Nothing Special   »   [go: up one dir, main page]

EP2047118B1 - Method for fault localization and diagnosis in a fluidic installation - Google Patents

Method for fault localization and diagnosis in a fluidic installation Download PDF

Info

Publication number
EP2047118B1
EP2047118B1 EP07703456A EP07703456A EP2047118B1 EP 2047118 B1 EP2047118 B1 EP 2047118B1 EP 07703456 A EP07703456 A EP 07703456A EP 07703456 A EP07703456 A EP 07703456A EP 2047118 B1 EP2047118 B1 EP 2047118B1
Authority
EP
European Patent Office
Prior art keywords
component
variance
chamber
components
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07703456A
Other languages
German (de)
French (fr)
Other versions
EP2047118A1 (en
Inventor
Jan Bredau
Reinhard Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP2047118A1 publication Critical patent/EP2047118A1/en
Application granted granted Critical
Publication of EP2047118B1 publication Critical patent/EP2047118B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring

Definitions

  • the invention relates to a method for defect limitation and diagnosis on a fluidic system according to the preamble of claim 1.
  • Such a method is known DE 10 2005 016 786 known.
  • the air consumption curve is evaluated for error localization.
  • the air consumption curve is evaluated for error localization.
  • the time of the deviation on the faulty subsystem (for example valve actuator unit) or the faulty component is concluded from the time of the deviation on the faulty subsystem (for example valve actuator unit) or the faulty component.
  • Such errors which can occur in fluidic systems, have their causes, for example, in the wear of the components, in improper mounting, loose fittings, porous hoses, process disturbances and the like, resulting in the movements of the fluidic drives outer, and other leaks of various kinds.
  • diagnostic errors due to the change of certain boundary conditions, such as pressure and temperature avoid this document mentions the possible correction of air consumption with pressure and temperature.
  • in large fluidic systems in which a plurality of subsystems are sometimes active simultaneously, can not be determined with the known method, which of these components is faulty.
  • An object of the present invention is thus to improve the method of the type mentioned so that even with simultaneously active components and subsystems, an error, in particular a leak, can be unambiguously associated with a particular component or a particular subsystem.
  • the leakage location can be delimited stepwise in an advantageous manner, so that the fault location can be determined in a simple manner even with a large number of simultaneously active components or subsystems.
  • This is all the more a special advantage, as a strictly sequential sequence in fluidic systems, especially in large fluidic systems, is relatively rare.
  • Another advantage is that only the Aktorstellsignale and a volume flow sensor for determining the leakage location are required, that is, limit switches to actuators are not mandatory.
  • the stored references are fluid consumption reference curves formed from integrated volume flow values or conductance reference curves formed from integrated conductivity values (Q / P), which are compared with corresponding measured-value curves.
  • a plurality of parameter-dependent or parameter-dependent compensated fluid consumption reference curves or conductance reference curves are stored in a selection matrix and can be selected or specified for the respective cycle, for example, by checking them successively for correlation with the respective work cycle.
  • the reference curves are expediently detected in a learning mode, in particular also during the later operation of the fluidic system.
  • a curve comparison with respect to possible temporal displacements is preferably carried out before the diagnosis of leakage, with a tolerance value exceeding time shift is switched to other stored reference curves for their verification or an error message and / or a stop of another leakage diagnosis is triggered.
  • differential values or a difference curve between the measured variable curve and the reference curve are formed for particularly advantageous evaluation.
  • This difference curve is expediently filtered in a frequency-dependent manner by means of an integrator, which in particular has a phase shift of -90 ° in order to filter out interference signals and interference peaks.
  • a filtered compensation curve is then formed by calculating the slope of the integral of the difference values or the difference curve, which then enables a particularly simple, purposeful evaluation.
  • FIG. 1 a pneumatic system is shown schematically, which could in principle also be another fluidic system, such as a hydraulic system, act.
  • the pneumatic system consists of five subsystems 10-14 or components, which may each be actuators, such as valves, cylinders, linear actuators and the like, as well as combinations of the same. These subsystems 10-14 are fed by a pressure source 15, wherein in a common supply line 16, a flow meter 17 for measuring the flow or the flow rate is arranged.
  • An electronic control device 18 is used to specify the process of the system and is electrically connected to the subsystems 10-14 via corresponding control lines.
  • the subsystems 10-14 receive control signals from the electronic control device 18 and send sensor signals back to them.
  • sensor signals are for example position signals, limit switch signals, pressure signals, temperature signals and the like, which are not absolutely necessary in the simplest case.
  • the flowmeter 17 is connected to an electronic diagnostic device 19, in addition to the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature T and the pressure P in the supply line 16, ie the temperature and the pressure of the fluid supplied. Furthermore, a fluid sensor 23 for detecting the kind the fluid used and a moisture and / or particle sensor 24 for detecting the moisture content and the particle content of the fluid connected to the diagnostic device 19. This has in addition access to the sequence program of the electronic control device 18. The diagnostic results are supplied to a display 22, these diagnostic results of course also stored, printed, visually and / or audibly displayed or a central office via lines or wirelessly can be transmitted.
  • the sensors 20, 21 and 23 and 24 may also be omitted in a simplest embodiment, although at least one temperature sensor 20 and one pressure sensor 21 may be expediently provided.
  • the diagnostic device 19 can also be integrated in the electronic control device 18, which may contain, for example, a microcontroller for carrying out the sequence program and optionally for diagnosis.
  • each group has its own flow meter 17 to independently diagnose the subregions of the system associated with the groups, as described in the prior art mentioned above.
  • the diagnosis can be made in the simplest case by comparing stored and selected fluid consumption reference curves be carried out with corresponding measured value curves, wherein the fluid consumption reference curves are formed from integrated or totalized volumetric flow values.
  • diagnostic control values where the diagnostic control value is a characteristic variable of a fluidic system or of a fluidic system that consists of a variety of subsystems.
  • the conductance characterizes the behavior of the entire system over a defined cycle.
  • Conductance reference curves are formed in the simplest case of integrated conductivity values Q / P, where Q is the respective volume flow value and P is the measured working pressure. These conductance reference curves are compared with corresponding measured value curves, ie with measured value curves formed from integrated conductance variables.
  • the Leitwertiere essentialn or Leitwertkurven and Leitwert-reference curves can be compensated and refined by other measurement parameters, for example by the measured operating temperature T, the moisture content and / or the particle content of the fluid, the type of fluid and of each time or event-dependent operating conditions.
  • Such operating states are, for example, the warm-up, the operation after a long standstill, the reclosure when retrofitting or the operation after predetermined time intervals, so for example after a one-hour or ten-hour or several hours of operation.
  • the following discussion of fault isolation and diagnosis is based on conductance, and fluid consumption values could be used accordingly.
  • Non-cyclic processes can be subdivided into subcycles, to which the diagnostic procedure is then applied.
  • Different operating conditions in a process can be considered by taking and storing a set of reference curves in a selection matrix. This also applies to the influence of different parameters.
  • the respective measured curve must now be synchronized with the selected or selected reference curve, that is, without leakage, the two curves are congruent, with leakage they run synchronously in time, but show deviations in the amplitude.
  • the two curves to be compared must therefore first be checked for correlation, that is, it must be checked whether temporal shifts have occurred, for example due to changes in processes within a cycle. If temporal shifts have been detected over a defined tolerance, the further evaluation of leaks is stopped and a message regarding changes in the times of subsystems is generated. A time error is detected when the value of the air consumption at the end of the cycle is within a tolerance range, but the cycle time is different, as in FIG. 2 is shown.
  • the two curves run synchronously until the time ta, and from this point on a time difference ⁇ t occurs between the curve Km and the reference curve Kref, which remains constant until the end of the cycle at the point in time tb. If a time error increases more and more as the cycle progresses, an attempt can be made to correlate by choosing another reference curve. Only when all stored reference curves have been checked and no correlation could be achieved, is there a faulty time shift, and a subsequent leak diagnosis is omitted. A corresponding message can then be displayed, saved or forwarded.
  • the formed difference curve which in FIG. 3 , shown below, defines at each instant the summed distance of the measured quantity curve from the reference curve.
  • the time points of leaks show the staircase increases in the difference. In the following evaluations, these increases in the difference are assigned to the leak-causing subsystems or components or actuator chambers.
  • the calculated difference or difference curve can be filtered.
  • the change in the phase position and the amplitude is frequency-dependent.
  • an integrator is used, which has a fixed phase shift of -90 °. Thus, no different phase shift is to be considered in the later evaluation of the signals.
  • the amplitude response can be adjusted by changing the sampling time so that there is a constant attenuation of the amplitude in the desired frequency range, while other frequencies are filtered.
  • a compensation function of the integral of the calculated difference is subsequently formed.
  • the choice of the corresponding compensation function can be made according to the Gaussian least squares principle. It must be determined which curve best suits the calculated measurement points of the difference.
  • a compensation straight line is selected as the simplest possibility of a compensation function. Of course, other compensation functions are possible. Any occurring leakage leads to a change in the slope and the center distance of the regression line to the abscissa.
  • determining the slope from the integral of the difference a representation is obtained which corresponds to that in FIG. 3 shown difference curve, but is phase-shifted by minus 90 °.
  • the center distance from the integral of the difference there is also a representation that corresponds to the in FIG.
  • leakage would occur only at time t0, to which chamber A of subsystem 10, chamber B of subsystem 11, and chamber A of subsystem 12 are vented, and subsequently at a later time Chamber B of subsystem 11 and chamber A of subsystem 12 vented while chamber A of subsystem 10 is not involved, and then leakage does not occur, then chamber B of subsystem 11 and chamber A of subsystem 12 may be causative Components are excluded, and it can then finally the chamber A of the subsystem 10 are recognized as causing leakage.
  • a particularly suitable type of evaluation in particular in the case of a very large number of subsystems or components, is that each chamber of an actuator, that is, for example, two chambers in a working cylinder, are each assigned two counters. Furthermore, each chamber is assigned a timer. The timer is used to exclude additional actuator chambers or components from the consideration of a leak. If a chamber or a component is under pressure and no leakage occurs within a preselected time value of the timer, then this chamber is also treated as not involved in the leakage and excluded for further leak detection.
  • the electrical components, ie counters and timers are located, for example, in the diagnostic device 19.
  • the timers When starting an operating cycle, the timers are now started, and when a leak occurs, they are each reset to the value zero and there until the end kept the leakage. Now, if the chamber in question during the reset state of the timer or at least during a part of the reset state under pressure, this chamber comes as responsible for the leakage into consideration, and it is checked whether the slope and the center distance of the straight line or other Compensation function has increased by a predeterminable value or by a predefinable percentage (based, for example, on the respective maximum value of or one of the preceding cycles). In this case, the counter responsible for the grade and / or the counter associated with the offset will be incremented by the value 1.
  • the associated counters are incremented by a further counter value, depending on the increase in the slope and / or the center distance.
  • the counts of both counters of a chamber or component are added together at the end of the cycle.
  • the chamber with the highest total count at the end of an operating cycle is most likely to be responsible for the leakage.
  • the chamber or component with the second highest total count is involved in the leakage with the second highest probability. This is important if several leaks occur in the system.
  • a single timer may be provided for all chambers or components, each reset to zero during the occurrence of a leak and held there during the occurrence of the leakage. During this period, it is then checked which chambers or which components are active, that is to say are pressurized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

In a method for error containment and diagnosis in a fluid power system the fluid volumetric flow of the overall system or at least a part thereof or a quantity dependent thereon is detected as a measurement quantity respectively during an operating cycle and is compared with stored references. In each case at the point in time of a deviation or change in the deviation from the reference the method finds at which component or at which components (10 through 14) in the system an event has occurred influencing the fluid consumption in order to then to recognize same as subject to error. In the case of such a deviation or change therein and the simultaneous occurrence of several activities influencing fluid consumption by several components (10 through 14) a process of exclusion is performed, in which during the following activities involving at least one of such components (10 through 14) a check is made to see whether a deviation or a change in the deviation has occurred, and in each of such further examination steps the components involved are excluded from such further examination, if no deviation or change in the deviation takes place.

Description

Die Erfindung betrifft ein Verfahren zur Fehlereingrenzung und Diagnose an einer fluidischen Anlage gemäß dem oberbegriffs des Anspruchs 1 Ein solches Verfahren ist aus DE 10 2005 016 786 bekannt.The invention relates to a method for defect limitation and diagnosis on a fluidic system according to the preamble of claim 1. Such a method is known DE 10 2005 016 786 known.

Bei einem weiteren, aus der WO 2005/111433 A1 bekannten Verfahren wird die Luftverbrauchskurve zur Fehlerlokalisierung ausgewertet. Bei Abweichungen von einer Referenz wird aus dem Zeitpunkt der Abweichung auf das fehlerhafte Subsystem (zum Beispiel Ventil-Aktuatoreinheit) beziehungsweise die fehlerhafte Komponente geschlossen. Solche Fehler, die in fluidischen Anlagen auftreten können, haben ihre Ursachen zum Beispiel im Verschleiß der Komponenten, in unsachgemäßer Montage, lockeren Verschraubungen, porösen Schläuchen, Prozessstörungen und dergleichen, die sich in den Bewegungen der fluidischen Antriebe äußeren, und anderen Undichtigkeiten verschiedenster Art. Um Diagnosefehler infolge der Veränderung gewisser Randbedingungen, wie Druck und Temperatur, zu vermeiden, wird in dieser Druckschrift die mögliche Korrektur des Luftverbrauchs mit dem Druck und der Temperatur erwähnt. Insbesondere bei großen fluidischen Anlagen, bei denen eine Vielzahl von Subsystemen zum Teil gleichzeitig aktiv sind, kann mit dem bekannten Verfahren nicht festgestellt werden, welche dieser Komponenten fehlerhaft ist.At another, from the WO 2005/111433 A1 known methods, the air consumption curve is evaluated for error localization. In the event of deviations from a reference, it is concluded from the time of the deviation on the faulty subsystem (for example valve actuator unit) or the faulty component. Such errors, which can occur in fluidic systems, have their causes, for example, in the wear of the components, in improper mounting, loose fittings, porous hoses, process disturbances and the like, resulting in the movements of the fluidic drives outer, and other leaks of various kinds. For diagnostic errors due to the change of certain boundary conditions, such as pressure and temperature avoid, this document mentions the possible correction of air consumption with pressure and temperature. In particular, in large fluidic systems, in which a plurality of subsystems are sometimes active simultaneously, can not be determined with the known method, which of these components is faulty.

Eine Aufgabe der vorliegenden Erfindung besteht somit darin, das Verfahren der eingangs genannten Gattung so zu verbessern, dass auch bei gleichzeitig aktiven Komponenten und Subsystemen ein Fehler, insbesondere eine Undichtigkeit, in eindeutiger Weise einer bestimmten Komponente oder einem bestimmten Subsystem zugeordnet werden kann.An object of the present invention is thus to improve the method of the type mentioned so that even with simultaneously active components and subsystems, an error, in particular a leak, can be unambiguously associated with a particular component or a particular subsystem.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the features of claim 1.

Durch das erfindungsgemäße Verfahren kann in vorteilhafter Weise schrittweise der Leckageort eingegrenzt werden, sodass auch bei einer Vielzahl von gleichzeitig aktiven Komponenten oder Subsystemen der Fehlerort auf einfache Weise ermittelt werden kann. Dies stellt umso mehr einen besonderen Vorteil dar, als ein streng sequentieller Ablauf in fluidischen Anlagen, insbesondere in großen fluidischen Anlagen, relativ selten vorliegt. Ein weiterer Vorteil besteht darin, dass nur die Aktorstellsignale und ein Volumenstromsensor zur Ermittlung des Leckageorts erforderlich sind, das heißt, Endschalter an Aktoren sind nicht zwingend erforderlich. Je unterschiedlicher die Achsbewegungen sind und je mehr unterschiedliche Zyklen bei sich gleichzeitig bewegenden Subsystemen oder Komponenten oder Kombinationen derselben auftreten, desto vorteilhafter kann das erfindungsgemäße Verfahren eingesetzt werden. Dabei wird nicht nur versucht, die leckageverursachenden Subsysteme oder Komponenten zu finden, sondern es werden auch definitiv nicht beteiligte Subsysteme, Komponenten oder Aktuatorkammern ausgeschlossen.By virtue of the method according to the invention, the leakage location can be delimited stepwise in an advantageous manner, so that the fault location can be determined in a simple manner even with a large number of simultaneously active components or subsystems. This is all the more a special advantage, as a strictly sequential sequence in fluidic systems, especially in large fluidic systems, is relatively rare. Another advantage is that only the Aktorstellsignale and a volume flow sensor for determining the leakage location are required, that is, limit switches to actuators are not mandatory. The more different the axis movements are and the more different cycles occur with simultaneously moving subsystems or components or combinations thereof, the more advantageously the method according to the invention can be used. Not only is it trying to find the leak-causing subsystems or components, but also it Also definitely excluded subsystems, components or actuator chambers are excluded.

Die gespeicherte Referenzen sind aus integrierten Volumenstromwerten gebildete Fluidverbrauchs-Referenzkurven oder aus integrierten Leitwertgrößen (Q/P) gebildete Leitwert-Referenzkurven, die mit entsprechenden Messgrößenkurven verglichen werden.The stored references are fluid consumption reference curves formed from integrated volume flow values or conductance reference curves formed from integrated conductivity values (Q / P), which are compared with corresponding measured-value curves.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Verfahrens möglich.The measures listed in the dependent claims advantageous refinements and improvements of claim 1 method are possible.

Eine noch größere Diagnosegenauigkeit und Zielsicherheit beim Auffinden von Leckageorten wird durch parameterabhängige Kompensierung der Volumenstromwerte oder Leitwertgrößen erreicht, wobei die Kompensierung insbesondere temperaturabhängig und/oder fluidabhängig und/oder feuchteabhängig und/oder vom Partikelgehalt des Fluids abhängig und/oder zeit- oder ereignisabhängig für unterschiedliche Betriebszustände erfolgt.An even greater diagnostic accuracy and accuracy in finding leakage locations is achieved by parameter-dependent compensation of the volume flow values or conductance variables, the compensation being temperature dependent and / or fluid dependent and / or humidity dependent and / or dependent on the particle content of the fluid and / or time or event dependent for different Operating conditions takes place.

Zweckmäßigerweise werden mehrere parameterabhängige beziehungsweise parameterabhängig kompensierte Fluidverbrauchs-Referenzkurven oder Leitwert-Referenzkurven in einer Auswahlmatrix gespeichert und können für den jeweiligen Zyklus ausgewählt beziehungsweise vorgegeben werden, indem sie beispielsweise nacheinander auf Korrelation mit dem jeweiligen Arbeitszyklus überprüft werden.Expediently, a plurality of parameter-dependent or parameter-dependent compensated fluid consumption reference curves or conductance reference curves are stored in a selection matrix and can be selected or specified for the respective cycle, for example, by checking them successively for correlation with the respective work cycle.

Die Referenzkurven werden zweckmäßigerweise in einem Lernmodus erfasst, insbesondere auch während des späteren Betriebs der fluidischen Anlage.The reference curves are expediently detected in a learning mode, in particular also during the later operation of the fluidic system.

Um auszuschließen, dass erfasste Abweichungen von Messkurve und Referenzkurve auf einem Zeitfehler beruhen, wird vorzugsweise vor der Diagnose auf Leckage ein Kurvenvergleich im Hinblick auf mögliche zeitliche Verschiebungen durchgeführt, wobei bei einer einen Toleranzwert überschreitenden zeitlichen Verschiebung auf weitere gespeicherte Referenzkurven zu deren Überprüfung umgeschaltet wird oder eine Fehlermeldung und/oder ein Stopp einer weiteren Leckagediagnose ausgelöst wird.To rule out that detected deviations from the measurement curve and the reference curve are based on a time error, a curve comparison with respect to possible temporal displacements is preferably carried out before the diagnosis of leakage, with a tolerance value exceeding time shift is switched to other stored reference curves for their verification or an error message and / or a stop of another leakage diagnosis is triggered.

Bei der erfindungsgemäßen Leckagediagnose werden zur besonders vorteilhaften Auswertung Differenzwerte oder eine Differenzkurve zwischen Messgrößenkurve und Referenzkurve gebildet. Diese Differenzkurve wird zweckmäßigerweise noch frequenzabhängig mittels eines Integrators gefiltert, der insbesondere eine Phasenverschiebung von -90° aufweist, um Störsignale und Störspitzen auszufiltern. Eine gefilterte Ausgleichskurve wird dann durch Berechnung der Steigung des Integrals der Differenzwerte oder der Differenzkurve gebildet, die dann eine besonders einfache, zielgerichtete Auswertung ermöglicht.In the case of the leakage diagnosis according to the invention, differential values or a difference curve between the measured variable curve and the reference curve are formed for particularly advantageous evaluation. This difference curve is expediently filtered in a frequency-dependent manner by means of an integrator, which in particular has a phase shift of -90 ° in order to filter out interference signals and interference peaks. A filtered compensation curve is then formed by calculating the slope of the integral of the difference values or the difference curve, which then enables a particularly simple, purposeful evaluation.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Figur 1
eine pneumatische Anlage, in deren Zuführung ein Durchflussmesser geschaltet ist,
Figur 2
ein Leitwertdiagramm zur Erläuterung des Auftretens einer zeitlichen Verschiebung zwischen Messkurve und Referenzkurve und
Figur 3
Leitwertdiagramme zur Erläuterung der Diagnose auf Leckage.
An embodiment of the invention is illustrated in the drawing and explained in more detail in the following description. Show it:
FIG. 1
a pneumatic system, in the supply of which a flow meter is connected,
FIG. 2
a Leitwertdiagramm to explain the occurrence of a time shift between the trace and reference curve and
FIG. 3
Conductivity diagrams to explain the diagnosis of leakage.

In Figur 1 ist eine pneumatische Anlage schematisch dargestellt, wobei es sich prinzipiell auch um eine andere fluidische Anlage, wie eine hydraulische Anlage, handeln könnte.In FIG. 1 a pneumatic system is shown schematically, which could in principle also be another fluidic system, such as a hydraulic system, act.

Die pneumatische Anlage besteht aus fünf Subsystemen 10-14 beziehungsweise Komponenten, bei denen es sich jeweils um Aktoren, wie Ventile, Zylinder, Linearantriebe und dergleichen, handeln kann sowie um Kombinationen der selben. Diese Subsysteme 10-14 werden von einer Druckquelle 15 gespeist, wobei in einer gemeinsamen Zuführleitung 16 ein Durchflussmesser 17 zur Messung des Durchflusses beziehungsweise des Volumenstromes angeordnet ist. Die Subsysteme 11, 12 einerseits und die Subsysteme 13, 14 andererseits bilden wiederum jeweils ein System mit einer gemeinsamen Zuleitung.The pneumatic system consists of five subsystems 10-14 or components, which may each be actuators, such as valves, cylinders, linear actuators and the like, as well as combinations of the same. These subsystems 10-14 are fed by a pressure source 15, wherein in a common supply line 16, a flow meter 17 for measuring the flow or the flow rate is arranged. The subsystems 11, 12, on the one hand, and the subsystems 13, 14, on the other hand, in turn each form a system with a common supply line.

Eine elektronische Steuervorrichtung 18 dient zur Vorgabe des Ablaufprozesses der Anlage und ist elektrisch mit den Subsystemen 10-14 über entsprechende Steuerleitungen verbunden. Die Subsysteme 10-14 erhalten Steuersignale von der elektronischen Steuervorrichtung 18 und senden Sensorsignale wieder an diese zurück. Solche Sensorsignale sind beispielsweise Positionssignale, Endschaltersignale, Drucksignale, Temperatursignale und dergleichen, die im einfachsten Falle nicht zwingend erforderlich sind.An electronic control device 18 is used to specify the process of the system and is electrically connected to the subsystems 10-14 via corresponding control lines. The subsystems 10-14 receive control signals from the electronic control device 18 and send sensor signals back to them. Such sensor signals are for example position signals, limit switch signals, pressure signals, temperature signals and the like, which are not absolutely necessary in the simplest case.

Der Durchflussmesser 17 ist mit einer elektronischen Diagnoseeinrichtung 19 verbunden, der zusätzlich die Signale eines Temperatursensors 20 und eines Drucksensors 21 zur Messung der Temperatur T und des Drucks P in der Zuführleitung 16, also der Temperatur und des Drucks des Fluids, zugeführt sind. Weiterhin sind ein Fluidsensor 23 zur Erfassung der Art des verwendeten Fluids und ein Feuchtigkeits- und/oder Partikelsensor 24 zur Erfassung des Feuchtegehalts und des Partikelgehalts des Fluids mit der Diagnoseeinrichtung 19 verbunden. Diese hat zusätzlich einen Zugriff auf das Ablaufprogramm der elektronischen Steuervorrichtung 18. Die Diagnoseergebnisse werden einem Display 22 zugeführt, wobei diese Diagnoseergebnisse selbstverständlich auch gespeichert, ausgedruckt, optisch und/oder akustisch angezeigt oder einer Zentrale über Leitungen oder drahtlos übermittelt werden können.The flowmeter 17 is connected to an electronic diagnostic device 19, in addition to the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature T and the pressure P in the supply line 16, ie the temperature and the pressure of the fluid supplied. Furthermore, a fluid sensor 23 for detecting the kind the fluid used and a moisture and / or particle sensor 24 for detecting the moisture content and the particle content of the fluid connected to the diagnostic device 19. This has in addition access to the sequence program of the electronic control device 18. The diagnostic results are supplied to a display 22, these diagnostic results of course also stored, printed, visually and / or audibly displayed or a central office via lines or wirelessly can be transmitted.

Die Sensoren 20, 21 sowie 23 und 24 können bei einer einfachsten Ausführung auch entfallen, wobei allerdings zumindest ein Temperatursensor 20 und ein Drucksensor 21 zweckmäßigerweise vorgesehen sein können.The sensors 20, 21 and 23 and 24 may also be omitted in a simplest embodiment, although at least one temperature sensor 20 and one pressure sensor 21 may be expediently provided.

Die Diagnoseeinrichtung 19 kann selbstverständlich auch in der elektronischen Steuervorrichtung 18 integriert sein, die beispielsweise einen Mikrocontroller zur Durchführung des Ablaufprogramms und gegebenenfalls zur Diagnose enthalten kann.Of course, the diagnostic device 19 can also be integrated in the electronic control device 18, which may contain, for example, a microcontroller for carrying out the sequence program and optionally for diagnosis.

Bei einer sehr großen Zahl von Subsystemen beziehungsweise Komponenten können diese in mehrere Gruppen aufgeteilt werden, wobei jede Gruppe einen eigenen Durchflussmesser 17 besitzt, um die den Gruppen zugeordneten Teilbereiche der Anlage unabhängig voneinander zu diagnostizieren, wie dies im eingangs angegebenen Stand der Technik beschrieben ist.In a very large number of subsystems or components, these can be divided into several groups, each group has its own flow meter 17 to independently diagnose the subregions of the system associated with the groups, as described in the prior art mentioned above.

Das Verfahren zur Fehlereingrenzung und Diagnose wird nun im Folgenden anhand der beschriebenen pneumatischen Anlage und der in den Figuren 2 und 3 dargestellten Leitwertdiagramme erläutert.The procedure for fault isolation and diagnosis will now be described below with reference to the described pneumatic system and in the Figures 2 and 3 illustrated Leitwertdiagramme explained.

Die Diagnose kann im einfachsten Fall durch Vergleich von gespeicherten und ausgewählten Fluidverbrauchs-Referenzkurven mit entsprechenden Messgrößenkurven durchgeführt werden, wobei die Fluidverbrauchs-Referenzkurven aus integrierten oder aufsummierten Volumenstromwerten gebildet werden. Bessere Ergebnisse werden durch Verwendung von Diagnoseleitwerten erreicht, wobei der Diagnoseleitwert eine charakteristische Größe einer fluidischen Anlage beziehungsweise eines fluidischen Systems ist, das aus vielfältigen Subsystemen besteht. Der Leitwert charakterisiert das Verhalten der Gesamtanlage über einen definierten Zyklus. Leitwert-Referenzkurven werden im einfachsten Fall aus integrierten Leitwertgrößen Q/P gebildet, wobei Q der jeweilige Volumenstromwert und P der gemessene Arbeitsdruck ist. Diese Leitwert-Referenzkurven werden mit entsprechenden Messgrößenkurven verglichen, also mit aus integrierten Leitwertgrößen gebildeten Messgrößenkurven. Die Leitwertgrößen beziehungsweise Leitwertkurven und Leitwert-Referenzkurven können durch weitere Messparameter kompensiert und verfeinert werden, beispielsweise durch die gemessene Betriebstemperatur T, den Feuchtegehalt und/oder den Partikelgehalt des Fluids, der Art des Fluids und von jeweiligen zeit- oder ereignisabhängigen Betriebszuständen. Solche Betriebszustände sind beispielsweise der Warmlauf, der Betrieb nach längerem Stillstand, die Wiedereinschaltung bei Umrüstung oder der Betrieb nach vorgebbaren Zeitintervallen, also beispielsweise nach einem einstündigen oder zehnstündigen oder mehrstündigen Betrieb. Die folgende Erläuterung der Fehlereingrenzung und Diagnose beruht auf Leitwerten, wobei entsprechend auch Fluidverbrauchswerte verwendet werden könnten.The diagnosis can be made in the simplest case by comparing stored and selected fluid consumption reference curves be carried out with corresponding measured value curves, wherein the fluid consumption reference curves are formed from integrated or totalized volumetric flow values. Better results are achieved by using diagnostic control values, where the diagnostic control value is a characteristic variable of a fluidic system or of a fluidic system that consists of a variety of subsystems. The conductance characterizes the behavior of the entire system over a defined cycle. Conductance reference curves are formed in the simplest case of integrated conductivity values Q / P, where Q is the respective volume flow value and P is the measured working pressure. These conductance reference curves are compared with corresponding measured value curves, ie with measured value curves formed from integrated conductance variables. The Leitwertgrößen or Leitwertkurven and Leitwert-reference curves can be compensated and refined by other measurement parameters, for example by the measured operating temperature T, the moisture content and / or the particle content of the fluid, the type of fluid and of each time or event-dependent operating conditions. Such operating states are, for example, the warm-up, the operation after a long standstill, the reclosure when retrofitting or the operation after predetermined time intervals, so for example after a one-hour or ten-hour or several hours of operation. The following discussion of fault isolation and diagnosis is based on conductance, and fluid consumption values could be used accordingly.

Zur Erzeugung der Referenzkurven muss ein sich wiederholender Zyklus des Gesamtablaufs gewählt werden. Nichtzyklische Prozesse lassen sich in Teilzyklen aufteilen, auf welche das Diagnoseverfahren dann angewandt wird. Verschiedene Betriebszustände in einem Prozess lassen sich durch Aufnahme und Speicherung eines Sets von Referenzkurven in einer Auswahlmatrix berücksichtigen. Dies gilt auch für den Einfluss unterschiedlicher Parameter.To generate the reference curves, a repeating cycle of the entire process must be selected. Non-cyclic processes can be subdivided into subcycles, to which the diagnostic procedure is then applied. Different operating conditions in a process can be considered by taking and storing a set of reference curves in a selection matrix. This also applies to the influence of different parameters.

Zur Auswertung muss nun die jeweilige Messkurve mit der ausgewählten oder auszuwählenden Referenzkurve synchronisiert werden, das heißt, ohne Leckage sind die beiden Kurven deckungsgleich, mit Leckage laufen sie zeitlich synchron, zeigen aber Abweichungen in der Amplitude. Die beiden zu vergleichenden Kurven müssen daher zunächst auf Korrelation überprüft werden, das heißt, es muss überprüft werden, ob sich zeitliche Verschiebungen ergeben haben, zum Beispiel aufgrund von veränderten Abläufen innerhalb eines Zyklus. Sind zeitliche Verschiebungen über eine festgelegte Toleranz detektiert worden, so wird die weitere Auswertung von Leckagen gestoppt und eine Meldung bezüglich Veränderungen der Zeiten von Subsystemen generiert. Ein Zeitfehler wird erkannt, wenn der Wert des Luftverbrauchs am Ende des Zyklus innerhalb eines Toleranzbereichs liegt, aber die Zykluszeit unterschiedlich ist, wie dies in Figur 2 dargestellt ist. Dort laufen die beiden Kurven bis zum Zeitpunkt ta synchron, und ab diesem Zeitpunkt tritt eine Zeitdifferenz Δt zwischen Messkurve Km und Referenzkurve Kref auf, die bis zum Zyklusende zum Zeitpunkt tb konstant bleibt. Falls sich ein Zeitfehler im Laufe des Zyklus immer mehr vergrößert, so kann versucht werden, durch Wahl einer anderen Referenzkurve eine Korrelation herbeizuführen. Erst wenn alle gespeicherten Referenzkurven überprüft worden sind und keine Korrelation erreicht werden konnte, liegt eine fehlerhafte Zeitverschiebung vor, und auf eine nachfolgende Diagnose auf Leckage wird verzichtet. Eine entsprechende Meldung kann dann angezeigt, gespeichert oder weitergemeldet werden.For evaluation, the respective measured curve must now be synchronized with the selected or selected reference curve, that is, without leakage, the two curves are congruent, with leakage they run synchronously in time, but show deviations in the amplitude. The two curves to be compared must therefore first be checked for correlation, that is, it must be checked whether temporal shifts have occurred, for example due to changes in processes within a cycle. If temporal shifts have been detected over a defined tolerance, the further evaluation of leaks is stopped and a message regarding changes in the times of subsystems is generated. A time error is detected when the value of the air consumption at the end of the cycle is within a tolerance range, but the cycle time is different, as in FIG. 2 is shown. There, the two curves run synchronously until the time ta, and from this point on a time difference Δt occurs between the curve Km and the reference curve Kref, which remains constant until the end of the cycle at the point in time tb. If a time error increases more and more as the cycle progresses, an attempt can be made to correlate by choosing another reference curve. Only when all stored reference curves have been checked and no correlation could be achieved, is there a faulty time shift, and a subsequent leak diagnosis is omitted. A corresponding message can then be displayed, saved or forwarded.

Wird kein Zeitfehler erkannt, erfolgt im nächsten Schritt die Bildung der Differenz aus dem Nominal- beziehungsweise Messwert und dem Referenzwert, also zwischen der Messgrößenkurve Km und der Referenzkurve Kref, wie sie in Figur 3, oben, dargestellt ist. Die gebildete Differenzkurve, die in Figur 3, unten, dargestellt ist, definiert zu jedem Zeitpunkt den summierten Abstand der Messgrößenkurve zur Referenzkurve. Die Zeitpunkte von Leckagen zeigen die treppenförmigen Erhöhungen der Differenz. In den folgenden Auswertungen werden diese Anstiege der Differenz den leckageverursachenden Subsystemen oder Komponenten beziehungsweise Aktuatorkammern zugewiesen.If no time error is detected, the difference between the nominal value or measured value and the reference value, that is, between the measured quantity curve Km and the reference curve Kref, takes place in the next step FIG. 3 , above, is shown. The formed difference curve, which in FIG. 3 , shown below, defines at each instant the summed distance of the measured quantity curve from the reference curve. The time points of leaks show the staircase increases in the difference. In the following evaluations, these increases in the difference are assigned to the leak-causing subsystems or components or actuator chambers.

Um auch unerwünschte Schwankungen, Störspitzen und dergleichen zu entfernen, kann die berechnete Differenz oder Differenzkurve gefiltert werden. Bei herkömmlichen Filterungen ist die Veränderung der Phasenlage und der Amplitude frequenzabhängig. Damit eine frequenzunabhängige Filterung erreicht wird, wird ein Integrator verwendet, der eine feste Phasenverschiebung von -90° aufweist. Damit ist bei der späteren Auswertung der Signale keine unterschiedliche Phasenverschiebung zu berücksichtigen. Der Amplitudengang kann durch Veränderung der Abtastzeit so eingestellt werden, dass im gewünschten Frequenzbereich eine konstante Dämpfung der Amplitude vorliegt, andere Frequenzen dagegen gefiltert werden.In order to remove also unwanted fluctuations, glitches and the like, the calculated difference or difference curve can be filtered. In conventional filters, the change in the phase position and the amplitude is frequency-dependent. In order to achieve a frequency-independent filtering, an integrator is used, which has a fixed phase shift of -90 °. Thus, no different phase shift is to be considered in the later evaluation of the signals. The amplitude response can be adjusted by changing the sampling time so that there is a constant attenuation of the amplitude in the desired frequency range, while other frequencies are filtered.

Zur Auswertung wird nachfolgend eine Ausgleichsfunktion des Integrals der berechneten Differenz gebildet. Die Wahl der entsprechenden Ausgleichsfunktion kann nach dem Gaußschen Prinzip der kleinsten Quadrate getroffen werden. Dabei muss festgestellt werden, welche Kurve sich den berechneten Messpunkten der Differenz am besten anpasst. Im Folgenden wird eine Ausgleichsgerade als einfachste Möglichkeit einer Ausgleichsfunktion gewählt. Selbstverständlich sind auch andere Ausgleichsfunktionen möglich. Jede auftretende Leckage führt zu einer Veränderung der Steigung und des Achsabstands der Ausgleichsgeraden zur Abszisse. Bei der Bestimmung der Steigung aus dem Integral der Differenz ergibt sich eine Darstellung, die der in Figur 3 dargestellten Differenzkurve entspricht, jedoch um minus 90° phasenverschoben ist. Bei der Berechnung des Achsabstandes aus dem Integral der Differenz ergibt sich ebenfalls eine Darstellung, die der in Figur 3 dargestellten Differenzkurve entspricht, jedoch um minus 90° phasenverschoben und an der Abszisse gespiegelt ist. Der Vorteil der Berechnung der Ausgleichsgeraden besteht darin, dass sich Leckagen, d.h. Änderungen in der Steigung zeitlich betrachtet immer gleich auswirken. Leckagen zu einem späteren Zeitpunkt eines Zyklus wirken sich wesentlich mehr auf den Achsabstand aus, als Leckagen zu Beginn eines Zyklus. Im hinteren zeitlichen Bereich von Referenzen treten höhere, da aufsummierte Fehler zum aktuellen Wert auf. Tatsächliche Leckagen verändern deshalb zu einem späteren Zeitpunkt des Zyklus den Achsabstand wesentlich deutlicher als eventuelle Abweichungen zur Referenz beispielsweise durch Alterung der Anlage. Die im Folgenden beschriebene Auswertung berücksichtigt daher sowohl Änderungen der Steigung, wie auch Änderungen des Achsabstandes.For evaluation, a compensation function of the integral of the calculated difference is subsequently formed. The choice of the corresponding compensation function can be made according to the Gaussian least squares principle. It must be determined which curve best suits the calculated measurement points of the difference. In the following, a compensation straight line is selected as the simplest possibility of a compensation function. Of course, other compensation functions are possible. Any occurring leakage leads to a change in the slope and the center distance of the regression line to the abscissa. When determining the slope from the integral of the difference, a representation is obtained which corresponds to that in FIG. 3 shown difference curve, but is phase-shifted by minus 90 °. When calculating the center distance from the integral of the difference, there is also a representation that corresponds to the in FIG. 3 corresponds to the difference curve shown, but is phase-shifted by minus 90 ° and mirrored on the abscissa. The advantage of calculating the regression line is that leaks, ie changes in the slope always have the same effect in terms of time. Leaks at a later point in a cycle affect the center distance significantly more than leaks at the beginning of a cycle. In the later temporal range of references, higher, accumulated errors occur at the current value. Actual leaks therefore change the center distance much more clearly at a later point in the cycle than any deviations from the reference, for example due to aging of the system. The evaluation described below therefore takes into account both changes in the pitch, as well as changes in the axial distance.

Beim erfindungsgemäßen Ausschlussprinzip lassen sich im Laufe der Fehleranalyse gewisse Bereiche aus der Fehlerbetrachtung ausschließen, sodass sich die Zahl der für eine Leckage in Betracht kommenden Subsysteme und Komponenten beziehungsweise Aktuatorkammern immer mehr reduziert. Hierbei macht man sich zunutze, dass sich bei Maschinenabläufen nie immer die gleichen Gruppen von Subsystemen zu gleicher Zeit bewegen, also aktiv sind, beziehungsweise es stehen nie dieselben Aktuatorkammern gleichzeitig unter Druck. Somit grenzt man die in Frage kommenden Aktuatorkammern immer mehr ein, und die Aussage bezüglich Leckage wird immer definierter. Beispielsweise werden Aktuatorkammern immer dann von der weiteren Betrachtung bezüglich Leckage ausgeschlossen, wenn sie zu einem Zeitpunkt belüftet werden und gleichzeitig keine Leckage auftritt. Im Folgenden wird ein Diagnosezyklus anhand von Figur 3 beispielhaft erläutert:

  • Zum Zeitpunkt t0 tritt eine Leckage auf. Zu diesem Zeitpunkt ist die Kammer A des Subsystems 10, die Kammer B des Subsystems 11 und die Kammer A des Subsystems 12 belüftet. Diese drei Kammern kommen somit als Ursache für die Leckage in Betracht. Gleichzeitig ist die Kammer B des Subsystems 10, die Kammer A des Subsystems 11 und die Kammer B des Subsystems 12 inaktiv, also nicht belüftet, sodass diese Aktuatorkammern von der weiteren Betrachtung ausgeschlossen werden.
  • Zum Zeitpunkt t1 tritt eine weitere Leckage auf. Zu diesem Zeitpunkt ist die Kammer A des Subsystems 10, die Kammer B des Subsystems 13 und die Kammer A des Subsystems 12 belüftet. Dies bedeutet, dass die Kammer B des Subsystems 11 für die weitere Betrachtung ausgeschlossen ist und nur noch die Kammern A der Subsysteme 10 und 12 für die Leckage in Betracht kommen.
  • Zum Zeitpunkt t2 ist die Kammer A des Subsystems 10, die Kammer B des Subsystems 14 und die Kammer A des Subsystems 11 belüftet. Die Kammer A des Subsystems 11 wurde bereits für die weitere Betrachtung ausgeschlossen. Die Kammer A des Subsystems 12 wird nun ebenfalls als Ursache für die Leckage ausgeschlossen, sodass abschließend festgestellt werden kann, dass die Kammer A des Subsystems 10 für die Leckage verantwortlich ist.
In the case of the exclusion principle according to the invention, it is possible in the course of the error analysis to exclude certain areas from the error consideration, so that the number of subsystems and components or actuator chambers which come into consideration for a leakage is increasingly reduced. This makes use of the fact that in machine operations, the same groups of subsystems never move at the same time, ie are active, or the same actuator chambers are never under pressure at the same time. Thus one limits the candidate actuator chambers more and more, and the statement leakage is becoming more and more defined. For example, actuator chambers are always excluded from further consideration for leakage if they are vented at a time and at the same time no leakage occurs. The following is a diagnostic cycle based on FIG. 3 exemplified:
  • At time t0, leakage occurs. At this time, the chamber A of the subsystem 10, the chamber B of the subsystem 11 and the chamber A of the subsystem 12 are vented. These three chambers are thus considered as the cause of the leakage. At the same time, the chamber B of the subsystem 10, the chamber A of the subsystem 11 and the chamber B of the subsystem 12 are inactive, ie not ventilated, so that these actuator chambers are excluded from further consideration.
  • At time t1, another leakage occurs. At this time, the chamber A of the subsystem 10, the chamber B of the subsystem 13 and the chamber A of the subsystem 12 is vented. This means that the chamber B of the subsystem 11 is excluded for further consideration and only the chambers A of the subsystems 10 and 12 for the leakage come into consideration.
  • At time t2, chamber A of subsystem 10, chamber B of subsystem 14 and chamber A of subsystem 11 are vented. The chamber A of the subsystem 11 has already been excluded for further consideration. The chamber A of the subsystem 12 is now also excluded as the cause of the leak, so that it can be finally concluded that the chamber A of the subsystem 10 is responsible for the leakage.

Oft kann man auch bereits bei einem einzigen Anstieg von ΔK, also bei einem einmaligen Auftreten einer Leckage, das verursachende System feststellen. Würde beispielsweise in Abwandlung des vorher beschriebenen Beispiels lediglich zum Zeitpunkt t0 eine Leckage auftreten, zu dem die Kammer A des Subsystems 10, die Kammer B des Subsystems 11 und die Kammer A des Subsystems 12 belüftet sind, und nachfolgend werden zu einem späteren Zeitpunkt wiederum die Kammer B des Subsystems 11 und die Kammer A des Subsystems 12 belüftet, während die Kammer A des Subsystems 10 nicht beteiligt ist, und es tritt dann keine Leckage auf, so können die Kammer B des Subsystems 11 und die Kammer A des Subsystems 12 als verursachende Komponenten ausgeschlossen werden, und es kann dann bereits abschließend die Kammer A des Subsystems 10 als leckageverursachend erkannt werden.It is often possible to detect the causative system even with a single increase of ΔK, that is to say with a single occurrence of a leak. For example, in a modification of the previously described example, leakage would occur only at time t0, to which chamber A of subsystem 10, chamber B of subsystem 11, and chamber A of subsystem 12 are vented, and subsequently at a later time Chamber B of subsystem 11 and chamber A of subsystem 12 vented while chamber A of subsystem 10 is not involved, and then leakage does not occur, then chamber B of subsystem 11 and chamber A of subsystem 12 may be causative Components are excluded, and it can then finally the chamber A of the subsystem 10 are recognized as causing leakage.

Eine besonders geeignete Art der Auswertung, insbesondere bei einer sehr großen Zahl von Subsystemen bzw. Komponenten, besteht darin, dass jeder Kammer eines Aktuators, das sind bei einem Arbeitszylinder beispielsweise zwei Kammern, je zwei Zähler zugeordnet werden. Weiterhin ist jeder Kammer ein Zeitglied zugeordnet. Das Zeitglied dient dazu, zusätzlich Aktuatorkammern oder Komponenten aus der Betrachtung hinsichtlich einer Leckage auszuschließen. Steht eine Kammer bzw. eine Komponente unter Druck und tritt keine Leckage innerhalb eines vorgewählten Zeitwertes des Zeitglied auf, so wird diese Kammer ebenfalls als nicht an der Leckage beteiligt behandelt und für die weitere Leckagesuche ausgeschlossen. Die elektrischen Baugruppen, also Zähler und Zeitglieder, befinden sich beispielsweise in der Diagnoseeinrichtung 19. Beim Start eines Betriebszyklus werden nun die zeitglieder gestartet, und beim Auftreten einer Leckage werden sie jeweils auf den Wert null zurückgesetzt und dort bis zur Beendigung der Leckage gehalten. Steht nun die betreffende Kammer während des zurückgesetzten Zustands des Zeitglieds oder wenigstens während eines Teils des zurückgesetzten Zustands unter Druck, so kommt diese Kammer als für die Leckage verantwortlich in Betracht, und es wird geprüft, ob die Steigung und der Achsabstand der Ausgleichsgeraden oder einer sonstigen Ausgleichsfunktion um einen vorgebbaren Wert oder um einen vorgebbaren Prozentsatz (bezogen beispielsweise auf den jeweiligen Maximalwert des oder eines der vorangegangenen Zyklen) zugenommen hat. In diesem Falle wird der für die Steigung zuständige Zähler und/oder der für den Achsabstand zugehörige Zähler um den Wert 1 erhöht. Je unterschiedlicher die Achsbewegungen bei einer Vielzahl von sich gleichzeitig bewegenden Subsystemen oder Komponenten sind und je mehr unterschiedliche Zyklen auftreten, um so genauer wird dieses Verfahren. Bei jeder Leckage, bei der die entsprechende Komponente oder Kammer einer Komponente unter Druck steht, werden die zugehörigen Zähler je nach Zunahme der Steigung und/oder des Achsabstands um jeweils einen weiteren Zählerwert erhöht. Die Zählerstände beider Zähler einer Kammer oder einer Komponente werden am Ende des Zyklus zusammengezählt. Diejenige Kammer, bei der am Ende eines Betriebszyklus der höchste Gesamtzählerstand festgestellt wird, ist mit der größten Wahrscheinlichkeit für die Leckage verantwortlich. Die Kammer oder die Komponente mit dem zweithöchsten Gesamtzählerstand ist mit der zweitgrößten Wahrscheinlichkeit an der Leckage beteiligt. Dies ist dann von Bedeutung, wenn im System mehrere Leckagen auftreten. Sind mehr als ein festgelegter Prozentsatz an Kammern, z.B. mehr als 50%, als die Leckage verursachend detektiert worden, so wird dies als Systemleckage definiert. Dieses Verfahren beinhaltet eine gestufte Auswertung mit dem Ziel, auch bei nicht eindeutiger Erkennung des Leckageortes dem Wartungspersonal zumindest Hinweise zu geben.A particularly suitable type of evaluation, in particular in the case of a very large number of subsystems or components, is that each chamber of an actuator, that is, for example, two chambers in a working cylinder, are each assigned two counters. Furthermore, each chamber is assigned a timer. The timer is used to exclude additional actuator chambers or components from the consideration of a leak. If a chamber or a component is under pressure and no leakage occurs within a preselected time value of the timer, then this chamber is also treated as not involved in the leakage and excluded for further leak detection. The electrical components, ie counters and timers, are located, for example, in the diagnostic device 19. When starting an operating cycle, the timers are now started, and when a leak occurs, they are each reset to the value zero and there until the end kept the leakage. Now, if the chamber in question during the reset state of the timer or at least during a part of the reset state under pressure, this chamber comes as responsible for the leakage into consideration, and it is checked whether the slope and the center distance of the straight line or other Compensation function has increased by a predeterminable value or by a predefinable percentage (based, for example, on the respective maximum value of or one of the preceding cycles). In this case, the counter responsible for the grade and / or the counter associated with the offset will be incremented by the value 1. The more different the axis movements are for a plurality of simultaneously moving subsystems or components, and the more different cycles occur, the more accurate this method becomes. For each leak in which the corresponding component or chamber of a component is under pressure, the associated counters are incremented by a further counter value, depending on the increase in the slope and / or the center distance. The counts of both counters of a chamber or component are added together at the end of the cycle. The chamber with the highest total count at the end of an operating cycle is most likely to be responsible for the leakage. The chamber or component with the second highest total count is involved in the leakage with the second highest probability. This is important if several leaks occur in the system. If more than a defined percentage of chambers, eg more than 50%, have been detected as causing the leakage, this is defined as system leakage. This method involves a graded evaluation with the goal, even if not clear Detection of the leak site at least give the maintenance personnel hints.

Um die Genauigkeit der Analyse zu steigern, können mehrere Zyklen betrachtet werden. Aus der Summe der Mehrfachanalysen ergeben sich dann genauere Hinweise über die die Leckage verursachende Kammer oder Komponente oder die die Leckage verursachenden Kammern oder Komponenten.To increase the accuracy of the analysis, several cycles can be considered. The sum of the multiple analyzes then gives more accurate information about the chamber or component causing the leakage or the chambers or components causing the leakage.

In einer einfacheren Version kann auch ein einziges Zeitglied für alle Kammern oder Komponenten vorgesehen sein, das jeweils während des Auftretens einer Leckage auf den Wert null zurückgesetzt und dort während des Auftretens der Leckage gehalten wird. Während dieser Zeitspanne wird dann überprüft, welche Kammern oder welche Komponenten aktiv sind, also mit Druck beaufschlagt sind.In a simpler version, a single timer may be provided for all chambers or components, each reset to zero during the occurrence of a leak and held there during the occurrence of the leakage. During this period, it is then checked which chambers or which components are active, that is to say are pressurized.

In einer einfacheren Ausführung des Verfahrens kann beispielsweise auch nur der Achsabstand oder nur die Steigung bzw. deren Veränderung ausgewertet werden. Pro Kammer bzw. pro Komponente oder pro Subsystem ist dann jeweils nur ein Zähler erforderlich. Eine weitere Vereinfachung des Verfahrens kann noch dadurch erfolgen, dass auf die Ermittlung des Achsabstands oder der Steigung völlig verzichtet wird und lediglich der Zähler einer Kammer oder einer Komponente um den Wert 1 erhöht wird, wenn diese Kammer oder diese Komponente zumindest während eines Teilzeitraums eines Leckageintervalls belüftet war.In a simpler embodiment of the method, for example, only the center distance or only the slope or its change can be evaluated. Per chamber or per component or per subsystem then only one counter is required. A further simplification of the method can still be done by completely dispensing with the determination of the axial spacing or the pitch and only increasing the counter of a chamber or a component by the value 1, if this chamber or component at least during a sub-period of a leakage interval was ventilated.

Claims (14)

  1. Method for fault localisation and diagnosis in a fluidic system, wherein the fluidic volume flow of the overall system or at least a section thereof or a variable dependent thereon as measured variable is in each case recorded during an operating cycle and compared with stored references, and wherein in each case at the time of a variance or change in variance from the reference it is established at which component or components of the system an occurrence influencing the fluid consumption has taken place, so that this or these may then be identified as defective, wherein in the case of such a variance or change in variance and simultaneous occurrence of activities of several components (10-14) influencing fluid consumption a process of elimination is carried out in which, for consecutive activities involving at least one of these components (10-14), in each case in further checking steps an examination is made as to whether a variance or change in variance occurs, wherein in each of these further checking steps the components concerned are in each case excluded from further checking as not defective, if no variance or change in variance occurs, and wherein the stored references are fluid consumption reference curves formed from integrated volume flow values (Q) or guide value reference curves formed from integrated guide value factors (Q/P), wherein P is the measured operating pressure, and which are compared with corresponding measured variable curves, characterised in that in each case in further checking steps, in the event of further occurrence of variance or change in variance, the components which are not actively involved at this point in time are excluded, as non-defective, from further checking.
  2. Method according to claim 1, characterised in that the volume flow values (Q) or guide value factors (Q/P) are compensated for on the basis of parameters, in particular dependent on temperature and/or fluid and/or humidity and/or the particle content of the fluid and/or on time or event for different states of operation.
  3. Method according to claim 2, characterised in that several parameter-dependent fluid consumption reference curves or guide value reference curves are stored in a selection matrix.
  4. Method according to claim 3, characterised in that the reference curves are acquired in a learning mode, in particular also in subsequent operation of the fluidic system.
  5. Method according to any of the preceding claims characterised in that, before diagnosis for leakage, a comparison of curves is made for possible shifts in time wherein, in the event of a time shift exceeding a tolerance value, a switch is made to other stored reference curves for checking, or an error message and/or a stop triggers a further leakage diagnosis.
  6. Method according to any of the preceding claims characterised in that, for leakage diagnosis, differential values or a differential curve (ΔK) is formed between the measured variable curve (Km) and the reference curve (Kref).
  7. Method according to claim 6, characterised in that the differential curve (ΔK) is filtered depending on frequency and using an integrator, having in particular a phase shift of -90°.
  8. Method according to claim 6 or 7, characterised in that a balancing function of the integral of the calculated differential values or the differential curve is formed, which best coincides with the calculated measuring points of the difference.
  9. Method according to claim 8, characterised in that the balancing function is calculated according to the Gaussian principle of the least squares.
  10. Method according to any of the preceding claims, characterised in that during the period of a variance or change in variance, a timer is set at a presettable value and a comparison is made to determine which component or components were active during at least a partial interval of this period.
  11. Method according to claim 10, characterised in that each component (10-14) or each chamber of a component is assigned at least one counter, the reading of which is increased in each case by one counter value, if the component (10-14) or chamber is under pressure during at least a partial interval of the presence of the set value of the timer.
  12. Method according to claim 11, characterised in that each component or each chamber of a component is assigned a gradient counter, the counter reading of which is then increased in each case only if the gradient of the balancing function increases at least by a presettable value or percentage during the presence of the set value of the timer.
  13. Method according to claim 11 or 12, characterised in that each component or each chamber of a component is assigned an axial distance counter, the counter reading of which is then increased in each case only if the axial distance of the balancing function increases at least by a presettable value or percentage during the presence of the set value of the timer.
  14. Method according to claim 12 and 13 characterised in that, at the end of an operating cycle, for each component or each chamber of a component, the counter readings of the gradient counter and the axial distance counter are added, wherein the highest overall counter reading or readings are judged to have the highest probability of leakage for the component or chamber of a component concerned.
EP07703456A 2007-02-14 2007-02-14 Method for fault localization and diagnosis in a fluidic installation Not-in-force EP2047118B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/001269 WO2008098589A1 (en) 2007-02-14 2007-02-14 Method for fault localization and diagnosis in a fluidic installation

Publications (2)

Publication Number Publication Date
EP2047118A1 EP2047118A1 (en) 2009-04-15
EP2047118B1 true EP2047118B1 (en) 2011-10-19

Family

ID=38544143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07703456A Not-in-force EP2047118B1 (en) 2007-02-14 2007-02-14 Method for fault localization and diagnosis in a fluidic installation

Country Status (7)

Country Link
US (1) US7917325B2 (en)
EP (1) EP2047118B1 (en)
KR (1) KR20100014067A (en)
CN (1) CN101427033A (en)
AT (1) ATE529643T1 (en)
TW (1) TW200846275A (en)
WO (1) WO2008098589A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011012558B3 (en) * 2011-02-26 2012-07-12 Festo Ag & Co. Kg Compressed air maintenance device and thus equipped consumer control device
CN102606559B (en) * 2012-02-22 2016-01-20 安徽金达利液压有限公司 Hydraulic fault detecting instrument
WO2015136285A1 (en) * 2014-03-11 2015-09-17 British Gas Trading Limited Determination of a state of operation of a domestic appliance
DE102014016820A1 (en) * 2014-11-14 2016-05-19 Abb Technology Ag Method for operating a flow meter
FI128394B (en) * 2014-12-09 2020-04-30 Hydroline Oy Monitoring device and method for determining operating health of pressure medium operated device
EP3243608B1 (en) 2016-05-09 2022-04-06 J. Schmalz GmbH Method for monitoring the functioning states of a pressure driven actuator and pressure driven actuator
DE102017221723A1 (en) 2017-12-01 2019-06-06 Continental Teves Ag & Co. Ohg Method for operating a brake system for motor vehicles and brake system
EP3699498A1 (en) * 2019-02-21 2020-08-26 E.ON Sverige AB A method and an apparatus for determining a deviation in a thermal energy circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870814B2 (en) 2002-03-29 2007-01-24 株式会社デンソー Compressed air monitoring system
EP1651488B1 (en) * 2003-07-28 2007-12-26 WABCO GmbH Method and device for identifying a defect or failure of a compressed air load circuit in an electronic compressed air installation for vehicles
US7031850B2 (en) * 2004-04-16 2006-04-18 Festo Ag & Co. Kg Method and apparatus for diagnosing leakage in a fluid power system
WO2005111433A1 (en) * 2004-04-16 2005-11-24 Festo Ag & Co Method for fault localisation and diagnosis in a fluidic installation
JP4519840B2 (en) 2004-05-13 2010-08-04 日立オートモティブシステムズ株式会社 Automatic transmission clutch actuator

Also Published As

Publication number Publication date
ATE529643T1 (en) 2011-11-15
EP2047118A1 (en) 2009-04-15
KR20100014067A (en) 2010-02-10
US7917325B2 (en) 2011-03-29
WO2008098589A1 (en) 2008-08-21
US20100153026A1 (en) 2010-06-17
TW200846275A (en) 2008-12-01
CN101427033A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
EP2047118B1 (en) Method for fault localization and diagnosis in a fluidic installation
EP2047117B1 (en) Method for fault localization and diagnosis in a fluidic installation
DE102013216255B3 (en) Method for injector-specific diagnosis of a fuel injection device and internal combustion engine with a fuel injection device
EP3390967B1 (en) Method for monitoring at least two redundant sensors
DE102019117820A1 (en) Method and device for monitoring the condition of a hydraulic pump
WO2015003791A1 (en) Sensor system and method for determining a switching point for a sensor system in an automated manner
DE102010002504B4 (en) Method and device for checking an electronic device
DE102007039793A1 (en) Pneumatic system e.g. pneumatic brake system, monitoring method for commercial motor vehicle, involves detecting pressure signal continuously in pneumatic system, and analyzing resulting time response of detected pressure values
EP1747380B1 (en) Method for fault localisation and diagnosis in a fluidic installation
WO2006079407A1 (en) Secondary air diagnosis in an internal combustion engine
EP2184473A2 (en) Method and device for testing a pressure sensor of a fuel injection device
EP1313936B1 (en) Method and device for controlling an internal combustion engine
DE10355022A1 (en) Method for monitoring a technical system
EP1189126A2 (en) Method for monitoring an installation
DE102017111455A1 (en) Method of testing a machine controlled by a controller
EP3940211A1 (en) Diagnostic method for a piston cooling nozzle valve, diagnostic device, control device, motor vehicle
DE102017204400A1 (en) A method of operating a sensor and method and apparatus for analyzing data of a sensor
DE102020109858A1 (en) Method of operating a system
DE102015118008A1 (en) Method for analyzing and evaluating measured values of a test system
WO2018065223A1 (en) Method and device for ascertaining the damaged state of a component of a vehicle
DE102013100411B4 (en) Method and device for condition monitoring of a refrigeration system
DE102018222218B4 (en) Procedure for testing a hydraulic system
DE102010031323A1 (en) Technical system i.e. internal-combustion engine, controlling/regulating method for motor vehicle, involves dividing gross error for components e.g. actuators and/or models, of technical system
DE102005045270A1 (en) Motor vehicle level controlling method, involves supplying and distributing differential air flow to determine control procedure by considering differential air flow with differential reference air flow
DE102015016169B4 (en) Method and device for continuously checking the dynamic behavior of a sensor in a sensor arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20090723

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KELLER, REINHARD

Inventor name: BREDAU, JAN

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007008448

Country of ref document: DE

Effective date: 20120126

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120219

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120120

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120227

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: FESTO A.G. & CO. KG

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

26N No opposition filed

Effective date: 20120720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007008448

Country of ref document: DE

Effective date: 20120720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 529643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130326

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150127

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160222

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170217

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007008448

Country of ref document: DE

Representative=s name: PATENTANWAELTE MAGENBAUER & KOLLEGEN PARTNERSC, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007008448

Country of ref document: DE

Owner name: FESTO SE & CO. KG, DE

Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007008448

Country of ref document: DE

Owner name: FESTO AG & CO. KG, DE

Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220609

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007008448

Country of ref document: DE