer on their surface, which contains radioactive elements, as usual for components of the coolant system of nuclear power plants. The coupons were pretreated using a standard decontamination procedure.
- the samples were processed on a laboratory scale in borosilicate glasses with a capacity of between 500 ml and 2 l. Samples were suspended in the treatment solution in borosilicate glass hanger, stainless steel 1.4551, stainless steel ANSI 316, or PTFE. The heating to the test temperature was carried out by means of electric heating plates. The temperature was adjusted with contact thermometers and kept constant. The mixing of the solution was carried out by using magnetic or mechanical stirrers.
- the measurement of alpha radiation requires a relatively high effort. In contrast, the determination of the gamma activity is much simpler and faster, and even more precise.
- the gamma-ray-based activity of the americium isotope 241 was therefore recorded as an indicator of the behavior of alpha-emitting actinides or transurans.
- Table 1 compares by way of example the development of the activity of Am-241 determined by gamma radiation detectors on one of the described samples with the activity of the isotopes Pu-240, Cm-242 and Am-241 detected with alpha radiation detectors in the untreated state (No. 1) Decontamination with conventional decontamination methods (No. 2) and with a decontamination method in which an active component according to the invention according to this invention was used in various concentrations (Nos. 3, 4, 5). For a comparison To facilitate the removal of activity, in addition to the measured values obtained in Bq / cm 2 , the percentage values relative to the starting quantity are also shown.
- the minimum temperature for the effectiveness of the active ingredient component or a surfactant thereof from the group consisting of sulfonic acid, phosphonic acid and carboxylic acid is inter alia dependent on the structure (eg length) of the non-polar part of the surfactant and is due to the so-called "Krafft temperature". Below this temperature, the interactions between non-polar parts can not be overcome; the active substance remains in solution as an aggregate. In the case of use octadecylphosphonic acid as active ingredient is the minimum temperature for an effective effect eg 75 ° C. The upper limit is usually dependent on process parameters. For example, it is not desirable for the treatment solution to boil. A common application temperature of decontamination treatments under atmospheric pressure is therefore for example 80-95 ° C or 90-95 ° C.
- the effectiveness of the proposed surfactants also depends on the nature of their polar portion.
- the various proposed drug components are comparable (they have a non-polar part through which they interact with each other, and a polar part through which the molecules of the drug are mutually localized and through which the interaction of the drug with polar, charged or ionized particles or surfaces is made possible)
- there are differences in the chemical properties between different functional groups which are responsible for a different effect also in the area of the decontamination in question here. These differences can be seen by comparing a selection of drug components that have different polar functional groups but identical non-polar parts.
- the effectiveness of the active component is determined not only by its polar, but also by its non-polar part, in particular by its length or chain length.
- the size or length of the non-polar parts influences the interactions between the surfactant molecules due to van der Waals forces, whereas larger non-polar parts produce greater interaction forces with comparable structure.
- this has the consequence that more molecules can be accommodated in the second layer of the bilayer which is not in contact with the surface. This increases The charge density in this layer, which leads to higher interactions with water and higher Coulomb repulsion forces. The mobilization of the activity is thereby favored.
- the inventive method is preferably for the decontamination of components of the coolant system of a nuclear power plant (see attached Fig. 1 ) used.
- a more or less thick oxide layer builds up on the surfaces of such components, which, as already mentioned, is radioactively contaminated.
- the oxide layer is removed as completely as possible.
- the component surfaces are then treated with a solution containing at least one anionic surfactant from the group of sulfonic acids, phosphonic acids, carboxylic acids and their salts. It is particularly noteworthy that, apart from the surfactant, no further chemical additives are required, ie it is preferably carried out with an aqueous solution containing exclusively at least one surfactant from said group.
- the second treatment stage is carried out at a temperature above room temperature, that is above about 25 ° C temperature, but operating below 100 ° C, in order to reduce evaporation and thus a loss of water. Preference is given to operating at temperatures of more than 50 ° C, with the best results being achieved at temperatures of more than 80 ° C.
- the pH of the treatment solution in the second treatment stage is in principle variable. Thus, it is conceivable to accept the pH which results from the surfactant present in the solution. If the surfactant is an acid, it will have a pH in the acidic range to adjust. The best results, especially when using a Phosphonklaivates as a surfactant are achieved in a pH range of 3 to 9.
- the concentration of the active component, ie a surfactant of the type in question in the second treatment solution is 0.1 g / l to 10 g / l. Below 0.1 g / l, a reduction in the alpha contamination of the component surface does not take place to a significant extent. Above 10 g / l, an increase in the decontamination factor is barely to be observed, so that concentrations in excess of the stated value are virtually ineffective. A very good compromise between the amount of surfactant used and the decontamination efficiency is achieved at surfactant concentrations up to 3 g / l.
- the first treatment solution is largely freed from the substances contained in it, ie a decontamination acid used for the purpose of detaching the oxide layer present on a component surface and metal ions originating from the oxide layer.
- a decontamination acid used for the purpose of detaching the oxide layer present on a component surface and metal ions originating from the oxide layer.
- the treatment solution is irradiated with UV light, whereby the acid is decomposed into carbon dioxide and water.
- the in the spent decontamination solution contained metal ions are removed by passing the solution through an ion exchanger.
- Fig. 1 is shown schematically the coolant system of a boiling water reactor. It comprises, in addition to the pressure vessel 1, in which at least in operation a plurality of fuel elements 2 are present, a conduit system 3, which is connected via nozzles 4.5 to the pressure vessel 1, and various internals such as capacitors, the internals in their entirety through the box 6 in Fig. 1 are symbolized.
- a treatment solution which contains, for example, a complex-forming organic acid.
- such an decontamination step is preceded by an oxidation step in order, as already mentioned, to oxidize chromium III present in the oxide layer located on the inner surfaces 7 of the components to form chromium VI.
- an oxidation step in order, as already mentioned, to oxidize chromium III present in the oxide layer located on the inner surfaces 7 of the components to form chromium VI.
- the entire cooling system is filled, otherwise only parts, for example only a portion of the power system, can be treated.
- the resulting treatment solution is dosed with a surfactant, preferably phosphonic acid or phosphonic acid salt, and the second treatment stage is carried out ,
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Food Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Detergent Compositions (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Dekontamination radioaktiv kontaminierter Oberflächen von Nuklearanlagen. Im Falle eines Kernkraftwerkes, auf das im folgenden exemplarisch Bezug genommen wird, werden im Leistungsbetrieb die Oberflächen von Bauteilen des Kühlmittelsystems mit bis zu etwa 350°C heißem Wasser als Kühlmittel beaufschlagt, wobei selbst als korrosionsfrei eingestufte CrNi-Stähle und Ni-Legierungen in gewissem Ausmaß oxidiert werden. Auf den Bauteiloberflächen bildet sich eine Oxidschicht, die Sauerstoffionen und Metallionen enthält.
- Während des Reaktorbetriebs gelangen aus der Oxidschicht Metallionen in gelöster Form oder als Bestandteil von Oxidpartikeln in das Kühlwasser und werden von diesem zum Reaktordruckbehälter transportiert, in dem sich Brennelemente befinden. Aufgrund der in den Brennelementen ablaufenden Kernreaktionen entsteht Neutronenstrahlung, die einen Teil der Metallionen in radioaktive Elemente umwandelt. Beispielsweise entsteht aus dem Nickel der o.g. Werkstoffe radioaktives Cobalt-58. Bei den im Kernbrennstoff ablaufenden Kernreaktionen entstehen alphastrahlende Transurane wie beispielsweise Am-241, wobei diese über Leckagen der den Kernbrennstoff aufnehmenden Brennstäbe als Oxide in das Kühlmittel gelangen. Die radioaktiven Elemente werden durch das zirkulierende Kühlwasser im Primärkreis verteilt und lagern sich auf der Oxidschicht von Bauteiloberflächen, etwa auf den Oberflächen der Rohre des Kühlmittelsystems wieder ab oder werden in die Oxidschicht eingebaut. Mit zunehmender Betriebsdauer nimmt die Menge der abgelagerten und/oder inkorporierten radioaktiven Nuklide und dementsprechend die radioaktive Strahlung im Umfeld der Systeme und Komponenten des Primärkreises zu. Will man diese, etwa im Falle des Rückbaus eines Kernkraftwerks, reduzieren, muss mittels einer Dekontaminationsmaßnahme im Wesentlichen die gesamte kontaminierte Oxidschicht entfernt werden.
- Aus der
DE-A-198 51 852 ist bekannt Stahloberflächen mittels organischer Säure zu dekontaminieren. Entsckende Ionen werden dabei an Ionenaustauschern gebunden. - Die Entfernung der Oxidschicht auf Komponentenoberflächen erfolgt beispielsweise dadurch, dass die Bauteiloberflächen mit einer eine organische Säure enthaltenden Behandlungslösung in Kontakt gebracht werden, wobei dies im Falle eines Kühlmittelsystems dadurch geschieht, dass dieses mit der genannten Lösung gefüllt wird. Bei der organischen Säure handelt es sich um eine solche, die mit den in der Oxidschicht vorhandenden Metallionen wasserlösliche Komplexverbindungen bildet. In manchen Fällen enthält die Legierung, aus der ein Bauteil besteht, Chrom. In einem solchen Fall enthält eine auf dem Bauteil vorhandene Oxidschicht schwer lösliche Chrom-III-Oxide. Um diese in eine lösliche Form zu überführen, werden die Oberflächen vor der genannten Säurebehandlung mit einem starken Oxidationsmittel wie Kaliumpermanganat oder Permangansäure behandelt. Die Chrom-III-Oxide werden dabei in leichter lösliche Chrom-VI-Oxide umgewandelt. Unabhängig davon, ob eine oxidative Vorbehandlung erfolgt oder nicht wird die die Bestandteile der Oxidschicht in gelöster Form enthaltende verbrauchte Reinigungslösung entweder auf eine Restmenge eingedampft oder über Ionentauscher geleitet. In letzterem Fall werden die in ionischer Form vorliegenden Bestandteile der Oxidschicht von dem Ionenaustauscher zurück gehalten und somit aus der Reinigungslösung entfernt. Das mit den teilweise radioaktiven ionischen Bestandteilen beladene Ionentauschermaterial und die beim Eindampfen zurückbleibende Restmenge der Reinigungslösung werden jeweils in geeigneter Form einem Zwischen- oder Endlager zugeführt.
- Bei einer solchen, etwa im Zuge von Revisionsarbeiten am Kühlmittelsystem routinemäßig durchgeführten Dekontaminationsbehandlung werden im Wesentlichen nur Gamma-Strahlung aussendende Nuklide wie Cr-51 und Co-60 erfasst. Diese Nuklide liegen zum großen Teil, beispielsweise inkorporiert in einer Oxidschicht einer Komponente, in Form ihrer Oxide vor, wobei diese von den Wirksubstanzen herkömmlicher Dekontaminationslösungen, beispielsweise von komplexierenden Säuren relativ leicht aufgelöst werden. Die Oxide der Transurane, wie beispielsweise das weiter oben schon erwähnte Am-241, sind schwerer löslich als die aus den Metallen und deren radioaktiven Nukliden gebildeten Oxide. Am Ende einer Dekontaminationsbehandlung vorhandene und vor allem an bereits von einer Oxidschicht befreiten Bauteiloberflächen haftende Oxidpartikel, die mit dem bloßen Auge nicht sichtbar sind, sind daher im Vergleich mit der ursprünglichen Oxidschicht der Bauteile, angereichert mit Alphastrahlern. Die in Rede stehenden Partikel haften nur lose an der Komponentenoberfläche, so dass sie sich etwa im Zuge eines Wischtests mit einem Tuch teilweise abwischen lassen.
- Beispielsweise beim Rückbau einer kerntechnischen Anlage sollen die Komponenten des Kühlmittelsystems einer Wiederverwertung zugeführt werden oder jedenfalls ohne aufwändige Schutzmaßnahmen gehandhabt werden können. Die in Rede stehenden an den Bauteiloberflächen haftenden Partikel können sich leicht ablösen und über die Atemwege in den menschlichen Körper gelangen, was nur durch sehr aufwändige Atemschutzmaßnahmen verhindert werden kann. Die an einer Komponente gemessene Radioaktivität hinsichtlich der Gamma- und Betastrahlung sowie hinsichtlich der Alphastrahlung muss daher unterhalb vorgegebener Grenzwerte bleiben, damit die Bauteile nicht mehr den Beschränkungen des Strahlenschutzes unterliegen.
- Eine praktisch jede Oberflächendekontamination begleitende Problemstellung ist die Weiterbehandlung bzw. Entsorgung der die radioaktiven Bestandteile der abgelösten Oxidschicht enthaltenden verbrauchten Dekontaminationslösung. Wie weiter oben bereits erwähnt, besteht ein gangbarer Weg darin, eine verbrauchte Dekontaminationslösung über einen Ionentauscher zu leiten, um darin enthaltende geladene Bestandteile zu entfernen.
- Davon ausgehend besteht die der Erfindung zugrunde liegende Aufgabe darin, eine Oberfläche von radioaktiven Partikeln mit Hilfe einer in wässeriger Lösung vorliegenden Wirkkomponente zu befreien, und zwar derart, dass die Partikel auf einfache Weise aus der Lösung entfernbar sind.
- Diese Aufgabe wird durch Anspruch 1 gelöst, unter anderem dadurch dass die Oberfläche mit einer wässerigen Lösung behandelt wird, die eine Wirkkomponente zur Entfernung von an der Oberfläche haftenden Partikeln enthält, wobei die Wirkkomponente von wenigstens einem anionischen Tensid aus der Sulfonsäuren, Phos-phonsäuren, Carbonsäuren und Salze dieser Säuren enthaltenden Gruppe gebildet ist.
- Es hat sich überraschenderweise herausgestellt, dass die genannten Tenside zum einen insbesondere Metalloxid-Partikel mit hohem Wirkungsgrad vor allem von metallischen Oberflächen ablösen kann und dass die Partikel zusammen mit dem Tensid an einem Anionentauscher oder einem Mischbett-Ionentauscher, eine Kombination aus Anionen- und Kationentauscher, haften. Wenn, was anzustreben ist, eine Lösung verwendet wird, die außer wenigstens einem Tensid keine weiteren chemischen Substanzen enthält, ist nach der Durchführung der Dekontamination eine besonders einfache Entsorgung gewährleistet, da weder eine Zersetzung der weiteren Substanzen etwa mit Hilfe von UV-Licht, noch deren Entfernung mit Hilfe eines Ionentauschers, was eine zusätzliche Menge an zu entsorgendem Ionentaucherharz bedingen würde, erforderlich ist. Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen wiedergegeben.
- Die Erfindung wird im Folgenden näher erläutert.
- Das verwendete Probenmaterial für die folgenden Beispiele bzw. Versuche stammt aus ausgebauten Bauteilen des Primärkühlmittelkreislaufes eines deutschen Druckwasserreaktors. Es handelt sich um geschnittene Coupons aus Niob-stabilisiertem Edelstahl, Werkstoffnummer 1.4551, die eine bei Bauteilen des Kühlmittelsystems von Kernkraftwerken übliche Oxidschicht auf ihrer Oberfläche aufweisen, die radioaktive Elemente enthält. Die Coupons wurden mit einem üblichen Dekontaminationsverfahren vorbehandelt.
- Die Behandlung der Proben erfolgte im Labormaßstab in Borosilikatgläsern mit einer Kapazität zwischen 500 ml und 2 1. Die Proben wurden in die Behandlungslösung eingehängt, in Hängevorrichtungen aus Borosilikatglas, Edelstahl 1.4551, Edelstahl ANSI 316, oder PTFE. Das Erhitzen auf die Versuchstemperatur erfolgte mit Hilfe von elektrischen Heizplatten. Die Temperatur wurde mit Kontaktthermometern eingestellt und konstant gehalten. Die Durchmischung der Lösung erfolgte durch Einsatz von magnetischen oder mechanischen Rührern.
- Die Messung der auf den Proben vorhandenen Radioaktivität wurde in einem radiochemischen Labor durchgeführt, akkreditiert nach DIN EN ISO/IEC 17025:2005 (Deutsches Akkreditierungssystem Prüfwesen GmbH, Deutscher Akkreditierungsrat (DAR), Akkreditierungsurkunde Nr. DAP-PL-3500.81).
- Für die bessere Lesbarkeit der Ergebnisse wurde die Anzahl von Stellen hinter dem Komma begrenzt, für Berechnungen von z.B. Dekontaminationsfaktoren wurden die kompletten nicht abgerundeten Werte verwendet.
- Repräsentativität der Messung von Am-241 für das Verhalten der alpha-strahlenden Actinoiden Pu, Am, Cm:
- Die Messung von Alphastrahlung erfordert einen relativ hohen Aufwand. Wesentlich einfacher und schneller sowie darüber hinaus auch noch präziser ist dagegen die Bestimmung der Gamma-Aktivität. Als Indikator für das Verhalten der Alphastrahlung aussendenden Actinoide bzw. Transurane wurde daher die auf Gammastrahlung basierende Aktivität des Americium-Isotops 241 erfasst.
- Tabelle 1 vergleicht exemplarisch die Entwicklung der über Gammastrahlungsdetektoren ermittelten Aktivität von Am-241 auf einer der beschriebenen Proben mit der Aktivität der Isotopen Pu-240, Cm-242 und Am-241, erfasst mit Alphastrahlungsdetektoren im unbehandelten Zustand (Nr. 1), nach einer Dekontamination mit üblichen Dekontaminationsverfahren (Nr. 2) und mit einem Dekontaminationsverfahren, bei dem eine erfindungsgemäße Wirkkomponente gemäß dieser Erfindung in verschiedenen Konzentrationen (Nr. 3, 4, 5) verwendet wurde. Um einen Vergleich der Aktivitätsentfernung zu erleichtern sind neben den erhaltenen Messwerten in Bq/cm2 auch die prozentualen Werte bezogen auf die Ausgangsmenge wiedergegeben. Es wurden jeweils Tenside mit ein und demselben organischen Rest (CH3-(CH2)15-) verwendet und zwar bei Nr.3 Sulfonsäure, bei Nr. 4 Carboxylsäure und bei Nr. 5 Phosphonsäure. Die Versuche wurden jeweils bei einer Temperatur von 95 °C und einer Tensidkonzentration von 1g/l durchgeführt. Die Behandlungsdauer betrug jeweils etwa 15 h, wobei während der Behandlung die Lösung nicht über Ionentauscher geführt wurde.
Tabelle 1: Gammastrahlungsmessung von Am-241 als Leitnuklid Nr. Aktivität durch Alpha-Messung [Bq/cm2] Gamma-Akt. [Bq/cm2] Aktivität durch Alpha-Messung [%] Gamma-Akt. [%] Pu-240 Am-241 Cm-242 Am-241 Pu-240 Am-241 Cm-242 Am-241 1 0,771 5,43 0,6 4,58 100 100 100 100 2 0,079 0,425 0,03 0,413 10,2 7,83 5,02 9,02 3 0,056 0,264 0,019 0,308 7,21 4,86 3,13 6,73 4 0,01 0,042 0,003 0,033 1,28 0,78 0,51 0,73 5 0,001 0,003 0,0001 0,003 0,08 0,05 0,02 0,06 - Die Mindesttemperatur für die Effektivität der Wirkstoffkomponente bzw. eines diese bildenden Tensids aus der Gruppe Sulfonsäure, Phosphonsäure und Carbonsäure ist unter anderem von der Struktur (z.B. Länge) des unpolaren Teiles des Tensids abhängig und ist von der sogenannten "Krafft-Temperatur" bedingt. Unterhalb dieser Temperatur können die Wechselwirkungen zwischen unpolaren Teilen nicht überwunden werden, der Wirkstoff bleibt als Aggregat in Lösung. Im Fall der Verwendung von Octadecylphosphonsäure als Wirkstoffkomponente ist die Mindesttemperatur für eine effektive Wirkung z.B. 75°C. Die obere Grenze ist in der Regel von verfahrenstechnischen Parametern abhängig. Es ist zum Beispiel nicht erwünscht, dass die Behandlungslösung zum Kochen kommt. Eine übliche Anwendungstemperatur von Dekontaminationsbehandlungen unter atmosphärischen Druck ist deswegen beispielsweise 80-95°C oder 90-95 °C.
- Die Wirksamkeit der vorgeschlagenen Tenside hängt auch von der Art ihres polaren Teils ab. Obwohl von einem strukturellen Standpunkt aus die verschiedenen vorgeschlagenen Wirkstoffkomponenten vergleichbar sind (sie verfügen über einen unpolaren Teil, durch den sie miteinander in Wechselwirkung treten, und einen polaren Teil, durch den die Moleküle des Wirkstoffes untereinander lokalisiert abgestoßen werden und durch den die Wechselwirkung des Wirkstoffes mit polaren, geladenen oder ionisierten Partikeln oder Oberflächen ermöglicht wird), gibt es zwischen unterschiedlichen funktionellen Gruppen Unterschiede in den chemischen Eigenschaften, die für eine unterschiedliche Wirkung auch im Bereich der hier in Rede stehenden Dekontamination verantwortlich sind. Diese Unterschiede können festgestellt werden, indem man eine Auswahl von Wirkstoffkomponenten vergleicht, die über unterschiedliche polare funktionelle Gruppen, aber über identische unpolare Teile verfügt. Bei den hierzu durchgeführten Versuchen wurden sonstige Versuchsbedingungen wie Art der abzulösenden Oxidschicht, Behandlungstemperatur, pH-Wert, Konzentration der Wirkstoffkomponente und Behandlungszeit gleich gehalten. Die Proben wurden vor der Behandlung mit 3 Zyklen eines für Kernkraftwerke üblichen Dekontaminationsverfahrens behandelt (z.B. mit einer komplexierend wirkenden organischen Säure wie Oxalsäure). In Tabelle 2, welche die Ergebnisse der Versuche wiederspiegelt, ist neben der Aktivität auch der Dekontaminationsfaktor (DF) angegeben, also der Quotient aus Anfangs- und Endaktivität, der eine Einschätzung der Dekontaminationswirksamkeit erlaubt. Aus den Ergebnissen in Tabelle 2 wird deutlich, dass eine Phosponsäure mit der Formel R-PO3H2 (mit R = CH3(CH2)15) sich unter gleichen Bedingungen für die Entfernung der alphastrahlenden Kontamination am besten eignen.
Tabelle 2: Beste polare funktionelle Gruppe: Polare Gruppe Aktivität Am-241 [Bq/cm2] DF Vor Nach Carboxylsäure *) 3,08 0,19 16,3 Sulfonsäure *) 3,68 0,45 8,2 Phosphonsäure *) 3,59 0,12 30,7 Sulfat 2,30 0,19 12,1 *) mit CH3-(CH2)15-Rest - Die Effektivität der Wirkkomponente wird nicht nur durch ihren polaren, sondern auch durch ihren unpolaren Teil, insbesondere durch dessen Länge bzw. Kettenlänge bestimmt. Die Größe bzw. Länge der unpolaren Teile beeinflusst die Wechselwirkungen zwischen den Tensidmolekülen aufgrund von Van-der-Waals-Kräften, wobei bei vergleichbarer Struktur größere unpolare Teile größere Wechselwirkungskräfte hervorrufen. Dies hat im Falle der Bildung von Doppelschichten auf geladenen Oberflächen zum Beispiel die Folge, dass in der zweiten, sich mit der Oberfläche nicht in Kontakt befindenden Schicht der Doppelschicht mehr Moleküle aufgenommen werden können. Dadurch erhöht sich die Ladungsdichte in dieser Schicht, was zu höheren Wechselwirkungen mit Wasser und höheren Coulomb schen Abstoßkräften führt. Die Mobilisierung der Aktivität wird dadurch begünstigt. In den hierzu durchgeführten Versuchen wurden jeweils gleiche Bedingungen (Art der auf den Proben vorhandenen Oxidschicht, Behandlungstemperatur, pH-Wert, Konzentration der Wirkstoffkomponente und Behandlungszeit) eingehalten. Das Ergebnis dieser Versuche geht aus Tabelle 3 hervor. Diese zeigt einen Vergleich zwischen der durchschnittlichen Dekontaminationswirksamkeit verschiedener Wirkstoffkomponenten mit jeweils derselben funktionellen Gruppe (Phosphonsäuregruppe) und unterschiedlichen unpolaren Resten (C14: CH3-(CH2)13-; C16: CH3-(CH2)15-; C18: CH3-(CH2)17). Die Proben wurden vor der Behandlung mit 3 Zyklen eines für Kernkraftwerke üblichen Dekontaminationsverfahrens (siehe oben) behandelt. Neben Aktivitätsangaben wird ebenfalls der übliche Dekontaminationsfaktor (DF) angegeben, der eine Einschätzung der Dekontaminationswirksamkeit vereinfacht.
Tabelle 3: Beste Größe des unpolaren Anteils: Mit C14-PO3H2 Am-241 Mit C16-PO3H2 Am-241 Mit C18-PO3H2 Am-241 [Bq/cm2] σ [Bq/cm2] σ [Bq/cm2] σ Vor 6,09 0,79 6,11 2,66 6,79 9,43 Nach 0,28 1,53 0,15 0,02 0,07 0,09 DF 21,9 41,8 102,0 - Zur Bestimmung des optimalen pH-Bereiches für die Durchführung der Dekontamination wurden vier Proben parallel behandelt, und zwar jeweils unter gleichen Versuchsbedingungen wie Temperatur, Wirkstoffkonzentration oder Expositionszeit, mit Ausnahme des pH-Werts. Dieser wurde in Versuch Nr. 1 durch Zugabe von HNO3 verringert, in Nr. 2 beim eigenen Gleichgewichts-pH des verwendeten Phosphonsäurewirkstoffes belassen, bei Nr. 3 schwach alkalisiert durch Zugabe von NaOH-Lösung und bei Nr. 4 stark alkalisiert durch Zugabe größerer Mengen NaOH. Wie Tabelle 4 zeigt, werden die besten Ergebnisse bei der Neutralisierung der Phosphonsäuregruppe (Nr. 3) erhalten. In diesem Milieu ist die Gruppe zweifach ionisiert als R-PO3 2-, im Gegensatz zum normalen Zustand (R-PO3H-). Bei saurem pH (Nr. 1) wird die Dissoziation der Säuregruppe durch die erhöhte Konzentration von H3O+-Ionen im Wasser gehemmt, der Wirkstoff kann seinen erforderlichen geladenen Zustand nicht erhalten. Im Fall einer stark alkalischen Lösung ist die Säuregruppe vollkommen dissoziiert, somit maximal geladen.
Tabelle 4: Optimaler pH-Bereich Nr. pH Am-241 [Bq/cm2] DF Vor Nach 1 1,5 3,75 2,25 1,7 2 4,25 4,63 0,46 10,1 3 6 6,15 0,37 16,8 4 12 3,73 3,36 1,1 - Das erfindungsgemäße Verfahren wird vorzugsweise für die Dekontamination von Bauteilen des Kühlmittelsystems eines Kernkraftwerkes (siehe beigefügte
Fig. 1 ) eingesetzt. Im Betrieb baut sich auf den Oberflächen solcher Bauteile eine mehr oder weniger dicke Oxidschicht auf, die, wie eingangs schon erwähnt worden ist, radioaktiv kontaminiert ist. Zunächst wird die Oxidschicht möglichst vollständig entfernt. Die Bauteiloberflächen werden dann mit einer Lösung behandelt, die wenigstens ein anionisches Tensid aus der Gruppe Sulfonsäuren, Phos-phonsäuren, Carbonsäuren und deren Salze enthält. Besonders hervorzuheben ist dabei, dass außer dem Tensid keine weiteren chemischen Zusätze erforderlich sind, d.h. es wird vorzugsweise mit einer wässrigen Lösung gearbeitet, die ausschließlich wenigstens ein Tensid aus der genannten Gruppe enthält. Da außer dem Tensid keine weiteren Substanzen vorhanden sind, gestaltet sich die Entsorgung der Tensidlösung einfach. Was die von den Bauteiloberflächen abgelösten und in die Tensidlösung übergetretenen Partikel betrifft, so war es überraschend, dass diese mit Hilfe eines Anionentauschers oder eines Mischbett-Ionentauschers, d.h. einer Kombination aus Anionen - und Kationentauscher, aus der Lösung entfernt werden können. Nach einmaligem oder wiederholtem Durchlauf der Tensidlösung durch einen Ionentauscher liegt dann praktisch nur noch Wasser vor, das mit geringem Aufwand auf übliche Art und Weise entsorgt werden kann. - Die zweite Behandlungsstufe wird bei einer oberhalb Raumtemperatur, also oberhalb von etwa 25°C liegenden Temperatur durchgeführt, wobei jedoch unterhalb von 100°C gearbeitet wird, um ein Abdampfen und damit einem Wasserverlust zu verringern. Vorzugsweise wird bei Temperaturen von mehr als 50°C gearbeitet, wobei die besten Ergebnisse bei Temperaturen von mehr als 80°C erreicht werden.
- Der pH-Wert der Behandlungslösung in der zweiten Behandlungsstufe ist prinzipiell variierbar. So ist es denkbar, denjenigen pH-Wert zu akzeptieren, der sich durch das in der Lösung vorhandene Tensid ergibt. Sofern es sich bei dem Tensid um eine Säure handelt, wird sich ein pH-Wert im sauren Bereich einstellen. Die besten Ergebnisse, insbesondere bei der Verwendung eines Phosphonsäurederivates als Tensid werden in einem pH-Wertbereich von 3 bis 9 erreicht.
- Die Konzentration der Wirkkomponente, also eines Tensides der in Rede stehenden Art in der zweiten Behandlungslösung beträgt 0,1g/l bis 10g/l. Unterhalb von 0,1g/l findet eine Verringerung der Alphakontamination der Bauteiloberfläche in nennenswertem Ausmaß nicht statt. Oberhalb von 10g/l ist eine Steigerung des Dekontaminationsfaktors kaum noch zu beobachten, so dass über den genannten Wert hinaus gehende Konzentrationen praktisch wirkungslos sind. Ein sehr guter Kompromiss zwischen dem Einsatz an Tensidmenge und der Dekontaminationseffektivität wird bei Tensidkonzentrationen bis 3g/l erreicht.
- Zur Durchführung der zweiten Behandlungsstufe ist es prinzipiell denkbar, die nach der ersten Behandlungslösung vorhandene verbrauchte Reinigungslösung zu entfernen und durch die zweite Behandlungslösung zu ersetzen, also beispielsweise im Falle der Dekontamination des Kühlmittelsystems eines Kernkraftwerkes dieses zu entleeren und anschließend mit der zweiten Behandlungslösung wieder zu füllen. Bei der bevorzugten Vorgehensweise wird jedoch die erste Behandlungslösung weitgehend von den in ihr enthaltenen Substanzen, also einer zum Zwecke der Ablösung der auf einer Bauteiloberfläche vorhandenen Oxidschicht dienenden Dekontaminationssäure und aus der Oxidschicht stammenden Metallionen befreit. Zur Entfernung der Dekontaminationssäure, beispielsweise Oxalsäure oder ähnliche, organische Säuren, wird die Behandlungslösung mit UV-Licht bestrahlt, wodurch die Säure zu Kohlenstoffdioxid und Wasser zersetzt wird. Die in der verbrauchten Dekontaminationslösung enthaltenen Metallionen werden dadurch entfernt, dass die Lösung über einen Ionentauscher geführt wird.
- In der beigefügten Abbildung
Fig. 1 ist schematisch das Kühlmittelsystem eines Siedewasserreaktors dargestellt. Es umfasst neben dem Druckbehälter 1, in dem zumindest im Betrieb eine Vielzahl von Brennelementen 2 vorhanden sind, ein Leitungssystem 3, das über Stutzen 4,5 an den Druckbehälter 1 angeschlossen ist, sowie diverse Einbauten wie z.B. Kondensatoren, wobei die Einbauten in ihrer Gesamtheit durch den Kasten 6 inFig. 1 symbolisiert sind. Zur Durchführung der ersten Behandlungsstufe wird bei einer Dekontamination des gesamten Kühlmittelsystems dieses mit einer Behandlungslösung befüllt, die beispielsweise eine komplexbildende organische Säure enthält. In der Regel wird einem solchen Dekontaminationsschritt ein Oxidationsschritt vorgeschaltet, um, wie eingangs schon erwähnt, in der sich auf den inneren Oberflächen 7 der Bauteile befindlichen Oxidschicht enthaltenes Chrom-III zu Chrom-VI zu oxidieren. Im Falle einer Komplettdekontamination wird das gesamte Kühlsystem gefüllt, ansonsten können auch nur Teile, beispielsweise nur ein Abschnitt des Leistungssystems, behandelt werden. - Nachdem die sich im System befindliche verbrauchte Lösung auf die oben beschriebene Weise gereinigt wurde, also die darin enthaltene Dekontaminationssäure zerstört und Metallionen mit Hilfe eines Ionentauschers entfernt wurden, wird der so entstandenen Behandlungslösung ein Tensid, vorzugsweise Phosphonsäure oder Phosphonsäuresalz, dosiert und die zweite Behandlungsstufe durchgeführt.
Claims (21)
- Verfahren zur chemischen Dekontamination der radioaktiv kontaminierten Oberfläche eines metallischen Bauteils von Nuklearanlagen, bei dem- in einer ersten Behandlungsstufe eine auf dem Bauteil durch Korrosion des Bauteilmaterials entstandene Oxidschicht mit einer eine organische Dekontaminationssäure enthaltenen ersten wässerigen Behandlungslösung von der Bauteiloberfläche abgelöst wird, und- in einer sich daran anschließenden zweiten Behandlungsstufe die zumindest teilweise von der Oxidschicht befreite Oberfläche mit einer zweiten wässerigen Behandlungslösung behandelt wird, die eine Wirkkomponente zur Entfernung von an der Oberfläche haftenden Partikeln enthält, wobei die Wirkkomponente aus wenigstens einem anionischen Tensid aus der Gruppe Sulfonsäuren, Phosphonsäuren, Carbonsäuren und Salze dieser Säuren besteht, wobei die zweite Behandlungslösung spätestens nach dem Ende der zweiten Behandlungsstufe über einen Ionentauscher geführt wird.
- Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass solche Tenside verwendet werden, die einen organischen Rest mit 12 bis 22 Kohlenstoffatomen besitzen. - Verfahren nach Anspruch 2,
gekennzeichnet durch
die Verwendung von Tensiden mit einem organischen Rest mit 14 bis 18 Kohlenstoffatomen. - verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
dass die zweite Behandlungsstufe bei einer Temperatur von 25 °C bis weniger als 100 °C durchgeführt wird. - Verfahren nach Anspruch 4,
gekennzeichnet durch
eine Behandlungstemperatur von mehr als 50 °C. - Verfahren nach Anspruch 4,
gekennzeichnet durch
eine Behandlungstemperatur von mehr als 80 °C. - Verfahren nach einem der Ansprüche 4 bis 6,
gekennzeichnet durch
eine Behandlungstemperatur von max. 95 °C. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass während der zweiten Behandlungsstufe der pH-Wert der zweiten Behandlungslösung, der sich aufgrund der Anwesenheit wenigstens eines Tensids ergibt, beibehalten wird. - Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass der sich aufgrund der Anwesenheit wenigstens eines Tensids in der zweiten Behandlungslösung ergebende pH-Wert verändert wird. - Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass der pH-Wert erhöht wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass in der zweiten Behandlungslösung ein pH-Wert von 3 bis 9 eingestellt wird. - Verfahren nach Anspruch 11,
gekennzeichnet durch
einen pH-Wert der zweiten Behandlungslösung von 6-8. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Wirkkomponente mit einer Konzentration von 0,1 g/l bis 10 g/l in der zweiten Behandlungslösung enthalten ist. - Verfahren nach Anspruch 13,
gekennzeichnet durch
eine Konzentration von 0,1 g/l bis 3 g/l. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der zweiten Behandlungslösung außer wenigstens einem Tensid und gegebenenfalls einem Alkalisierungs- oder Säuerungsmittel keine weiteren chemischen Substanzen zugesetzt werden. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die zweite Behandlungslösung aus der ersten Behandlungslösung erhalten wird, indem wenigstens eine oder mehrere zum Zwecke der Ablösung der auf einer Bauteiloberfläche vorhandenen Oxidschicht dienende Dekontaminationssäure aus der ersten Behandlungslösung entfernt wird. - Verfahren nach Anspruch 16,
dadurch gekennzeichnet,
dass die erste Behandlungslösung mit UV-Licht bestrahlt wird, um eine Dekontaminationssäure zu Kohlenstoffdioxid und Wasser zu zersetzen. - Verfahren nach Anspruch 16 oder 17,
dadurch gekennzeichnet,
dass die erste Behandlungslösung über wenigstens einen Ionentauscher geführt wird, um darin enthaltene Metallionen zu entfernen. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die erste oder die zweite Behandlungslösung in einem Behälter vorhanden ist und ein zu behandelndes Bauteil in die jeweilige Lösung eingetaucht wird. - Verfahren nach einem der Ansprüche 1 bis 19,
dadurch gekennzeichnet,
dass eine zu behandelnde Bauteiloberfläche die innere Oberfläche eines Behälters und/oder eines Rohrleitungssystems ist, wobei der Behälter bzw. das Rohrleitungssystem mit der ersten oder der zweiten Behandlungslösung gefüllt ist. - Verfahren nach Anspruch 20,
dadurch gekennzeichnet,
dass es beim dem Kühlmittelsystem eines Kernkraftwerks angewendet wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009009441 | 2009-02-18 | ||
DE102009002681A DE102009002681A1 (de) | 2009-02-18 | 2009-04-28 | Verfahren zur Dekontamination radioaktiv kontaminierter Oberflächen |
PCT/EP2010/051957 WO2010094692A1 (de) | 2009-02-18 | 2010-02-17 | Verfahren zur dekontamination radioaktiv kontaminierter oberflächen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2399262A1 EP2399262A1 (de) | 2011-12-28 |
EP2399262B1 true EP2399262B1 (de) | 2012-11-21 |
Family
ID=42538319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10709987A Active EP2399262B1 (de) | 2009-02-18 | 2010-02-17 | Verfahren zur dekontamination radioaktiv kontaminierter oberflächen |
Country Status (10)
Country | Link |
---|---|
US (1) | US8353990B2 (de) |
EP (1) | EP2399262B1 (de) |
JP (1) | JP5584706B2 (de) |
KR (1) | KR101295017B1 (de) |
CN (1) | CN102209992B (de) |
CA (1) | CA2749642C (de) |
DE (1) | DE102009002681A1 (de) |
ES (1) | ES2397256T3 (de) |
TW (1) | TWI595506B (de) |
WO (1) | WO2010094692A1 (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1402751B1 (it) * | 2010-11-12 | 2013-09-18 | Ecir Eco Iniziativa E Realizzazioni S R L | Metodo per il condizionamento di scorie derivate da smaltimento di impianti nucleari |
CN103489495B (zh) * | 2012-06-14 | 2016-10-05 | 中国辐射防护研究院 | 一种用于控制放射性气溶胶的固定剂及制备方法 |
DE102013100933B3 (de) * | 2013-01-30 | 2014-03-27 | Areva Gmbh | Verfahren zur Oberflächen-Dekontamination von Bauteilen des Kühlmittelkreislaufs eines Kernreaktors |
DE102013102331B3 (de) | 2013-03-08 | 2014-07-03 | Horst-Otto Bertholdt | Verfahren zum Abbau einer Oxidschicht |
CN105393309B (zh) * | 2013-08-14 | 2018-01-19 | 阿海珐有限公司 | 用于减少核反应堆所用的部件的表面的放射性污染的方法 |
DE102013108802A1 (de) * | 2013-08-14 | 2015-02-19 | Areva Gmbh | Verfahren zur Verringerung der radioaktiven Kontamination eines wasserführenden Kreislaufs eines Kernkraftwerks |
US20170002472A1 (en) * | 2014-01-22 | 2017-01-05 | Jean-Michel Fougereux | Method for optimizing the yield of electroextraction of heavy metals in aqueous solution with a high salt concentration, and device for the implementation thereof |
CN105895172A (zh) * | 2014-12-26 | 2016-08-24 | 姚明勤 | 压水堆非能动安全的快速有效设计措施 |
SI3254289T1 (sl) * | 2015-02-05 | 2020-02-28 | Framatome Gmbh | Postopek za dekontaminacijo kovinskih površin v sistemu za hlajenje jedrskega reaktorja |
TWI594265B (zh) * | 2015-05-13 | 2017-08-01 | 森元信吉 | 輻射污染水的處理方法及原子爐設備的密封處理方法 |
KR101639651B1 (ko) | 2015-06-05 | 2016-08-12 | 주식회사 큐리텍 | 고정식 드럼형 방사능 자동 제염 장치 |
KR20180080284A (ko) * | 2015-11-03 | 2018-07-11 | 프라마톰 게엠베하 | 중수 냉각 및 감속 원자로의 금속면을 제염하는 방법 |
JP6890120B2 (ja) | 2016-08-04 | 2021-06-18 | ドミニオン エンジニアリング, インク.Dominion Engineering, Inc. | 原子力発電所構成部品上への放射性核種堆積の抑制 |
KR102061287B1 (ko) * | 2018-04-17 | 2019-12-31 | 한국수력원자력 주식회사 | 가압 경수로형 원자력 발전소의 생체 보호 콘크리트의 해체 및 제염 시스템및 방법 |
JP7337442B2 (ja) * | 2019-02-19 | 2023-09-04 | 株式会社ディスコ | 加工液の循環システム |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3793221A (en) * | 1972-09-13 | 1974-02-19 | Basf Wyandotte Corp | Thickened acid cleaner |
AU493149B2 (en) * | 1973-09-20 | 1978-05-17 | Basf Wyandotte Corporation | Method of cleaning vehicles witha thickened acid composition |
DE3339048A1 (de) * | 1983-10-27 | 1985-05-09 | Nea Nuclear Engineering Fuer A | Verfahren zur dekontamination von feststoffkoerpern, sowie vorrichtung und ultraschallquelle zur durchfuehrung des verfahrens |
US4729855A (en) * | 1985-11-29 | 1988-03-08 | Westinghouse Electric Corp. | Method of decontaminating radioactive metal surfaces |
US5037482A (en) * | 1990-02-16 | 1991-08-06 | Macdermid, Incorporated | Composition and method for improving adhesion of coatings to copper surfaces |
JPH05148670A (ja) * | 1991-11-26 | 1993-06-15 | Saga Pref Gov | 金属の腐食抑制剤 |
GB9422539D0 (en) * | 1994-11-04 | 1995-01-04 | British Nuclear Fuels Plc | Decontamination processes |
DE9420866U1 (de) * | 1994-12-29 | 1995-03-09 | Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch den Präsidenten des Bundesamtes für Wehrtechnik und Beschaffung, 56068 Koblenz | Dekontaminationslösung zur Entstrahlung von radioaktiv kontaminierten Oberflächen |
US5752206A (en) * | 1996-04-04 | 1998-05-12 | Frink; Neal A. | In-situ decontamination and recovery of metal from process equipment |
US5814204A (en) * | 1996-10-11 | 1998-09-29 | Corpex Technologies, Inc. | Electrolytic decontamination processes |
JP3003684B1 (ja) * | 1998-09-07 | 2000-01-31 | 日本電気株式会社 | 基板洗浄方法および基板洗浄液 |
DE19851852A1 (de) | 1998-11-10 | 2000-05-11 | Siemens Ag | Verfahren zur Dekontamination einer Oberfläche eines Bauteiles |
CA2300698C (en) * | 1999-02-19 | 2003-10-07 | J. Garfield Purdon | Broad spectrum decontamination formulation and method of use |
JP4516176B2 (ja) * | 1999-04-20 | 2010-08-04 | 関東化学株式会社 | 電子材料用基板洗浄液 |
US6652661B2 (en) * | 2001-10-12 | 2003-11-25 | Bobolink, Inc. | Radioactive decontamination and translocation method |
US20050187130A1 (en) * | 2004-02-23 | 2005-08-25 | Brooker Alan T. | Granular laundry detergent composition comprising an anionic detersive surfactant, and low levels of, or no, zeolite builders and phosphate builders |
DE102004047572A1 (de) * | 2004-09-27 | 2006-04-06 | Alfred Kärcher Gmbh & Co. Kg | Flüssigkonzentrat-Set |
ATE507566T1 (de) * | 2005-11-29 | 2011-05-15 | Areva Np Gmbh | Verfahren zur dekontamination einer eine oxidschicht aufweisenden oberfläche einer komponente oder eines systems einer kerntechnischen anlage |
DE102007038947A1 (de) * | 2007-08-17 | 2009-02-26 | Areva Np Gmbh | Verfahren zur Dekontamination von mit Alphastrahlern kontaminierten Oberflächen von Nuklearanlagen |
DE102007052206A1 (de) | 2007-10-30 | 2009-05-07 | Henkel Ag & Co. Kgaa | Bleichmittelhaltiges Wasch- oder Reinigungsmittel in Flüssiger Form |
-
2009
- 2009-04-28 DE DE102009002681A patent/DE102009002681A1/de not_active Withdrawn
-
2010
- 2010-02-17 WO PCT/EP2010/051957 patent/WO2010094692A1/de active Application Filing
- 2010-02-17 JP JP2011549605A patent/JP5584706B2/ja active Active
- 2010-02-17 CN CN201080003157.XA patent/CN102209992B/zh active Active
- 2010-02-17 ES ES10709987T patent/ES2397256T3/es active Active
- 2010-02-17 CA CA2749642A patent/CA2749642C/en not_active Expired - Fee Related
- 2010-02-17 KR KR1020117021724A patent/KR101295017B1/ko active IP Right Grant
- 2010-02-17 EP EP10709987A patent/EP2399262B1/de active Active
- 2010-02-22 TW TW099104951A patent/TWI595506B/zh active
-
2011
- 2011-08-17 US US13/211,350 patent/US8353990B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US8353990B2 (en) | 2013-01-15 |
DE102009002681A1 (de) | 2010-09-09 |
WO2010094692A1 (de) | 2010-08-26 |
CN102209992B (zh) | 2014-11-05 |
CA2749642C (en) | 2015-04-07 |
US20110303238A1 (en) | 2011-12-15 |
TWI595506B (zh) | 2017-08-11 |
JP5584706B2 (ja) | 2014-09-03 |
CN102209992A (zh) | 2011-10-05 |
EP2399262A1 (de) | 2011-12-28 |
KR20110118726A (ko) | 2011-10-31 |
ES2397256T3 (es) | 2013-03-05 |
TW201037730A (en) | 2010-10-16 |
KR101295017B1 (ko) | 2013-08-09 |
JP2012518165A (ja) | 2012-08-09 |
CA2749642A1 (en) | 2010-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2399262B1 (de) | Verfahren zur dekontamination radioaktiv kontaminierter oberflächen | |
EP2564394B1 (de) | Verfahren zur oberflächen-dekontamination | |
DE69312966T2 (de) | Verfahren zum auflösung von auf einem metallsubstrat aufgeschiedenen oxyde | |
EP2417606B1 (de) | Verfahren zur oberflächen-dekontamination | |
DE3586295T2 (de) | Verfahren zum verhindern der deponierung von radioaktiven stoffen auf die bestandteile einer kernkraftanlage. | |
DE102017115122B4 (de) | Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk | |
DE3013551A1 (de) | Dekontamination von kernreaktoren | |
DE69507709T2 (de) | Dekontaminierungsverfahren | |
EP0313843B2 (de) | Verfahren zur Dekontamination von Oberflächen | |
DE2004600A1 (de) | Verfahren zur Reinigung radioaktiver Metalloberflächen | |
DE19818772C2 (de) | Verfahren zum Abbau der Radioaktivität eines Metallteiles | |
EP2787509A1 (de) | Verfahren zum Abbau einer Oxidschicht | |
EP2188814B1 (de) | Verfahren zur dekontamination von mit alphastrahlern kontaminierten oberflächen von nuklearanlagen | |
DE3046563A1 (de) | Dekontaminierungsreagens und verfahren zum dekontamiinieren eines kernreaktors oder von teilen davon | |
EP0170796B1 (de) | Verfahren zur Trennung von grossen Mengen Uran von geringen Mengen von radioaktiven Spaltprodukten, die in wässrigen, basischen, karbonathaltigen Lösungen vorliegen | |
DE3428878C2 (de) | ||
EP1141445A1 (de) | Verfahren zur dekontamination einer oberfläche eines bauteiles | |
DE2511112C3 (de) | Verfahren zum Dekontaminieren von Oberflächen metallischer Werkstoffe | |
EP1084078B1 (de) | Verfahren zum entfernen von nitrationen aus einer lösung | |
EP3607562B1 (de) | Zinkdosierung zur dekontamination von leichtwasserreaktoren | |
CH691479A5 (de) | Oberflächenbehandlung von Stahl. | |
DE2328283A1 (de) | Verfahren zum bestimmen des anteils gebrochener teilchen von umhuelltem spaltmaterial in kompaktkoerpern von kernreaktoren | |
DD237095A3 (de) | Verfahren zur dekontamination von ausruestungen nuklearer dampferzeugungsanlagen | |
DE1059360B (de) | Verfahren zur Verminderung der Radioaktivitaet von Wasser oder anderen Fluessigkeiten durch Behandlung mit Kationen-austauschern | |
DE4310749A1 (en) | Electrochemical decontamination of metal component using strongly alkaline electrolyte liq. - used to remove radioactive oxide layers from PWR and BWR components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110629 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 585453 Country of ref document: AT Kind code of ref document: T Effective date: 20121215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010001703 Country of ref document: DE Effective date: 20130117 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2397256 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130305 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: AREVA GMBH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130222 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130321 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: AREVA GMBH, DE Free format text: FORMER OWNER: AREVA NP GMBH, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130221 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
26N | No opposition filed |
Effective date: 20130822 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE Representative=s name: MOERTEL, ALFRED, DIPL.-PHYS. DR.RER.NAT., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010001703 Country of ref document: DE Effective date: 20130822 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE Effective date: 20131112 Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE Effective date: 20131112 Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE Representative=s name: MOERTEL, ALFRED, DIPL.-PHYS. DR.RER.NAT., DE Effective date: 20131112 Ref country code: DE Ref legal event code: R081 Ref document number: 502010001703 Country of ref document: DE Owner name: AREVA GMBH, DE Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE Effective date: 20131112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100217 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 585453 Country of ref document: AT Kind code of ref document: T Effective date: 20150217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121121 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180221 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502010001703 Country of ref document: DE Owner name: FRAMATOME GMBH, DE Free format text: FORMER OWNER: AREVA GMBH, 91052 ERLANGEN, DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: FRAMATOME GMBH, DE Free format text: FORMER OWNER: AREVA GMBH, DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: HC Owner name: AREVA GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE; FORMER OWNER NAME: AREVA NP GMBH Effective date: 20190107 Ref country code: BE Ref legal event code: PD Owner name: FRAMATOME GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: AREVA GMBH Effective date: 20190107 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: HC Owner name: AREVA GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: AREVA NP GMBH Effective date: 20190111 Ref country code: NL Ref legal event code: PD Owner name: FRAMATOME GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: AREVA GMBH Effective date: 20190111 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: FRAMATOME GMBH Effective date: 20190516 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502010001703 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20210118 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20210218 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220218 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220217 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230419 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240129 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240306 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240213 Year of fee payment: 15 Ref country code: CH Payment date: 20240301 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240228 Year of fee payment: 15 Ref country code: BE Payment date: 20240226 Year of fee payment: 15 |