Nothing Special   »   [go: up one dir, main page]

EP2285753A1 - Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium - Google Patents

Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium

Info

Publication number
EP2285753A1
EP2285753A1 EP09769479A EP09769479A EP2285753A1 EP 2285753 A1 EP2285753 A1 EP 2285753A1 EP 09769479 A EP09769479 A EP 09769479A EP 09769479 A EP09769479 A EP 09769479A EP 2285753 A1 EP2285753 A1 EP 2285753A1
Authority
EP
European Patent Office
Prior art keywords
structure according
weight
silicon carbide
oxide
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09769479A
Other languages
German (de)
English (en)
Inventor
Carine Dien-Barataud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP2285753A1 publication Critical patent/EP2285753A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • B01J35/57Honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of filter structures or catalytic supports, in particular used in an exhaust line of a diesel type internal combustion engine.
  • Catalytic filters for the treatment of gases and the removal of soot from a diesel engine are well known in the prior art. These structures all most often have a honeycomb structure, one of the faces of the structure allowing the admission of the exhaust gas to be treated and the other side the evacuation of the treated exhaust gas.
  • the structure comprises, between the intake and discharge faces, a set of adjacent ducts or channels of axes parallel to each other separated by porous walls.
  • the ducts are closed at one or the other of their ends to delimit inlet chambers opening on the inlet face and outlet chambers opening along the discharge face.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to pass through the sidewalls of the inlet channels to join the outlet channels. In this way, the particles or soot are deposited and accumulate on the porous walls of the filter body.
  • the particulate filter is subjected to a succession of filtration (soot accumulation) and regeneration phases.
  • soot particles emitted by the engine are retained and are deposited inside the filter.
  • soot particles are burned inside the filter, in order to restore its filtration properties.
  • the filters are porous ceramic material, for example cordierite or silicon carbide.
  • cordierite filters have been known and used for a long time, because of their low cost, it is now known that serious problems can occur in such structures, in particular during poorly controlled regeneration cycles, during which the filter may be subjected locally to temperatures above the melting temperature of cordierite. The consequences of these hot spots can range from a partial loss of efficiency of the filter to its total destruction, in the most severe cases.
  • the cordierite does not have a sufficient chemical inertia, compared with the temperatures reached during successive cycles of regeneration and is therefore likely to be corroded by reaction with the metals accumulated in the structure during the filtration phases, this This phenomenon can also be at the origin of the rapid deterioration of the properties of the structure.
  • SiC silicon carbide filtration structures More recently and in part to overcome such problems, SiC silicon carbide filtration structures have been described. Examples of such catalytic silicon carbide filters are described in patent applications EP 816,065, EP 1 142 619, EP 1 455 923 or else WO 2004/090294 and WO 2004/065088.
  • the SiC filters obtained according to the previous publications make it possible to obtain filtering structures which are chemically inert in the sense previously described, of excellent thermal conductivity, for example greater than 12 W / mK at 20 ° C., as disclosed for example in FIG. Patent Application EP 1 652 831.
  • the porosity, the median diameter and the pore size distribution are ideal for a soot filtering application from a heat engine.
  • a first drawback is related to the coefficient of thermal expansion too high SiC, about 4.10 ⁇ 6 K "1 , which does not allow the manufacture of large monolithic filters, and most often forces the filter segment into several honeycomb elements bonded by a cement, as described in the application EP 1 455 923.
  • a second disadvantage is related to the extremely high firing temperature, typically greater than 2100 ° C., which is necessary to ensure sintering which guarantees a sufficient thermomechanical resistance of the honeycomb structures and in particular to support the successive phases of regeneration of the filter over the life of the filter.
  • Such temperatures require the installation of special equipment that significantly increases the cost of the filter finally obtained.
  • the application EP 1 070 687 describes a structure based on SiC grains having an oxide-based ceramic bonding phase comprising at least one single oxide, especially selected from TiO 2 and Al 2 O 3. - AT -
  • the purpose of the present invention is thus to provide a honeycomb structure of a new type, to address all of the previously discussed problems.
  • the present invention relates to a structure of the honeycomb type, said structure consisting at least in part of a porous ceramic material comprising from 45 to 90% by weight of silicon carbide SiC, preferably in alpha form, and from 10 to 55% by weight of a ceramic oxide phase essentially in the form of Al 2 TiO 5 aluminum titanate, said material further having a porosity of greater than 10%, preferably of between 20% and 60%. %, and a median pore size of between 5 and 60 microns, preferably between 10 and 25 microns.
  • the oxide phase comprises at least
  • the weight percentage of the SiC phase in the porous material is between 50% and 85% and very preferably between 60 and 80%.
  • the weight percentage of Al 2 TiO 5 in the porous material is between 15% and 50% and very preferably between 20 and 40%.
  • the oxide phase present in the structure may comprise, in addition to aluminum titanate, a small part, that is to say less than 10% by weight, less than 5% by weight, of Mullite Al 6 Si2 ⁇ i3
  • Mullite for example from 0.01 to 10% by weight of Mullite, preferably from 1 to 5% by weight of Mullite. It is important to note that the presence of Mullite according to the invention is not mandatory. The presence of such a phase is generally inherent in the use of a silicon source other than SiC, for example in the form of silica, in the initial mixture of the powders, for example in the form of unavoidable impurities. Without this being linked to any theory, the additional presence of
  • Mullite could also result, under certain conditions, from the high reactivity of the silica located on the surface of the SiC grains with respect to the alumina present in the mixture, at the temperature of the monolith cooking step.
  • the structures obtained according to the invention have a porosity suitable for use as a particulate filter, that is to say that their porosity is in general between 20 and 65% and the median pore diameter is ideally between 10 and 20 microns.
  • the structure comprises:
  • SiO 2 50 to 60% Al 2 O 3 and 35 to 50% TiO 2 .
  • the filtering structure according to the invention is most often characterized by a central portion comprising a honeycomb filter element or a plurality of honeycomb filter elements interconnected by a joint cement, the at least one element comprising a plurality of adjacent channels or channels of axes parallel to each other separated by porous walls, which conduits are closed by plugs at one or other of their ends to define inlet chambers s' opening on a gas inlet face and outlet chambers s opening in a gas evacuation face, so that the gas passes through the porous walls.
  • the number of channels is between 7.75 to 62 per cm 2 , said channels having a section of 0.5 to 9 mm 2 , the walls separating the channels having a thickness of about 0.2 to 1, 0 mm, preferably 0.2 to 0.5 mm.
  • the invention also relates to the method of manufacturing a structure as described above, wherein said structure is obtained from an initial mixture of silicon carbide grains and aluminum titanate grains or from an initial mixture of silicon carbide grains, titanium oxide grains and aluminum oxide grains.
  • the silicon carbide powder has a median diameter dso less than 125 microns, preferably between 10 and 50 microns, and the titanium oxide powder, the aluminum oxide powder or alternatively the titanate powder aluminum have a median diameter dso less than 15 microns.
  • the median diameter d 5 o of a powder or a set of grains or particles corresponds according to the invention to the "median size", that is to say the size dividing the particles or grains of this set in first and second populations equal in mass, these first and second populations containing only particles or grains having a size greater than or less than the median size, respectively.
  • the term "particle size" of a powder conventionally refers to the particle size determined by a sedigraphic analysis performed to characterize a particle size distribution. Sedigraphy can for example be carried out using a sedigraph Sedigraph 5100 Micromeritics® company.
  • the structure according to the invention can also be obtained from an initial mixture of silicon carbide grains and aluminum titanate grains, a fraction of the atoms of which can be substituted by carbon atoms. Mg in particular.
  • the aluminum titanate powder has a median diameter d 5 o of less than 60 microns, preferably less than 30 microns.
  • the manufacturing process most often comprises a step of mixing the initial mixture resulting in a homogeneous product in the form of a paste, a step of extruding said product through a suitable die so as to form nest-shaped monoliths. bees, a drying step of the obtained monoliths, optionally an assembly step and a firing step carried out at a temperature not exceeding 1800 ° C., preferably not exceeding 1700 ° C.
  • a mixture comprising at least one silicon carbide powder, a powder of an aluminum titanate or a mixture of titanium oxide and aluminum oxide is kneaded.
  • the green ceramic monoliths obtained are typically microwave dried or at a temperature for a time sufficient to bring the water content not chemically bound to less than 1% by weight.
  • the method for obtaining a particulate filter further comprises a plugging step of every other channel at each end of the monolith.
  • the monolithic structure is generally brought to a temperature of between about 1300 ° C. and about
  • 1700 0 C preferably between about 1400 ° C and 1600 0 C, under an atmosphere containing oxygen.
  • the present invention relates in particular to a filter or catalytic support obtained from a structure as previously described and by deposition, preferably by impregnation, of at least one supported or preferably unsupported active catalytic phase, comprising typically at least one precious metal such as Pt and / or Rh and / or Pd and optionally an oxide such as CeO 2 , ZrO 2 , CeO 2 -ZrO 2 .
  • Such a structure finds particular application as a catalytic support in an exhaust line of a diesel or gasoline engine or as a particulate filter in a diesel engine exhaust line.
  • Example 1 (according to the invention):
  • each face of the monolith is alternately plugged according to well-known techniques, for example described in application WO 2004/065088.
  • the monolith is then cooked under air gradually until a maximum temperature of 1500 0 C is maintained for 4 hours.
  • the scanning electron microscopy analysis shows a substantially homogeneous structure characterized by the presence of SiC grains and an oxide matrix consisting of a mullitic oxide phase representing less than 10% by weight of the material and a phase of aluminum titanate type. representing approximately 25% by weight of the material forming this structure and establishing contact zones between said grains of silicon carbides.
  • EXAMPLE 2 (COMPARATIVE) It was synthesized according to the techniques of the art, for example described in the patents EP 816065, EP 1 142 619, EP 1 455 923 or WO 2004/090294, monolithic elements in the shape of a nest. bee whose dimensions are in accordance with those given in Table 1 but exclusively in silicon carbide.
  • the median diameter refers to the diameter of the particles below which is 50% weight of the population.
  • the channels of each face of the monolith are alternately blocked according to well-known techniques, for example described in application WO 2004/065088.
  • the monoliths are then fired to a temperature of 2200 ° C., which is maintained for 5 hours.
  • the porous material obtained comprising for the most part recrystallized CC-SiC, has an open porosity of 47% and an average pore distribution diameter of about 14 ⁇ m.
  • Table 2 lists the characteristics measured on the filter obtained according to Example 1, compared with those of the already known filter of Example 2 exclusively in SiC- ⁇ .
  • the porosity characteristics were measured by high-pressure mercury porosimetry analyzes carried out with a Micromeritics 9500 type porosimeter.
  • the thermal conduction properties were measured by laser flash.
  • the coefficient of thermal expansion was measured from room temperature to 1000 ° C. by dilatometry.
  • the weight percentages of aluminum titanate and Mullite in the oxide phase were determined by X - ray diffraction.
  • the weight percentage of silicon carbide was measured by chemical analysis.
  • thermomechanical properties of the filters were evaluated as follows:
  • the filters of Examples 1 and 2 are mounted on an exhaust line of a 2.0 L direct injection diesel engine running at full power (4000 rpm) for 30 minutes then dismantled and weighed to determine their initial mass. .
  • the filters are then reassembled on the engine bench with a speed of 3000 rpm and a torque of 50 Nm for different times to obtain a soot load of 8 g / liter (by volume of the filter).
  • the filters thus loaded are reassembled on the line to undergo a severe regeneration thus defined: after stabilization at an engine speed of 1700 revolutions / minute for a torque of 95 Nm for 2 minutes, a post-injection is performed with 70 ° phasing for a post-injection flow rate of 18mm 3 / stroke.
  • the engine speed is lowered to 1050 revolutions / minute for a torque of 40 Nm for 5 minutes to accelerate the combustion of soot .
  • the filter is then run at 4000 rpm for 30 minutes to remove the remaining soot.
  • thermomechanical resistance of the filter is appreciated in view of the number of cracks, a small number of cracks reflecting a thermomechanical resistance acceptable for use as a particulate filter. As shown in Table 2, the following notes were assigned to each of the filters:
  • the structure according to the invention is obtained at a temperature of about 600 ° C. lower than that required for the manufacture of a recrystallized SiC filter, which allows a saving substantial cost of obtaining the filter. Studies have shown that the saving achieved by this single drop in cooking temperature is at least a third of the overall cost of a filter.
  • Electron microscopic analyzes show that the porous filtering structure obtained in Example 1 consists of SiC grains, as well as the presence of the oxide phase consisting essentially of alumina titanate between the SiC grains.
  • the filter according to the invention loaded with 4g / l of soot was tested on a motor bench. It has been verified that the filtration efficiency, measured by a SMPS type probe (Scanning Mobility Particle Sizer) was satisfactory.
  • the invention has been described in relation to the catalyzed particulate filters for the removal of gaseous pollutants and soot present in the exhaust gases leaving the an exhaust line of a diesel engine.
  • the present invention also relates to catalytic supports for the elimination of gaseous pollutants at the output of gasoline or diesel engines.
  • the honeycomb channels are not obstructed at one or the other end.
  • the implementation of the present invention has the advantage of increasing the specific surface area of the support and consequently the amount of active phase present in the support, without affecting the overall porosity of the support.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

L'invention se rapporte à une structure du type en nid d'abeilles, faite d'un matériau céramique poreux, ladite structure étant caractérisée en ce que le matériau céramique poreux qui la constitue au moins en partie comprend de 45 à 90% poids de carbure de silicium SiC, de préférence sous forme alpha, et de 10 à 55% poids d'une phase céramique oxyde essentiellement sous forme de titanate d'aluminium Al2TiO5, ledit matériau présentant en outre une porosité supérieure à 10% et un diamètre médian des pores compris entre 5 et 60 microns.

Description

FILTRE OU SUPPORT CATALYTIQUE A BASE DE CARBURE DE SILICIUM
ET DE TITANATE D'ALUMINIUM
L' invention se rapporte au domaine des structures filtrantes ou des supports catalytiques, notamment utilisées dans une ligne d'échappement d'un moteur à combustion interne du type diesel.
Les filtres catalytiques permettant le traitement des gaz et l'élimination des suies issues d'un moteur diesel sont bien connus de l'art antérieur. Ces structures présentent toutes le plus souvent une structure en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à traiter et l'autre face l'évacuation des gaz d'échappement traités. La structure comporte, entre les faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses. Les conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant.
De façon connue, durant son utilisation, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération
(élimination des suies) . Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration.
Le plus souvent, les filtres sont en matière céramique poreuse, par exemple en cordiérite ou en carbure de silicium.
Si les filtres en cordiérite sont connus et utilisés depuis longtemps, du fait de leur faible coût, il est aujourd'hui connu que de graves problèmes peuvent survenir dans de telles structures, notamment lors de cycles de régénération mal contrôlés, au cours desquels le filtre peut être soumis localement à des températures supérieures à la température de fusion de la cordiérite. Les conséquences de ces points chauds peuvent aller d'une perte d'efficacité partielle du filtre à sa destruction totale, dans les cas les plus sévères. En outre, la cordiérite ne présente pas une inertie chimique suffisante, au regard des températures atteintes lors des cycles successifs de régénération et est de ce fait susceptible d'être corrodé par réaction avec les métaux accumulés dans la structure lors des phases de filtration, ce phénomène pouvant également être à l'origine de la détérioration rapide des propriétés de la structure.
Par exemple, de tels inconvénients sont décrits dans la demande de brevet WO 2004/01124 qui propose un filtre à base de titanate d'aluminium (60 à 90% poids), renforcé par de la mullite (10 à 40% poids), dont la durabilité est améliorée .
Plus récemment et en partie pour s'affranchir de tels problèmes, des structures de filtration en carbure de silicium SiC ont été décrites. Des exemples de tels filtres catalytiques en carbure de silicium sont décrits dans les demandes de brevets EP 816 065, EP 1 142 619, EP 1 455 923 ou encore WO 2004/090294 et WO 2004/065088.
Les filtres en SiC obtenus selon les précédentes publications permettent d'obtenir des structures filtrantes chimiquement inertes au sens précédemment décrit, d'excellente conductivité thermique, par exemple supérieure à 12 W/m.K à 200C, comme cela est dévoilé par exemple dans la demande de brevet EP 1 652 831. Dans de telles structures, la porosité, le diamètre médian et la répartition en taille des pores sont idéales pour une application de filtrage des suies issues d'un moteur thermique .
Cependant, certains défauts inhérents à ce matériau subsistent encore : Un premier inconvénient est lié au coefficient de dilatation thermique trop élevé du SiC, d'environ 4.10~6 K"1, qui n'autorise pas la fabrication de filtres monolithiques de grande taille, et oblige le plus souvent à segmenter le filtre en plusieurs éléments en nid d'abeille liés par un ciment, tel que cela est décrit dans la demande EP 1 455 923.
Un deuxième inconvénient, de nature économique, est lié à la température de cuisson extrêmement élevée, typiquement supérieure à 21000C, nécessaire pour assurer un frittage garantissant une résistance thermomécanique suffisante des structures en nid d'abeille et pour supporter notamment les phases successives de régénération du filtre sur toute la durée de vie du filtre. De telles températures nécessitent la mise en place d'équipements spéciaux qui augmentent de façon sensible le coût du filtre finalement obtenu.
Selon une voie alternative, la demande EP 1 070 687 décrit une structure à base de grains de SiC présentant une phase céramique liante à base d'oxyde comprenant au moins un oxyde simple notamment choisi parmi Tiθ2 et AI2O3. - A -
L' expérience montre cependant que les matériaux décrits dans les exemples de cette demande ne présentent cependant pas la stabilité thermique suffisante.
Le but de la présente invention est ainsi de fournir une structure en nid d'abeille d'un type nouveau, permettant de répondre à l'ensemble des problèmes précédemment exposés.
Dans une forme générale, la présente invention se rapporte à une structure du type en nid d'abeilles, ladite structure étant constitué au moins en partie d'un matériau céramique poreux comprenant de 45 à 90% poids de carbure de silicium SiC, de préférence sous forme alpha, et de 10 à 55% poids d'une phase céramique oxyde essentiellement sous forme de titanate d'aluminium Al2TiO5, ledit matériau présentant en outre une porosité supérieure à 10%, de préférence comprise entre 20% et 60%, et une taille médiane des pores comprise entre 5 et 60 microns, de préférence comprise entre 10 et 25 microns.
Par le terme « essentiellement » sous forme de titanate d'aluminium Al2TiO5, il est entendu au sens de la présente description que la phase oxyde comprend au moins
40% poids de titanate d'aluminium Al2TiO5, et de préférence au moins 50% poids voire au moins 60% poids de titanate d'aluminium Al2TiO5, voire de manière encore plus préférée au moins 80% poids de titanate d'aluminium Al2TiO5.
De préférence, le pourcentage massique de la phase SiC dans le matériau poreux est compris entre 50% et 85% et de manière très préférée entre 60 et 80%.
De préférence, le pourcentage massique d'Al2Ti05 dans le matériau poreux est compris entre 15 % et 50% et de manière très préférée entre 20 et 40%.
Selon l'invention, la phase oxyde présente dans la structure peut comprendre, outre le titanate d'aluminium, une partie minime, c'est-à-dire inférieure à 10% poids, voire inférieure à 5% poids, de Mullite Al6Si2θi3
(3Al2O3-2SiO2) , par exemple de 0,01 à 10% poids de Mullite, de préférence de 1 à 5% poids de Mullite. Il est important de noter que la présence de Mullite selon l'invention n'est pas obligatoire. La présence d'une telle phase est en général inhérente à l'utilisation d'une source de silicium autre que le SiC, par exemple sous la forme de silice, dans le mélange initial des poudres, par exemple sous forme d'impuretés inévitables. Sans que cela puisse être lié à une quelconque théorie, la présence supplémentaire de
Mullite pourrait également résulter, sous certaines conditions, de la forte réactivité de la silice située à la surface des grains de SiC vis-à-vis de l'alumine présent dans le mélange, à la température de l'étape de cuisson des monolithes.
Sans sortir du cadre de l'invention, une autre phase oxyde réfractaire notamment à base ou précurseur de magnésie MgO peut également être introduite dans le mélange de poudre . Les structures obtenues selon l'invention présentent une porosité adaptée à une utilisation comme filtre à particules, c'est-à-dire que leur porosité est en général comprise entre 20 et 65% et le diamètre médian des pores est idéalement compris entre 10 et 20 microns. Selon un mode de réalisation possible de l'invention, la structure comprend :
- de 45 à 90 % poids de carbure de silicium SiC, de 55 à 10 % poids d'une phase céramique oxyde essentiellement présente sous forme de titanate d'aluminium et comprenant, sur la base de la masse totale des oxydes présents dans ladite phase, de 1 à 10% de
SiO2, de 50 à 60% de Al2O3 et de 35 à 50% de TiO2.
La structure filtrante selon l'invention se caractérise le plus souvent par une partie centrale comprenant un élément filtrant en nid d'abeille ou une pluralité d'éléments filtrants en nid d'abeille reliés entre eux par un ciment de joint, le ou lesdits éléments comprenant un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses, lesquels conduits étant obturés par des bouchons à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant une face d'admission des gaz et des chambres de sortie s ' ouvrant suivant une face d'évacuation des gaz, de telle façon que le gaz traverse les parois poreuses.
En général, le nombre de canaux est compris entre 7,75 à 62 par cm2, lesdits canaux ayant une section de 0,5 à 9 mm2, les parois séparant les canaux ayant une épaisseur d'environ 0,2 à 1,0 mm, de préférence de 0,2 à 0,5 mm.
L' invention se rapporte également au procédé de fabrication d'une structure telle que précédemment décrite, dans lequel ladite structure est obtenue à partir d'un mélange initial de grains de carbure de silicium et de grains de titanate d'aluminium ou à partir d'un mélange initial de grains de carbure de silicium, de grains d'oxyde de titane et de grains d'oxyde d'aluminium.
Avantageusement, la poudre de carbure de silicium présente un diamètre médian dso inférieur à 125 microns, de préférence compris entre 10 et 50 microns, et la poudre d'oxyde de titane, la poudre d'oxyde d'aluminium ou alternativement la poudre de titanate d' aluminium présentent un diamètre médian dso inférieur à 15 microns.
Le diamètre médian d5o d'une poudre ou d'un ensemble de grains ou de particules correspond selon l'invention à la «taille médiane», c'est-à-dire la taille divisant les particules ou de grains de cet ensemble en première et deuxième populations égales en masse, ces première et deuxième populations ne comportant que des particules ou des grains présentant une taille supérieure, ou inférieure respectivement, à la taille médiane. Par «taille d'une particule» d'une poudre, on entend classiquement la taille de particules déterminée par une analyse sédigraphique réalisée pour caractériser une distribution granulométrique . La sédigraphie peut par exemple être réalisée au moyen d'un sédigraphe Sedigraph 5100 de la société Micromeritics®.
Selon un mode de fabrication alternatif la structure selon l'invention peut également être obtenue à partir d'un mélange initial de grains de Carbure de Silicium et de grains de Titanate d'Aluminium, dont une fraction des atomes peut être substituée par des atomes de Mg notamment.
Avantageusement, la poudre de Titanate d'aluminium présente un diamètre médian d5o inférieur à 60 microns, de préférence inférieur à 30 microns.
Le procédé de fabrication comprend le plus souvent une étape de malaxage du mélange initial résultant en un produit homogène sous la forme d'une pâte, une étape d'extrusion dudit produit à travers une filière appropriée de manière à former des monolithes de forme nid d'abeilles, une étape de séchage des monolithes obtenus, éventuellement une étape d'assemblage et une étape de cuisson réalisée à une température ne dépassant pas 18000C, de préférence ne dépassant pas 17000C.
Par exemple, au cours de la première étape, on malaxe un mélange comprenant au moins une poudre de carbure de silicium, d'une poudre d'un titanate d'aluminium ou d'un mélange d'oxyde de titane et d'oxyde d'aluminium et éventuellement de 1 à 30 % poids d'au moins un agent porogène choisi en fonction de la taille des pores recherchée, puis on ajoute au moins un plastifiant organique et/ou un liant organique et de l'eau. Au cours de l'étape de séchage, les monolithes céramiques crus obtenus sont typiquement séchés par microonde ou à une température pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1% poids.
Le procédé d'obtention d'un filtre à particules comprend en outre une étape de bouchage d'un canal sur deux à chaque extrémité du monolithe.
Dans l'étape de cuisson selon l'invention, la structure monolithe est généralement portée à une température comprise entre environ 13000C et environ
17000C, de préférence entre environ 1400°C et 16000C, sous une atmosphère contenant de l'oxygène.
La présente invention se rapporte en particulier à un filtre ou un support catalytique obtenu à partir d'une structure telle que précédemment décrite et par dépôt, de préférence par imprégnation, d'au moins une phase catalytique active supportée ou de préférence non supportée, comprenant typiquement au moins un métal précieux tel que Pt et/ou Rh et/ou Pd et éventuellement un oxyde tel que CeO2, ZrO2, CeO2-ZrO2.
Une telle structure trouve notamment son application comme support catalytique dans une ligne d'échappement d'un moteur diesel ou essence ou comme filtre à particules dans une ligne d'échappement d'un moteur diesel.
L' invention et ses avantages seront mieux compris à la lecture des exemples non limitatifs qui suivent. Dans les exemples, tous les pourcentages sont exprimés en poids .
Exemple 1 (selon l'invention):
Dans un malaxeur, on mélange : - 3750g d'une poudre de grains de SiC-CC de diamètre médian de grains d'environ 30 microns,
- 120g d'une poudre d'alumine commercialisée sous la référence CT3000SG par la société Almatis, de diamètre médian des grains dso d'environ 0,6 microns,
- 100g de PVA (polyvynile alcool)
- 300g d'eau
Après homogénéisation de ce mélange et obtention de granules de résistance mécanique suffisante, on mélange ces granules avec :
- 970g d'une poudre d'alumine commercialisée sous la référence A17NE par la société Almatis, et se différentiant notamment de la première poudre d' alumine par un diamètre médian des grains d5o d'environ 2,5 microns,
- 610g d'une poudre d'oxyde de titane de grade 3025 commercialisée par la société Kronos,
- 150g d'un liant organique du type méthylcellulose .
On ajoute de l'eau et on malaxe jusqu'à obtenir une pâte homogène et dont la plasticité permet l'extrusion à travers une filière d'une structure en nid d'abeille dont les caractéristiques dimensionnelles sont données dans le tableau 1 :
Tableau 1 On sèche ensuite les monolithes crus obtenus par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 % poids.
On bouche alternativement les canaux de chaque face du monolithe selon des techniques bien connues, par exemple décrites dans la demande WO 2004/065088.
Le monolithe est ensuite cuit sous air progressivement jusqu'à atteindre une température maximale de 15000C qui est maintenue pendant 4 heures. L'analyse par microscopie électronique à balayage montre une structure sensiblement homogène caractérisée par la présence de grains de SiC et une matrice oxyde constituée d'une phase oxyde de type mullitique représentant moins 10% poids du matériau et une phase de type titanate d'aluminium représentant environ 25% poids du matériau formant cette structure et établissant des zones de contact entre lesdits grains de carbures de silicium.
Exemple 2 (comparatif) : On a synthétisé selon les techniques de l'art, par exemple décrites dans les brevets EP 816065, EP 1 142 619, EP 1 455 923 ou encore WO 2004/090294, des éléments monolithiques en forme de nid d'abeille dont les dimensions sont conformes à celles données dans le tableau 1 mais exclusivement en carbure de silicium.
Pour ce faire, on mélange dans un malaxeur :
3000 g d'un mélange de particules de carbure de silicium de pureté supérieure à 98% et présentant une granulométrie telle que 70% poids des particules présente un diamètre supérieur à 10 micromètres, le diamètre médian de cette fraction granulométrique étant inférieur à 300 micromètres. Au sens de la présente description, le diamètre médian désigne le diamètre des particules au dessous duquel se trouve 50% poids de la population.
- 150 g d'un liant organique du type cellulose. On ajoute de l'eau et on malaxe jusqu'à obtenir une pâte homogène dont la plasticité permet l'extrusion, la filière étant configurée pour l'obtention de blocs monolithes dont les canaux et les parois externes présentent une structure carré selon le tableau 1. Les monolithes crus obtenus sont séchés par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1% poids.
Les canaux de chaque face du monolithe sont alternativement bouchés selon des techniques bien connues, par exemple décrites dans la demande WO 2004/065088. Les monolithes sont ensuite cuits jusqu'à une température de 22000C qui est maintenue pendant 5 heures. Le matériau poreux obtenu, comprenant très majoritairement du CC-SiC recristallisé, présente une porosité ouverte de 47% et un diamètre moyen de distribution de pores de l'ordre de 14μm.
Le tableau 2 répertorie les caractéristiques mesurées sur le filtre obtenu selon l'exemple 1, par comparaison avec celles du filtre déjà connu de l'exemple 2 exclusivement en SiC-α.
Plus particulièrement :
Les caractéristiques de porosité ont été mesurées par des analyses par porosimétrie à haute pression de mercure, effectuées avec un porosimètre de type Micromeritics 9500. Les propriétés de conduction thermique ont été mesurées par flash laser.
Le coefficient de dilatation thermique a été mesuré de la température ambiante à 10000C par dilatométrie . Les pourcentages pondéraux de titanate d' aluminium et de Mullite dans la phase oxyde ont été déterminés par diffraction des Rayons X.
Le pourcentage pondéral de carbure de silicium a été mesuré par analyse chimique.
Les propriétés thermomécaniques des filtres, ont été évaluées de la façon suivante :
Les filtres des exemples 1 et 2 sont montés sur une ligne d'échappement d'un moteur 2.0 L diesel à injection directe mis en marche à pleine puissance (4000 tr/minutes) pendant 30 minutes puis démontés et pesés afin de déterminer leur masse initiale. Les filtres sont ensuite remontés sur banc moteur avec un régime à 3000 tr/min et un couple de 50 Nm pendant des durées différentes afin d'obtenir une charge en suies de 8 g/litre (en volume du filtre) . Les filtres ainsi chargés sont remontés sur la ligne pour subir une régénération sévère ainsi définie : après une stabilisation à un régime moteur de 1700 tours/minute pour un couple de 95 Nm pendant 2 minutes, une post-injection est réalisée avec 70° de phasage pour un débit de post injection de 18mm3/coup. Une fois la combustion des suies initiée, plus précisément lorsque la perte de charge diminue pendant au moins 4 secondes, le régime du moteur est abaissé à 1050 tours/minute pour un couple de 40 Nm pendant 5 minutes afin d'accélérer la combustion des suies. Le filtre est ensuite soumis à un régime moteur de 4000 tours/minute pendant 30 minutes afin d'éliminer les suies restantes.
Les filtres régénérés sont inspectés après découpe pour révéler la présence éventuelle de fissures visibles à l'œil nu. La résistance thermomécanique du filtre est appréciée au vu du nombre de fissures, un nombre faible de fissures traduisant une résistance thermomécanique acceptable pour une utilisation comme filtre à particules. TeI que reporté dans le tableau 2, on a attribué les notes suivantes à chacun des filtres :
+++ : présence de très nombreuses fissures, ++ : présence de nombreuses fissures, + : présence de quelques fissures,
: pas de fissures ou rares fissures.
Tableau 2
La comparaison des données du tableau 2 entre les deux filtres montre les effets bénéfiques pour l'application, obtenus grâce à la présence supplémentaire de la phase oxyde selon l'invention, comprenant essentiellement du titanate d'aluminium. Ainsi on observe :
- l'obtention de caractéristiques de porosité du même ordre malgré une température de frittage beaucoup plus faible que le filtre classique exclusivement en SiC,
- un coefficient de conductivité thermique un peu plus faible que celui du filtre exclusivement en SiC mais qui reste excellent pour l'utilisation du matériau comme filtre à particules, - un coefficient de dilatation thermique moyen entre 20 et 10000C sensiblement plus faible pour le filtre SiC- oxyde, ce qui constitue un avantage décisif par rapport aux structures 100% SiC comme expliqué précédemment et conduit notamment à la possibilité de fabriquer des filtres monolithiques de plus grande taille, en particulier de plus grand diamètre,
- une résistance thermomécanique meilleure que le filtre de référence en SiC recristallisé, pour des paramètres de porosité sensiblement identiques. En outre, comme on peut le voir dans le tableau 2, la structure selon l'invention est obtenue à une température d'environ 6000C inférieure à celle nécessaire pour la fabrication d'un filtre en SiC recristallisé, ce qui permet une économie substantielle du coût d'obtention du filtre. Des études ont montrées que l'économie réalisée par cette seule baisse de la température de cuisson représente au moins un tiers du coût global de revient d'un filtre.
Des analyses au microscope électronique montrent que la structure poreuse filtrante obtenue dans l'exemple 1 est constituée de grains de SiC, ainsi que la présence de la phase oxyde essentiellement constituée de titanate d'alumine entre les grains de SiC.
Le filtre selon l'invention, chargé à 4g/l de suies a été testé sur un banc moteur. Il a été vérifié que l' efficacité de filtration, mesurée par une sonde de type SMPS (Scanning Mobility Particules Sizer en anglais) était satisfaisante .
Dans la description et les exemples qui précèdent, pour des raisons de simplicité, on a décrit l'invention en relation avec les filtres à particules catalysés permettant l'élimination des polluants gazeux et des suies présents dans les gaz d'échappement en sortie d'une ligne d'échappement d'un moteur diesel. La présente invention se rapporte cependant également à des supports catalytiques permettant l'élimination des polluants gazeux en sortie des moteurs essence voire diesel. Dans ce type de structure, les canaux du nid d'abeille ne sont pas obstrués à l'une ou l'autre de leur extrémité. Appliquée à ces supports, la mise en œuvre de la présente invention présente l'avantage d'augmenter la surface spécifique du support et par suite la quantité de phase active présente dans le support, sans pour autant affecter la porosité globale du support.

Claims

REVENDICATIONS
1. Structure du type en nid d'abeilles, faite d'un matériau céramique poreux, ladite structure étant caractérisée en ce que le matériau céramique poreux qui la constitue au moins en partie comprend de 45 à 90% poids de carbure de silicium SiC, de préférence sous forme alpha, et de 10 à
55% poids d'une phase céramique oxyde essentiellement sous forme de titanate d'aluminium Al2TiO5, ledit matériau présentant en outre une porosité supérieure à
10% et un diamètre médian des pores comprise entre 5 et
60 microns.
2. Structure selon la revendication 1, dans laquelle le pourcentage massique de la phase SiC dans le matériau poreux est compris entre 50% et 85% et de préférence entre 60 et 80%.
3. Structure selon l'une des revendications 1 ou 2, dans laquelle le pourcentage massique d' Al2TiO5 dans le matériau poreux est compris entre 15 % et 50% et de préférence entre 20 et 40%.
4. Structure selon l'une des revendications précédentes, dans laquelle la phase oxyde comprend en outre de 0,01 à 10% poids de Mullite.
5. Structure selon les revendications 1 ou 2 dans laquelle la porosité est comprise entre 20 et 65% et le diamètre médian de pores comprise entre 10 et 20 microns.
6. Structure selon l'une des revendications précédentes comprend : - de 45 à 90 % poids de carbure de silicium SiC, de 55 à 10 % poids d'une phase céramique oxyde essentiellement présente sous forme de titanate d'aluminium et comprenant, sur la base de la masse totale des oxydes présents dans ladite phase, de 1 à 10% de SiO2, de 50 à 60% de Al2O3 et de 35 à 50% de TiO2.
7. Structure filtrante selon l'une des revendications précédentes dont la partie centrale comprend un élément filtrant en nid d'abeille ou une pluralité d'éléments filtrants en nid d'abeille reliés entre eux par un ciment de joint, le ou lesdits éléments comprenant un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses, lesquels conduits étant obturés par des bouchons à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant une face d'admission des gaz et des chambres de sortie s ' ouvrant suivant une face d'évacuation des gaz, de telle façon que le gaz traverse les parois poreuses.
8. Filtre ou support catalytique obtenu à partir d'une structure selon l'une des revendications précédentes par dépôt, de préférence par imprégnation, d'au moins une phase catalytique active supportée ou de préférence non supportée, comprenant typiquement au moins un métal précieux tel que Pt et/ou Rh et/ou Pd et éventuellement un oxyde tel que CeO2, ZrO2, CeO2-ZrO2.
9. Procédé de fabrication d'une structure selon l'une des revendications 1 à 7 dans lequel ladite structure est obtenue à partir d'un mélange initial de grains de carbure de silicium et de grains de titanate d'aluminium ou à partir d'un mélange initial de grains de carbure de silicium, de grains d'oxyde de titane et de grains d'oxyde d'aluminium.
10. Procédé de fabrication d'une structure selon la revendication 9 comprenant une étape de malaxage du mélange initial résultant en un produit homogène sous la forme d'une pâte, une étape d'extrusion dudit produit à travers une filière appropriée de manière à former des monolithes de forme nid d'abeilles, une étape de séchage des monolithes obtenus, éventuellement une étape d'assemblage et une étape de cuisson réalisée à une température ne dépassant pas 18000C, de préférence ne dépassant pas 17000C.
EP09769479A 2008-05-29 2009-05-26 Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium Withdrawn EP2285753A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0853525A FR2931697B1 (fr) 2008-05-29 2008-05-29 Filtre ou support catalytique a base de carbure de silicium et de titanate d'aluminium
PCT/FR2009/050978 WO2009156638A1 (fr) 2008-05-29 2009-05-26 Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium

Publications (1)

Publication Number Publication Date
EP2285753A1 true EP2285753A1 (fr) 2011-02-23

Family

ID=40202133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09769479A Withdrawn EP2285753A1 (fr) 2008-05-29 2009-05-26 Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium

Country Status (6)

Country Link
US (1) US20110143928A1 (fr)
EP (1) EP2285753A1 (fr)
JP (1) JP2011524247A (fr)
KR (1) KR20110011641A (fr)
FR (1) FR2931697B1 (fr)
WO (1) WO2009156638A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619262A (zh) * 2017-08-01 2018-01-23 常州彤骉贸易有限公司 一种骨质瓷及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8713881B2 (en) 2012-01-27 2014-05-06 A. Raymond Et Cie Solar panel securing system
JP6125869B2 (ja) 2013-03-27 2017-05-10 日本碍子株式会社 多孔質材料、ハニカム構造体及び多孔質材料の製造方法
JP2019529320A (ja) * 2016-09-30 2019-10-17 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド セラミック構成要素およびその形成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294964B2 (ja) * 2002-03-15 2009-07-15 日本碍子株式会社 セラミックスハニカム構造体の製造方法
AU2003252272A1 (en) * 2003-07-28 2005-02-14 Ngk Insulators, Ltd. Honeycomb structure and method of producing the same
EP1818098A4 (fr) * 2004-11-26 2008-02-06 Ibiden Co Ltd Structure en nid d'abeille
JP4666593B2 (ja) * 2005-03-28 2011-04-06 日本碍子株式会社 ハニカム構造体
US7867598B2 (en) * 2005-08-31 2011-01-11 Ngk Insulators, Ltd. Honeycomb structure and honeycomb catalytic body
JP5209315B2 (ja) * 2005-09-28 2013-06-12 イビデン株式会社 ハニカムフィルタ
JP5376805B2 (ja) * 2005-11-04 2013-12-25 日本碍子株式会社 ハニカム構造体及びハニカム触媒体
DE102006041979A1 (de) * 2006-09-07 2008-03-27 Robert Bosch Gmbh Filterelement, insbesondere zur Filterung von Abgasen einer Brennkraftmaschine
WO2008120385A1 (fr) * 2007-03-29 2008-10-09 Ibiden Co., Ltd. Structure de nid d'abeilles, son procédé de fabrication, appareil de purification de gaz d'échappement et procédé de fabrication de l'appareil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009156638A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619262A (zh) * 2017-08-01 2018-01-23 常州彤骉贸易有限公司 一种骨质瓷及其制备方法
CN107619262B (zh) * 2017-08-01 2020-08-14 德化县凯得利工艺品有限公司 一种骨质瓷及其制备方法

Also Published As

Publication number Publication date
WO2009156638A1 (fr) 2009-12-30
FR2931697B1 (fr) 2011-04-29
KR20110011641A (ko) 2011-02-08
JP2011524247A (ja) 2011-09-01
FR2931697A1 (fr) 2009-12-04
US20110143928A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
EP2303796B1 (fr) Grains fondus d'oxydes comprenant al, ti, mg et zr et produits ceramiques comportant de tels grains
EP1917225B1 (fr) Support et filtre catalytique a base de carbure de silicium et a haute surface specifique
WO2009156652A1 (fr) Structure en nid d'abeille a base de titanate d'aluminium
EP2459498B1 (fr) Grains fondus d'oxydes comprenant al, ti et produits ceramiques comportant de tels grains
WO2010001066A2 (fr) Structure poreuse du type titanate d'alumine
EP2244804B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
EP2234693A2 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
FR2944052A1 (fr) Structure de filtration d'un gaz et de reduction des nox.
EP2445848A1 (fr) Grains fondus d'oxydes comprenant al, ti, si et produits ceramiques comportant de tels grains
EP2480518A1 (fr) Structure poreuse du type titanate d'alumine
WO2010001064A2 (fr) GRAINS FONDUS D'OXYDES COMPRENANT AL, TI et MG ET PRODUITS CERAMIQUES COMPORTANT DE TELS GRAINS
WO2010001062A2 (fr) Melange de grains pour la synthese d'une structure poreuse du type titanate d'alumine
EP2285753A1 (fr) Filtre ou support catalytique à base de carbure de silicium et de titanate d'aluminium
EP2091890B1 (fr) Procede d'obtention d'une structure poreuse a base de carbure de silicium et structure poreuse obtenue
EP2480517A1 (fr) Structure poreuse du type titanate d'alumine
FR2931698A1 (fr) Structure en nid d'abeille a base de titanate d'aluminium.
FR2950341A1 (fr) Structure poreuse du type titanate d'alumine
FR2965489A1 (fr) Structure en nid d'abeille microfissuree.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

111L Licence recorded

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Name of requester: SAINT-GOBAIN INDUSTRIEKERAMIK ROEDENTAL GMBH, DE

Effective date: 20110418

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DIEN-BARATAUD, CARINE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121201