EP2298498A2 - Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern - Google Patents
Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern Download PDFInfo
- Publication number
- EP2298498A2 EP2298498A2 EP10008121A EP10008121A EP2298498A2 EP 2298498 A2 EP2298498 A2 EP 2298498A2 EP 10008121 A EP10008121 A EP 10008121A EP 10008121 A EP10008121 A EP 10008121A EP 2298498 A2 EP2298498 A2 EP 2298498A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- spindle
- housing
- tool
- rotary drive
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B13/00—Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
Definitions
- the present invention relates generally to a device for fine machining of optically active surfaces according to the preamble of claim 1. More particularly, the invention relates to a device for fine machining the optically effective surfaces of spectacle lenses, as used in so-called "RX workshops", i. Production facilities for the production of individual spectacle lenses are widely used according to prescriptions.
- the machining of the optically effective surfaces of spectacle lenses can be roughly subdivided into two processing phases, namely first the pre-processing of the optically effective surface to produce the recipe macrogeometry and then the fine processing of the optically effective surface to eliminate Vorbearbeitungsspuren and obtain the desired microgeometry.
- the pre-processing of the optically active surfaces of spectacle lenses inter alia, depending on the material of the spectacle lenses by grinding, milling and / or turning
- the optically effective surfaces of spectacle lenses in the finishing usually a fine grinding, Lapping and / or polishing process, what to use a corresponding machine.
- the two piston-cylinder assemblies are further by means of a linear drive together in a direction perpendicular to the axes of rotation of the workpiece spindles with respect to a front side of the polishing machine moved back and forth and also by means of a pivot drive together tiltable about a pivot axis, which is also perpendicular to the axes of rotation of the workpiece spindles , but runs parallel to the front of the polishing machine.
- a pivot drive By means of the pivot drive, the angular position between the axes of rotation of the tools and workpieces can be preset before the tools are lowered by means of the piston-cylinder assemblies on the workpieces.
- the workpieces are rotationally driven, with the tools in working engagement with the workpieces being frictionally entrained by friction, while the linear drive causes the tools to be alternately moved back and forth with respect to the front of the polishing machine, the tools having a relatively small path constantly moving back and forth over the workpieces (so-called "tangential kinematics").
- the forming the preamble of claim 1 DE-A-102 50 856 discloses in this connection a polishing apparatus (see Figs Fig. 5 to 9 ) with a rotary electric drive for the polishing tool, which as such has a stator and a rotor, and with a pneumatic piston-cylinder unit for axial deflection of the polishing tool along a longitudinal axis.
- the arrangement of the rotary and axial drives is made such that a rotatably mounted in a housing about a rotation axis spindle shaft assembly ("rotor" in the linguistic use of the above document), which at their extending from the housing end the actual polishing tool, is rotatably driven by a toothed belt drive of the electric rotary drive, which is laterally offset in the housing, arranged parallel to the axis of rotation; the pneumatic piston-cylinder unit and an associated axial guide, however, are integrated in the spindle shaft assembly, thus rotationally driven, which is why the piston-cylinder unit for supplying pressure medium requires a compressed air rotary feedthrough.
- this polishing device is constructed relatively expensive, it is also not suitable because of their large space requirement for use in the above-described "twin" polishing machine.
- the invention has for its object to provide a simple and inexpensive constructed device for fine machining of the optically effective surfaces of particular eyeglass lenses, driven by the example, a polishing tool rotationally and axially displaced and yet is very compact, so that they are approximately in a very narrow "twin" polishing machine, such as The polishing machine described above, can be used.
- the device is advantageously compact.
- the spindle shaft can be directly rotated without any play or slip-prone transmission elements, such as gears, timing belts.
- the relative arrangement of axial adjustment and electrical rotary drive made such that, together with the rotationally driven spindle shaft, at least the rotor of the electric rotary drive in the direction of the axis of rotation is axially displaceable relative to the spindle housing.
- the device according to the invention is eminently suitable for use in e.g. the above-described "twin" polishing machine, so that using other polishing methods with rotationally driven polishing tools, the processing times can be significantly reduced (ie, divisor 3), without increasing the low complexity of this polishing machine over charge or their space or space requirement at all to enlarge.
- stator or rotor of the electric rotary drive With a suitably long training of stator or rotor of the electric rotary drive, it is basically possible to make the arrangement so that only the rotor of the electric actuator is axially displaced by means of the adjusting device, while the stator is axially stationary.
- the rotor and the stator of the electric rotary drive in the direction of the tool axis of rotation relative to each other immovable in a common motor housing are received, wherein the axial adjusting device operatively connected to the motor housing and thus the motor housing together with the spindle shaft with respect to the spindle housing in the direction of the tool rotation axis is axially displaceable.
- the adjusting device is a piston-cylinder arrangement which can be acted upon pneumatically on both sides and which has a piston rod via which the axial displacement movement is transferable to the electric rotary drive and which is axially aligned with the spindle shaft.
- the latter feature is not only conducive again to a compact design of the overall device, but also prevents tilting moments are transmitted from the axial adjustment to the spindle shaft, which could hinder a smooth axial displacement of the spindle shaft with respect to the spindle housing.
- the axial movement of the spindle shaft should be very smooth, so that even with low delivery forces or polishing a low-friction delivery of the held on the tool receiving portion of the spindle shaft polishing tool is possible.
- This property is particularly important for the polishing of spectacle lenses with toric, atoric or progressive surfaces with high deviation from the rotational symmetry, so that the polishing tool always full or flat and with sensitive adjustable polishing force (or contact force) rests on the lens. If, in fact, the polishing tool would lose the surface contact to the workpiece surface during its high-speed rotary motion only for a short time, the coarser grains and agglomerates present in the polishing agent could cause scratching of the polished spectacle lens surface.
- the piston rod of the axial Adjustment device for transmitting the axial displacement movement with the electric rotary drive preferably via a diaphragm cylinder having a membrane operatively connected.
- a diaphragm cylinder works even stick-slip-free and also allows small axial strokes on the electric rotary drive and thus the spindle shaft, without that the piston rod of the adjusting would have to perform a Axialhub.
- the membrane may be formed annular disk-shaped, wherein the membrane is mounted on the inner circumference of the piston rod of the adjusting and the outer peripheral side is clamped on the electric rotary drive, so that the power flow of an axial force applied to the piston rod extends from the piston rod via the membrane in the electric rotary drive.
- the annular disc-shaped membrane it is also possible - albeit less preferred - to attach the annular disc-shaped membrane on the inner peripheral side of the electric rotary drive and to keep the outer peripheral side of a suitably shaped piston rod.
- the membrane may be e.g. be made of a spring steel.
- the membrane consists of an elastomeric material. This has the advantage that, due to its elasticity, the membrane can also be stretched in the radial direction, i. can compensate perpendicular to the tool axis of rotation, so that the membrane can also compensate for misalignment and gimbal errors between piston rod and spindle shaft, which could lead to jamming of the spindle shaft, in a simple and effective way.
- the piston rod of the axial adjusting device may be provided with a through hole which pneumatically connects a pressure chamber of the adjusting device facing away from the tool receiving portion with a pressure chamber of the diaphragm cylinder facing the tool receiving portion, wherein the pneumatic active surfaces facing each other in said pressure chambers are essentially the same size.
- the spindle shaft is rotatably mounted on the inner circumference of a spindle sleeve, which in turn is guided axially on its outer circumference with respect to the spindle housing, so that advantageously the pivot bearing and the axial guide are functionally separated in a small space.
- a spindle sleeve e.g. Sliding bushes or air bushings are used.
- the spindle sleeve is guided axially by means of guides in the form of ball bushings in the spindle housing, which is advantageous in terms of ease, longevity and cost in total.
- the spindle sleeve may also be formed in one piece with the motor housing. Here, however, it is preferred in terms of ease of manufacture and assembly when the spindle sleeve is flanged to the motor housing of the electric rotary drive.
- the spindle housing can have a housing lower part which is close to the tool receiving section of the spindle shaft and a housing upper part with different inner diameters which is remote from the tool receiving section of the spindle shaft, the spindle sleeve being reduced in diameter Lower housing part is guided axially, while the motor housing of the electric rotary drive in the larger diameter upper housing part piston-like, but with radial clearance to the spindle housing is axially displaceable.
- This embodiment has the advantage that the axial guide is close to the tool, so that, for example, machining-induced bending vibrations of the spindle shaft are largely avoided, and on the other hand the advantage that the motor housing of the electric rotary drive via the radial gap to the spindle housing during an axial movement of the motor housing Air movement or an air exchange is forced, which contributes to the cooling of the electric rotary drive.
- the upper housing part and lower housing part of the spindle housing can be formed in one piece or in two parts.
- the latter is advantageous in that the production is easier and different materials for the housing parts can be used, for example, an aluminum alloy for the upper housing part to optimize the weight (keyword: as low moving masses), and for example stainless steel for the lower part to To give the latter strength and corrosion resistance.
- the motor housing can be secured against rotation relative to the spindle housing by means of a torque arm, one end of which is fixed to the motor housing, while the other end a rotatable mounted roller bears, which bears against a spindle housing side tread.
- torque arm and the spindle housing axially guided spindle sleeve are arranged with respect to the motor housing axially opposite sides, which in turn, in turn, a compact and slim design of the device is conducive - although it is also conceivable in principle, close or even to provide on the spindle sleeve for a torque support to the spindle housing.
- polishing machine (i) a machine housing defining a working space, (ii) two workpiece spindles projecting into the working space, over the two lenses to be polished (iii) a linear drive unit, by means of which a tool carriage is movable along a linear axis which is substantially perpendicular to the workpiece axes of rotation, and (iv) has a swivel drive unit, which is arranged on the tool carriage and by means of a pivot yoke about a pivoting adjusting axis is pivotable, which is substantially perpendicular to the workpiece axes of rotation and substantially perpendicular to the linear axis; in such a way that the two devices, with their tool receiving sections in each case one of the workpiece spindles, project into the working space and are flange-mounted with their spindle housings on the pivot yoke so that the tool rotation
- Such a trained and equipped "twin" polishing machine is characterized not only by the fact that it is very compact - inasmuch as it is easy to load manually - and in a very cost effective way many common drives uses, but in particular by the fact that by the Movement options provided according to the invention, namely the active rotational movement possibility of the polishing tools mounted thereto, compared to the prior art described at the outset the implementation of other, especially faster or more time-efficient polishing process allows.
- a device 10 described below in detail for fine machining of the optically effective surfaces on workpieces, such as lenses L - a polishing machine in "twin" construction, ie numbered for simultaneous polishing of two lenses L with 12.
- the polishing machine 12 generally has (i) a working space 14 limiting machine housing 16, which is mounted on a machine frame 18, (ii) two projecting into the working space 14 workpiece spindles 20, on the two lenses to be polished L by means of a common rotary drive 22 (see the Fig. 3 to 5 ) about mutually parallel workpiece axes of rotation C1, C2 (C in Fig.
- a linear drive unit 24 by means of which a tool carriage 26 can be moved along a linear axis X, which extends substantially perpendicular to the workpiece axes of rotation C1, C2,
- a pivot drive unit 28 which on the Tool carriage 26 is arranged and by means of a pivot yoke 30 can be pivoted about a pivot axis B, which is substantially perpendicular to the workpiece axes of rotation C1, C2 and substantially perpendicular to the linear axis X, and finally (v) two of the above already mentioned devices 10.
- each of the devices 10 comprises generally (a) a spindle shaft 32 having a tool receiving portion 34 and in a spindle housing 36 about a tool axis of rotation A1, A2 (A from Fig.
- an electric rotary drive 38 having a rotor 40 and a stator 42 and by means of which the rotor 40 operatively connected to the spindle shaft 32 about the tool rotation axis A1, A2 (A) can be driven to rotate
- an axial adjustment device 44 by means of which the tool receiving portion 34 with respect to the spindle housing 36 in the direction of the tool rotation axis A1, A2 (A) can be displaced or moved axially (linear movement Z1, Z2 or Z from Fig. 6 ).
- Essential features of the device 10 are in this case that the rotor 40 and the stator 42 of the electric rotary drive 38 are arranged coaxially with the spindle shaft 32, and that by means of the adjusting device 44, at least the rotor 40 of the electric rotary drive 38, in the illustrated embodiment even the entire electric rotary drive 38 together with the spindle shaft 32 with respect to the spindle housing 36 in the direction of the tool axis of rotation A1, A2 (A) can be moved axially (linear motion Z1, Z2 and Z), as will also be described in more detail below.
- the devices 10 are now flanged with their spindle housings 36 on the pivot yoke 30 of the polishing machine 12 that they project with their tool receiving portions 34 each one of the workpiece spindles 20 in the working space 14, wherein the tool axis of rotation A1, A2 of each device 10 with the Workpiece rotation axis C1, C2 of the associated workpiece spindle 20 forms an imaginary plane (perpendicular to the plane of the drawing Fig. 4 and parallel to the plane of the drawing Fig.
- FIG. 2 machine housing 16 mounted obliquely on the machine frame 18 is designed as a welded sheet-metal housing, comprising a bottom plate 48, a cover plate 50, two side walls 52, a rear wall 56 bevelled to a drain 54 provided in the bottom plate 48, and a front wall 58 which in total comprises the working space 14 limit. While the side walls 52 and the front wall 58 are provided with windows 60, in the bottom plate 48 there are round recesses (not shown) for passing the workpiece spindles 20 and a drive shaft 61 of the rotary drive 22 and elongated recesses 62 in the cover plate 50 (see FIGS Fig. 2 to 4 ) provided for the passage of the devices 10.
- the elongated recesses 62 also allow for an axial back and forth movement of the devices 10 in the direction of the linear axis X, ie in the direction of the front wall 58 and away therefrom, wherein for sealing against the working space 14 in the illustrated embodiment each have a bellows cover 64 as a flexible working space cover is provided.
- the workpiece spindles 20 are flanged in the working space 14 from above on the bottom plate 48 and pass through these each with a drive shaft 66 and an actuating mechanism 68 for a collet 70, by means of a blocked on a block piece S lens L axially fixed and capable of rotation can be clamped to the respective workpiece spindle 20 (see. Fig. 11 ).
- actuating mechanism 68 for a collet 70, by means of a blocked on a block piece S lens L axially fixed and capable of rotation can be clamped to the respective workpiece spindle 20 (see. Fig. 11 ).
- 72 fortified pneumatic cylinders of the actuating mechanisms 68 are numbered below the bottom plate 48, by means of which the collets 70 can be opened or closed in a known per se.
- a speed-controlled asynchronous three-phase motor - also flanged from above on the bottom plate 48.
- pulleys 74 are further attached to the drive shafts 61, 66 of rotary drive 22 and workpiece spindles 20 and operatively connected by means of a V-belt 76, so that the rotary drive 22 at the same time both workpiece spindles 20 rotatably drive at a predetermined speed (workpiece axes of rotation C1, C2 or C).
- the linear drive unit 24 in the illustrated embodiment comprises a driven by a servo motor 78 via a clutch ball screw 80 which is received in a mounted on top of the cover plate 50 guide box 82 on which the tool carriage 26 is guided.
- This essentially horizontal linear axis X is CNC-controlled; however, to simplify the illustration, the associated displacement measuring system is not shown.
- Fig. 1 to 4 is the substantially U-shaped pivot yoke 30 with his legs on in the Fig. 1 and 2 hinged to the front end of the tool carriage 26 so that it can pivot about the pivoting adjustment axis B.
- the pivot drive unit 28 is articulated so that it can pivot about an axis 84.
- the swivel drive unit 28 is a commercially available linear module, as can be obtained, for example, from the company SKF under the name "lifting cylinder CARE 33".
- linear modules which are used in large numbers, for example as automatic window openers or for the adjustment of hospital beds, have a lifting rod 86, which can be extended or retracted via a spindle drive (not shown in detail) driven by a DC motor 88.
- a spindle drive (not shown in detail) driven by a DC motor 88.
- the self-locking of the spindle drive is so large that the lifting rod 86 remains in its once approached position even under greater axial loads when the DC motor 88 is turned off without it od a brake or the like.
- the lifting rod 86 of the rotary drive unit 28 is now facing away from the DC motor 88 end in a middle, in the Fig.
- the electrical rotary drive 38 of the device 10-in the illustrated exemplary embodiment a synchronous three-phase motor-is speed-controlled (tool rotation axes A1, A2, or A).
- the linear movement of the polishing tool 46 in the direction Z1, Z2 or Z which can be effected by means of the axial adjustment device 44 of the device 10, is uncontrolled and unregulated.
- This movement possibility serves to bring the polishing tool 46 into contact with the spectacle lens L before the actual polishing operation, to press the polishing tool 46 toward the spectacle lens L during the polishing operation with a predetermined force to produce a polishing pressure, and the polishing tool 46 after the polishing operation Polishing process to lift off the lens L again.
- the above-described polishing machine 12 allows, for example, the following procedure, which should be described only for a lens L, because the second lens L of the respective "RX job" in an analogous manner and at the same time polished.
- the angle of rotation of the tool axes of rotation A1, A2 or A with respect to the workpiece axes of rotation C1, C2 or C is first by means of the pivot drive unit 28 as a function of the processed Geometry on the lens L set to a predetermined value (pivot axis B). This angle of attack is not changed during the actual polishing.
- the polishing tool 46 is moved by means of the linear drive unit 24 in a position in which it is opposite the lens L (linear axis X). Thereafter, the polishing tool 46 is displaced axially by means of the adjusting device 44 of the device 10 in the direction of the spectacle lens L until it comes into contact therewith (linear movement Z1, Z2 or Z). Now the polish supply is switched on, and the polishing tool 46 and the spectacle lens L are rotated by means of the electric rotary drive 38 and the rotary drive 22 (tool rotation axes A1, A2 and A, workpiece rotation axes C1, C2 and C, respectively).
- a synchronous synchronization takes place between the tool and the workpiece;
- the polishing tool 46 is oscillated by means of the linear drive unit 24 with relatively small strokes over the spectacle lens L (linear axis X), so that the polishing tool 46 is guided over different surface regions of the spectacle lens L.
- the polishing tool 46 moves the (non-circular) geometry on the polished spectacle lens L also slightly up and down (linear movement Z1, Z2 and Z).
- polishing tool 46 is lifted off the spectacle lens L by means of the adjusting device 44 of the device 10 (linear movement Z1, Z2 or Z) after the polishing agent supply has been switched off and the rotational movements of the tool and workpiece have been stopped (tool rotation axes A1, A2 or A; Workpiece rotation axes C1, C2 or C). Finally, the polishing tool 46 is driven by the linear drive unit 24 to a position (linear axis X), which allows the lens L to be taken out of the polishing machine 12.
- the spindle housing 36 is made in two parts, with the tool receiving portion 34 of the spindle shaft 32 near sleeve-like housing part 92 and a tool receiving portion 34 of the spindle shaft 32 distant, substantially cup-shaped housing upper part 94, wherein the lower housing part 92 and the upper housing part 94 are formed hollow cylindrical with different inner diameters ,
- the housing lower part 92 is in the region of an opening 96 flanged in the bottom of the upper housing part 94 with the aid of screws 98 on the upper housing part 94.
- a flange 100 to see the device 10 on the pivot yoke 30 of the polishing machine 12 can be flanged left or right side, then three cylinder screws pass through the pivot yoke 30 and are screwed into associated threaded blind holes in the flange 100, such as especially the Fig. 3 and 4 reveal.
- a substantially tubular spindle sleeve 102 at its outer periphery by means of one or more guides - in the illustrated embodiment in the form of two ball bushings 104 - axially guided largely free of radial play with respect to the spindle housing 36, while in the larger diameter housing top 94 a substantially cup-shaped motor housing 106th of the electric rotary drive 38 piston-like, but with radial clearance R (see Fig. 9 ) is received axially displaceably to the spindle housing 36.
- the upper housing part 94 is dimensioned such that the motor housing 106 can be axially displaced in the spindle housing 36 with a stroke of approximately 60 mm.
- the spindle sleeve 102 is on the motor housing 106 of the electric rotary drive 38 in the region of an opening 108 in the bottom of the motor housing 106 with the aid of screws 110 (see again Fig. 9 ) flanged.
- the spindle shaft 32 On the inner circumference of the spindle sleeve 102, the spindle shaft 32 is rotatably mounted near its two ends by means of a respective bearing 112, for example a ball bearing.
- the spindle shaft 32 passes completely through the spindle sleeve 102 and stands in the Fig. 9 to 11 below, in particular with its tool receiving portion 34 on the spindle sleeve 102, while protruding in the aforementioned figures in the top of the motor housing 106.
- a labyrinth seal in the form of a plugged onto the spindle sleeve 102, by means of a grub screw 114 (FIG. Fig. 9 ) clamped bellows 116 and a plugged onto the spindle shaft 32, by means of another grub screw 118 (FIG. Fig. 9 ) clamped and with the spindle shaft 32 rotating baffle plate 120. Both parts (116 and 120) of the labyrinth seal are sealed by means of an O-ring 122 relative to the spindle shaft 32 and the spindle sleeve 102.
- a sealing ring 124 such as an elastomeric V-sealing ring used.
- a bellows 126 each in an annular groove at the lower end of the housing base 92 and the bellows ring 116 by means of clamps 128 (FIGS. Fig. 7 ) attached.
- the rotor 40 and the stator 42 of the electric rotary drive 38 are housed together and in the direction of the tool axis of rotation A relative to each other immovable.
- the adjusting device 44 is operatively connected to the motor housing 106, as will be described in more detail, so that the motor housing 106 with the spindle sleeve 102 and the spindle shaft 32 mounted therein with respect to the spindle housing 36 in the direction of the tool axis of rotation A is axially displaceable (linear movement Z ).
- the stator 42 of the electric rotary drive 38 Inside the motor housing 106, the stator 42 of the electric rotary drive 38, whose windings only in Fig. 11 are indicated, with the motor housing 106 shed.
- the electric rotary drive 38 is air-cooled and has for this purpose in the upper region of the rotor 40, a fan (not shown).
- a fan not shown.
- bores 130 ( Fig. 9 ) in the bottom of the motor housing 106 during an axial movement (linear movement Z) of the electric rotary drive 38 provided for an air exchange (eg with each charging process). In this axial movement thus the air flows through the electric rotary drive 38 and cools the rotor 40 and stator 42.
- This air exchange can additionally by a laterally attached to the bottom of the housing top 94, leading to the interior of the spindle housing 36 auxiliary air connection 132 (FIGS. 6 and 7 ) are supported by means of compressed air, whereby if necessary, a permanent air cooling of the electric rotary drive 38 can take place. If necessary, to determine such a need, a thermal sensor 134 ( Fig. 9 ) be provided.
- the spindle shaft 32 carries the rotor 40, which is rotatably connected there in a suitable manner, for example by means of a ring-clamping element 136 or other known shaft-hub connection with the spindle shaft 32.
- the associated clamping screws 138 serve at the same time the attachment of the fan (not shown).
- the motor housing 106 In the Fig. 9 to 11 closed at the top, the motor housing 106 by a bearing plate 140 which is fixed by means of a mounted in an annular groove of the motor housing 106 Seeger ring 142.
- Fig. 9 are energy and thermal sensor cable 144 of the electric rotary drive 38, which incidentally has a large, continuously variable speed range, led out via an opening in the bearing plate 140 by means of a cable gland 146 from the device 10.
- the energy and thermal sensor cables 144 are first guided in a U-shaped bend 147 to a further cable gland 148, which in turn is fastened to a mounting bracket 150 bolted to the upper housing part 94.
- a mounting flange 152, the housing upper part 94 in the Fig. 9 to 11 closes at the top and screwed to it (not shown in detail), finally forms an upper stop for the motor housing 106 in these figures.
- axial adjustment device 44 is a two-sided pneumatically acted piston-cylinder assembly having a piston rod 154, via which the axial displacement movement (linear movement Z) is transferable to the electric rotary drive 38 and which is axially aligned with the spindle shaft 32 ,
- a bridge-like support structure is provided which consists of an upper, plate-shaped cylinder bearing 156 and two on both sides thereof arranged, plate-shaped guide members 158.
- the guide members 158 are mounted by means of countersunk screws (not shown) on the mounting flange 152, while the cylinder bearing 156 is screwed to the guide members 158 by means of cap screws 160 (see Fig. 7 ).
- the axial adjustment device 44 further comprises a cylinder tube 162, which is fastened by means of two long cylinder screws 164 and a cylinder cover 166 on the cylinder bearing 156, by clamping between cylinder bearing 156 and cylinder cover 166.
- a piston 168 is received longitudinally displaceable, on which the piston rod 154 is mounted, which extends sealed by means of a provided in the cylinder cover 166 sealing stripper ring 170 through the cylinder cover 166 therethrough.
- the sealing of the cylinder tube 162 by means of O-rings 172, which are each mounted in the cylinder bearing 156 and the cylinder cover 166 in an annular groove.
- the piston 168 separates in the cylinder tube 162 a cylinder bearing side pressure chamber 174, which via a transverse bore (not shown, starting from the pressure port 175 in the 6, 7 and 9 ) in the cylinder bearing 156 can be pressurized to extend the tool receiving portion 34 of the spindle shaft 32, from a cylinder cover side pressure chamber 176, which (not shown, via a provided in the cylinder cover 166 transverse bore, starting from the pressure port 177 in the Fig. 6 to 11 ) is pressurizable to retract the tool receiving portion 34.
- Fig. 9 to 11 is the piston rod 154 of the axial adjustment device 44 for transmitting the axial displacement movement (linear movement Z) with the electric rotary drive 38 via a membrane 178 having a diaphragm cylinder 180 operatively connected.
- the bearing plate 140 of the electric rotary drive 38 at its in the Fig. 9 to 11 upper side with a circular, trough-shaped depression which forms a lower pressure chamber 182 of the diaphragm cylinder 180 in these figures.
- a likewise provided with a depression diaphragm cover 184 is provided, which is bolted to the bearing plate 140 while the membrane 178 to form a in the Fig. 9 to 11 upper chamber 186 (see Fig.
- the diaphragm 178 which is made of an elastomeric material, is formed annular disc-shaped. In this case, it is on the inner peripheral side by means of an annular bead 188 (see Fig. 11 ), which is clamped between two discs via a screwed into the piston rod 154, hollow-bored screw (by means of annular grooves on the discs) attached to the piston rod 154 of the adjusting 44, while the membrane 178 on the outer circumference by means of a ring bead 190 (see again the Fig.
- the piston rod 154 of the axial adjustment device 44 has a through hole 192 which connects the remote from the tool receiving portion 34 of the spindle shaft 32 pressure chamber 174 of the adjusting device 44 with the tool receiving portion 34 facing the pressure chamber 182 of the diaphragm cylinder 180 pneumatically. Since the mutually facing pneumatic active surfaces in the said pressure chambers 174, 182 are substantially the same size, the forces acting on the diaphragm 178 mutually cancel each other when pressure is applied to the pressure chamber 174 of the adjusting device 44.
- the motor housing 106 of the electric rotary drive 38 is secured against rotation relative to the spindle housing 36 by means of a torque arm 194, one end of which is fixed to the motor housing 106, while its other end carries a rotatably mounted pulley 196 mounted on a spindle housing side tread 198 is applied.
- a torque arm 194 is screwed to an annular cover plate 200, which in turn is bolted to the bearing plate 140, as the Fig. 9 can be seen, bearing plate 140 and cover plate 200 seize the Seeger ring 142 between them.
- the torque arm 194 and the housing lower part 92 of the spindle housing 36 axially guided spindle sleeve 102 are arranged with respect to the motor housing 106 axially opposite sides.
- the spindle-housing-side running surface 198 is formed by a longitudinal groove in the corresponding guide part 158, which constitutes, as it were, a slotted guide for the roller 196.
- the polishing tool 46 held on the tool receiving section 34 of the spindle shaft 32 by means of a grub screw is also shown by way of example.
- This can in principle correspond to the polishing tools described in the already mentioned publications EP-A-1 473 116 . DE-A-10 2005 010 583 and EP-A-2 014 412 are disclosed.
- the cavity in the polishing tool 46 is not actively pressurized, but is filled, for example, with a fluid (gas or silicone oil).
- a polishing plate 204 is held interchangeable on the polishing tool 46.
- polishing plates 204 are for example the publication DE-A-10 2007 026 841 the present applicant to remove; the interface 202 essentially corresponds to that in the older German patent application DE 10 2009 036 981.3 the present applicant presented and described interface. In this respect, reference should be made at this point to the cited documents.
- Fig. 11 For simplicity, the motor housing 106 of the electric rotary drive 38 to stop at the bottom of the upper housing part 94 of the spindle housing 36 is shown. However, such a relative position of these parts is not achieved in reality. Rather, the motor housing 106 is always at least slightly spaced from the bottom of the upper housing part 94 during the polishing process.
- a special feature of the device is that the Rotor and the stator are arranged coaxially with the spindle shaft, wherein by means of the adjusting at least the rotor together with the spindle shaft with respect to the spindle housing in the direction of the tool axis of rotation is axially displaceable, which in particular requires a very compact design.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Es wird eine Vorrichtung (10) zur Feinbearbeitung der optisch wirksamen Flächen an insbesondere Brillengläsern offenbart, mit einer einen Werkzeugaufnahmeabschnitt (34) aufweisenden Spindelwelle (32), die in einem Spindelgehäuse (36) um eine Werkzeug-Drehachse (A) drehbar gelagert ist, einem einen Rotor (40) und einen Stator (42) aufweisenden elektrischen Drehantrieb (38), mittels dessen die mit dem Rotor wirkverbundene Spindelwelle um die Werkzeug-Drehachse drehend antreibbar ist, und einer Verstelleinrichtung (44), mittels welcher der Werkzeugaufnahmeabschnitt bezüglich des Spindelgehäuses in Richtung der Werkzeug-Drehachse axial verschiebbar ist (Linearbewegung Z). Eine Besonderheit der Vorrichtung besteht darin, dass der Rotor und der Stator mit der Spindelwelle koaxial angeordnet sind, wobei mittels der Verstelleinrichtung wenigstens der Rotor zusammen mit der Spindelwelle bezüglich des Spindelgehäuses in Richtung der Werkzeug-Drehachse axial verschiebbar ist, was insbesondere einen sehr kompakten Aufbau bedingt.
Description
- Die vorliegende Erfindung bezieht sich allgemein auf eine Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen gemäß dem Oberbegriff des Patentanspruchs 1. Insbesondere bezieht sich die Erfindung auf eine Vorrichtung zur Feinbearbeitung der optisch wirksamen Flächen an Brillengläsern, wie sie in sogenannten "RX-Werkstätten", d.h. Produktionsstätten zur Fertigung von individuellen Brillengläsern nach Rezept in großem Umfang zum Einsatz kommen.
- Wenn nachfolgend beispielhaft für Werkstücke mit optisch wirksamen Flächen von "Brillengläsern" die Rede ist, sollen darunter nicht nur Brillenlinsen aus Mineralglas, sondern auch Brillenlinsen aus allen anderen gebräuchlichen Materialien, wie Polycarbonat, CR 39, HI-Index, etc., also auch Kunststoff verstanden werden.
- Die spanende Bearbeitung der optisch wirksamen Flächen von Brillengläsern kann grob in zwei Bearbeitungsphasen unterteilt werden, nämlich zunächst die Vorbearbeitung der optisch wirksamen Fläche zur Erzeugung der rezeptgemäßen Makrogeometrie und sodann die Feinbearbeitung der optisch wirksamen Fläche, um Vorbearbeitungsspuren zu beseitigen und die gewünschte Mikrogeometrie zu erhalten. Während die Vorbearbeitung der optisch wirksamen Flächen von Brillengläsern u.a. in Abhängigkeit vom Material der Brillengläser durch Schleifen, Fräsen und/oder Drehen erfolgt, werden die optisch wirksamen Flächen von Brillengläsern bei der Feinbearbeitung üblicherweise einem Feinschleif-, Läpp- und/oder Poliervorgang unterzogen, wozu man sich einer entsprechenden Maschine bedient.
- Vor allem handbeschickte Poliermaschinen in RX-Werkstätten werden meist als "Zwillingsmaschinen" ausgeführt, so dass vorteilhaft die zwei Brillengläser eines "RX-Jobs" - ein Brillenglasrezept besteht stets aus einem Brillenglaspaar - gleichzeitig feinbearbeitet werden können. Eine solche "Zwillings"-Poliermaschine ist beispielsweise aus den Druckschriften
US-A-2007/0155286 undUS-A-2007/0155287 bekannt. - Bei dieser vorbekannten Poliermaschine ragen zwei parallel angeordnete, jeweils um eine Rotationsachse drehangetriebene, ansonsten aber ortsfeste Werkstückspindeln von unten in einen Arbeitsraum hinein, wo ihnen zwei Polierwerkzeuge gegenüberstehen, so dass ein Polierwerkzeug der einen Werkstückspindel und das andere Polierwerkzeug der anderen Werkstückspindel zugeordnet ist. Jedes Polierwerkzeug ist über ein Kalottenlager frei drehbar an einer von oben in den Arbeitsraum hineinragenden Kolbenstange einer jeweils zugeordneten, oberhalb des Arbeitsraums angeordneten Kolben-Zylinder-Anordnung angebracht, mittels der das jeweilige Polierwerkzeug individuell bezüglich der zugeordneten Werkstückspindel abgesenkt oder angehoben werden kann. Die beiden Kolben-Zylinder-Anordnungen sind ferner mittels eines Linearantriebs gemeinsam in einer Richtung senkrecht zu den Rotationsachsen der Werkstückspindeln bezüglich einer Frontseite der Poliermaschine vor und zurück verfahrbar und außerdem mittels eines Schwenkantriebs gemeinsam um eine Schwenkachse verkippbar, die ebenfalls senkrecht zu den Rotationsachsen der Werkstückspindeln, jedoch parallel zur Frontseite der Poliermaschine verläuft. Vermittels des Schwenkantriebs kann die Winkellage zwischen den Rotationsachsen der Werkzeuge und Werkstücke voreingestellt werden bevor die Werkzeuge vermittels der Kolben-Zylinder-Anordnungen auf die Werkstücke abgesenkt werden. Beim eigentlichen Poliervorgang werden die Werkstücke drehend angetrieben, wobei die sich mit den Werkstücken in Bearbeitungseingriff befindenden Werkzeuge durch Reibung drehend mitgenommen werden, während der Linearantrieb dafür sorgt, dass die Werkzeuge bezüglich der Frontseite der Poliermaschine abwechselnd vor und zurück bewegt werden, wobei die Werkzeuge mit einem relativ kleinen Weg laufend über die Werkstücke vor und zurück streifen (sogenannte "Tangential-Kinematik").
- Vorteile dieser "Zwillings"-Poliermaschine bestehen u.a. darin, dass sie aus preiswerten Komponenten in vorrichtungstechnisch einfacher Weise aufgebaut ist, für eine manuelle Beschickung sehr ergonomisch ist und zudem aufgrund ihrer äußerst kompakten, sehr schmal bauenden Konstruktion sehr wenig Stellfläche in der RX-Werkstatt benötigt. Wünschenswert wäre es allerdings, wenn auch andere Polierverfahren auf einer solchen Poliermaschine durchgeführt werden könnten. So sind etwa die in den Druckschriften
EP-A-1 473 116 ,DE-A-10 2005 010 583 undEP-A-2 014 412 offenbarten flexiblen Polierwerkzeuge für Polierverfahren ausgelegt, bei denen neben dem Werkstück auch das Werkzeug selbst drehend angetrieben wird, wodurch die Polierzeiten - verglichen mit Polierverfahren, bei denen das Werkzeug lediglich durch Reibung mitgenommen wird - deutlich verkürzt werden können. - Die den Oberbegriff des Patentanspruchs 1 bildende
DE-A-102 50 856 offenbart in diesem Zusammenhang eine Poliervorrichtung (siehe dieFig. 5 bis 9 ) mit einem elektrischen Drehantrieb für das Polierwerkzeug, der als solcher einen Stator und einen Rotor aufweist, und mit einer pneumatischen Kolben-Zylinder-Einheit für eine axiale Auslenkung des Polierwerkzeugs entlang einer Längsachse. Hierbei ist die Anordnung der Dreh- und Axialantriebe so getroffen, dass eine in einem Gehäuse um eine Drehachse drehbar gelagerte Spindelwellen-Baugruppe ("Rotor" im Sprachgebrauch der oben genannten Druckschrift), die an ihrem aus dem Gehäuse hinausragenden Ende das eigentliche Polierwerkzeug trägt, über einen Zahnriemenantrieb von dem elektrischen Drehantrieb drehangetrieben wird, welcher im Gehäuse seitlich versetzt, parallel zur Drehachse angeordnet ist; die pneumatische Kolben-Zylinder-Einheit und eine zugeordnete Axialführung hingegen sind in der Spindelwellen-Baugruppe integriert, folglich mit drehangetrieben, weshalb die Kolben-Zylinder-Einheit zur Druckmittelversorgung einer Druckluft-Drehdurchführung bedarf. Neben dem Umstand, dass diese Poliervorrichtung relativ aufwendig aufgebaut ist, ist sie auch aufgrund ihres großen Bauraumbedarfs für einen Einsatz in der vorbeschriebenen "Zwillings"-Poliermaschine nicht geeignet. - Der Erfindung liegt die Aufgabe zugrunde, eine möglichst einfach und kostengünstig aufgebaute Vorrichtung zur Feinbearbeitung der optisch wirksamen Flächen an insbesondere Brillengläsern zu schaffen, mittels der beispielsweise ein Polierwerkzeug drehend angetrieben sowie axial verlagert werden kann und die dennoch sehr kompakt ist, so dass sie etwa in einer sehr schmal bauenden "Zwillings"-Poliermaschine, wie z.B. der eingangs beschriebenen Poliermaschine, eingesetzt werden kann.
- Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Merkmale gelöst. Vorteilhafte oder zweckmäßige Weiterbildungen der Erfindung sind Gegenstand der Patentansprüche 2 bis 14.
- Erfindungsgemäß sind bei einer Vorrichtung zur Feinbearbeitung der optisch wirksamen Flächen an insbesondere Brillengläsern, die (i) eine einen Werkzeugaufnahmeabschnitt aufweisende Spindelwelle, welche in einem Spindelgehäuse um eine Werkzeug-Drehachse drehbar gelagert ist, (ii) einen einen Rotor und einen Stator aufweisenden elektrischen Drehantrieb, mittels dessen die mit dem Rotor wirkverbundene Spindelwelle um die Werkzeug-Drehachse drehend antreibbar ist, und (iii) eine Verstelleinrichtung umfasst, mittels welcher der Werkzeugaufnahmeabschnitt bezüglich des Spindelgehäuses in Richtung der Werkzeug-Drehachse axial verschiebbar ist; der Rotor und der Stator des elektrischen Drehantriebs sowie die Spindelwelle koaxial angeordnet, wobei mittels der Verstelleinrichtung wenigstens der Rotor des elektrischen Drehantriebs zusammen mit der Spindelwelle bezüglich des Spindelgehäuses in Richtung der Werkzeug-Drehachse axial verschiebbar ist.
- Dadurch, dass erfindungsgemäß der Rotor und der Stator des elektrischen Drehantriebs gemeinsam mit der Spindelwelle auf ein und derselben Achse angeordnet sind, baut die Vorrichtung vorteilhaft kompakt. Darüber hinaus kann die Spindelwelle direkt drehangetrieben werden, ohne dass irgendwelche spiel-oder schlupfbehafteten Übertragungsglieder, wie Zahnräder, Zahnriemen od. dgl. erforderlich wären, was den vorrichtungstechnischen Aufwand insgesamt verringert, den Bauraumbedarf für diesen Antrieb merklich reduziert und zudem übertragungsbedingte Wirkungsgradverluste sowie Verschleiß vermeidet.
- Außerdem ist erfindungsgemäß die relative Anordnung von axialer Verstelleinrichtung und elektrischem Drehantrieb so getroffen, dass gemeinsam mit der drehangetriebenen Spindelwelle zumindest der Rotor des elektrischen Drehantriebs in Richtung der Rotationsachse relativ zum Spindelgehäuse axial verschiebbar ist. Mit anderen Worten gesagt ist in Wirkrichtung zum Werkzeug hin gesehen die axiale Verstelleinrichtung dem elektrischen Drehantrieb vorgelagert, so dass (zumindest) die drehbewegten Bauteile insgesamt mittels der Verstelleinrichtung axial verlagerbar sind, wodurch die Verstelleinrichtung drehfest am oder im Spindelgehäuse montiert werden kann und aufwendige Drehdurchführungen od. dgl. entbehrlich sind.
- Im Ergebnis eignet sich die erfindungsgemäße Vorrichtung hervorragend für einen Einsatz in z.B. der eingangs beschriebenen "Zwillings"-Poliermaschine, so dass unter Verwendung anderer Polierverfahren mit drehend angetriebenen Polierwerkzeugen die Bearbeitungszeiten deutlich verkürzt werden können (d.h. etwa Divisor 3), ohne die geringe Komplexität dieser Poliermaschine über Gebühr zu erhöhen oder deren Bauraum- bzw. Stellplatzbedarf überhaupt zu vergrößern.
- Bei geeignet langer Ausbildung von Stator oder Rotor des elektrischen Drehantriebs ist es grundsätzlich möglich, die Anordnung so zu treffen, dass mittels der Verstelleinrichtung lediglich der Rotor des elektrischen Stellantriebs axial verschoben wird, während der Stator axial ortsfest ist. Insbesondere im Hinblick auf einen kleinen Bauraum, geringe Kosten und eine für vorbestimmte Drehzahlen konstante Kraftübertragung von dem Stator auf den Rotor ist es allerdings bevorzugt, wenn der Rotor und der Stator des elektrischen Drehantriebs in Richtung der Werkzeug-Drehachse relativ zueinander unverschiebbar in einem gemeinsamen Motorgehäuse aufgenommen sind, wobei die axiale Verstelleinrichtung mit dem Motorgehäuse wirkverbunden und somit das Motorgehäuse zusammen mit der Spindelwelle bezüglich des Spindelgehäuses in Richtung der Werkzeug-Drehachse axial verschiebbar ist.
- Zur Ausbildung der axialen Verstelleinrichtung in Frage kommen prinzipiell auch elektrische bzw. elektro-mechanische, hydraulische oder hydro-pneumatische Linearaktuatoren. Hinsichtlich eines möglichst einfachen und kostengünstigen Aufbaus bevorzugt ist es jedoch, wenn es sich bei der Verstelleinrichtung um eine zweiseitig pneumatisch beaufschlagbare Kolben-Zylinder-Anordnung handelt, welche eine Kolbenstange aufweist, über die die axiale Verschiebebewegung auf den elektrischen Drehantrieb übertragbar ist und die mit der Spindelwelle axial ausgefluchtet ist. Letzteres Merkmal ist nicht nur erneut einem kompakten Aufbau der Gesamtvorrichtung förderlich, sondern verhindert darüber hinaus auch, dass Kippmomente von der axialen Verstelleinrichtung auf die Spindelwelle übertragen werden, die eine leichtgängige Axialverschiebung der Spindelwelle bezüglich des Spindelgehäuses behindern könnten.
- In diesem Zusammenhang ist darauf hinzuweisen, dass z.B. für einen Einsatz der erfindungsgemäßen Vorrichtung in einer Poliermaschine für Brillengläser die Axialbewegung der Spindelwelle sehr leichtgängig sein sollte, so dass auch bei geringen Zustellkräften bzw. Polierdrücken eine reibungsarme Zustellung des am Werkzeugaufnahmeabschnitt der Spindelwelle gehaltenen Polierwerkzeugs möglich ist. Diese Eigenschaft ist insbesondere für die Politur von Brillengläsern mit torischen, atorischen oder Gleitsichtflächen mit hoher Abweichung von der Rotationssymmetrie wichtig, damit das Polierwerkzeug stets satt bzw. flächig und mit feinfühlig einstellbarer Polierkraft (bzw. Anpresskraft) am Brillenglas anliegt. Falls nämlich das Polierwerkzeug während seiner hochtourigen Drehbewegung den Flächenkontakt zur Werkstückoberfläche auch nur kurzzeitig verlieren würde, könnte es durch die im Poliermittel vorhandenen gröberen Körner und Agglomerate zu einer Verkratzung der polierten Brillenglasfläche kommen.
- Um auf einfache Weise auch dem entgegenzuwirken, dass etwaige stick-slip-Effekte zwischen Kolben und Zylinder der pneumatisch beaufschlagbaren Kolben-Zylinder-Anordnung auf die Spindelwelle übertragen werden und sich dann negativ auf die axiale Zustellbewegung der Spindelwelle auswirken können, ist die Kolbenstange der axialen Verstelleinrichtung zur Übertragung der axialen Verschiebebewegung mit dem elektrischen Drehantrieb bevorzugt über einen eine Membran aufweisenden Membranzylinder wirkverbunden. Ein solcher Membranzylinder arbeitet selbst stick-slip-frei und lässt darüber hinaus kleine axiale Hubbewegungen am elektrischen Drehantrieb und damit der Spindelwelle zu, ohne dass dafür die Kolbenstange der Verstelleinrichtung einen Axialhub ausführen müsste.
- In zweckmäßiger Ausgestaltung kann die Membran ringscheibenförmig ausgebildet sein, wobei die Membran innenumfangsseitig an der Kolbenstange der Verstelleinrichtung angebracht und außenumfangsseitig am elektrischen Drehantrieb eingespannt ist, so dass der Kraftfluss einer an der Kolbenstange aufgebrachten Axialkraft von der Kolbenstange über die Membran in den elektrischen Drehantrieb verläuft. Anstelle dessen ist es jedoch auch möglich - wenngleich weniger bevorzugt - die ringscheibenförmige Membran innenumfangsseitig am elektrischen Drehantrieb anzubringen und außenumfangsseitig an einer geeignet gestalteten Kolbenstange zu halten.
- Grundsätzlich kann die Membran z.B. aus einem Federstahl hergestellt sein. In bevorzugter Ausgestaltung besteht die Membran allerdings aus einem elastomeren Werkstoff. Dies hat den Vorteil, dass die Membran aufgrund ihrer Elastizität auch in radialer Richtung, d.h. senkrecht zur Werkzeug-Drehachse auszugleichen vermag, so dass die Membran ebenfalls Fluchtungsfehler und kardanische Fehler zwischen Kolbenstange und Spindelwelle, die zu Verklemmungen der Spindelwelle führen könnten, auf einfache und wirkungsvolle Weise kompensieren kann.
- In einer weiteren vorteilhaften Ausgestaltung der Vorrichtung kann die Kolbenstange der axialen Verstelleinrichtung mit einer Durchgangsbohrung versehen sein, die einen vom Werkzeugaufnahmeabschnitt abgewandten Druckraum der Verstelleinrichtung mit einem dem Werkzeugaufnahmeabschnitt zugewandten Druckraum des Membranzylinders pneumatisch verbindet, wobei die einander zugewandten pneumatischen Wirkflächen in den genannten Druckräumen im Wesentlichen gleich groß sind. Dadurch, dass diese Druckräume über die Durchgangsbohrung in der Kolbenstange miteinander kommunizieren können und sich dabei etwa gleiche große pneumatische Wirkflächen gegenüberstehen, heben sich bei einer pneumatischen Beaufschlagung besagten Druckraums der axialen Verstelleinrichtung die auf die Membran einwirkenden Kräfte, d.h. die von der Verstelleinrichtung bewirkte, über die Kolbenstange übertragene Stellkraft und die entgegengesetzte, an der Membran pneumatisch erzeugte gleich große Kraft gegenseitig auf, so dass die Membran nicht übermäßig deformiert bzw. verformt wird, was auch einer langen Lebensdauer der Membran zuträglich ist.
- Es ist weiterhin bevorzugt, wenn die Spindelwelle am Innenumfang einer Spindelhülse drehbar gelagert ist, die ihrerseits an ihrem Außenumfang bezüglich des Spindelgehäuses axial geführt ist, so dass vorteilhaft die Drehlagerung und die Axialführung auf engem Raum funktional getrennt sind. Hierbei können zur Axialführung der Spindelhülse z.B. Gleitbuchsen oder Luftlagerbuchsen zum Einsatz kommen. Bevorzugt ist die Spindelhülse jedoch mittels Führungen in Form von Kugelbuchsen im Spindelgehäuse axial geführt, was im Hinblick auf Leichtgängigkeit, Langlebigkeit und Kosten in Summe vorteilhaft ist.
- Die Spindelhülse kann ferner grundsätzlich einstückig mit dem Motorgehäuse ausgebildet sein. Hier ist es hinsichtlich einer einfachen Fertigung und Montage allerdings bevorzugt, wenn die Spindelhülse am Motorgehäuse des elektrischen Drehantriebs angeflanscht ist.
- Im weiteren Verfolg des Erfindungsgedankens kann das Spindelgehäuse ein dem Werkzeugaufnahmeabschnitt der Spindelwelle nahes Gehäuseunterteil und ein dem Werkzeugaufnahmeabschnitt der Spindelwelle fernes Gehäuseoberteil mit verschiedenen Innendurchmessern aufweisen, wobei die Spindelhülse im durchmesserkleineren Gehäuseunterteil axial geführt ist, während das Motorgehäuse des elektrischen Drehantriebs im durchmessergrößeren Gehäuseoberteil kolbenartig, aber mit Radialspiel zum Spindelgehäuse axial verschiebbar ist. Diese Ausgestaltung hat zum einen den Vorteil, dass die Axialführung nahe dem Werkzeug erfolgt, so dass beispielsweise bearbeitungsinduzierte Biegeschwingungen der Spindelwelle weitestgehend vermieden werden, und zum anderen den Vorteil, dass am Motorgehäuse des elektrischen Drehantriebs über den Radialspalt zum Spindelgehäuse bei einer Axialbewegung des Motorgehäuses eine Luftbewegung bzw. ein Luftaustausch erzwungen wird, was zur Kühlung des elektrischen Drehantriebs beiträgt. Hierbei können Gehäuseoberteil und Gehäuseunterteil des Spindelgehäuses einteilig oder zweiteilig ausgebildet sein. Letzteres ist insofern vorteilhaft, als die Fertigung einfacher ist und verschiedene Werkstoffe für die Gehäuseteile zum Einsatz kommen können, z.B. eine Aluminiumlegierung für das Gehäuseoberteil, um das Gewicht zu optimieren (Stichwort: möglichst geringe bewegte Massen), und beispielsweise Edelstahl für das Unterteil, um Letzterem Festigkeit und Korrosionsbeständigkeit zu geben.
- Um in möglichst reibungsarmer und kostengünstiger Weise für eine Verdrehsicherung des Motorgehäuses des elektrischen Drehantriebs relativ zum Spindelgehäuse zu sorgen, kann das Motorgehäuse gegen ein Verdrehen bezüglich des Spindelgehäuses mittels einer Drehmomentstütze gesichert sein, deren eines Ende am Motorgehäuse befestigt ist, während ihr anderes Ende eine drehbar gelagerte Laufrolle trägt, die an einer spindelgehäuseseitigen Lauffläche anliegt. Hierbei ist es bevorzugt, wenn die Drehmomentstütze und die im Spindelgehäuse axial geführte Spindelhülse auf bezüglich des Motorgehäuses axial gegenüberliegenden Seiten angeordnet sind, was insbesondere wiederum einer kompakten und schlanken Bauform der Vorrichtung förderlich ist - wenngleich es prinzipiell auch denkbar ist, nahe oder sogar an der Spindelhülse für eine Drehmomentabstützung zum Spindelgehäuse zu sorgen.
- Schließlich ist es besonders vorteilhaft, die vorbeschriebene Vorrichtung in zweifacher Ausfertigung in einer Poliermaschine zum gleichzeitigen Polieren von zwei Brillengläsern einsetzen, welche Poliermaschine (i) ein einen Arbeitsraum begrenzendes Maschinengehäuse, (ii) zwei in den Arbeitsraum hineinragende Werkstückspindeln, über die zwei zu polierende Brillengläser mittels eines gemeinsamen Drehantriebs um parallel zueinander verlaufende Werkstück-Drehachsen drehend antreibbar sind, (iii) eine Linearantriebseinheit, mittels der ein Werkzeugschlitten entlang einer Linearachse bewegbar ist, die im Wesentlichen senkrecht zu den Werkstück-Drehachsen verläuft, und (iv) eine Schwenkantriebseinheit aufweist, die auf dem Werkzeugschlitten angeordnet ist und mittels der ein Schwenkjoch um eine Schwenk-Stellachse schwenkbar ist, die im Wesentlichen senkrecht zu den Werkstück-Drehachsen und im Wesentlichen senkrecht zu der Linearachse verläuft; und zwar derart, dass die zwei Vorrichtungen mit ihren Werkzeugaufnahmeabschnitten jeweils einer der Werkstückspindeln zugeordnet in den Arbeitsraum hineinragen und mit ihren Spindelgehäusen an dem Schwenkjoch angeflanscht sind, so dass die Werkzeug-Drehachse jeder Vorrichtung mit der Werkstück-Drehachse der zugeordneten Werkstückspindel eine Ebene bildet, in der die jeweilige Werkzeug-Drehachse bezüglich der Werkstück-Drehachse der zugeordneten Werkstückspindel axial verschiebbar und verkippbar ist. Eine derart ausgebildete und ausgerüstete "Zwillings"-Poliermaschine zeichnet sich nicht nur dadurch aus, dass sie sehr kompakt baut - insofern auch leicht manuell zu beschicken ist - und in sehr kostengünstiger Weise viele gemeinsame Antriebe nutzt, sondern insbesondere auch dadurch, dass die durch die erfindungsgemäßen Vorrichtungen bereitgestellten Bewegungsmöglichkeiten, namentlich die aktive Drehbewegungsmöglichkeit der daran montierbaren Polierwerkzeuge, gegenüber dem eingangs geschilderten Stand der Technik die Durchführung anderer, vor allem schnellerer bzw. zeiteffizienterer Polierverfahren ermöglicht.
- Im Folgenden wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die beigefügten, teilweise vereinfachten bzw. schematischen Zeichnungen näher erläutert. In den Zeichnungen zeigen:
- Fig. 1
- eine perspektivische Ansicht einer Poliermaschine für Brillengläser von schräg oben / vorne rechts mit zwei parallel angeordneten, erfindungsgemäßen Vorrichtungen zur Feinbearbeitung der optisch wirksamen Flächen der Brillengläser, wobei zur Freigabe der Sicht auf wesentliche Bauteile bzw. Baugruppen der Maschine und zur Vereinfachung der Darstellung insbesondere die Be- dieneinheit und Steuerung, Teile der Verkleidung, Tür- mechanismen und Scheiben, die Ablagen für Werkstücke und Werkzeuge, die Versorgungseinrichtungen (ein- schließlich Leitungen, Schläuche und Rohre) für Strom, Druckluft und Poliermittel, der Poliermittelrücklauf sowie die Mess-, Wartungs- und Sicherheitseinrichtun- gen weggelassen wurden;
- Fig. 2
- eine im Maßstab gegenüber der
Fig. 1 vergrößerte, am Maschinengestell abgebrochene, perspektivische Ansicht der Poliermaschine gemäßFig. 1 von schräg oben / vorne links, wobei einerseits die inFig. 1 linke er- findungsgemäße Vorrichtung und eine zugeordnete, fle- xible Arbeitsraumabdeckung weggelassen wurden, um die Anschlusssituation für die inFig. 1 linke erfindungs- emäße Vorrichtung zu veranschaulichen, und anderer- seits die Seitenwände und die Vorderwand des den Ar- beitsraum begrenzenden Blechgehäuses, um den Blick auf zwei parallel angeordnete Werkstückspindeln frei- zugeben, von denen jeweils eine Werkstückspindel jeweils einer der erfindungsgemäßen Vorrichtungen zugeordnet ist; - Fig. 3
- eine im Maßstab gegenüber der
Fig. 2 nochmals vergrö- ßerte, perspektivische Ansicht der Poliermaschine ge- mäßFig. 1 von schräg oben / hinten rechts, wobei gegenüber der Darstellung inFig. 2 zusätzlich noch das Maschinengestell weggelassen wurde; - Fig. 4
- eine Vorderansicht der Poliermaschine gemäß
Fig. 1 im Maßstab derFig. 3 und mit den Vereinfachungen derFig. 3 ; - Fig. 5
- eine Seitenansicht der Poliermaschine gemäß
Fig. 1 von rechts inFig. 4 , erneut im Maßstab derFig. 3 und mit den Vereinfachungen derFig. 3 ; - Fig. 6
- eine im Maßstab gegenüber den
Fig. 1 bis 5 vergrö- ßerte, perspektivische Ansicht einer der erfindungs- gemäßen Vorrichtungen aus der Poliermaschine gemäßFig. 1 , bei der gegenüber der Darstellung in denFig. 1 bis 5 noch ein mittels eines Befestigungswinkels an einem Gehäuse der Vorrichtung gehalterter Teil der Stromzufuhr zu einem elektrischen Drehantrieb der Vor- richtung dargestellt ist; - Fig. 7
- eine teilweise aufgebrochene Vorderansicht der erfin- dungsgemäßen Vorrichtung aus
Fig. 6 ; - Fig. 8
- eine im Maßstab gegenüber den
Fig. 6 und 7 vergrößerte Draufsicht auf die erfindungsgemäße Vorrichtung ausFig. 6 von oben inFig. 7 , wobei ein in denFig. 6 und 7 oberes, plattenförmiges Zylinderlager nicht darge- stellt wurde, um den Blick auf die darunter liegenden Bauteile freizugeben; - Fig. 9
- eine im Maßstab gegenüber der
Fig. 8 verkleinerte, in der Zeichnungsebene um 90° im Uhrzeigersinn gedrehte Schnittansicht der erfindungsgemäßen Vorrichtung ausFig. 6 entsprechend der Schnittverlaufslinie IX-IX inFig. 8 , mit dem oberen Zylinderlager; - Fig. 10
- eine im Maßstab gegenüber der
Fig. 8 verkleinerte, in der Zeichnungsebene um 180° gedrehte und teilweise aufgebrochene Schnittansicht der erfindungsgemäßen Vorrichtung ausFig. 6 entsprechend der Schnittver- laufslinie X-X inFig. 8 , erneut mit dem oberen Zylin- derlager; und - Fig. 11
- eine teilweise abgebrochene Schnittansicht der erfin- dungsgemäßen Vorrichtung aus
Fig. 6 entsprechend der Schnittansicht inFig. 10 , wobei die Vorrichtung allerdings in einem ausgefahrenen Zustand dargestellt ist, in dem sich ein an der Vorrichtung montiertes Polierwerkzeug mit einem Brillenglas in Bearbeitungs- eingriff befindet, welches mittels eines Blockstücks an einer mit gestrichelten Linien angedeuteten Werk- stückspindel aufgenommen ist. - In den
Fig. 1 bis 5 ist - als bevorzugter Anwendungsfall bzw. Einsatzort einer nachfolgend noch detailliert beschriebenen Vorrichtung 10 zur Feinbearbeitung der optisch wirksamen Flächen an Werkstücken, wie z.B. Brillengläsern L - eine Poliermaschine in "Zwillings"-Bauweise, d.h. zum gleichzeitigen Polieren von zwei Brillengläsern L mit 12 beziffert. Die Poliermaschine 12 besitzt allgemein (i) ein einen Arbeitsraum 14 begrenzendes Maschinengehäuse 16, welches an einem Maschinengestell 18 montiert ist, (ii) zwei in den Arbeitsraum 14 hineinragende Werkstückspindeln 20, über die zwei zu polierende Brillengläser L mittels eines gemeinsamen Drehantriebs 22 (siehe dieFig. 3 bis 5 ) um parallel zueinander verlaufende Werkstück-Drehachsen C1, C2 (C inFig. 11 ) drehend angetrieben werden können, (iii) eine Linearantriebseinheit 24, mittels der ein Werkzeugschlitten 26 entlang einer Linearachse X bewegt werden kann, die im Wesentlichen senkrecht zu den Werkstück-Drehachsen C1, C2 verläuft, (iv) eine Schwenkantriebseinheit 28, die auf dem Werkzeugschlitten 26 angeordnet ist und mittels der ein Schwenkjoch 30 um eine Schwenk-Stellachse B verschwenkt werden kann, die im Wesentlichen senkrecht zu den Werkstück-Drehachsen C1, C2 und im Wesentlichen senkrecht zu der Linearachse X verläuft, und schließlich (v) zwei der oben schon erwähnten Vorrichtungen 10. - Wie nachfolgend anhand der
Fig. 6 bis 11 noch genauer erläutert werden wird, umfasst jede der Vorrichtungen 10 allgemein (a) eine Spindelwelle 32, die einen Werkzeugaufnahmeabschnitt 34 aufweist und in einem Spindelgehäuse 36 um eine Werkzeug-Drehachse A1, A2 (A abFig. 6 ) drehbar gelagert ist, (b) einen elektrischen Drehantrieb 38, der einen Rotor 40 und einen Stator 42 aufweist und mittels dessen die mit dem Rotor 40 wirkverbundene Spindelwelle 32 um die Werkzeug-Drehachse A1, A2 (A) drehend angetrieben werden kann, und (c) eine axiale Verstelleinrichtung 44, mittels welcher der Werkzeugaufnahmeabschnitt 34 bezüglich des Spindelgehäuses 36 in Richtung der Werkzeug-Drehachse A1, A2 (A) axial verlagert bzw. verschoben werden kann (Linearbewegung Z1, Z2 bzw. Z abFig. 6 ). Wesentliche Besonderheiten der Vorrichtung 10 bestehen hierbei darin, dass der Rotor 40 und der Stator 42 des elektrischen Drehantriebs 38 mit der Spindelwelle 32 koaxial angeordnet sind, und dass vermittels der Verstelleinrichtung 44 wenigstens der Rotor 40 des elektrischen Drehantriebs 38, im dargestellten Ausführungsbeispiel sogar der gesamte elektrische Drehantrieb 38 zusammen mit der Spindelwelle 32 bezüglich des Spindelgehäuses 36 in Richtung der Werkzeug-Drehachse A1, A2 (A) axial verschoben werden kann (Linearbewegung Z1, Z2 bzw. Z), wie nachfolgend ebenfalls noch detaillierter beschrieben werden wird. - Gemäß insbesondere den
Fig. 1 ,3 und4 sind die Vorrichtungen 10 nun derart mit ihren Spindelgehäusen 36 an dem Schwenkjoch 30 der Poliermaschine 12 angeflanscht, dass sie mit ihren Werkzeugaufnahmeabschnitten 34 jeweils einer der Werkstückspindeln 20 zugeordnet in den Arbeitsraum 14 hineinragen, wobei die Werkzeug-Drehachse A1, A2 jeder Vorrichtung 10 mit der Werkstück-Drehachse C1, C2 der zugeordneten Werkstückspindel 20 eine gedachte Ebene bildet (senkrecht zur Zeichnungsebene derFig. 4 und parallel zur Zeichnungsebene derFig. 5 ), in der die jeweilige Werkzeug-Drehachse A1, A2 bezüglich der Werkstück-Drehachse C1, C2 der zugeordneten Werkstückspindel 20 axial verschiebbar (Linearachse X, Linearbewegung Z) und verkippbar (Schwenk-Stellachse B) ist. Die Werkzeugaufnahmeabschnitte 34 der Spindelwellen 32 sind in denFig. 1 bis 5 allerdings nicht zu erkennen, weil ein Polierwerkzeug 46 (hier ohne Polierkappe gezeigt) am jeweiligen Werkzeugaufnahmeabschnitt 34 angebracht ist, wie es auch dieFig. 11 im Schnitt veranschaulicht. - Das gemäß insbesondere der
Fig. 2 schräg am Maschinengestell 18 montierte Maschinengehäuse 16 ist als geschweißtes Blechgehäuse ausgeführt, mit einer Bodenplatte 48, einer Deckplatte 50, zwei Seitenwänden 52, einer zu einem in der Bodenplatte 48 vorgesehenen Abfluss 54 hin abgeschrägten Rückwand 56 und einer Vorderwand 58, die insgesamt den Arbeitsraum 14 begrenzen. Während die Seitenwände 52 und die Vorderwand 58 mit Fenstern 60 versehen sind, sind in der Bodenplatte 48 runde Aussparungen (nicht näher gezeigt) zum Durchtritt der Werkstückspindeln 20 und einer Antriebswelle 61 des Drehantriebs 22 und in der Deckplatte 50 längliche Aussparungen 62 (siehe dieFig. 2 bis 4 ) zum Durchtritt der Vorrichtungen 10 vorgesehen. Die länglichen Aussparungen 62 ermöglichen auch eine axiale Vor- und Zurückbewegung der Vorrichtungen 10 in Richtung der Linearachse X, d.h. in Richtung der Vorderwand 58 und davon weg, wobei zur Abdichtung gegenüber dem Arbeitsraum 14 im dargestellten Ausführungsbeispiel jeweils eine Faltenbalg-Abdeckung 64 als flexible Arbeitsraumabdeckung vorgesehen ist. - Wie insbesondere in den
Fig. 4 und5 gut zu erkennen ist, sind die Werkstückspindeln 20 im Arbeitsraum 14 von oben auf der Bodenplatte 48 angeflanscht und durchgreifen diese jeweils mit einer Antriebswelle 66 und einem Betätigungsmechanismus 68 für eine Spannzange 70, mittels der ein auf einem Blockstück S aufgeblocktes Brillenglas L axial fest und drehmitnahmefähig an der jeweiligen Werkstückspindel 20 gespannt werden kann (vgl.Fig. 11 ). Mit 72 sind unterhalb der Bodenplatte 48 befestigte Pneumatikzylinder der Betätigungsmechanismen 68 beziffert, mittels der die Spannzangen 70 auf an sich bekannte Weise geöffnet bzw. geschlossen werden können. Hinter der Rückwand 56, d.h. außerhalb des Arbeitsraums 14 ist der Drehantrieb 22 - im dargestellten Ausführungsbeispiel ein drehzahlgesteuerter Asynchron-Drehstrommotor - ebenfalls von oben auf der Bodenplatte 48 angeflanscht. Unterhalb der Bodenplatte 48 sind ferner Riemenscheiben 74 an den Antriebswellen 61, 66 von Drehantrieb 22 und Werkstückspindeln 20 befestigt und mittels eines Keilriemens 76 wirkverbunden, so dass der Drehantrieb 22 zugleich beide Werkstückspindeln 20 mit vorbestimmter Drehzahl drehend anzutreiben vermag (Werkstück-Drehachsen C1, C2 bzw. C). - Wie am besten in den
Fig. 2 bis 4 zu sehen ist, umfasst die Linearantriebseinheit 24 im dargestellten Ausführungsbeispiel einen mittels eines Servomotors 78 über eine Kupplung angetriebenen Kugelgewindetrieb 80, der in einem von oben auf der Deckplatte 50 befestigten Führungskasten 82 aufgenommen ist, auf dem der Werkzeugschlitten 26 geführt ist. Diese im Wesentlichen horizontal verlaufende Linearachse X ist CNC-lagegeregelt; zur Vereinfachung der Darstellung ist das zugehörige Wegmesssystem jedoch nicht gezeigt. - Gemäß den
Fig. 1 bis 4 ist das im Wesentlichen U-förmige Schwenkjoch 30 mit seinen Schenkeln am in denFig. 1 und2 vorderen Ende des Werkzeugschlittens 26 angelenkt, so dass es um die Schwenk-Stellachse B verschwenken kann. Am inFig. 2 hinteren bzw. inFig. 5 rechten Ende des Werkzeugschlittens 26 ist die Schwenkantriebseinheit 28 angelenkt, so dass sie um eine Achse 84 verschwenken kann. Bei der Schwenkantriebseinheit 28 handelt es sich im dargestellten Ausführungsbeispiel um ein handelsübliches Linearmodul, wie es z.B. unter der Bezeichnung "Hubzylinder CARE 33" von der Firma SKF zu beziehen ist. Diese Linearmodule, die in großen Stückzahlen beispielsweise als automatische Fensteröffner oder zur Verstellung von Krankenhausbetten zum Einsatz kommen, besitzen eine Hubstange 86, die über einen von einem Gleichstrommotor 88 angetriebenen Spindeltrieb (nicht näher gezeigt) aus- oder eingefahren werden kann. Hierbei ist die Selbsthemmung des Spindeltriebs so groß, dass die Hubstange 86 in ihrer einmal angefahrenen Position selbst unter größeren Axiallasten verbleibt, wenn der Gleichstrommotor 88 abgestellt wird, ohne dass es hierzu einer Bremse od. dgl. bedarf. Die Hubstange 86 der Schwenkantriebseinheit 28 ist nun mit ihrem vom Gleichstrommotor 88 abgewandten Ende in einem mittleren, in denFig. 1 bis 4 oberen Bereich des U-förmigen Schwenkjochs 30 angelenkt, so dass die Hubstange 86 relativ zum Schwenkjoch 30 um eine weitere Achse 90 verschwenken kann. Insoweit ist ersichtlich, dass bei der wie oben beschrieben ausgebildeten Gelenkkette ein definiertes axiales Aus- bzw. Einfahren der Hubstange 86 dazu führt, dass das Schwenkjoch 30 in definierter Weise um die Schwenk-Stellachse B verschwenkt wird. - Was schließlich die Bewegungsmöglichkeiten des an der Vorrichtung 10 gehaltenen Polierwerkzeugs 46 angeht, soll an dieser Stelle schon festgehalten werden, dass der elektrische Drehantrieb 38 der Vorrichtung 10 - im dargestellten Ausführungsbeispiel ein Synchron-Drehstrommotor - drehzahlgesteuert ist (Werkzeug-Drehachsen A1, A2 bzw. A). Die mittels der axialen Verstelleinrichtung 44 der Vorrichtung 10 bewirkbare Linearbewegung des Polierwerkzeugs 46 in Richtung Z1, Z2 bzw. Z hingegen ist ungesteuert und ungeregelt. Diese Bewegungsmöglichkeit dient dazu, das Polierwerkzeug 46 vor dem eigentlichen Poliervorgang mit dem Brillenglas L in Kontakt zu bringen, das Polierwerkzeug 46 während des Poliervorgangs mit vorbestimmter Kraft in Richtung des Brillenglases L zu drücken, um einen Polierdruck zu erzeugen, und das Polierwerkzeug 46 nach dem Poliervorgang wieder vom Brillenglas L abzuheben.
- Demnach ermöglicht die vorbeschriebene Poliermaschine 12 beispielsweise das folgende Vorgehen, welches nur für ein Brillenglas L beschrieben werden soll, weil das zweite Brillenglas L des jeweiligen "RX-Jobs" in analoger Weise und zugleich polierbearbeitet wird. Nach Bestücken der Poliermaschine 12 mit den Polierwerkzeugen 46 und den zu bearbeitenden Brillengläsern L wird zunächst mittels der Schwenkantriebseinheit 28 der Anstellwinkel der Werkzeug-Drehachsen A1, A2 bzw. A bezüglich der Werkstück-Drehachsen C1, C2 bzw. C in Abhängigkeit von der zu bearbeitenden Geometrie am Brillenglas L auf einen vorbestimmten Wert eingestellt (Schwenk-Stellachse B). Dieser Anstellwinkel wird während der eigentlichen Polierbearbeitung nicht verändert. Sodann wird das Polierwerkzeug 46 mittels der Linearantriebseinheit 24 in eine Position verfahren, in der es dem Brillenglas L gegenüberliegt (Linearachse X). Hierauf wird das Polierwerkzeug 46 vermittels der Verstelleinrichtung 44 der Vorrichtung 10 in Richtung auf das Brillenglas L axial verschoben bis es mit diesem in Kontakt gelangt (Linearbewegung Z1, Z2 bzw. Z). Jetzt wird die Poliermittelzufuhr eingeschaltet, und das Polierwerkzeug 46 sowie das Brillenglas L werden mittels des elektrischen Drehantriebs 38 bzw. des Drehantriebs 22 in Drehung versetzt (Werkzeug-Drehachsen A1, A2 bzw. A; Werkstück-Drehachsen C1, C2 bzw. C). Bevorzugt erfolgt hier ein synchroner Gleichlauf zwischen Werkzeug und Werkstück; möglich ist es indes auch, Werkzeug und Werkstück gegensinnig anzutreiben und/oder mit verschiedenen Drehzahlen umlaufen zu lassen. Jetzt wird das Polierwerkzeug 46 mittels der Linearantriebseinheit 24 mit relativ kleinen Hüben über das Brillenglas L oszillierend bewegt (Linearachse X), so dass das Polierwerkzeug 46 über unterschiedliche Flächenbereiche des Brillenglases L geführt wird. Hierbei bewegt sich das Polierwerkzeug 46 der (Unrund) Geometrie am polierten Brillenglas L folgend auch geringfügig auf und ab (Linearbewegung Z1, Z2 bzw. Z). Schließlich wird das Polierwerkzeug 46 mittels der Verstelleinrichtung 44 der Vorrichtung 10 vom Brillenglas L abgehoben (Linearbewegung Z1, Z2 bzw. Z), nachdem die Poliermittelzufuhr abgeschaltet und die Drehbewegungen von Werkzeug und Werkstück gestoppt wurden (Werkzeug-Drehachsen A1, A2 bzw. A; Werkstück-Drehachsen C1, C2 bzw. C). Letztendlich wird das Polierwerkzeug 46 mittels der Linearantriebseinheit 24 in eine Position gefahren (Linearachse X), die es gestattet, das Brillenglas L aus der Poliermaschine 12 herauszunehmen.
- Nachfolgend werden unter Bezugnahme auf die
Fig. 6 bis 11 Aufbau und Funktion der Vorrichtung 10 näher beschrieben. - Gemäß insbesondere den
Fig. 9 und10 ist das Spindelgehäuse 36 zweiteilig ausgeführt, mit einem dem Werkzeugaufnahmeabschnitt 34 der Spindelwelle 32 nahen, hülsenartigen Gehäuseunterteil 92 und einem dem Werkzeugaufnahmeabschnitt 34 der Spindelwelle 32 fernen, im Wesentlichen becherförmigen Gehäuseoberteil 94, wobei das Gehäuseunterteil 92 und das Gehäuseoberteil 94 hohlzylindrisch mit verschiedenen Innendurchmessern ausgebildet sind. Das Gehäuseunterteil 92 ist im Bereich einer Öffnung 96 im Boden des Gehäuseoberteils 94 unter Zuhilfenahme von Schrauben 98 am Gehäuseoberteil 94 angeflanscht. InFig. 9 rechts (und inFig. 8 oben) ist am Gehäuseoberteil 94 ein Flanschabschnitt 100 zu sehen, über den die Vorrichtung 10 am Schwenkjoch 30 der Poliermaschine 12 links- oder rechtseitig angeflanscht werden kann, wobei dann drei Zylinderschrauben das Schwenkjoch 30 durchgreifen und in zugeordnete Gewindesackbohrungen im Flanschabschnitt 100 eingeschraubt sind, wie insbesondere dieFig. 3 und4 erkennen lassen. - Im durchmesserkleineren Gehäuseunterteil 92 ist eine im Wesentlichen rohrförmige Spindelhülse 102 an ihrem Außenumfang mittels einer oder mehreren Führungen - im dargestellten Ausführungsbeispiel in Form von zwei Kugelbuchsen 104 - bezüglich des Spindelgehäuses 36 weitgehend radialspielfrei axial geführt, während im durchmessergrößeren Gehäuseoberteil 94 ein im Wesentlichen becherförmiges Motorgehäuse 106 des elektrischen Drehantriebs 38 kolbenartig, aber mit Radialspiel R (siehe
Fig. 9 ) zum Spindelgehäuse 36 axial verschiebbar aufgenommen ist. Hierbei ist das Gehäuseoberteil 94 derart längendimensioniert, dass sich das Motorgehäuse 106 im Spindelgehäuse 36 mit einem Hub von ca. 60 mm axial verschieben lässt. Die Spindelhülse 102 ist am Motorgehäuse 106 des elektrischen Drehantriebs 38 im Bereich einer Öffnung 108 im Boden des Motorgehäuses 106 unter Zuhilfenahme von Schrauben 110 (siehe wiederumFig. 9 ) angeflanscht. - Am Innenumfang der Spindelhülse 102 ist die Spindelwelle 32 nahe ihren beiden Enden mittels jeweils eines Lagers 112, z.B. eines Kugellagers drehbar gelagert. Die Spindelwelle 32 durchgreift die Spindelhülse 102 vollständig und steht in den
Fig. 9 bis 11 unten insbesondere mit ihrem Werkzeugaufnahmeabschnitt 34 über die Spindelhülse 102 vor, während sie in den genannten Figuren oben in das Motorgehäuse 106 hineinragt. - Zur Abdichtung gegenüber dem Poliermittel sind im Bereich des in den
Fig. 9 bis 11 unteren Endes der Spindelwelle 32 geeignete Dichtungen vorgesehen. Hierbei handelt es sich zunächst um eine Labyrinthdichtung in Form eines auf die Spindelhülse 102 aufgesteckten, mittels einer Madenschraube 114 (Fig. 9 ) geklemmten Balgrings 116 und einer auf die Spindelwelle 32 aufgesteckten, mittels einer weiteren Madenschraube 118 (Fig. 9 ) geklemmten und mit der Spindelwelle 32 drehenden Prallscheibe 120. Beide Teile (116 und 120) der Labyrinthdichtung sind mittels jeweils eines O-Rings 122 gegenüber der Spindelwelle 32 bzw. der Spindelhülse 102 abgedichtet. Ferner ist zwischen der Spindelwelle 32 und dem Balgring 116 noch ein Dichtring 124, etwa ein elastomerer V-Dichtring eingesetzt. Zum Schutz der Axialführung (Kugelbuchsen 104) gegen Poliermittel ist ein Faltenbalg 126 jeweils in einer Ringnut am unteren Ende des Gehäuseunterteils 92 bzw. am Balgring 116 mittels Spannschellen 128 (Fig. 7 ) befestigt. - In dem Motorgehäuse 106 sind der Rotor 40 und der Stator 42 des elektrischen Drehantriebs 38 gemeinsam und in Richtung der Werkzeug-Drehachse A relativ zueinander unverschiebbar aufgenommen. Die Verstelleinrichtung 44 ist mit dem Motorgehäuse 106 wirkverbunden, wie noch näher beschrieben werden wird, so dass das Motorgehäuse 106 zusammen mit der Spindelhülse 102 und der darin gelagerten Spindelwelle 32 bezüglich des Spindelgehäuses 36 in Richtung der Werkzeug-Drehachse A axial verschiebbar ist (Linearbewegung Z).
- Im Inneren des Motorgehäuses 106 ist der Stator 42 des elektrischen Drehantriebs 38, dessen Wicklungen nur in
Fig. 11 angedeutet sind, mit dem Motorgehäuse 106 vergossen. Der elektrische Drehantrieb 38 ist luftgekühlt und hat hierzu im oberen Bereich des Rotors 40 ein Lüfterrad (nicht dargestellt). Zudem ist durch das Vorsehen von Bohrungen 130 (Fig. 9 ) im Boden des Motorgehäuses 106 bei einer Axialbewegung (Linearbewegung Z) des elektrischen Drehantriebs 38 für einen Luftaustausch gesorgt (z.B. bei jedem Ladevorgang). Bei dieser Axialbewegung strömt somit die Luft durch den elektrischen Drehantrieb 38 und kühlt Rotor 40 und Stator 42. Dieser Luftaustausch kann zusätzlich durch einen seitlich unten am Gehäuseoberteil 94 angebrachten, zum Innenraum des Spindelgehäuses 36 führenden Hilfs-Luftanschluss 132 (Fig. 6 und 7 ) mittels Druckluft unterstützt werden, wodurch bei Bedarf auch eine permanente Luftkühlung des elektrischen Drehantriebs 38 erfolgen kann. Um ggf. einen solchen Bedarf festzustellen, kann ein Thermosensor 134 (Fig. 9 ) vorgesehen sein. - An ihrem in den
Fig. 9 bis 11 oberen, in das Motorgehäuse 106 hineinragenden Ende trägt die Spindelwelle 32 den Rotor 40, der dort in geeigneter Weise, z.B. mittels eines Ring-Spannelements 136 oder einer anderen bekannten Welle-Nabe-Verbindung mit der Spindelwelle 32 drehfest verbunden ist. Die zugehörigen Spannschrauben 138 dienen dabei gleichzeitig der Befestigung des Lüfterrads (nicht gezeigt). In denFig. 9 bis 11 nach oben verschlossen ist das Motorgehäuse 106 durch ein Lagerschild 140, der mittels eines in einer Ringnut des Motorgehäuses 106 montierten Seeger-Rings 142 befestigt ist. - Gemäß
Fig. 9 sind Energie- und Thermosensorkabel 144 des elektrischen Drehantriebs 38, der im Übrigen einen großen, stufenlos steuerbaren Drehzahlbereich aufweist, über eine Öffnung im Lagerschild 140 mittels einer Kabelverschraubung 146 aus der Vorrichtung 10 herausgeführt. Hierbei sind die Energie- und Thermosensorkabel 144 zunächst in einem U-förmigen Bogen 147 zu einer weiteren Kabelverschraubung 148 geführt, die ihrerseits an einem am Gehäuseoberteil 94 angeschraubten Befestigungswinkel 150 befestigt ist. Auf diese einfache Weise ist gewährleistet, dass die Energie- und Thermosensorkabel 144 während einer Axialbewegung des Motorgehäuses 106 im Gehäuseoberteil 94 des Spindelgehäuses 36 keiner übermäßigen Knick- oder Biegebeanspruchung ausgesetzt sind und somit nicht brechen können. Ein Befestigungsflansch 152, der das Gehäuseoberteil 94 in denFig. 9 bis 11 nach oben abschließt und mit diesem verschraubt ist (nicht näher gezeigt), bildet schließlich einen in diesen Figuren oberen Anschlag für das Motorgehäuse 106. - Bei der axialen Verstelleinrichtung 44 handelt es sich um eine zweiseitig pneumatisch beaufschlagbare Kolben-Zylinder-Anordnung, welche eine Kolbenstange 154 aufweist, über die die axiale Verschiebebewegung (Linearbewegung Z) auf den elektrischen Drehantrieb 38 übertragbar ist und die mit der Spindelwelle 32 axial ausgefluchtet ist. Zur Befestigung der axialen Verstelleinrichtung 44 am Spindelgehäuse 36 ist eine brückenartige Haltestruktur vorgesehen, die aus einem oberen, plattenförmigen Zylinderlager 156 und zwei beidseitig davon angeordneten, plattenförmigen Führungsteilen 158 besteht. Die Führungsteile 158 sind mittels Senkkopfschrauben (nicht gezeigt) am Befestigungsflansch 152 montiert, während das Zylinderlager 156 mit den Führungsteilen 158 mittels Zylinderschrauben 160 verschraubt ist (siehe
Fig. 7 ). - Die axiale Verstelleinrichtung 44 weist ferner ein Zylinderrohr 162 auf, welches mit Hilfe von zwei langen Zylinderschrauben 164 und einem Zylinderdeckel 166 am Zylinderlager 156 befestigt ist, und zwar durch Einspannen zwischen Zylinderlager 156 und Zylinderdeckel 166. Im Zylinderrohr 162 ist ein Kolben 168 längsverschieblich aufgenommen, an dem die Kolbenstange 154 angebracht ist, die sich mittels eines im Zylinderdeckel 166 vorgesehenen Dicht-Abstreifrings 170 abgedichtet durch den Zylinderdeckel 166 hindurch erstreckt. Die Abdichtung des Zylinderröhrs 162 erfolgt mittels O-Ringen 172, die jeweils im Zylinderlager 156 und im Zylinderdeckel 166 in einer Ringnut angebracht sind. Der Kolben 168 trennt im Zylinderrohr 162 einen zylinderlagerseitigen Druckraum 174, der über eine Querbohrung (nicht gezeigt; ausgehend vom Druckanschluss 175 in den
Fig. 6, 7 und9 ) im Zylinderlager 156 druckbeaufschlagbar ist, um den Werkzeugaufnahmeabschnitt 34 der Spindelwelle 32 auszufahren, von einem zylinderdeckelseitigen Druckraum 176, welcher über eine im Zylinderdeckel 166 vorgesehene Querbohrung (nicht dargestellt; ausgehend vom Druckanschluss 177 in denFig. 6 bis 11 ) druckbeaufschlagbar ist, um den Werkzeugaufnahmeabschnitt 34 zurückzuziehen. - Gemäß den
Fig. 9 bis 11 ist die Kolbenstange 154 der axialen Verstelleinrichtung 44 zur Übertragung der axialen Verschiebebewegung (Linearbewegung Z) mit dem elektrischen Drehantrieb 38 über einen eine Membran 178 aufweisenden Membranzylinder 180 wirkverbunden. Hierfür ist das Lagerschild 140 des elektrischen Drehantriebs 38 an seiner in denFig. 9 bis 11 oberen Seite mit einer kreisrunden, wannenförmigen Vertiefung versehen, die einen in diesen Figuren unteren Druckraum 182 des Membranzylinders 180 bildet. Ferner ist ein ebenfalls mit einer Vertiefung versehener Membrandeckel 184 vorgesehen, der mit dem Lagerschild 140 verschraubt ist und dabei die Membran 178 unter Bildung einer in denFig. 9 bis 11 oberen Kammer 186 (sieheFig. 11 ) einspannt, so dass der Druckraum 182 zur Umgebung hin hermetisch und druckfest abgedichtet ist. Genauer gesagt ist die Membran 178, die aus einem elastomeren Werkstoff besteht, ringscheibenförmig ausgebildet. Dabei ist sie innenumfangsseitig mittels eines Ringwulstes 188 (sieheFig. 11 ), der zwischen zwei Scheiben über eine in die Kolbenstange 154 eingeschraubte, hohlgebohrte Schraube formschlüssig (mittels Ringnuten an den Scheiben) eingespannt ist, an der Kolbenstange 154 der Verstelleinrichtung 44 angebracht, während die Membran 178 außenumfangsseitig mittels eines Ringwulstes 190 (siehe wiederum dieFig. 11 ) über den Membrandeckel 184 am Lagerschild 140 des elektrischen Drehantriebs 38 formschlüssig (mittels Ringnuten in Lagerschild 140 und Membrandeckel 184) eingespannt ist, so dass der Kraftfluss einer an der Kolbenstange 154 aufgebrachten Axialkraft von der Kolbenstange 154 über die Membran 178 in den elektrischen Drehantrieb 38 verläuft. - Wie ferner den
Fig. 9 bis 11 zu entnehmen ist, weist die Kolbenstange 154 der axialen Verstelleinrichtung 44 eine Durchgangsbohrung 192 auf, die den vom Werkzeugaufnahmeabschnitt 34 der Spindelwelle 32 abgewandten Druckraum 174 der Verstelleinrichtung 44 mit dem dem Werkzeugaufnahmeabschnitt 34 zugewandten Druckraum 182 des Membranzylinders 180 pneumatisch verbindet. Da die einander zugewandten pneumatischen Wirkflächen in den genannten Druckräumen 174, 182 im Wesentlichen gleich groß sind, heben sich bei einer Druckbeaufschlagung des Druckraums 174 der Verstelleinrichtung 44 die auf die Membran 178 einwirkenden Kräfte gegenseitig auf. - Des Weiteren ist das Motorgehäuse 106 des elektrischen Drehantriebs 38 gegen ein Verdrehen bezüglich des Spindelgehäuses 36 mittels einer Drehmomentstütze 194 gesichert ist, deren eines Ende am Motorgehäuse 106 befestigt ist, während ihr anderes Ende eine drehbar gelagerte Laufrolle 196 trägt, die an einer spindelgehäuseseitigen Lauffläche 198 anliegt. Gemäß
Fig. 10 ist hierbei die im Wesentlichen quaderförmige Drehmomentstütze 194 mit einer ringförmigen Deckelscheibe 200 verschraubt, die ihrerseits mit dem Lagerschild 140 verschraubt ist, wie derFig. 9 zu entnehmen ist, wobei Lagerschild 140 und Deckelscheibe 200 den Seeger-Ring 142 zwischen sich einklemmen. Demnach sind die Drehmomentstütze 194 und die im Gehäuseunterteil 92 des Spindelgehäuses 36 axial geführte Spindelhülse 102 auf bezüglich des Motorgehäuses 106 axial gegenüberliegenden Seiten angeordnet. Die spindelgehäuseseitige Lauffläche 198 wird im Übrigen durch eine Längsnut im entsprechenden Führungsteil 158 gebildet, die quasi eine Kulissenführung für die Laufrolle 196 darstellt. - In
Fig. 11 ist schließlich auch das am Werkzeugaufnahmeabschnitt 34 der Spindelwelle 32 mittels einer Madenschraube gehaltene Polierwerkzeug 46 exemplarisch dargestellt. Dieses kann grundsätzlich den Polierwerkzeugen entsprechen, die in den schon eingangs erwähnten DruckschriftenEP-A-1 473 116 ,DE-A-10 2005 010 583 undEP-A-2 014 412 offenbart sind. Im vorliegenden Fall wird allerdings der Hohlraum im Polierwerkzeug 46 nicht aktiv druckbeaufschlagt, sondern ist z.B. mit einem Fluid (Gas oder Silikonöl) gefüllt. Über eine Schnittstelle 202 ist am Polierwerkzeug 46 ein Polierteller 204 auswechselbar gehalten. Solche Polierteller 204 sind beispielsweise der DruckschriftDE-A-10 2007 026 841 der vorliegenden Anmelderin zu entnehmen; die Schnittstelle 202 entspricht im Wesentlichen der in der älteren deutschen PatentanmeldungDE 10 2009 036 981.3 der vorliegenden Anmelderin dargestellten und beschriebenen Schnittstelle. Insofern sei an dieser Stelle auf die genannten Druckschriften verwiesen. Im Übrigen ist inFig. 11 der Einfachheit halber das Motorgehäuse 106 des elektrischen Drehantriebs 38 auf Anschlag am Boden des Gehäuseoberteils 94 des Spindelgehäuses 36 dargestellt. Eine solche Relativlage dieser Teile wird in der Realität allerdings nicht erreicht. Vielmehr ist auch während des Poliervorgangs das Motorgehäuse 106 stets wenigstens geringfügig vom Boden des Gehäuseoberteils 94 beabstandet. - Es wird eine Vorrichtung zur Feinbearbeitung der optisch wirksamen Flächen an insbesondere Brillengläsern offenbart, mit einer einen Werkzeugaufnahmeabschnitt aufweisenden Spindelwelle, die in einem Spindelgehäuse um eine Werkzeug-Drehachse drehbar gelagert ist, einem einen Rotor und einen Stator aufweisenden elektrischen Drehantrieb, mittels dessen die mit dem Rotor wirkverbundene Spindelwelle um die Werkzeug-Drehachse drehend antreibbar ist, und einer Verstelleinrichtung, mittels welcher der Werkzeugaufnahmeabschnitt bezüglich des Spindelgehäuses in Richtung der Werkzeug-Drehachse axial verschiebbar ist. Eine Besonderheit der Vorrichtung besteht darin, dass der Rotor und der Stator mit der Spindelwelle koaxial angeordnet sind, wobei mittels der Verstelleinrichtung wenigstens der Rotor zusammen mit der Spindelwelle bezüglich des Spindelgehäuses in Richtung der Werkzeug-Drehachse axial verschiebbar ist, was insbesondere einen sehr kompakten Aufbau bedingt.
-
- 10
- Vorrichtung
- 12
- Poliermaschine
- 14
- Arbeitsraum
- 16
- Maschinengehäuse
- 18
- Maschinengestell
- 20
- Werkstückspindel
- 22
- Drehantrieb
- 24
- Linearantriebseinheit
- 26
- Werkzeugschlitten
- 28
- Schwenkantriebseinheit
- 30
- Schwenkjoch
- 32
- Spindelwelle
- 34
- Werkzeugaufnahmeabschnitt
- 36
- Spindelgehäuse
- 38
- elektrischer Drehantrieb
- 40
- Rotor
- 42
- Stator
- 44
- axiale Verstelleinrichtung
- 46
- Polierwerkzeug
- 48
- Bodenplatte
- 50
- Deckplatte
- 52
- Seitenwand
- 54
- Abfluss
- 56
- Rückwand
- 58
- Vorderwand
- 60
- Fenster
- 61
- Antriebswelle
- 62
- Aussparung
- 64
- Faltenbalg-Abdeckung
- 66
- Antriebswelle
- 68
- Betätigungsmechanismus
- 70
- Spannzange
- 72
- Pneumatikzylinder
- 74
- Riemenscheibe
- 76
- Keilriemen
- 78
- Servomotor
- 80
- Kugelgewindetrieb
- 82
- Führungskasten
- 84
- Achse
- 86
- Hubstange
- 88
- Gleichstrommotor
- 90
- Achse
- 92
- Gehäuseunterteil
- 94
- Gehäuseoberteil
- 96
- Öffnung
- 98
- Schraube
- 100
- Flanschabschnitt
- 102
- Spindelhülse
- 104
- Kugelbuchse
- 106
- Motorgehäuse
- 108
- Öffnung
- 110
- Schraube
- 112
- Lager
- 114
- Madenschraube
- 116
- Balgring
- 118
- Madenschraube
- 120
- Prallscheibe
- 122
- O-Ring
- 124
- Dichtring
- 126
- Faltenbalg
- 128
- Spannschelle
- 130
- Bohrung
- 132
- Hilfs-Luftanschluss
- 134
- Thermosensor
- 136
- Ring-Spannelement
- 138
- Spannschraube
- 140
- Lagerschild
- 142
- Seeger-Ring
- 144
- Energie- und Thermosensorkabel
- 146
- Kabelverschraubung
- 147
- U-förmiger Bogen
- 148
- Kabelverschraubung
- 150
- Befestigungswinkel
- 152
- Befestigungsflansch
- 154
- Kolbenstange
- 156
- Zylinderlager
- 158
- Führungsteil
- 160
- Zylinderschraube
- 162
- Zylinderrohr
- 164
- Zylinderschraube
- 166
- Zylinderdeckel
- 168
- Kolben
- 170
- Dicht-Abstreifring
- 172
- O-Ring
- 174
- Druckraum
- 175
- Druckanschluss
- 176
- Druckraum
- 177
- Druckanschluss
- 178
- Membran
- 180
- Membranzylinder
- 182
- Druckraum
- 184
- Membrandeckel
- 186
- Kammer
- 188
- Ringwulst
- 190
- Ringwulst
- 192
- Durchgangsbohrung
- 194
- Drehmomentstütze
- 196
- Laufrolle
- 198
- Lauffläche
- 200
- Deckelscheibe
- 202
- Schnittstelle
- 204
- Polierteller
- A
- Werkzeug-Drehachse allgemein (drehzahlgesteuert)
- A1
- Drehachse rechtes Werkzeug (drehzahlgesteuert)
- A2
- Drehachse linkes Werkzeug (drehzahlgesteuert)
- B
- Schwenk-Stellachse Werkzeug
- C
- Werkstück-Drehachse allgemein (drehzahlgesteuert)
- C1
- Drehachse rechtes Werkstück (drehzahlgesteuert)
- C2
- Drehachse linkes Werkstück (drehzahlgesteuert)
- cc
- zweite optisch wirksame Fläche
- cx
- erste optisch wirksame Fläche
- L
- Brillenglas
- M
- Blockmaterial
- R
- Radialspiel
- S
- Blockstück
- X
- Linearachse Werkzeugschlitten (lagegeregelt)
- Z
- Linearbewegung Werkzeug allgemein (ungesteuert)
- Z1
- Linearbewegung rechtes Werkzeug (ungesteuert)
- Z2
- Linearbewegung linkes Werkzeug (ungesteuert)
Claims (14)
- Vorrichtung (10) zur Feinbearbeitung der optisch wirksamen Flächen (cc, cx) an insbesondere Brillengläsern (L), mit
einer einen Werkzeugaufnahmeabschnitt (34) aufweisenden Spindelwelle (32), die in einem Spindelgehäuse (36) um eine Werkzeug-Drehachse (A) drehbar gelagert ist,
einem einen Rotor (40) und einen Stator (42) aufweisenden elektrischen Drehantrieb (38), mittels dessen die mit dem Rotor (40) wirkverbundene Spindelwelle (32) um die Werkzeug-Drehachse (A) drehend antreibbar ist, und
einer Verstelleinrichtung (44), mittels welcher der Werkzeugaufnahmeabschnitt (34) bezüglich des Spindelgehäuses (36) in Richtung der Werkzeug-Drehachse (A) axial verschiebbar ist (Linearbewegung Z),
dadurch gekennzeichnet, dass der Rotor (40) und der Stator (42) des elektrischen Drehantriebs (38) sowie die Spindelwelle (32) koaxial angeordnet sind, wobei mittels der Verstelleinrichtung (44) wenigstens der Rotor (40) des elektrischen Drehantriebs (38) zusammen mit der Spindelwelle (32) bezüglich des Spindelgehäuses (36) in Richtung der Werkzeug-Drehachse (A) axial verschiebbar ist (Linearbewegung Z). - Vorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass der Rotor (40) und der Stator (42) des elektrischen Drehantriebs (38) in Richtung der Werkzeug-Drehachse (A) relativ zueinander unverschiebbar in einem gemeinsamen Motorgehäuse (106) aufgenommen sind, wobei die Verstelleinrichtung (44) mit dem Motorgehäuse (106) wirkverbunden und somit das Motorgehäuse (106) zusammen mit der Spindelwelle (32) bezüglich des Spindelgehäuses (36) in Richtung der Werkzeug-Drehachse (A) axial verschiebbar ist (Linearbewegung Z).
- Vorrichtung (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei der Verstelleinrichtung (44) um eine zweiseitig pneumatisch beaufschlagbare Kolben-Zylinder-Anordnung handelt, welche eine Kolbenstange (154) aufweist, über die die axiale Verschiebebewegung (Linearbewegung Z) auf den elektrischen Drehantrieb (38) übertragbar ist und die mit der Spindelwelle (32) axial ausgefluchtet ist.
- Vorrichtung (10) nach Anspruch 3, dadurch gekennzeichnet, dass die Kolbenstange (154) der Verstelleinrichtung (44) zur Übertragung der axialen Verschiebebewegung (Linearbewegung Z) mit dem elektrischen Drehantrieb (38) über einen eine Membran (178) aufweisenden Membranzylinder (180) wirkverbunden ist.
- Vorrichtung (10) nach Anspruch 4, dadurch gekennzeichnet, dass die Membran (178) ringscheibenförmig ausgebildet ist, wobei die Membran (178) innenumfangsseitig an der Kolbenstange (154) der Verstelleinrichtung (44) angebracht und außenumfangsseitig am elektrischen Drehantrieb (38) eingespannt ist, so dass der Kraftfluss einer an der Kolbenstange (154) aufgebrachten Axialkraft von der Kolbenstange (154) über die Membran (178) in den elektrischen Drehantrieb (38) verläuft.
- Vorrichtung (10) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Membran (178) aus einem elastomeren Werkstoff besteht.
- Vorrichtung (10) nach wenigstens den Ansprüchen 3 und 4, dadurch gekennzeichnet, dass die Kolbenstange (154) der Verstelleinrichtung (44) eine Durchgangsbohrung (192) aufweist, die einen vom Werkzeugaufnahmeabschnitt (34) abgewandten Druckraum (174) der Verstelleinrichtung (44) mit einem dem Werkzeugaufnahmeabschnitt (34) zugewandten Druckraum (182) des Membranzylinders (180) pneumatisch verbindet, wobei die einander zugewandten pneumatischen Wirkflächen in den genannten Druckräumen (174, 182) im Wesentlichen gleich groß sind.
- Vorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spindelwelle (32) am Innenumfang einer Spindelhülse (102) drehbar gelagert ist, die an ihrem Außenumfang bezüglich des Spindelgehäuses (36) axial geführt ist.
- Vorrichtung (10) nach Anspruch 8, dadurch gekennzeichnet, dass die Spindelhülse (102) mittels Führungen in Form von Kugelbuchsen (104) im Spindelgehäuse (36) axial geführt ist.
- Vorrichtung (10) nach wenigstens den Ansprüchen 2 und 8, dadurch gekennzeichnet, dass die Spindelhülse (102) am Motorgehäuse (106) des elektrischen Drehantriebs (38) angeflanscht ist.
- Vorrichtung (10) nach Anspruch 10, dadurch gekennzeichnet, dass das Spindelgehäuse (36) ein dem Werkzeugaufnahmeabschnitt (34) der Spindelwelle (32) nahes Gehäuseunterteil (92) und ein dem Werkzeugaufnahmeabschnitt (34) der Spindelwelle (32) fernes Gehäuseoberteil (94) mit verschiedenen Innendurchmessern aufweist, wobei die Spindelhülse (102) im durchmesserkleineren Gehäuseunterteil (92) axial geführt ist, während das Motorgehäuse (106) des elektrischen Drehantriebs (38) im durchmessergrößeren Gehäuseoberteil (94) kolbenartig, aber mit Radialspiel (R) zum Spindelgehäuse (36) axial verschiebbar ist.
- Vorrichtung (10) nach einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, dass das Motorgehäuse (106) des elektrischen Drehantriebs (38) gegen ein Verdrehen bezüglich des Spindelgehäuses (36) mittels einer Drehmomentstütze (194) gesichert ist, deren eines Ende am Motorgehäuse (106) befestigt ist, während ihr anderes Ende eine drehbar gelagerte Laufrolle (196) trägt, die an einer spindelgehäuseseitigen Lauffläche (198) anliegt.
- Vorrichtung (10) nach wenigstens den Ansprüchen 2, 8 und 12, dadurch gekennzeichnet, dass die Drehmomentstütze (194) und die im Spindelgehäuse (36) axial geführte Spindelhülse (102) auf bezüglich des Motorgehäuses (106) axial gegenüberliegenden Seiten angeordnet sind.
- Poliermaschine (12) zum gleichzeitigen Polieren von zwei Brillengläsern (L), umfassend
ein einen Arbeitsraum (14) begrenzendes Maschinengehäuse (16),
zwei in den Arbeitsraum (14) hineinragende Werkstückspindeln (20), über die zwei zu polierende Brillengläser (L) mittels eines gemeinsamen Drehantriebs (22) um parallel zueinander verlaufende Werkstück-Drehachsen (C1, C2) drehend antreibbar sind,
eine Linearantriebseinheit (24), mittels der ein Werkzeugschlitten (26) entlang einer Linearachse (X) bewegbar ist, die im Wesentlichen senkrecht zu den Werkstück-Drehachsen (C1, C2) verläuft,
eine Schwenkantriebseinheit (28), die auf dem Werkzeugschlitten (26) angeordnet ist und mittels der ein Schwenkjoch (30) um eine Schwenk-Stellachse (B) schwenkbar ist, die im Wesentlichen senkrecht zu den Werkstück-Drehachsen (C1, C2) und im Wesentlichen senkrecht zu der Linearachse (X) verläuft, und
zwei mit ihren Werkzeugaufnahmeabschnitten (34) jeweils einer der Werkstückspindeln (20) zugeordnet in den Arbeitsraum (14) hineinragende Vorrichtungen (10) nach einem der vorhergehenden Ansprüche, die mit ihren Spindelgehäusen (36) an dem Schwenkjoch (30) angeflanscht sind, so dass die Werkzeug-Drehachse (A1, A2) jeder Vorrichtung (10) mit der Werkstück-Drehachse (C1, C2) der zugeordneten Werkstückspindel (20) eine Ebene bildet, in der die jeweilige Werkzeug-Drehachse (A1, A2) bezüglich der Werkstück-Drehachse (C1, C2) der zugeordneten Werkstückspindel (20) axial verschiebbar (Linearachse X, Linearbewegung Z) und verkippbar (Schwenk-Stellachse B) ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009041442A DE102009041442A1 (de) | 2009-09-16 | 2009-09-16 | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2298498A2 true EP2298498A2 (de) | 2011-03-23 |
Family
ID=43334751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10008121A Withdrawn EP2298498A2 (de) | 2009-09-16 | 2010-08-04 | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern |
Country Status (6)
Country | Link |
---|---|
US (1) | US8696410B2 (de) |
EP (1) | EP2298498A2 (de) |
CN (1) | CN102069437A (de) |
BR (1) | BRPI1003595A2 (de) |
DE (1) | DE102009041442A1 (de) |
MX (1) | MX2010009770A (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012004547A1 (de) | 2012-03-10 | 2013-09-12 | Satisloh Ag | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern und flexible Fertigungszelle umfassend eine solche Vorrichtung |
WO2022144189A1 (de) * | 2020-12-30 | 2022-07-07 | Satisloh Gmbh | Verfahren und vorrichtung zur feinbearbeitung von axicons, hierfür geeignete feinbearbeitungsmaschine und deren verwendung |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009048757A1 (de) | 2009-10-08 | 2011-04-14 | Satisloh Ag | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an Werkstücken, insbesondere Brillengläsern |
FR2954196B1 (fr) * | 2009-12-21 | 2012-01-20 | Essilor Int | Procede d'usinage pour tournage d'une face d'un verre de lunettes |
DE102011014230A1 (de) | 2011-03-17 | 2012-09-20 | Satisloh Ag | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern |
FR2979558B1 (fr) * | 2011-09-01 | 2013-10-04 | Essilor Int | Procede de surfacage d'une surface d'un verre de lunettes |
DE102012010005A1 (de) * | 2012-05-22 | 2013-11-28 | Satisloh Ag | Zentriermaschine für Werkstücke, insbesondere optische Linsen |
DE102014003598B4 (de) * | 2014-03-17 | 2020-02-27 | Satisloh Ag | Vorrichtung zum Schleifen, Feinschleifen und/oder Polieren von Werkstücken in optischer Qualität, insbesondere von sphärischen Linsenflächen in der Feinoptik |
US9696517B2 (en) * | 2014-03-19 | 2017-07-04 | Jefferson Science Associates, Llc | Insertion device and method for accurate and repeatable target insertion |
DE102014015053A1 (de) * | 2014-10-15 | 2016-04-21 | Satisloh Ag | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern |
DE102016004328A1 (de) * | 2016-04-13 | 2017-10-19 | Satisloh Ag | Werkzeugspindel für eine Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an Werkstücken |
US10307881B2 (en) * | 2017-02-22 | 2019-06-04 | National Optronics, Inc. | Ophthalmic lens processing apparatus with improved user accessibility |
CN107263248A (zh) * | 2017-06-23 | 2017-10-20 | 何珠贞 | 一种用于生产vr眼镜的可远程监控的透镜自动抛光机 |
EP3479954A1 (de) * | 2017-11-07 | 2019-05-08 | Satisloh AG | Oberflächenbearbeitungsstation zur herstellung von optischen elementen und zugehörige herstellungsanlage |
US11724386B2 (en) * | 2019-05-27 | 2023-08-15 | Ati Industrial Automation, Inc. | Robotic tool holder with passive compliance |
CN114559364B (zh) * | 2022-02-24 | 2023-07-04 | 苏州东辉光学有限公司 | 一种紧凑型c透镜球面研磨自动化设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10250856A1 (de) | 2002-10-25 | 2004-05-13 | Carl Zeiss | Verfahren und Vorrichtung zum Herstellen von optischen Gläsern |
EP1473116A1 (de) | 2003-05-02 | 2004-11-03 | Loh Optikmaschinen AG | Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen |
DE102005010583A1 (de) | 2005-03-04 | 2006-09-07 | Satisloh Gmbh | Polierteller für ein Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern |
US20070155286A1 (en) | 2005-12-30 | 2007-07-05 | Drain James W | Polishing machine comprising a work chamber and a platform |
US20070155287A1 (en) | 2005-12-30 | 2007-07-05 | Drain James W | Polishing machine comprising sliding means transverse to the front face |
DE102007026841A1 (de) | 2007-06-06 | 2008-12-11 | Satisloh Ag | Polierteller für ein Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern und Verfahren für dessen Herstellung |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4214180A (en) * | 1978-03-23 | 1980-07-22 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Miniature electric motor employing a conversion mechanism for linear movement |
US4245870A (en) * | 1979-04-06 | 1981-01-20 | Emerson Electric Co. | Electric motor bearing assembly |
ATE115030T1 (de) * | 1986-11-04 | 1994-12-15 | Fritz Kruesi Maschinenbau | Vorrichtung zum bearbeiten eines werkstückes aus holz, insbesondere von holzbalken. |
US5928063A (en) * | 1996-05-03 | 1999-07-27 | Coburn Optical Industries, Inc. | Pneumatically assisted unidirectional arcuate diaphragm conformal tool |
DE29723542U1 (de) * | 1997-03-26 | 1998-11-19 | OptoTech Optikmaschinen GmbH, 35435 Wettenberg | Vorrichtung zur Bearbeitung optischer Linsen |
US7059447B1 (en) * | 1999-12-21 | 2006-06-13 | Ford Global Technologies, Inc. | Automotive vehicle steering system having an electric motor powered linear actuator shaft for turning a steered wheel |
JP2006088250A (ja) * | 2004-09-22 | 2006-04-06 | Olympus Corp | 研磨装置 |
DE102006028164B4 (de) * | 2006-06-16 | 2009-04-02 | Satisloh Ag | Schleif- und Poliermaschine zum Schleifen und/oder Polieren von Werkstücken in optischer Qualität |
WO2008014253A2 (en) * | 2006-07-24 | 2008-01-31 | The Timken Company | Electric motor with axially deformable rotor assembly |
DE102006042023A1 (de) * | 2006-09-07 | 2008-03-27 | Stabilus Gmbh | Antriebseinrichtung |
DE102007031703A1 (de) * | 2007-07-06 | 2009-01-08 | Satisloh Gmbh | Maschine zur Bearbeitung von optischen Werkstücken, insbesondere von Kunststoff-Brillengläsern |
JP3145083U (ja) * | 2008-07-14 | 2008-09-25 | サンアロイ工業株式会社 | 研削装置 |
DE102009036981A1 (de) | 2009-08-12 | 2011-02-17 | Satisloh Ag | Flexibles Polierwerkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern |
-
2009
- 2009-09-16 DE DE102009041442A patent/DE102009041442A1/de not_active Withdrawn
-
2010
- 2010-08-04 EP EP10008121A patent/EP2298498A2/de not_active Withdrawn
- 2010-09-03 MX MX2010009770A patent/MX2010009770A/es active IP Right Grant
- 2010-09-14 US US12/881,738 patent/US8696410B2/en active Active
- 2010-09-14 CN CN2010102909538A patent/CN102069437A/zh active Pending
- 2010-09-15 BR BRPI1003595-8A patent/BRPI1003595A2/pt not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10250856A1 (de) | 2002-10-25 | 2004-05-13 | Carl Zeiss | Verfahren und Vorrichtung zum Herstellen von optischen Gläsern |
EP1473116A1 (de) | 2003-05-02 | 2004-11-03 | Loh Optikmaschinen AG | Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen |
DE102005010583A1 (de) | 2005-03-04 | 2006-09-07 | Satisloh Gmbh | Polierteller für ein Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern |
US20070155286A1 (en) | 2005-12-30 | 2007-07-05 | Drain James W | Polishing machine comprising a work chamber and a platform |
US20070155287A1 (en) | 2005-12-30 | 2007-07-05 | Drain James W | Polishing machine comprising sliding means transverse to the front face |
DE102007026841A1 (de) | 2007-06-06 | 2008-12-11 | Satisloh Ag | Polierteller für ein Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern und Verfahren für dessen Herstellung |
EP2014412A1 (de) | 2007-06-06 | 2009-01-14 | Satisloh AG | Polierteller für ein Werkzeug zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern und Verfahren für dessen Herstellung |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012004547A1 (de) | 2012-03-10 | 2013-09-12 | Satisloh Ag | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern und flexible Fertigungszelle umfassend eine solche Vorrichtung |
WO2013135331A1 (de) | 2012-03-10 | 2013-09-19 | Satisloh Ag | Vorrichtung zur feinbearbeitung von optisch wirksamen flächen an insbesondere brillengläsern und flexible fertigungszelle umfassend eine solche vorrichtung |
DE102012004547A8 (de) * | 2012-03-10 | 2013-11-14 | Satisloh Ag | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern und flexible Fertigungszelle umfassend eine solche Vorrichtung |
WO2022144189A1 (de) * | 2020-12-30 | 2022-07-07 | Satisloh Gmbh | Verfahren und vorrichtung zur feinbearbeitung von axicons, hierfür geeignete feinbearbeitungsmaschine und deren verwendung |
Also Published As
Publication number | Publication date |
---|---|
MX2010009770A (es) | 2011-03-30 |
BRPI1003595A2 (pt) | 2013-07-30 |
CN102069437A (zh) | 2011-05-25 |
DE102009041442A1 (de) | 2011-03-24 |
US20110065361A1 (en) | 2011-03-17 |
US8696410B2 (en) | 2014-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2686137B1 (de) | Vorrichtung zur feinbearbeitung von optisch wirksamen flächen an insbesondere brillengläsern | |
EP2298498A2 (de) | Vorrichtung zur Feinbearbeitung von optisch wirksamen Flächen an insbesondere Brillengläsern | |
EP2666589B1 (de) | Zentriermaschine für Werkstücke insbesondere optische Linsen | |
EP3206833B1 (de) | Vorrichtung zur feinbearbeitung von optisch wirksamen flächen an insbesondere brillengläsern | |
EP1243380B1 (de) | Vorrichtung zur Randbearbeitung von optischen Linsen | |
EP2822730B1 (de) | Vorrichtung zur feinbearbeitung von optisch wirksamen flächen an insbesondere brillengläsern und flexible fertigungszelle umfassend eine solche vorrichtung | |
EP2011603B2 (de) | Maschine zur Bearbeitung von optischen Werkstücken, insbesondere von Kunststoff-Brillengläsern | |
DE102014003598B4 (de) | Vorrichtung zum Schleifen, Feinschleifen und/oder Polieren von Werkstücken in optischer Qualität, insbesondere von sphärischen Linsenflächen in der Feinoptik | |
EP1779967A2 (de) | Gestaltung der Schlittenführung einer Fast-tool-anordnung, insbesondere für Drehmaschinen zur Bearbeitung von optischen Werkstücken | |
DE10008710A1 (de) | Vorrichtung zum zentrierenden Spannen von optischen Linsen für deren Randbearbeitung | |
EP1265727A2 (de) | Bearbeitungszentrum | |
DE102009006797A1 (de) | Linsenbearbeitungsvorrichtung | |
EP2825349B1 (de) | Maschine zur bearbeitung von optischen werkstücken, insbesondere von kunststoff-brillengläsern | |
EP3344416A2 (de) | Werkzeugmaschine mit einer feinbearbeitungsspindel | |
DE202007002379U1 (de) | Scheiben- oder Abwälzfräsvorrichtung | |
WO2014180617A1 (de) | Antrieb und system mit zumindest einer angetriebenen walze oder extruderschnecke | |
DE102006026193B3 (de) | Winkelaggregat | |
DE3913246A1 (de) | Maschine zum zweiseitigen stirnschleifen von abstechfraesern | |
EP3488967A1 (de) | Vorrichtung zur bearbeitung von optischen werkstücken, insbesondere brillengläsern | |
EP2495072A1 (de) | Vorrichtung und Verfahren zum Bearbeiten einer optischen Linse | |
DE2048407B2 (de) | Schleifmaschine zum Bearbeiten von bezüglich ihrer Mantellinien geraden Innenflächen von Hohlkörpern | |
DE3722222A1 (de) | Vorrichtung zum bearbeiten von innenflaechen | |
DE19602473A1 (de) | Werkzeugmaschine mit einer Drehspindel, einem Bearbeitungskopf an dieser Drehspindel und einem während der Drehung beweglichen Objektträger an dem Bearbeitungskopf | |
DE102005043498A1 (de) | Vorrichtung zum Bearbeiten eines Werkstückes | |
DE29623518U1 (de) | Werkzeugmaschine mit einer Drehspindel, einem Bearbeitungskopf an dieser Drehspindel und einem während der Drehung beweglichen Objektträger an dem Bearbeitungskopf |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20140618 |