Nothing Special   »   [go: up one dir, main page]

EP1942942A2 - Polysaccharide-derived nitric oxide-releasing carbon-bound diazeniumdiolates - Google Patents

Polysaccharide-derived nitric oxide-releasing carbon-bound diazeniumdiolates

Info

Publication number
EP1942942A2
EP1942942A2 EP06826062A EP06826062A EP1942942A2 EP 1942942 A2 EP1942942 A2 EP 1942942A2 EP 06826062 A EP06826062 A EP 06826062A EP 06826062 A EP06826062 A EP 06826062A EP 1942942 A2 EP1942942 A2 EP 1942942A2
Authority
EP
European Patent Office
Prior art keywords
nitric oxide
saccharide
releasing
polysaccharide
diazeniumdiolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06826062A
Other languages
German (de)
French (fr)
Inventor
Joseph A. Hrabie
Larry K. Keefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Health and Human Services
Original Assignee
US Department of Health and Human Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Health and Human Services filed Critical US Department of Health and Human Services
Publication of EP1942942A2 publication Critical patent/EP1942942A2/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • Nitric oxide has been implicated as part of a cascade of interacting agents involved in a wide variety of bioregulatory processes, including the physiological control of blood pressure, macrophage-induced cytostasis and cytotoxicity, and neurotransmission (Moncada et al., "Nitric Oxide from L-Arginine: A Bioregulatory System,” Excerpta Medica, International Congress Series 897, Elsevier Science Publishers BJL: Amsterdam (1990); Marietta et al., Biofactors 2: 219-225 (1990); Ignarro, Hypertension (Dallas) 16: 477-483 (1990); Kerwin et al., J. Med. Chem.
  • Diazeniumdiolates comprise a diverse class of NO-releasing compounds/materials that are known to exhibit sufficient stability to be useful as therapeutics. Although discovered more than 100 years ago by Traube et al. (Liebigs Ann. Chem., 300: 81-128 (1898)), the chemistry and properties of diazeniumdiolates have been extensively reinvestigated by Keefer and co-workers, as described in United States Patent Nos.
  • Diazeniumdiolated compounds have been attached to polymers, substrates, and medical devices. See, for example, U.S. Patent Nos. 6,703,046, 6,270,779, 6,673,338, 6,200,558, 6,110,453, 5,718,892, 5,691,423, 5,676,963, 5,650,447, 5,632,981, 5,525,357, and 5,405,919.
  • Keefer et al. U.S. Patent Nos. 4,954,526; 5,039,705; 5,155,137; 5,208,233, 5,525,357, 5,405,919, 5,718,892, 5,676,963, and 6,110,453 and related patents and patent applications, all of which are incorporated herein by reference
  • Smith et al. U.S. Patent No. 5,691,423 which is incorporated herein by reference
  • nucleophile residue preferably is a primary amine, a secondary amine, or a polyamine.
  • nucleophile residue preferably is a primary amine, a secondary amine, or a polyamine.
  • adducts offer many advantages over other currently available nitric oxide-releasing compounds, one disadvantage presented by the use of such adducts as pharmaceutical agents is the potential risk of release of nitrosamines, which are carcinogenic, upon decomposition and release of NO.
  • Another disadvantage of the adducts of primary amines is that they can be unstable even as solids due to a tendency to form traces of potentially explosive diazotates.
  • nitric oxide-releasing polymers such as polysaccharides, or small molecules, such as monosaccharides and disaccharides, that exhibit a sustained release of nitric oxide and can be readily prepared during the processing of commercially available material containing monosaccharides, disaccharides, polysaccharides, or any combination thereof.
  • medicines and medical devices capable of releasing NO for an efficacious duration. Such a medicine or device is useful for treating biological disorders.
  • the invention relates to polymeric or small molecule compounds capable of releasing nitric oxide wherein the compounds comprise monosaccharides, disaccharides, polysaccharides, or any combination thereof, oxygen-substituted derivatives of the described mono-, di ⁇ , and poly-saccharides, as well as other variants of mono-, di-, and polysaccharides such as aminosugars and the like as understood by those of skill in the art, for convenience referred to as "a saccharide,” and at least one diazeniumdiolate (a nitric oxide- releasing [N 2 O 2 " ] functional group), which is bonded directly to a carbon atom of the saccharide, methods of using the same, and a method for preparing the same.
  • the nitric oxide-releasing saccharides are capable of releasing nitric oxide when the nitric oxide- releasing saccharide is exposed to pH 7.4 phosphate buffer at 37 0 C.
  • the present invention provides an advantage over the prior art in that compounds of the present invention comprise at least one [N 2 O 2 " ] functional group directly bonded to a carbon atom of a saccharide which does not require harsh treatment with mineral acids for NO release even though the compounds were prepared via a single step base-catalyzed replacement of acidic hydrogens with an NO releasing group. Further, the present invention does not require the use of a potentially hazardous nucleophile adduct to link an [N 2 O 2 " ] functional group to a carbon atom of the inventive saccharide compounds.
  • the inventive method can enhance existing industrial processes by incorporating at least one [N 2 O 2 " ] functional group on to a saccharide.
  • the present invention further provides a method of treating biological disorders for which dosage with nitric oxide would be beneficial which comprises administering a compound comprising a saccharide, including a polymeric or small molecule compound, such as a monosaccharide, disaccharide, or polysaccharide and nitric oxide-releasing [N 2 O 2 " ] functional group bonded directly to a carbon atom of the saccharide such that the diazeniumdiolated saccharide is capable of releasing a therapeutically effective amount of nitric oxide.
  • a saccharide including a polymeric or small molecule compound, such as a monosaccharide, disaccharide, or polysaccharide and nitric oxide-releasing [N 2 O 2 " ] functional group bonded directly to a carbon atom of the saccharide such that the diazeniumdiolated saccharide is capable of releasing a therapeutically effective amount of nitric oxide.
  • Figure 1 The time course NO release profile from the diazeniumdiolated cotton of Example 2.
  • Figure 2 The time course NO release profile from the diazeniumdiolated cotton fabric of Example 3.
  • Figure 3 (a) A short term time course NO release profile from the diazeniumdiolated regenerated cellulose membrane of Example 4; (b) A long term time course NO release profile from the diazeniumdiolated regenerated cellulose membrane of Example 4.
  • Figure 4 The time course NO release profile from the diazeniumdiolated glycogen of Example 5.
  • Figure 5 The time course NO release profile from the diazeniumdiolated corn starch of Example 6.
  • Figure 6 (a) A short term time course NO release profile from the diazeniumdiolated 2,3,4,6-tetramethyl-D-glucose of Example 8; (b) A long term time course NO release profile from the diazeniumdiolated 2,3,4,6-tetramethyl-D-glucose of Example 8.
  • the invention provides a compound capable of releasing nitric oxide comprising a monosaccharide, disaccharide, or polysaccharide, collectively referred to as "a saccharide," and at least one diazeniumdiolate (a nitric oxide-releasing [N 2 O 2 " ] functional group) bonded directly to one or more carbon atoms of a saccharide.
  • the [N 2 O 2 " ] functional group is bonded directly to one or more carbon atoms of a saccharide via attachment at one of the nitrogen groups of the diazeniumdiolate [-N(O)NO].
  • the [N 2 O 2 " ] functional group does not require a nucleophilic group or other linking group bonded to the [N 2 O 2 " ] functional group in order for the [N 2 O 2 " ] functional group to bond to the carbon atom of a saccharide.
  • a saccharide is defined as a carbohydrate, and in the case of monosaccharides, a simple sugar. Monosaccharides are classified by the number of carbon atoms they contain (e.g. triose, tetrose, pentose, hexose and heptose) and by the active group, which is either an aldehyde or a ketone. Further, each carbon atom that supports a hydroxyl group (except for the first and last) is chiral, giving rise to a number of isomeric forms all with the same chemical formula.
  • monosaccharides are classified by the number of carbon atoms they contain (e.g. triose, tetrose, pentose, hexose and heptose) and by the active group, which is either an aldehyde or a ketone. Further, each carbon atom that supports a hydroxyl group (except for the first and last) is chiral, giving rise to a
  • monosaccharides include, but are not limited to galactose, glucose, erythrose, threose, ribose, arabinose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose, glyceraldehyde, psicose, sorbose, tagatose, glucosamine, N-acetylglucosamine, N-acetylneuraminic acid (sialic acid), gluconolactone, inositol, sorbitol, 2,3,4,6- tetramethylglucose, and 2,3,4,6-tetrabenzylglucose.
  • monosaccharides form cyclic structures, which predominate in aqueous solution, but also exist as open-chain structures. The two forms exist in equilibrium. Dissacharides are defined as two monosaccharides bonded via a condensation reaction. Polysaccharides (sometimes called glycans) are relatively complex carbohydrates made up of many monosaccharides joined together by glycosidic linkages. They are typically very large, often branched, molecules. When all the constituent monosaccharides of the polysaccharide are of the same type they are termed homopolysaccharides; when more than one type of monosaccharide is present they are termed heteropolysaccharides.
  • saccharide also includes various oxygen-substituted derivatives of the described mono-, di-, and poly-saccharides, as well as other variants of mono-, di-, and poly-saccharides such as the aminosugars and the like as understood by those skilled in the art.
  • nitric oxide-releasing saccharides described herein can be prepared by the base-catalyzed reaction of a nitric oxide-releasing [N 2 O 2 " ] functional group with a saccharide, preferably, a monosaccharide, disaccharide, or polysaccharide, and more preferably, the saccharide also comprises a reducing sugar, such as glucose, which is converted to a nitric oxide-releasing diazeniumdiolate.
  • the [N 2 O 2 " ] functional group is bonded directly to one or more carbon atoms of a saccharide in the present inventive compounds there is no linking group or additional nucleophile such as a primary amine, a secondary amine, or a polyamine.
  • the absence of a linking group or nitrogen-bound nucleophile adduct eliminates the potential risk of such adducts releasing potentially harmful by-products such as carcinogenic nitrosamines.
  • nitric oxide may react with a saccharide via different mechanisms to produce the diazeniumdiolate-containing inventive compounds.
  • the materials of the present invention may contain mixtures of the many possible molecular structures.
  • the present invention provides a nitric oxide-releasing saccharide, wherein at least one [N 2 O 2 " ] functional group is directly attached to at least one carbon atom of a monosaccharide, disaccharide, or polysaccharide or even a by-product of the mono-, di-, or poly-saccharide that may result from chain opening or other reaction mechanisms that occur when a saccharide is exposed to nitric oxide in the presence of a base.
  • the invention includes a polysaccharide comprising multiple terminal saccharides, wherein [N 2 O 2 " ] functional groups are attached directly at least one to at least one carbon atom of the terminal saccharide.
  • each terminal saccharide of a polysaccharide, monosaccharide, or disaccharide can be diazeniumdiolated with numerous [N 2 O 2 " ] functional groups.
  • Nitric oxide detection can be determined using known techniques such as those described in U.S. Patent Nos. 6,511,991 and 6,379,660; Keefer, et al., "NONOates(l- Substituted Diazen-l-ium-1, 2 diolates) as Nitric Oxide Donors: Convenient Nitric Oxide Dosage Forms," Methods in Enzymology, 28: 281-293 (1996); Horstmann et al., “Release of nitric oxide from novel diazeniumdiolates monitored by laser magnetic resonance spectroscopy," Nitric Oxide, 6(2): 135-41 (2002); and Kitamura et al., "In vivo nitric oxide measurements using a microcoaxial electrode,” Methods MoI.
  • the amount of NO produced can be detected by a chemiluminescence method, electrochemical method, absorbance method, and/or the Griess assay (Schmidt et al., In Methods in Nitric Oxide Research; Feelisch, M.; Stamler, J., Eds.; "Determination of nitrite and nitrate by the Griess reaction.” John Wiley and Sons, Ltd.: New York; 1996; pp. 491-497).
  • nitric oxide assay kits are commercially available.
  • the present invention provides the inventive method of incorporating [N 2 O 2 " ] functional groups to base-catalyzed reactions to enhance existing industrial processes by bonding [N 2 O 2 " ] functional groups to saccharides found in materials, such as cotton, starches, celluloses and the like, since the processing of such materials frequently involves treatment with a base, increasing the number of terminal saccharides for diazeniumdiolates to bind.
  • a diazeniumdiolated saccharide of the inventive compounds may be modified or derivatized.
  • the saccharide of the inventive compounds comprises a reducing sugar or is capable of at least partial hydrolysis to create at least one reducing sugar.
  • saccharides comprising a reducing sugar or capable of at least partial hydrolysis to create reducing sugars include, but are not limited to, glucose, mannose, galactose, maltose, shikimic acid, lactose, ribose, erythrose, threose, xylose, cellobiose, cotton, paper, starch, cellulose, rayon, dextran, collagen, heparin, trehalose, turanose, amylase, amylopectin, xanthan, tragaganth, pullulan, pectin, guaran, gum Arabic (acacia), agar, alginate, carrageenan, chitin, chitosan, cyclodextrins, chondroitin, and hyaluronic acid.
  • the starting saccharide may be wholely or partially O-alkylated (examples include methylcellulose, ethylcellulose, carboxymethylcellulose).
  • the term saccharide is also intended to include high molecular weight glycoproteins and glycolipids, since partial hydolysis can result in the conversion of these into suitable substrates for diazeniumdiolation.
  • saccharides suitable for use in the present invention are not narrowly critical, but rather will depend on the end use application. It will be appreciated by those skilled in the art that where the diazeniumdiolated saccharides and diazeniumdiolated saccharides compositions of the present invention are intended for topical, dermal, percutaneous, or similar use, they need not be biodegradable. For some uses, such as ingestion or the like, it may be desirable that the diazeniumdiolated saccharides compounds dissolve in a physiological environment or that it is biodegradable.
  • inventive compounds and compositions can be processed into nitric oxide-releasing applications including, but not limited to, wound-healing cotton gauze, dextran blood plasma substitutes, thromboresistent dialysis membranes and filters, cellulose films and membranes, antibacterial powders, laxatives, and saccharides that target glycoproteins on antigen surfaces.
  • nitric oxide-releasing applications including, but not limited to, wound-healing cotton gauze, dextran blood plasma substitutes, thromboresistent dialysis membranes and filters, cellulose films and membranes, antibacterial powders, laxatives, and saccharides that target glycoproteins on antigen surfaces.
  • diazeniumdiolated saccharides and diazeniumdiolated compositions and devices are useful for treating biological conditions where a release of nitric oxide is beneficial.
  • the diazeniumdiolated saccharides and diazeniumdiolated compositoins of the present invention will find utility in a wide variety of applications and in a wide variety of forms depending on the biological disorder to be treated with NO-releasing compounds.
  • the saccharide may itself be structurally sufficient to serve as an implant, patch, stent or the like.
  • the diazeniumdiolated saccharides and diazeniumdiolated compositions may be incorporated into polymer matrices, substrates or the like, or it may be microencapsulated, or the like.
  • a diazeniumdiolated saccharide forms that is capable of releasing nitric oxide over a period of time.
  • the release of nitric oxide can be either in vivo or ex vivo, depending on the ultimate use of the diazeniumdiolated saccharide.
  • the inventive compounds and compositions release nitric oxide at the intended site for treatment of a biological disorder.
  • the present invention provides a method of releasing nitric oxide from a nitric oxide-releasing saccharide comprising at least one nitric oxide releasing N 2 O 2 " group, wherein the N 2 O 2 " group is attached directly to a carbon atom of the saccharide.
  • the release of NO is under physiological conditions.
  • the release of NO can occur in vivo or ex vivo at about 37 0 C and pH about 7, preferably 7.4.
  • a diazeniumdiolated saccharide in accordance with the present invention can release NO and it preferably releases NO over a period of at least about 20 minutes, more preferably at least about 1 hour, more preferably at least about 5 hours, and most preferably at least about 1 day.
  • the invention provides for a method for preparing a dizeniumdiolated saccharide.
  • a strong base is used to catalyze the reaction.
  • nitric oxide (NO) releasing materials derived, at least in part, from monosaccharides, disaccharides, polysaccharides, and combinations thereof can be prepared as follows: a solution or slurry, as appropriate, of the desired saccharide compound or a suitable derivative thereof is prepared in a solution of sodium methoxide or other strong base in methanol contained in a Parr pressure bottle.
  • Nitrogen, argon, or other inert gas is passed through the apparatus and bubbled through the solution for a time sufficient to create an inert environment.
  • the bottle is placed into the reactor system (see, for example, Hrabie et al., J. Org. Chem., 58, 1472 (1993)), further flushed with inert gas, and vented, and nitric oxide gas is admitted to a pressure suitable for reacting with the starting material.
  • the reaction is stirred for a time sufficient to allow the reaction to go to completion at room temperature with the addition of NO as needed to maintain the reservoir pressure. Excess NO is then vented, and inert gas is bubbled through the resultant solution for several minutes.
  • any suitable base can be used; a suitable base is considered a base that can initiate the reaction without itself reacting directly with NO.
  • the base is a metal alkoxide of the formula MOR, wherein M is a metal cation, and R is an unsubstituted or substituted C 1 .
  • R is methyl, more preferably R is trimethylsilyl.
  • Specific bases that can be used include sodium methoxide, potassium isopropoxide, sodium t- butoxide, potassium ⁇ -butoxide, lithium trimethylsilanoate, sodium trimethylsilanoate, and potassium trimethylsilanoate.
  • sodium hydroxide is a suitable base for initiating the reaction.
  • sodium hydroxide can be used to initiate the reaction using either an aqueous solution or as a solution/suspension in a suitable organic solvent.
  • the invention provides a pharmaceutical composition comprising at least one novel diazeniumdiolated saccharide.
  • the pharmaceutical composition further comprises a pharmaceutically acceptable carrier.
  • a mammal e.g., a mammal such as a human
  • suitable methods of administering the inventive compound to a mammal are known, and, although more than one route can be used to administer a particular compound, a particular route can provide a more immediate and more effective reaction than another route.
  • Pharmaceutically acceptable carriers are also well known to those who are skilled in the art. The choice of carrier will be determined, in part, both by the particular compound and by the particular method used to administer the compound. Accordingly, there are a wide variety of suitable formulations of the pharmaceutical composition of the present invention.
  • inventive compound can further comprise formulations suitable for oral, inhalation, or parenteral administration
  • Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the diazeniumdiolated saccharide dissolved in diluents, such as water or saline, (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as solids or granules, (c) suspensions in an appropriate liquid, and (d) suitable emulsions.
  • Tablet forms can include one or more of lactose, mannitol, cornstarch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible carriers.
  • these normally-used compounding agents are themselves saccharides which may be converted into their nitric oxide-releasing forms for compounding with NSAIDs or other drugs to alleviate stomach irritation on consumption.
  • Lozenge forms can comprise the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, such carriers as are known in the art.
  • a flavor usually sucrose and acacia or tragacanth
  • pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, such carriers as are known in the art.
  • the diazeniumdiolated saccharides of the present invention can be made into aerosol formulations to be administered via inhalation. These aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
  • Formulations suitable for parenteral administration include aqueous and nonaqueous solutions, isotonic sterile injection solutions, which can contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
  • the formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, water, for injections, immediately prior to use.
  • Extemporaneous injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
  • the dose administered to a mammal, particularly a human, in the context of the present invention should be sufficient to effect a therapeutic response in the mammal over a reasonable time frame.
  • the dose will be determined by the strength of the particular compounds employed (taking into consideration, at least, the rate of NO evolution, the extent of NO evolution, and the bioactivity of any decomposition products derived from the diazeniumdiolates) and the condition of the mammal (e.g., human), as well as the body weight of the mammal (e.g., human) to be treated.
  • the size of the dose also will be determined by the existence, nature, and extent of any adverse side effects that might accompany the administration of a particular composition.
  • a suitable dosage for internal administration is 0.01 to 100 mg/kg per day.
  • a preferred dosage is 0.01 to 35 mg/kg per day. A more preferred dosage is 0.05 to 5 mg/kg per day.
  • a suitable concentration in pharmaceutical compositions for topical administration is 0.05 to 15% (by weight). A preferred concentration is from 0.02 to 5%. A more preferred concentration is from 0.1 to 3%.
  • a nitric oxide-releasing saccharide of the present invention can be bound to a substrate.
  • the diazeniumdiolated saccharide can be contacted with a substrate, in which, preferably, the substrate has moieties that allow for chemical bonding of the nitric oxide- releasing saccharide. See, for example, U.S. Patent Nos. 6,703,046, 6,528,107, and 6,270,779, which are incorporated herein in their entirety.
  • the substrate can be of any suitable biocompatible material, such as metal, glass, ceramic, plastic, or rubber.
  • the substrate is metal or rubber.
  • the substrate used in the preparation of the medical device can be derived from any suitable form of a biocompatible material, such as, for example, a sheet, a fiber, a tube, a fabric, an amorphous solid, an aggregate, dust, or the like.
  • Metal substrates suitable for use in the invention include, for example, stainless steel, nickel, titanium, tantalum, aluminum, copper, gold, silver, platinum, zinc, Nitinol, inconel, iridium, tungsten, silicon, magnesium, tin, alloys, coatings containing any of the above, and combinations of any of the above. Also included are such metal substrates as galvanized steel, hot dipped galvanized steel, electrogalvanized steel, annealed hot dipped galvanized steel, and the like.
  • the metal substrate is stainless steel.
  • Glass substrates suitable for use in the invention include, for example, soda lime glass, strontium glass, borosilicate glass, barium glass, glass-ceramics containing lanthanum as well as combinations thereof.
  • Ceramic substrates suitable for use in the invention include, for example, boron nitrides, silicon nitrides, aluminas, silicas, combinations thereof, and the like.
  • Plastic substrates suitable for use in the invention include, for example, acrylics, acrylonitrile-butadiene-styrene, acetals, polyphenylene oxides, polyimides, polystyrene, polypropylene, polyethylene, polytetrafluoroethylene, polyvinylidene, polyethylenimine, polyesters, polyethers, polyamide, polyorthoester, polyanhydride, polyether sulfone, polycaprolactone, polyhydroxy-butyrate valerate, polylactones, polyurethanes, polycarbonates, polyethylene terephthalate, as well as copolymers and combinations thereof.
  • Typical rubber substrates suitable for use in the invention include, for example, silicones, fluorosilicones, nitrile rubbers, silicone rubbers, fluorosilicone rubbers, polyisoprenes, sulfur- cured rubbers, butadiene-acrylonitrile rubbers, isoprene-acrylonitrile rubbers, and the like.
  • the substrate could also be a protein, an extracellular matrix component, collagen, fibrin or another biologic agent or a mixture thereof.
  • Silicones, fluorosilicones, polyurethanes, polycarbonates, polylactones, and mixtures or copolymers thereof are preferred plastic or rubber substrates because of their proven bio- and hemocompatability when in direct contact with tissue, blood, blood components, or bodily fluids.
  • Suitable substrates include those described in WO 00/63462 and U.S. Patent No. 6,096,070, and incorporated herein by reference.
  • the present invention can comprise medical devices which are capable of releasing nitric oxide when in use, but which are otherwise inert to nitric oxide release.
  • the diazeniumdiolated saccharide with the addition of plasticizers, lubricants, gelling agents, adhesives, or other such materials as may be required, can form the medical device itself.
  • a “medical device” includes any device having surfaces that contact tissue, blood, or other bodily fluids in the course of their use or operation, which are found on or are subsequently used within a mammal.
  • Medical devices include, for example, extracorporeal devices for use in surgery, such as blood oxygenators, blood pumps, blood storage bags, blood collection tubes, blood filters including filtration media, dialysis membranes, tubing used to carry blood and the like which contact blood which is then returned to the patient or mammal.
  • Medical devices also include endoprostheses implanted in a mammal (e.g., a human), such as vascular grafts, stents, pacemaker leads, surgical prosthetic conduits, heart valves, and the like, that are implanted in blood vessels or the heart.
  • Medical devices also include devices for temporary intravascular use such as catheters, guide wires, amniocentesis and biopsy needles, cannulae, drainage tubes, shunts, sensors, transducers, probes and the like which are placed into the blood vessels, the heart, organs or tissues for purposes of monitoring or repair or treatment.
  • Medical devices also include prostheses such as artificial joints such as hips or knees as well as artificial hearts.
  • medical devices include penile implants, condoms, tampons, sanitary napkins, ocular lenses, sling materials, sutures, hemostats used in surgery, antimicrobial materials, surgical mesh, transdermal patches, and wound dressings/bandages.
  • nitric oxide has been shown to inhibit platelet aggregation (e.g., WO 93/05773)
  • the nitric oxide-releasing polymer of the invention is useful in laboratory and medical applications and procedures that involve contact with blood.
  • the NO-releasing polymeric material can be used in vivo, for example, to line or form blood-contacting surfaces of an in-dwelling device such as a pacemaker, an implantable pulse generator (IPG), an implantable cardiac defibrillator (ICD), a pacemaker cardioverter defibrillator (PCD), a defibrillator, a spinal stimulator, a brain stimulator, a sacral nerve stimulator, a stent, a catheter, a lead, or a chemical sensor.
  • Examples of chemical sensors include optical or electrochemical sensors that can continuously monitor or measure physiologically important ions (H + , K + , Na + , etc.) and gases, such as CO 2 and O 2 , in the blood.
  • Ex vivo applications include incorporation of the nitric oxide releasing polymeric material into the blood- contacting surfaces of extracorporeal sensors and circulation devices such as blood oxygenators.
  • extracorporeal membrane oxygenation is a means in which blood is oxygenated outside the body.
  • ECMO takes over the work of the lungs and is often used for newborn babies whose lungs are failing despite other treatments.
  • the procedure involves inserting plastic tubes called cannulae into the vein and artery of the neck and/or groin.
  • the anticoagulant heparin is given to patients on ECMO to prevent clotting in the ECMO tubing and/or the development of clots on the membrane which could break off and migrate to the lungs or brain.
  • the most common side effect of heparin is bleeding.
  • the nitric oxide-releasing saccharide compounds of the present invention have utility in combination with or as a heparin-derivative to reduce or inhibit platelet aggregation or adherence. Similar problems with clotting of membranes and filters used in dialysis procedures can be solved by constructing these materials from the compounds of the present invention.
  • Nitric oxide-releasing saccharide compounds of the present invention are useful for the treatment of many biological disorders.
  • the present invention provides methods of using a nitric oxide-releasing saccharide compound of the invention.
  • a method of treating a mammal, e.g., a human, with a biological disorder treatable with nitric oxide is provided.
  • the method comprises administering to the mammal (e.g., human), in need thereof a diazeniumdiolated saccharide compound before exposure to nitric oxide, a composition thereof, or a saccharide-containing medical device in an amount sufficient to treat the biological disorder in the mammal (e.g., human).
  • the method for treating a biological disorder in a mammal in which dosage with nitric oxide is beneficial comprises administering to a specific location on or within the mammal a medical device comprising a nitric oxide-releasing saccharide and at least one nitric oxide releasing N 2 O 2 " group, wherein the N 2 O 2 " group is attached directly to a carbon atom in the saccharide backbone, in an amount sufficient to release a therapeutically effective amount of nitric oxide.
  • the treatment can be prophylactic or therapeutic.
  • prophylactic is meant any degree in inhibition of the onset of the biological disorder, including complete inhibition.
  • therapeutic is meant any degree in inhibition of the progression of the biological disorder in the mammal (e.g., human).
  • biological disorder can be any biological disorder, so long as the disorder is treatable with nitric oxide. Suitable biological disorders include hypertension, restenosis, cancer, impotency, platelet aggregation, and a biological disorder due to a genetic defect or infection with an infectious agent, such as a virus, bacterium, fungus or parasite.
  • polymers of the present invention can be used to promote the growth of new blood vessels and capillaries in a process known as angiogenesis.
  • the NO- releasing polymers of the present invention may also be used to reduce inflammation and promote healing when used as a coating or substrate for implantable medical devices.
  • the present invention provides a method for promoting angiogenesis in a tissue of a mammal in need thereof.
  • the method comprises either applying or administering to the mammal a medical device comprising a nitric oxide-releasing saccharide and at least one nitric oxide releasing N 2 O 2 " group, wherein the N 2 O 2 " group is attached directly to a carbon atom in the saccharide backbone, to a specific location on or within the mammal in an amount effective to promote angiogenesis in the tissue.
  • Conditions that can be treated in accordance with this method of the invention are characterized by insufficient vascularization (or predisposition thereto) of the affected tissue, i.e., conditions in which neovascularization is needed to achieve sufficient vascularization in the affected tissue, and include, for example, diabetic ulcers, gangrene, surgical or other wounds requiring neovascularization to facilitate healing; Buerger's syndrome; hypertension; ischemic diseases including, for example, cerebrovascular ischemia, renal ischemia, pulmonary ischemia, limb ischemia, ischemic cardiomyopathy, myocardial ischemia, ischemia of tissues such as, for example, muscle, brain, kidney and lung; and other conditions characterized by a reduction in microvasculature.
  • Exemplary tissues in which angiogenesis can be promoted include: hypertension; ulcers (e.g., diabetic ulcers); surgical wounds; ischemic tissue, i.e., a tissue having a deficiency in blood as the result of an ischemic disease including, for example, muscle, brain, kidney and lung; ischemic diseases including, for example, cerebrovascular ischemia, renal ischemia, pulmonary ischemia, limb ischemia, ischemic cardiomyopathy, and myocardial ischemia.
  • ischemic tissue i.e., a tissue having a deficiency in blood as the result of an ischemic disease including, for example, muscle, brain, kidney and lung
  • ischemic diseases including, for example, cerebrovascular ischemia, renal ischemia, pulmonary ischemia, limb ischemia, ischemic cardiomyopathy, and myocardial ischemia.
  • This example describes a generalized method of preparing nitric oxide (NO)- releasing materials derived from monosaccharides, disaccharides, or polysaccharides.
  • a solution or slurry (as appropriate) of the desired monosaccharide, disaccharide, or polysaccharide or a suitable derivative thereof was prepared in a solution of sodium methoxide or other strong base in methanol contained in a Parr pressure bottle. Nitrogen, argon, or other inert gas was passed through the apparatus and bubbled through the solution for 5-10 min, the bottle was placed into the reactor system ⁇ see Hrabie et al., J. Org. Chem., 58, 1472 (1993)), further flushed with inert gas, and vented, and nitric oxide gas was admitted to a pressure of 5 atm.
  • the reaction was stirred for 54-3 days at room temperature with the addition of NO as needed during the first day to maintain the reservoir pressure. Excess NO was then vented, and inert gas was bubbled through the resultant solution for 5 min.
  • the product was isolated either by filtration or by concentration of the solution on a rotary evaporator, washed with methanol and/or ethyl ether, and dried in vacuo for several hours or overnight, as appropriate. These materials were stored in glass jars in a refrigerator until required for experimentation.
  • EXAMPLE 2 [0063] This example describes a method of preparing a NO-releasing cotton fabric.
  • a solution of sodium methoxide in methanol was prepared by adding 25 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma- Aldrich) to 200 mL of anhydrous methanol contained in a 500 mL glass Parr hydrogenation bottle. To this was added several square pieces of 100% cotton fabric having a total weight of about 2 g, and the resulting slurry was treated with NO for 40 h as described in Example 1. The cotton pieces were removed with tongs, washed several times with methanol, squeezed dry between absorbent paper towels, and placed in a vacuum desiccator overnight for complete drying. The resulting slightly off-white pieces still weighed about 2 g, and were slightly less soft when compared to the starting fabric
  • EXAMPLE 3 This example describes another method of preparing a NO-releasing cotton fabric.
  • a solution of 8.0 g of commercial sodium hydroxide pellets (0.2 mole) in 200 mL distilled water was prepared in a 500 mL glass Parr hydrogenation bottle. To this was added several square pieces of 100% cotton fabric having a total weight of about 0.66 g, and the resulting slurry was treated with NO for 23 h as described in Example 1. The cotton pieces were removed with tongs, washed several times with water, squeezed dry between absorbent paper towels, and placed in a vacuum desiccator overnight for complete drying. The resulting off-white pieces still weighed about 0.66 g, and were slightly less soft when compared to the starting fabric. EXAMPLE 4
  • This example describes a method of preparing a NO-releasing regenerated cellulose membrane.
  • a solution of sodium methoxide in methanol was prepared by adding 50 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma- Aldrich) to 300 mL of anhydrous methanol contained in a 500 mL glass Parr hydrogenation bottle. To this was added several pieces of Spectra/Por® membrane dialysis tubing having a MW cutoff of 12-14,000 (Spectrum Medical Industries, Inc.; Houston, TX), and the resulting slurry was treated with NO for 72 h as described in Example 1. The pieces were allowed to settle to the bottom, the solvent was decanted, and they were rinsed three times with methanol. After drying in a vacuum desiccator overnight, the clear membrane pieces had a slight brown tinge.
  • EXAMPLE 5 [0069] This example describes a method of preparing a NO-releasing glycogen.
  • a solution of sodium methoxide in methanol was ( prepared by adding 5 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma- Aldrich) to 100 mL of anhydrous methanol contained in a 500 mL glass Parr hydrogenation bottle. To this was added 5.00 g of oyster glycogen (U.S. Biochemicals cat. no. 16445), and the resulting slurry was treated with NO for 16 h as described in Example 1. The product was isolated by filtration, washed with methanol then ethyl ether, and dried in a vacuum overnight to yield 4.77 g of off-white powder.
  • EXAMPLE 6 This example describes a method of preparing a NO-releasing corn starch.
  • a solution of sodium methoxide in methanol was prepared by adding 25 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma- Aldrich) to 150 mL of anhydrous methanol contained in a 500 mL glass Parr hydrogenation bottle. To this was added 5.00 g corn starch, and the resulting slurry was treated with NO for 68 h as described in Example 1. The product was isolated by filtration, washed with methanol, and dried in a vacuum overnight to yield 5.00 g of off-white powder.
  • EXAMPLE 7 This example describes a method of preparing a NO-releasing glucose derivative.
  • This example describes another method of preparing a NO-releasing glucose derivative.
  • This example describes a method of preparing a NO-releasing cellobiose derivative.
  • This example describes a generalized method of detecting nitric oxide (NO)- release from NO-releasing materials derived from monosaccharides, disaccharides or polysaccharides.
  • the diazeniumdiolated saccharide was slurried in pH 7.4 phosphate buffer at 37 0 C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
  • This example describes a method of detecting NO-release from the diazeniumdiolated cotton of Example 2.
  • Example 2 The diazeniumdiolated cotton fabric of Example 2 was slurried in pH 7.4 phosphate buffer at 37 0 C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
  • This example describes a method of detecting NO-release from the diazeniumdiolated cotton of Example 3.
  • Example 3 The diazeniumdiolated cotton fabric of Example 3 was slurried in pH 7.4 phosphate buffer at 37 0 C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
  • This example describes a method of detecting NO-release from the diazeniumdiolated regenerated cellulose membrane of Example 4.
  • the diazeniumdiolated regenerated cellulose membrane of Example 4 was slurried in pH 7.4 phosphate buffer at 37 0 C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
  • This example describes a method of detecting NO-release from the diazeniumdiolated glycogen of Example 5 regenerated.
  • Example 5 The diazeniumdiolated glycogen of Example 5 was slurried in pH 7.4 phosphate buffer at 37 0 C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
  • This example describes a method of detecting NO-release from the diazeniumdiolated corn starch of Example 6.
  • Example 6 The diazeniumdiolated corn starch of Example 6 was slurried in pH 7.4 phosphate buffer at 37 0 C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
  • This example describes a method of detecting NO-release from the diazeniumdiolated 2,3,4,6-tetramethyl-D-glucose of Example 8.
  • Example 8 The diazeniumdiolated 2,3,4,6-tetramethyl-D-glucose of Example 8 was slurried in pH 7.4 phosphate buffer at 37 0 C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
  • This example describes a method of detecting NO-release from the diazeniumdiolated cellobiose of Example 9.
  • the diazeniumdiolated cellobiose of Example 9 was slurried in pH 7.4 phosphate buffer at 37 0 C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention relates to compounds capable of releasing nitric oxide wherein the compounds comprise a saccharide and at least one nitric oxide-releasing diazeniumdiolate [N2O2] functional group, which is bonded directly to a carbon atom of the saccharide, and methods for preparing the same. The invention further comprises the treatment of biological disorders treatable by the administration of nitric oxide.

Description

POLYSACCHARIDE-DERIVED NITRIC OXIDE-RELEASING CARBON-BOUND DIAZENIUMDIOLATES
BACKGROUND OF THE INVENTION
[0001] Nitric oxide (NO) has been implicated as part of a cascade of interacting agents involved in a wide variety of bioregulatory processes, including the physiological control of blood pressure, macrophage-induced cytostasis and cytotoxicity, and neurotransmission (Moncada et al., "Nitric Oxide from L-Arginine: A Bioregulatory System," Excerpta Medica, International Congress Series 897, Elsevier Science Publishers BJL: Amsterdam (1990); Marietta et al., Biofactors 2: 219-225 (1990); Ignarro, Hypertension (Dallas) 16: 477-483 (1990); Kerwin et al., J. Med. Chem. 38: 4343-4362 (1995); and Anggard, Lancet 343: 1199- 1206 (1994)). Given that NO plays a role in such a wide variety of bioregulatory processes, great effort has been expended to develop compounds and devices thereof capable of releasing NO to treat biological disorders such as restenosis. Some of these compounds are capable of releasing NO spontaneously, e.g., by hydrolysis in aqueous media, whereas others are capable of releasing NO upon being metabolized (Lefer et al., Drugs Future 19: 665-672 (1994)).
[0002] Methods to regulate endogenous NO release have primarily focused on activation of enzymatic pathways with excess NO metabolic precursors like L-arginine and/or increasing the local expression of nitric oxide synthase (NOS) using gene therapy. United States Patent Nos. 5,945,452, 5,891,459, and 5,428,070 describe the sustained NO elevation using orally administrated L-arginine and/or L-lysine while United States Patent Nos. 5,268,465, 5,468,630, and 5,658,565 describe various gene therapy approaches. Other various gene therapy approaches have been described in the literature. See, e.g., Smith et al., "Gene Therapy for Restenosis," Curr. Cardiol. Rep., 2(1): 13-23 (2000); Alexander et al., "Gene Transfer of Endothelial Nitric Oxide Synthase but not Cu/Zn Superoxide Dismutase restores Nitric Oxide Availability in the SHRSP," Cardiovasc. Res., 47(3): 609-617 (2000); Channon et al., "Nitric Oxide Synthase in Atherosclerosis and Vascular Injury: Insights from Experimental Gene Therapy," Arterioscler. Thromb. Vase. Biol, 20(8): 1873-1881 (2000); Tanner et al., "Nitric Oxide Modulates Expression of Cell Cycle Regulatory Proteins: A Cytostatic Strategy for Inhibition of Human Vascular Smooth Muscle Cell Proliferation," Circulation, 101(16): 1982-1989 (2000); Kibbe et al., "Nitric Oxide Synthase Gene Therapy in Vascular Pathology," Semin. Perinatol, 24(1): 51-54 (2000); Kibbe et al., "Inducible Nitric Oxide Synthase and Vascular Injury," Cardiovasc. Res., 43(3): 650-657 (1999); Kibbe et al., "Nitric Oxide Synthase Gene Transfer to the Vessel Wall," Curr. Opin. Nephrol. Hypertens., 8(1): 75-81 (1999); Vassalli et al., "Gene Therapy for Arterial Thrombosis," Cardiovasc. Res., 35(3): 459-469 (1997); and Yla-Herttuala, "Vascular Gene Transfer," Curr. Opin. Lipidol, 8(2): 72-76 (1997). In the case of preventing restenosis, however, these methods have not proved clinically effective. Similarly, regulating endogenously expressed NO using gene therapy techniques such as NOS vectors remains highly experimental. Also, there remain significant technical hurdles and safety concerns that must be overcome before site-specific NOS gene delivery will become a viable treatment modality.
[0003] The exogenous administration of gaseous nitric oxide is not feasible due to the highly toxic, short-lived, and relatively insoluble nature of NO in physiological buffers. As a result, the clinical use of gaseous NO is largely restricted to the treatment of neonates with conditions such as persistent pulmonary hypertension (Weinberger et al., "The Toxicology of Inhaled Nitric Oxide," Toxicol. ScL, 59(1): 5-16 (2001); Kinsella et al., "Inhaled Nitric Oxide: Current and Future Uses in Neonates," Semin. Perinatol, 24(6): 387-395 (2000); and Markewitz et al., "Inhaled Nitric Oxide in Adults with the Acute Respiratory Distress Syndrome," Respir. Med., 94(11): 1023-1028 (2000)). Alternatively, however, the systemic delivery of exogenous NO with such prodrugs as nitroglycerin has long enjoyed widespread use in the medical management of angina pectoris or the "chest pain" associated with atherosclerotically narrowed coronary arteries. There are problems with the use of agents such as nitroglycerin. Because nitroglycerin requires a variety of enzymes and cofactors in order to release NO, repeated use of this agent over short intervals produces a diminishing therapeutic benefit. This phenomenon is called drug tolerance and results from the near or complete depletion of the enzymes/cofactors needed in the blood to efficiently convert nitroglycerin to a NO-releasing species. By contrast, if too much nitroglycerin is initially given to the patient, it can have devastating side effects including severe hypotension and free radical cell damage. Likewise, the use of nitrocellulose, a polymer analog of nitroglycerin, possesses potentially similar hazards as a source of NO, for example, as described in U.S. Published Patent Application 2004/0033242 Al, published February 19, 2004. [0004] One potential method for overcoming the disadvantages associated with NO prodrug administration is to provide NO-releasing therapeutics that do not require activation by endogenous enzyme systems. Early efforts to provide NO-releasing compounds suitable for in vivo use were described in U.S. Patent No. 4,954,526.
[0005] Diazeniumdiolates comprise a diverse class of NO-releasing compounds/materials that are known to exhibit sufficient stability to be useful as therapeutics. Although discovered more than 100 years ago by Traube et al. (Liebigs Ann. Chem., 300: 81-128 (1898)), the chemistry and properties of diazeniumdiolates have been extensively reinvestigated by Keefer and co-workers, as described in United States Patent Nos. 6,750,254, 6,703,046, 6,673,338, 6,610,660, 6,511,991, 6,379,660, 6,290,981, 6,270,779, 6,232,336, 6,200,558, 6,110,453, 5,910,316, 5,814,666, 5,814,565, 5,731,305, 5,721,365, 5,718,892, 5,714,511, 5,700,830, 5,691,423, 5,683,668, 5,676,963, 5,650,447, 5,632,981, 5,525,357, 5,405,919, 5,389,675, 5,366,997, 5,250,550, 5,212,204, 5,208,233, 5,185,376, 5,155,137, 5,039,705, and 4,954,526, and in Hrabie et al., J. Org. Chem., 58: 1472-1476 (1993), which are incorporated herein by reference.
[0006] Diazeniumdiolated compounds have been attached to polymers, substrates, and medical devices. See, for example, U.S. Patent Nos. 6,703,046, 6,270,779, 6,673,338, 6,200,558, 6,110,453, 5,718,892, 5,691,423, 5,676,963, 5,650,447, 5,632,981, 5,525,357, and 5,405,919.
[0007] Keefer et al. (U.S. Patent Nos. 4,954,526; 5,039,705; 5,155,137; 5,208,233, 5,525,357, 5,405,919, 5,718,892, 5,676,963, and 6,110,453 and related patents and patent applications, all of which are incorporated herein by reference) and Smith et al. (U.S. Patent No. 5,691,423 which is incorporated herein by reference) disclose, among others, the use of certain nucleophile/nitric oxide adducts as NO-releasing agents, i.e.,
_ H+
Nuc—N=N-0 Nuc + 2NO. O"
in which the nucleophile residue (Nuc) preferably is a primary amine, a secondary amine, or a polyamine. Although such adducts offer many advantages over other currently available nitric oxide-releasing compounds, one disadvantage presented by the use of such adducts as pharmaceutical agents is the potential risk of release of nitrosamines, which are carcinogenic, upon decomposition and release of NO. Another disadvantage of the adducts of primary amines is that they can be unstable even as solids due to a tendency to form traces of potentially explosive diazotates.
[0008] Furthermore, several types of compounds of the general structure
are known. See Hrabie and Keefer, Chem. Rev. 102, 1135-1154 (2002) for a review of diazeniumdiolate chemistry. Traube (Liebigs Ann. Chem. 300: 81-123 (1898)) reported the preparation of a number of such compounds and noted that treatment of the compounds with acid produced a "brown gas." Although brown gas suggests the release of NO, given that a brown gas also may be produced in the disproportionation of nitrite, the release of brown gas by the compounds prepared by Traube is not, in and of itself, evidence of NO release. Compounds of the structural type reported by Traube were believed to require harsh treatment with mineral acids to release any gas.
[0009] The prior art teaches that an [N2O2 "] functional group bonded to a carbon atom through the above-described Traube reaction releases NO only after harsh treatment with mineral acids, making such compounds incompatible with biological utility. Further, Smith et al. (U.S. Patent No. 5,691,423), for example, teaches the use of a nucleophile adduct in a two-step process to link a nitrogen-bound [N2O2 "] functional group to a carbon atom of a polysaccharide in order to obtain NO release. However, the compounds described in Smith et al. have the potential risks of releasing carcinogens upon decomposition and release of NO, and being relatively unstable. Finally, the prior art teaches another two-step process to link a nitrogen-bound [N2O2 "] functional group to a carbon atom of a polysaccharide. See Kugelman et al., J. Chem. Soc. Perkin I, 1113-1126 (1976). However, the method of Kugelman et al. results in the polysaccharide further comprising a reactive halogen atom.
[0010] Thus, despite the extensive literature available on NO and nitric oxide-releasing compounds, there remains a need for stable nitric oxide-releasing polymers, such as polysaccharides, or small molecules, such as monosaccharides and disaccharides, that exhibit a sustained release of nitric oxide and can be readily prepared during the processing of commercially available material containing monosaccharides, disaccharides, polysaccharides, or any combination thereof. Moreover, there exists a need for medicines and medical devices capable of releasing NO for an efficacious duration. Such a medicine or device is useful for treating biological disorders.
BRIEF SUMMARY OF THE INVENTION
[0011] The invention relates to polymeric or small molecule compounds capable of releasing nitric oxide wherein the compounds comprise monosaccharides, disaccharides, polysaccharides, or any combination thereof, oxygen-substituted derivatives of the described mono-, di~, and poly-saccharides, as well as other variants of mono-, di-, and polysaccharides such as aminosugars and the like as understood by those of skill in the art, for convenience referred to as "a saccharide," and at least one diazeniumdiolate (a nitric oxide- releasing [N2O2 "] functional group), which is bonded directly to a carbon atom of the saccharide, methods of using the same, and a method for preparing the same. The nitric oxide-releasing saccharides are capable of releasing nitric oxide when the nitric oxide- releasing saccharide is exposed to pH 7.4 phosphate buffer at 37 0C.
[0012] The present invention provides an advantage over the prior art in that compounds of the present invention comprise at least one [N2O2 "] functional group directly bonded to a carbon atom of a saccharide which does not require harsh treatment with mineral acids for NO release even though the compounds were prepared via a single step base-catalyzed replacement of acidic hydrogens with an NO releasing group. Further, the present invention does not require the use of a potentially hazardous nucleophile adduct to link an [N2O2 "] functional group to a carbon atom of the inventive saccharide compounds. Since the processing of raw materials, such as cotton, frequently involves treatment with a base, which increases the number of terminal saccharides in the treated cotton, the inventive method can enhance existing industrial processes by incorporating at least one [N2O2 "] functional group on to a saccharide. [0013] The present invention further provides a method of treating biological disorders for which dosage with nitric oxide would be beneficial which comprises administering a compound comprising a saccharide, including a polymeric or small molecule compound, such as a monosaccharide, disaccharide, or polysaccharide and nitric oxide-releasing [N2O2 "] functional group bonded directly to a carbon atom of the saccharide such that the diazeniumdiolated saccharide is capable of releasing a therapeutically effective amount of nitric oxide.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
[0014] Figure 1 - The time course NO release profile from the diazeniumdiolated cotton of Example 2.
[0015] Figure 2 - The time course NO release profile from the diazeniumdiolated cotton fabric of Example 3.
[0016] Figure 3 - (a) A short term time course NO release profile from the diazeniumdiolated regenerated cellulose membrane of Example 4; (b) A long term time course NO release profile from the diazeniumdiolated regenerated cellulose membrane of Example 4.
[0017] Figure 4 - The time course NO release profile from the diazeniumdiolated glycogen of Example 5.
[0018] Figure 5 - The time course NO release profile from the diazeniumdiolated corn starch of Example 6.
[0019] Figure 6 - (a) A short term time course NO release profile from the diazeniumdiolated 2,3,4,6-tetramethyl-D-glucose of Example 8; (b) A long term time course NO release profile from the diazeniumdiolated 2,3,4,6-tetramethyl-D-glucose of Example 8.
[0020] Figure 7 - The time course NO release profile from the diazeniumdiolated cellobiose of Example 9. DETAILED DESCRIPTION OF THE INVENTION
[0021] The invention provides a compound capable of releasing nitric oxide comprising a monosaccharide, disaccharide, or polysaccharide, collectively referred to as "a saccharide," and at least one diazeniumdiolate (a nitric oxide-releasing [N2O2 "] functional group) bonded directly to one or more carbon atoms of a saccharide. The [N2O2 "] functional group is bonded directly to one or more carbon atoms of a saccharide via attachment at one of the nitrogen groups of the diazeniumdiolate [-N(O)NO]. By "bonded directly to one or more carbon atoms of a saccharide," it is meant that the [N2O2 "] functional group does not require a nucleophilic group or other linking group bonded to the [N2O2 "] functional group in order for the [N2O2 "] functional group to bond to the carbon atom of a saccharide.
[0022] A saccharide is defined as a carbohydrate, and in the case of monosaccharides, a simple sugar. Monosaccharides are classified by the number of carbon atoms they contain (e.g. triose, tetrose, pentose, hexose and heptose) and by the active group, which is either an aldehyde or a ketone. Further, each carbon atom that supports a hydroxyl group (except for the first and last) is chiral, giving rise to a number of isomeric forms all with the same chemical formula. Examples of monosaccharides include, but are not limited to galactose, glucose, erythrose, threose, ribose, arabinose, xylose, lyxose, allose, altrose, mannose, gulose, idose, talose, glyceraldehyde, psicose, sorbose, tagatose, glucosamine, N-acetylglucosamine, N-acetylneuraminic acid (sialic acid), gluconolactone, inositol, sorbitol, 2,3,4,6- tetramethylglucose, and 2,3,4,6-tetrabenzylglucose. Most monosaccharides form cyclic structures, which predominate in aqueous solution, but also exist as open-chain structures. The two forms exist in equilibrium. Dissacharides are defined as two monosaccharides bonded via a condensation reaction. Polysaccharides (sometimes called glycans) are relatively complex carbohydrates made up of many monosaccharides joined together by glycosidic linkages. They are typically very large, often branched, molecules. When all the constituent monosaccharides of the polysaccharide are of the same type they are termed homopolysaccharides; when more than one type of monosaccharide is present they are termed heteropolysaccharides. The term saccharide also includes various oxygen-substituted derivatives of the described mono-, di-, and poly-saccharides, as well as other variants of mono-, di-, and poly-saccharides such as the aminosugars and the like as understood by those skilled in the art. [0023] Physical association or bonding of an [N2O2 "] functional group directly to one or more carbon atoms of a saccharide, provides nitric oxide-releasing saccharides which are capable of releasing nitric oxide when the nitric oxide-releasing saccharide is exposed to pH 7.4 phosphate buffer at 37°C. The nitric oxide-releasing saccharides described herein can be prepared by the base-catalyzed reaction of a nitric oxide-releasing [N2O2 "] functional group with a saccharide, preferably, a monosaccharide, disaccharide, or polysaccharide, and more preferably, the saccharide also comprises a reducing sugar, such as glucose, which is converted to a nitric oxide-releasing diazeniumdiolate.
[0024] Applicants believe that the reaction of NO with a saccharide can be represented as follows (Equation 1):
(Eq. 1)
[0025] While not wishing to be bound by any theory, it is believed that when a saccharide is exposed to nitric oxide in the presence of a base, there are multiple reactions by which the [N2O2 "] functional group may be forming at or bonding to the carbon atoms of saccharides potentially resulting in multiple forms of N2O2 " -modified saccharides, including, for example, open chain, modified mono-, di-, and poly-saccharides, closed ring saccharides and di- and poly-saccharides which are open and closed in the same molecule. By way of illustration only, treatment of a saccharide with a base can produce the open-chain enolate of the saccharide. The enolate-saccharide is susceptible to further tautomerization, allowing an [N2O2 "] functional group to bond at any carbon atom of the saccharide.
[0026] Because the [N2O2 "] functional group is bonded directly to one or more carbon atoms of a saccharide in the present inventive compounds there is no linking group or additional nucleophile such as a primary amine, a secondary amine, or a polyamine. The absence of a linking group or nitrogen-bound nucleophile adduct eliminates the potential risk of such adducts releasing potentially harmful by-products such as carcinogenic nitrosamines. [0027] One skilled in the art will also recognize the theoretical possibility that some reactions via the open chain forms of saccharides, as detailed previously, can, in principle, be suppressed in favor of the direct reaction of the hemiacetal, or another, hydroxyl group via initial oxidation of the saccharide to the lactone following the sequence of reactions outlined by Wieland and Kerr (Ber. Dtsch. Chem. Ges., 1930, 63, 570-579) which is incorporated herein by reference (Equation 3).
[0028] Finally, one skilled in the art will also recognize the theoretical possibility that nitric oxide may react with a saccharide via different mechanisms to produce the diazeniumdiolate-containing inventive compounds. Indeed, to some extent, the materials of the present invention may contain mixtures of the many possible molecular structures.
[0029] In particular, the present invention provides a nitric oxide-releasing saccharide, wherein at least one [N2O2 "] functional group is directly attached to at least one carbon atom of a monosaccharide, disaccharide, or polysaccharide or even a by-product of the mono-, di-, or poly-saccharide that may result from chain opening or other reaction mechanisms that occur when a saccharide is exposed to nitric oxide in the presence of a base. The invention includes a polysaccharide comprising multiple terminal saccharides, wherein [N2O2 "] functional groups are attached directly at least one to at least one carbon atom of the terminal saccharide. In keeping with the invention, each terminal saccharide of a polysaccharide, monosaccharide, or disaccharide can be diazeniumdiolated with numerous [N2O2 "] functional groups.
[0030] Nitric oxide detection can be determined using known techniques such as those described in U.S. Patent Nos. 6,511,991 and 6,379,660; Keefer, et al., "NONOates(l- Substituted Diazen-l-ium-1, 2 diolates) as Nitric Oxide Donors: Convenient Nitric Oxide Dosage Forms," Methods in Enzymology, 28: 281-293 (1996); Horstmann et al., "Release of nitric oxide from novel diazeniumdiolates monitored by laser magnetic resonance spectroscopy," Nitric Oxide, 6(2): 135-41 (2002); and Kitamura et al., "In vivo nitric oxide measurements using a microcoaxial electrode," Methods MoI. Biol, 279: 35-44 (2004), which are incorporated herein by reference. In general, the amount of NO produced can be detected by a chemiluminescence method, electrochemical method, absorbance method, and/or the Griess assay (Schmidt et al., In Methods in Nitric Oxide Research; Feelisch, M.; Stamler, J., Eds.; "Determination of nitrite and nitrate by the Griess reaction." John Wiley and Sons, Ltd.: New York; 1996; pp. 491-497). In addition, nitric oxide assay kits are commercially available.
[0031] In another aspect, the present invention provides the inventive method of incorporating [N2O2 "] functional groups to base-catalyzed reactions to enhance existing industrial processes by bonding [N2O2 "] functional groups to saccharides found in materials, such as cotton, starches, celluloses and the like, since the processing of such materials frequently involves treatment with a base, increasing the number of terminal saccharides for diazeniumdiolates to bind. A diazeniumdiolated saccharide of the inventive compounds may be modified or derivatized. Preferably, the saccharide of the inventive compounds comprises a reducing sugar or is capable of at least partial hydrolysis to create at least one reducing sugar. Examples of saccharides comprising a reducing sugar or capable of at least partial hydrolysis to create reducing sugars include, but are not limited to, glucose, mannose, galactose, maltose, shikimic acid, lactose, ribose, erythrose, threose, xylose, cellobiose, cotton, paper, starch, cellulose, rayon, dextran, collagen, heparin, trehalose, turanose, amylase, amylopectin, xanthan, tragaganth, pullulan, pectin, guaran, gum Arabic (acacia), agar, alginate, carrageenan, chitin, chitosan, cyclodextrins, chondroitin, and hyaluronic acid. Because the reactive functionality is generated by partial hydrolsis, the starting saccharide may be wholely or partially O-alkylated (examples include methylcellulose, ethylcellulose, carboxymethylcellulose). The term saccharide is also intended to include high molecular weight glycoproteins and glycolipids, since partial hydolysis can result in the conversion of these into suitable substrates for diazeniumdiolation.
[0032] The physical and structural characteristics of saccharides suitable for use in the present invention are not narrowly critical, but rather will depend on the end use application. It will be appreciated by those skilled in the art that where the diazeniumdiolated saccharides and diazeniumdiolated saccharides compositions of the present invention are intended for topical, dermal, percutaneous, or similar use, they need not be biodegradable. For some uses, such as ingestion or the like, it may be desirable that the diazeniumdiolated saccharides compounds dissolve in a physiological environment or that it is biodegradable.
[0033] Further, the inventive compounds and compositions can be processed into nitric oxide-releasing applications including, but not limited to, wound-healing cotton gauze, dextran blood plasma substitutes, thromboresistent dialysis membranes and filters, cellulose films and membranes, antibacterial powders, laxatives, and saccharides that target glycoproteins on antigen surfaces. These diazeniumdiolated saccharides and diazeniumdiolated compositions and devices are useful for treating biological conditions where a release of nitric oxide is beneficial.
[0034] The diazeniumdiolated saccharides and diazeniumdiolated compositoins of the present invention will find utility in a wide variety of applications and in a wide variety of forms depending on the biological disorder to be treated with NO-releasing compounds. For example, the saccharide may itself be structurally sufficient to serve as an implant, patch, stent or the like. Further, by way of illustration, the diazeniumdiolated saccharides and diazeniumdiolated compositions may be incorporated into polymer matrices, substrates or the like, or it may be microencapsulated, or the like.
[0035] Site specific application of the inventive compounds and compositions enhances the selectivity of action of the nitric oxide releasing [N2O2 "] functional groups. The [N2O2 "] functional groups attached to the saccharide can be localized, so the effect of their nitric oxide release will be concentrated in the tissues with which they are in contact. If the saccharide of the inventive compounds is soluble, selectivity of action can still be arranged, for example, by attachment to or derivatization of an antibody specific to the target tissue. Similarly, attachment of an [N2O2 "] functional group bound saccharide to small peptides that mimic the recognition sequences of ligands for important receptors provides localized concentrated effect of nitric oxide release, as would attachment to oligonucleotides capable of site-specific interactions with target sequences in a nucleic acid
[0036] When a saccharide is reacted with nitric oxide in the presence of a base, preferably a strong base, a diazeniumdiolated saccharide forms that is capable of releasing nitric oxide over a period of time. The release of nitric oxide can be either in vivo or ex vivo, depending on the ultimate use of the diazeniumdiolated saccharide. Preferably, the inventive compounds and compositions release nitric oxide at the intended site for treatment of a biological disorder. Accordingly, the present invention provides a method of releasing nitric oxide from a nitric oxide-releasing saccharide comprising at least one nitric oxide releasing N2O2 " group, wherein the N2O2 " group is attached directly to a carbon atom of the saccharide. Preferably, the release of NO is under physiological conditions. In one example, the release of NO can occur in vivo or ex vivo at about 37 0C and pH about 7, preferably 7.4. Also, preferably a diazeniumdiolated saccharide in accordance with the present invention can release NO and it preferably releases NO over a period of at least about 20 minutes, more preferably at least about 1 hour, more preferably at least about 5 hours, and most preferably at least about 1 day.
[0037] In another aspect, the invention provides for a method for preparing a dizeniumdiolated saccharide. In order to prepare a diazeniumdiolated saccharide of the present invention, a strong base is used to catalyze the reaction. In general, nitric oxide (NO) releasing materials derived, at least in part, from monosaccharides, disaccharides, polysaccharides, and combinations thereof can be prepared as follows: a solution or slurry, as appropriate, of the desired saccharide compound or a suitable derivative thereof is prepared in a solution of sodium methoxide or other strong base in methanol contained in a Parr pressure bottle. Nitrogen, argon, or other inert gas is passed through the apparatus and bubbled through the solution for a time sufficient to create an inert environment. The bottle is placed into the reactor system (see, for example, Hrabie et al., J. Org. Chem., 58, 1472 (1993)), further flushed with inert gas, and vented, and nitric oxide gas is admitted to a pressure suitable for reacting with the starting material. The reaction is stirred for a time sufficient to allow the reaction to go to completion at room temperature with the addition of NO as needed to maintain the reservoir pressure. Excess NO is then vented, and inert gas is bubbled through the resultant solution for several minutes. The product is isolated either by filtration or by concentration of the solution on a rotary evaporator, washed with solvent (e.g. methanol and/or ethyl ether), and dried in vacuo for several hours or overnight, as appropriate. These materials are stored in glass jars in a refrigerator until required for experimentation. [0038] Any suitable base can be used; a suitable base is considered a base that can initiate the reaction without itself reacting directly with NO. Preferably, the base is a metal alkoxide of the formula MOR, wherein M is a metal cation, and R is an unsubstituted or substituted C1. 12 straight chain alkyl, or an unsubstituted or substituted C3-I2 branched chain alkyl, a phenyl, naphthyl, or Ci-I2 trialkylsilyl. Preferably R is methyl, more preferably R is trimethylsilyl. Specific bases that can be used include sodium methoxide, potassium isopropoxide, sodium t- butoxide, potassium ^-butoxide, lithium trimethylsilanoate, sodium trimethylsilanoate, and potassium trimethylsilanoate. Furthermore, sodium hydroxide is a suitable base for initiating the reaction. For example, sodium hydroxide can be used to initiate the reaction using either an aqueous solution or as a solution/suspension in a suitable organic solvent.
[0039] In another aspect, the invention provides a pharmaceutical composition comprising at least one novel diazeniumdiolated saccharide. Preferably, the pharmaceutical composition further comprises a pharmaceutically acceptable carrier.
[0040] One skilled in the art will appreciate that suitable methods of administering the inventive compound to a mammal, e.g., a mammal such as a human, are known, and, although more than one route can be used to administer a particular compound, a particular route can provide a more immediate and more effective reaction than another route. Pharmaceutically acceptable carriers are also well known to those who are skilled in the art. The choice of carrier will be determined, in part, both by the particular compound and by the particular method used to administer the compound. Accordingly, there are a wide variety of suitable formulations of the pharmaceutical composition of the present invention.
[0041] The inventive compound can further comprise formulations suitable for oral, inhalation, or parenteral administration Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the diazeniumdiolated saccharide dissolved in diluents, such as water or saline, (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as solids or granules, (c) suspensions in an appropriate liquid, and (d) suitable emulsions.
[0042] Tablet forms can include one or more of lactose, mannitol, cornstarch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible carriers. In fact, some of these normally-used compounding agents are themselves saccharides which may be converted into their nitric oxide-releasing forms for compounding with NSAIDs or other drugs to alleviate stomach irritation on consumption. Lozenge forms can comprise the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, such carriers as are known in the art.
[0043] The diazeniumdiolated saccharides of the present invention, alone or in combination with other suitable components, can be made into aerosol formulations to be administered via inhalation. These aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.
[0044] Formulations suitable for parenteral administration include aqueous and nonaqueous solutions, isotonic sterile injection solutions, which can contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, water, for injections, immediately prior to use. Extemporaneous injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
[0045] The dose administered to a mammal, particularly a human, in the context of the present invention should be sufficient to effect a therapeutic response in the mammal over a reasonable time frame. The dose will be determined by the strength of the particular compounds employed (taking into consideration, at least, the rate of NO evolution, the extent of NO evolution, and the bioactivity of any decomposition products derived from the diazeniumdiolates) and the condition of the mammal (e.g., human), as well as the body weight of the mammal (e.g., human) to be treated. The size of the dose also will be determined by the existence, nature, and extent of any adverse side effects that might accompany the administration of a particular composition. A suitable dosage for internal administration is 0.01 to 100 mg/kg per day. A preferred dosage is 0.01 to 35 mg/kg per day. A more preferred dosage is 0.05 to 5 mg/kg per day. A suitable concentration in pharmaceutical compositions for topical administration is 0.05 to 15% (by weight). A preferred concentration is from 0.02 to 5%. A more preferred concentration is from 0.1 to 3%.
[0046] A nitric oxide-releasing saccharide of the present invention can be bound to a substrate. The diazeniumdiolated saccharide can be contacted with a substrate, in which, preferably, the substrate has moieties that allow for chemical bonding of the nitric oxide- releasing saccharide. See, for example, U.S. Patent Nos. 6,703,046, 6,528,107, and 6,270,779, which are incorporated herein in their entirety.
[0047] The substrate can be of any suitable biocompatible material, such as metal, glass, ceramic, plastic, or rubber. Preferably, the substrate is metal or rubber. The substrate used in the preparation of the medical device can be derived from any suitable form of a biocompatible material, such as, for example, a sheet, a fiber, a tube, a fabric, an amorphous solid, an aggregate, dust, or the like.
[0048] Metal substrates suitable for use in the invention include, for example, stainless steel, nickel, titanium, tantalum, aluminum, copper, gold, silver, platinum, zinc, Nitinol, inconel, iridium, tungsten, silicon, magnesium, tin, alloys, coatings containing any of the above, and combinations of any of the above. Also included are such metal substrates as galvanized steel, hot dipped galvanized steel, electrogalvanized steel, annealed hot dipped galvanized steel, and the like. Preferably, the metal substrate is stainless steel.
[0049] Glass substrates suitable for use in the invention include, for example, soda lime glass, strontium glass, borosilicate glass, barium glass, glass-ceramics containing lanthanum as well as combinations thereof.
[0050] Ceramic substrates suitable for use in the invention include, for example, boron nitrides, silicon nitrides, aluminas, silicas, combinations thereof, and the like. [0051] Plastic substrates suitable for use in the invention include, for example, acrylics, acrylonitrile-butadiene-styrene, acetals, polyphenylene oxides, polyimides, polystyrene, polypropylene, polyethylene, polytetrafluoroethylene, polyvinylidene, polyethylenimine, polyesters, polyethers, polyamide, polyorthoester, polyanhydride, polyether sulfone, polycaprolactone, polyhydroxy-butyrate valerate, polylactones, polyurethanes, polycarbonates, polyethylene terephthalate, as well as copolymers and combinations thereof. Typical rubber substrates suitable for use in the invention include, for example, silicones, fluorosilicones, nitrile rubbers, silicone rubbers, fluorosilicone rubbers, polyisoprenes, sulfur- cured rubbers, butadiene-acrylonitrile rubbers, isoprene-acrylonitrile rubbers, and the like. The substrate could also be a protein, an extracellular matrix component, collagen, fibrin or another biologic agent or a mixture thereof. Silicones, fluorosilicones, polyurethanes, polycarbonates, polylactones, and mixtures or copolymers thereof are preferred plastic or rubber substrates because of their proven bio- and hemocompatability when in direct contact with tissue, blood, blood components, or bodily fluids.
[0052] Other suitable substrates include those described in WO 00/63462 and U.S. Patent No. 6,096,070, and incorporated herein by reference.
[0053] In yet another aspect, the present invention can comprise medical devices which are capable of releasing nitric oxide when in use, but which are otherwise inert to nitric oxide release. Alternatively, the diazeniumdiolated saccharide, with the addition of plasticizers, lubricants, gelling agents, adhesives, or other such materials as may be required, can form the medical device itself.
[0054] A "medical device" includes any device having surfaces that contact tissue, blood, or other bodily fluids in the course of their use or operation, which are found on or are subsequently used within a mammal. Medical devices include, for example, extracorporeal devices for use in surgery, such as blood oxygenators, blood pumps, blood storage bags, blood collection tubes, blood filters including filtration media, dialysis membranes, tubing used to carry blood and the like which contact blood which is then returned to the patient or mammal. Medical devices also include endoprostheses implanted in a mammal (e.g., a human), such as vascular grafts, stents, pacemaker leads, surgical prosthetic conduits, heart valves, and the like, that are implanted in blood vessels or the heart. Medical devices also include devices for temporary intravascular use such as catheters, guide wires, amniocentesis and biopsy needles, cannulae, drainage tubes, shunts, sensors, transducers, probes and the like which are placed into the blood vessels, the heart, organs or tissues for purposes of monitoring or repair or treatment. Medical devices also include prostheses such as artificial joints such as hips or knees as well as artificial hearts. In addition, medical devices include penile implants, condoms, tampons, sanitary napkins, ocular lenses, sling materials, sutures, hemostats used in surgery, antimicrobial materials, surgical mesh, transdermal patches, and wound dressings/bandages.
[0055] Since nitric oxide has been shown to inhibit platelet aggregation (e.g., WO 93/05773), the nitric oxide-releasing polymer of the invention is useful in laboratory and medical applications and procedures that involve contact with blood. The NO-releasing polymeric material can be used in vivo, for example, to line or form blood-contacting surfaces of an in-dwelling device such as a pacemaker, an implantable pulse generator (IPG), an implantable cardiac defibrillator (ICD), a pacemaker cardioverter defibrillator (PCD), a defibrillator, a spinal stimulator, a brain stimulator, a sacral nerve stimulator, a stent, a catheter, a lead, or a chemical sensor. Examples of chemical sensors include optical or electrochemical sensors that can continuously monitor or measure physiologically important ions (H+, K+, Na+, etc.) and gases, such as CO2 and O2, in the blood. Ex vivo applications include incorporation of the nitric oxide releasing polymeric material into the blood- contacting surfaces of extracorporeal sensors and circulation devices such as blood oxygenators.
[0056] For example, extracorporeal membrane oxygenation (ECMO) is a means in which blood is oxygenated outside the body. ECMO takes over the work of the lungs and is often used for newborn babies whose lungs are failing despite other treatments. The procedure involves inserting plastic tubes called cannulae into the vein and artery of the neck and/or groin. The anticoagulant heparin is given to patients on ECMO to prevent clotting in the ECMO tubing and/or the development of clots on the membrane which could break off and migrate to the lungs or brain. The most common side effect of heparin is bleeding. Accordingly, the nitric oxide-releasing saccharide compounds of the present invention have utility in combination with or as a heparin-derivative to reduce or inhibit platelet aggregation or adherence. Similar problems with clotting of membranes and filters used in dialysis procedures can be solved by constructing these materials from the compounds of the present invention.
[0057] Nitric oxide-releasing saccharide compounds of the present invention are useful for the treatment of many biological disorders. The present invention provides methods of using a nitric oxide-releasing saccharide compound of the invention. In one embodiment, a method of treating a mammal, e.g., a human, with a biological disorder treatable with nitric oxide, is provided. The method comprises administering to the mammal (e.g., human), in need thereof a diazeniumdiolated saccharide compound before exposure to nitric oxide, a composition thereof, or a saccharide-containing medical device in an amount sufficient to treat the biological disorder in the mammal (e.g., human). Preferably, the method for treating a biological disorder in a mammal in which dosage with nitric oxide is beneficial, comprises administering to a specific location on or within the mammal a medical device comprising a nitric oxide-releasing saccharide and at least one nitric oxide releasing N2O2 " group, wherein the N2O2 " group is attached directly to a carbon atom in the saccharide backbone, in an amount sufficient to release a therapeutically effective amount of nitric oxide. The treatment can be prophylactic or therapeutic. By "prophylactic" is meant any degree in inhibition of the onset of the biological disorder, including complete inhibition. By "therapeutic" is meant any degree in inhibition of the progression of the biological disorder in the mammal (e.g., human).
[0058] In these embodiments, "biological disorder" can be any biological disorder, so long as the disorder is treatable with nitric oxide. Suitable biological disorders include hypertension, restenosis, cancer, impotency, platelet aggregation, and a biological disorder due to a genetic defect or infection with an infectious agent, such as a virus, bacterium, fungus or parasite. Moreover, polymers of the present invention can be used to promote the growth of new blood vessels and capillaries in a process known as angiogenesis. The NO- releasing polymers of the present invention may also be used to reduce inflammation and promote healing when used as a coating or substrate for implantable medical devices.
[0059] The present invention provides a method for promoting angiogenesis in a tissue of a mammal in need thereof. The method comprises either applying or administering to the mammal a medical device comprising a nitric oxide-releasing saccharide and at least one nitric oxide releasing N2O2 " group, wherein the N2O2 " group is attached directly to a carbon atom in the saccharide backbone, to a specific location on or within the mammal in an amount effective to promote angiogenesis in the tissue. Conditions that can be treated in accordance with this method of the invention are characterized by insufficient vascularization (or predisposition thereto) of the affected tissue, i.e., conditions in which neovascularization is needed to achieve sufficient vascularization in the affected tissue, and include, for example, diabetic ulcers, gangrene, surgical or other wounds requiring neovascularization to facilitate healing; Buerger's syndrome; hypertension; ischemic diseases including, for example, cerebrovascular ischemia, renal ischemia, pulmonary ischemia, limb ischemia, ischemic cardiomyopathy, myocardial ischemia, ischemia of tissues such as, for example, muscle, brain, kidney and lung; and other conditions characterized by a reduction in microvasculature. Exemplary tissues in which angiogenesis can be promoted include: hypertension; ulcers (e.g., diabetic ulcers); surgical wounds; ischemic tissue, i.e., a tissue having a deficiency in blood as the result of an ischemic disease including, for example, muscle, brain, kidney and lung; ischemic diseases including, for example, cerebrovascular ischemia, renal ischemia, pulmonary ischemia, limb ischemia, ischemic cardiomyopathy, and myocardial ischemia.
[0060] The following examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.
EXAMPLE 1
[0061] This example describes a generalized method of preparing nitric oxide (NO)- releasing materials derived from monosaccharides, disaccharides, or polysaccharides.
[0062] A solution or slurry (as appropriate) of the desired monosaccharide, disaccharide, or polysaccharide or a suitable derivative thereof was prepared in a solution of sodium methoxide or other strong base in methanol contained in a Parr pressure bottle. Nitrogen, argon, or other inert gas was passed through the apparatus and bubbled through the solution for 5-10 min, the bottle was placed into the reactor system {see Hrabie et al., J. Org. Chem., 58, 1472 (1993)), further flushed with inert gas, and vented, and nitric oxide gas was admitted to a pressure of 5 atm. The reaction was stirred for 54-3 days at room temperature with the addition of NO as needed during the first day to maintain the reservoir pressure. Excess NO was then vented, and inert gas was bubbled through the resultant solution for 5 min. The product was isolated either by filtration or by concentration of the solution on a rotary evaporator, washed with methanol and/or ethyl ether, and dried in vacuo for several hours or overnight, as appropriate. These materials were stored in glass jars in a refrigerator until required for experimentation.
EXAMPLE 2 [0063] This example describes a method of preparing a NO-releasing cotton fabric.
[0064] A solution of sodium methoxide in methanol was prepared by adding 25 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma- Aldrich) to 200 mL of anhydrous methanol contained in a 500 mL glass Parr hydrogenation bottle. To this was added several square pieces of 100% cotton fabric having a total weight of about 2 g, and the resulting slurry was treated with NO for 40 h as described in Example 1. The cotton pieces were removed with tongs, washed several times with methanol, squeezed dry between absorbent paper towels, and placed in a vacuum desiccator overnight for complete drying. The resulting slightly off-white pieces still weighed about 2 g, and were slightly less soft when compared to the starting fabric
EXAMPLE 3 [0065] This example describes another method of preparing a NO-releasing cotton fabric.
[0066] A solution of 8.0 g of commercial sodium hydroxide pellets (0.2 mole) in 200 mL distilled water was prepared in a 500 mL glass Parr hydrogenation bottle. To this was added several square pieces of 100% cotton fabric having a total weight of about 0.66 g, and the resulting slurry was treated with NO for 23 h as described in Example 1. The cotton pieces were removed with tongs, washed several times with water, squeezed dry between absorbent paper towels, and placed in a vacuum desiccator overnight for complete drying. The resulting off-white pieces still weighed about 0.66 g, and were slightly less soft when compared to the starting fabric. EXAMPLE 4
[0067] This example describes a method of preparing a NO-releasing regenerated cellulose membrane.
[0068] A solution of sodium methoxide in methanol was prepared by adding 50 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma- Aldrich) to 300 mL of anhydrous methanol contained in a 500 mL glass Parr hydrogenation bottle. To this was added several pieces of Spectra/Por® membrane dialysis tubing having a MW cutoff of 12-14,000 (Spectrum Medical Industries, Inc.; Houston, TX), and the resulting slurry was treated with NO for 72 h as described in Example 1. The pieces were allowed to settle to the bottom, the solvent was decanted, and they were rinsed three times with methanol. After drying in a vacuum desiccator overnight, the clear membrane pieces had a slight brown tinge.
EXAMPLE 5 [0069] This example describes a method of preparing a NO-releasing glycogen.
[0070] A solution of sodium methoxide in methanol was(prepared by adding 5 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma- Aldrich) to 100 mL of anhydrous methanol contained in a 500 mL glass Parr hydrogenation bottle. To this was added 5.00 g of oyster glycogen (U.S. Biochemicals cat. no. 16445), and the resulting slurry was treated with NO for 16 h as described in Example 1. The product was isolated by filtration, washed with methanol then ethyl ether, and dried in a vacuum overnight to yield 4.77 g of off-white powder.
EXAMPLE 6 [0071] This example describes a method of preparing a NO-releasing corn starch.
[0072] A solution of sodium methoxide in methanol was prepared by adding 25 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma- Aldrich) to 150 mL of anhydrous methanol contained in a 500 mL glass Parr hydrogenation bottle. To this was added 5.00 g corn starch, and the resulting slurry was treated with NO for 68 h as described in Example 1. The product was isolated by filtration, washed with methanol, and dried in a vacuum overnight to yield 5.00 g of off-white powder.
EXAMPLE 7 [0073] This example describes a method of preparing a NO-releasing glucose derivative.
[0074] A solution of 5.00 g of glucose pentaacetate (0.0128 mole) in 100 mL of methanol was placed in a 500 mL glass Parr hydrogenation bottle. To this was added 20 mL of a commercially-obtained 25% sodium methoxide in methanol solution (Sigma-Aldrich; 0.086 mole contained NaOMe), and the cloudy solution that resulted from the almost instantaneous solvolysis of the acetate groups was treated with NO for 18 h as described in Example 1. The product precipitated as a fine powder and was isolated by filtration, washed with methanol, and dried in a vacuum overnight to yield 2.04 g of off-white solid.
EXAMPLE 8
[0075] This example describes another method of preparing a NO-releasing glucose derivative.
[0076] A solution of 0.20 g of 2,3,4,6-tetramethyl-D-glucose (0.847 mmole) in 2.00 mL anhydrous THF, adding 0.114 g sodium trimethylsilanoate (1.02 mmole; 1.2 equiv.) was treated with NO for 23 h as described in Example 1. The product precipitated as a fine powder, and was isolated by filtration, washed with THF, and dried in a vacuum overnight to yield 0.165 g of light tan powder. This material exhibited a UV absorption at 254 nm with a molar extinction coefficient of about 6.0 mM^cm"1.
EXAMPLE 9
[0077] This example describes a method of preparing a NO-releasing cellobiose derivative.
[0078] A slurry of 5.00 g of α-D-cellobiose octaacetate (7.37 mmole) in 200 mL of anhydrous methanol was placed in a 500 mL glass Parr bottle. To this was added 15.2 mL of a commercially-obtained 25% sodium methoxide in methanol solution (9.0 equiv.), and the slurry stirred 15 min until a clear yellow solution had formed. This solution was treated with NO for 42 h as described in Example 1, resulting in the formation of a voluminous precipitate which was isolated by filtration, washed with methanol, and dried in a vacuum overnight to yield 2.57 g of off-white solid. This solid had UV λmax = 254 nm (ε = 5.2 mM'W1).
EXAMPLE 10
[0079] This example describes a generalized method of detecting nitric oxide (NO)- release from NO-releasing materials derived from monosaccharides, disaccharides or polysaccharides.
[0080] The diazeniumdiolated saccharide was slurried in pH 7.4 phosphate buffer at 370C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
EXAMPLE Il
[0081] This example describes a method of detecting NO-release from the diazeniumdiolated cotton of Example 2.
[0082] The diazeniumdiolated cotton fabric of Example 2 was slurried in pH 7.4 phosphate buffer at 37 0C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
EXAMPLE 12
[0083] This example describes a method of detecting NO-release from the diazeniumdiolated cotton of Example 3.
[0084] The diazeniumdiolated cotton fabric of Example 3 was slurried in pH 7.4 phosphate buffer at 37 0C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
EXAMPLE 13
[0085] This example describes a method of detecting NO-release from the diazeniumdiolated regenerated cellulose membrane of Example 4. [0086] The diazeniumdiolated regenerated cellulose membrane of Example 4 was slurried in pH 7.4 phosphate buffer at 37 0C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
EXAMPLE 14
[0087] This example describes a method of detecting NO-release from the diazeniumdiolated glycogen of Example 5 regenerated.
[0088] The diazeniumdiolated glycogen of Example 5 was slurried in pH 7.4 phosphate buffer at 37 0C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
EXAMPLE 15
[0089] This example describes a method of detecting NO-release from the diazeniumdiolated corn starch of Example 6.
[0090] The diazeniumdiolated corn starch of Example 6 was slurried in pH 7.4 phosphate buffer at 37 0C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
EXAMPLE 16
[0091] This example describes a method of detecting NO-release from the diazeniumdiolated 2,3,4,6-tetramethyl-D-glucose of Example 8.
[0092] The diazeniumdiolated 2,3,4,6-tetramethyl-D-glucose of Example 8 was slurried in pH 7.4 phosphate buffer at 37 0C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
EXAMPLE 17
[0093] This example describes a method of detecting NO-release from the diazeniumdiolated cellobiose of Example 9. [0094] The diazeniumdiolated cellobiose of Example 9 was slurried in pH 7.4 phosphate buffer at 37 0C and the release of NO monitored by detection of the chemiluminescence generated by treatment of the effluent gas stream with ozone.
[0095] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
[0096] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
[0097] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims

CLAIM(S):
1. A nitric oxide-releasing saccharide comprising a saccharide and having an [N2O2 "] functional group bonded directly to at least one carbon atom of the saccharide, said nitric oxide-releasing saccharide capable of releasing nitric oxide when said nitric oxide- releasing saccharide is exposed to pH 7.4 phosphate buffer at 37° C.
2. The nitric oxide-releasing saccharide of claim 1, wherein said saccharide is a monosaccharide.
3. The nitric oxide-releasing saccharide of claim 1, wherein said saccharide is a disaccharide.
4. The nitric oxide-releasing saccharide of claim 1, wherein said saccharide is a polysaccharide.
5. The nitric oxide-releasing saccharide of claim 4, wherein said polysaccharide is cotton.
6. The nitric oxide-releasing saccharide of claim 4, wherein said polysaccharide is paper.
7. The nitric oxide-releasing saccharide of claim 4, wherein said polysaccharide is starch.
8. The nitric oxide-releasing saccharide of claim 4, wherein said polysaccharide is cellulose.
9. The nitric oxide-releasing saccharide of claim 4, wherein said polysaccharide is heparin.
10. The nitric oxide-releasing saccharide of claim 4, wherein said polysaccharide is dextran.
11. The nitric oxide-releasing saccharide of claim 2, wherein said monosaccharide is glucose.
12. A nitric oxide-releasing saccharide formed by subjecting a saccharide to nitric oxide in the presence of a base.
13. The nitric oxide-releasing saccharide of claim 12, wherein said saccharide is a monosaccharide.
14. The nitric oxide-releasing saccharide of claim 12, wherein said saccharide is a disaccharide.
15. The nitric oxide-releasing saccharide of claim 12, wherein said saccharide is a polysaccharide.
16. The nitric oxide-releasing saccharide of claim 15, wherein said polysaccharide is cotton.
17. The nitric oxide-releasing saccharide of claim 15, wherein said polysaccharide is paper.
18. The nitric oxide-releasing saccharide of claim 15, wherein said polysaccharide is starch.
19. The nitric oxide-releasing saccharide of claim 15, wherein said polysaccharide is cellulose.
20. The nitric oxide-releasing saccharide of claim 15, wherein said polysaccharide is heparin.
21. The nitric oxide-releasing saccharide of claim 15, wherein said polysaccharide is dextran.
22. The nitric oxide-releasing saccharide of claim 13, wherein said monosaccharide is glucose.
23. A method of treating a biological disorder treatable with nitric oxide, which method comprises administering a nitric oxide-releasing saccharide of claim 1 in an amount sufficient to treat the biological disorder.
24. The method of claim 23, wherein the biological disorder is restenosis.
25. A method of treating a biological disorder treatable with nitric oxide, which method comprises administering a nitric oxide-releasing saccharide of claim 12 in an amount sufficient to treat the biological disorder.
26. The method of claim 25, wherein the biological disorder is restenosis
EP06826062A 2005-10-31 2006-10-16 Polysaccharide-derived nitric oxide-releasing carbon-bound diazeniumdiolates Ceased EP1942942A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US73194605P 2005-10-31 2005-10-31
PCT/US2006/040456 WO2007053292A2 (en) 2005-10-31 2006-10-16 Polysaccharide-derived nitric oxide-releasing carbon-bound diazeniumdiolates

Publications (1)

Publication Number Publication Date
EP1942942A2 true EP1942942A2 (en) 2008-07-16

Family

ID=37781739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06826062A Ceased EP1942942A2 (en) 2005-10-31 2006-10-16 Polysaccharide-derived nitric oxide-releasing carbon-bound diazeniumdiolates

Country Status (5)

Country Link
US (1) US7928079B2 (en)
EP (1) EP1942942A2 (en)
AU (1) AU2006309212B2 (en)
CA (1) CA2628055C (en)
WO (1) WO2007053292A2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209821A1 (en) 2002-03-06 2003-09-25 Biotechnologie Ges Mittelhesse Coupling of proteins to a modified polysaccharide
BR0314227A (en) 2002-09-11 2005-10-25 Fresenius Kabi De Gmbh Hydroxyalkyl Starch Derivatives
WO2005014655A2 (en) 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
SG151261A1 (en) 2004-03-11 2009-04-30 Fresenius Kabi De Gmbh Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination
EP2669269B1 (en) 2005-05-27 2019-05-22 The University of North Carolina At Chapel Hill Nitric oxide-releasing particles for nitric oxide therapeutics and biomedical applications
JP2009505727A (en) 2005-08-25 2009-02-12 メドトロニック ヴァスキュラー インコーポレイテッド Nitric oxide releasing biodegradable polymers useful as medical devices and their coatings
US20070196327A1 (en) * 2005-12-06 2007-08-23 Amulet Pharmaceuticals, Inc. Nitric oxide releasing polymers
US8241619B2 (en) 2006-05-15 2012-08-14 Medtronic Vascular, Inc. Hindered amine nitric oxide donating polymers for coating medical devices
US9259535B2 (en) 2006-06-22 2016-02-16 Excelsior Medical Corporation Antiseptic cap equipped syringe
US11229746B2 (en) 2006-06-22 2022-01-25 Excelsior Medical Corporation Antiseptic cap
US7811600B2 (en) 2007-03-08 2010-10-12 Medtronic Vascular, Inc. Nitric oxide donating medical devices and methods of making same
US8273828B2 (en) 2007-07-24 2012-09-25 Medtronic Vascular, Inc. Methods for introducing reactive secondary amines pendant to polymers backbones that are useful for diazeniumdiolation
US20090232863A1 (en) * 2008-03-17 2009-09-17 Medtronic Vascular, Inc. Biodegradable Carbon Diazeniumdiolate Based Nitric Oxide Donating Polymers
US9078992B2 (en) 2008-10-27 2015-07-14 Pursuit Vascular, Inc. Medical device for applying antimicrobial to proximal end of catheter
US8158187B2 (en) 2008-12-19 2012-04-17 Medtronic Vascular, Inc. Dry diazeniumdiolation methods for producing nitric oxide releasing medical devices
US8816391B2 (en) * 2009-04-01 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain engineering of devices with high-mobility channels
US8709465B2 (en) 2009-04-13 2014-04-29 Medtronic Vascular, Inc. Diazeniumdiolated phosphorylcholine polymers for nitric oxide release
EP2467127B1 (en) 2009-08-21 2023-08-02 Novan, Inc. Topical gels
CA2771389C (en) 2009-08-21 2019-04-09 Novan, Inc. Wound dressings, methods of using the same and methods of forming the same
EP2591009A1 (en) 2010-07-09 2013-05-15 Fresenius Kabi Deutschland GmbH Nitric oxide delivering hydroxyalkyl starch derivatives
US8591876B2 (en) 2010-12-15 2013-11-26 Novan, Inc. Methods of decreasing sebum production in the skin
WO2012116177A2 (en) 2011-02-24 2012-08-30 Colorado State University Research Foundation Materials for modulating biological responses and methods of making
ES2695173T3 (en) 2011-02-28 2019-01-02 Novan Inc Silica particles modified with S-nitrosothiol that release nitric oxide and methods of manufacturing them
US10166381B2 (en) 2011-05-23 2019-01-01 Excelsior Medical Corporation Antiseptic cap
WO2013006613A1 (en) * 2011-07-05 2013-01-10 Novan, Inc. Methods of manufacturing topical compositions and apparatus for same
EP3714932A1 (en) 2011-07-12 2020-09-30 ICU Medical, Inc. Device for delivery of antimicrobial agent into a transdermal catheter
US20130251855A1 (en) * 2012-03-21 2013-09-26 Pepsico, Inc. Aqueous product comprising oil-containing microcapsules and method for the manufacture thereof
US9162938B2 (en) 2012-12-11 2015-10-20 Chevron Lummus Global, Llc Conversion of triacylglycerides-containing oils to hydrocarbons
US9024096B2 (en) 2012-12-11 2015-05-05 Lummus Technology Inc. Conversion of triacylglycerides-containing oils
US10046156B2 (en) 2014-05-02 2018-08-14 Excelsior Medical Corporation Strip package for antiseptic cap
AU2016262400B2 (en) 2015-05-08 2021-01-21 Icu Medical, Inc. Medical connectors configured to receive emitters of therapeutic agents
US11186681B2 (en) 2016-10-07 2021-11-30 The University Of North Carolina At Chapel Hill S-Nitrosothiol-mediated hyperbranched polyesters
CA3040277A1 (en) 2016-10-14 2018-04-19 Icu Medical, Inc. Sanitizing caps for medical connectors
JP7366406B2 (en) 2017-01-03 2023-10-23 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Nitric oxide-releasing alginate as a biodegradable antimicrobial scaffold and methods related thereto
AU2018247167B2 (en) 2017-03-28 2024-05-16 The University Of North Carolina At Chapel Hill Nitric oxide-releasing polyaminoglycosides as biodegradable antibacterial scaffolds and methods pertaining thereto
US11883807B2 (en) 2017-04-11 2024-01-30 Colorado State University Research Foundation Functionalization of metal-organic frameworks
WO2018204206A2 (en) 2017-05-01 2018-11-08 Icu Medical, Inc. Medical fluid connectors and methods for providing additives in medical fluid lines
WO2019173539A1 (en) 2018-03-06 2019-09-12 The University Of North Carolina At Chapel Hill Nitric oxide-releasing cyclodextrins as biodegradable antibacterial scaffolds and methods pertaining thereto
US11541220B2 (en) 2018-11-07 2023-01-03 Icu Medical, Inc. Needleless connector with antimicrobial properties
US11400195B2 (en) 2018-11-07 2022-08-02 Icu Medical, Inc. Peritoneal dialysis transfer set with antimicrobial properties
US11517732B2 (en) 2018-11-07 2022-12-06 Icu Medical, Inc. Syringe with antimicrobial properties
US11534595B2 (en) 2018-11-07 2022-12-27 Icu Medical, Inc. Device for delivering an antimicrobial composition into an infusion device
US11541221B2 (en) 2018-11-07 2023-01-03 Icu Medical, Inc. Tubing set with antimicrobial properties
JP2022513096A (en) 2018-11-21 2022-02-07 アイシーユー・メディカル・インコーポレーテッド Antibacterial device with cap with ring and insert
WO2020139857A1 (en) * 2018-12-28 2020-07-02 The University Of North Carolina At Chapel Hill Nitric oxide-releasing antibacterial polymers and scaffolds fabricated therefrom and methods pertaining thereto
EP4093205A4 (en) * 2020-02-07 2024-02-21 KNOW Bio, LLC Nitric oxide-releasing antibacterial compounds, formulations, and methods pertaining thereto
CA3204371A1 (en) 2020-12-07 2022-06-16 Icu Medical, Inc. Peritoneal dialysis caps, systems and methods

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954526A (en) 1989-02-28 1990-09-04 The United States Of America As Represented By The Department Of Health And Human Services Stabilized nitric oxide - primary amine complexes useful as cardiovascular agents
US5039705A (en) 1989-09-15 1991-08-13 The United States Of America As Represented By The Department Of Health And Human Services Anti-hypertensive compositions of secondary amine-nitric oxide adducts and use thereof
US5721365A (en) 1989-09-15 1998-02-24 Us Health N-substituted piperazine NONOates
US5208233A (en) 1989-09-15 1993-05-04 The United States Of America As Represented By The Department Of Health And Human Services Anti-hypertensive compositions of secondary amine-nitric oxide adducts and use thereof
US5212204A (en) 1989-10-18 1993-05-18 The United States Of America As Represented By The Department Of Health And Human Services Antihypertensive compositions and use thereof
US5155137A (en) 1990-09-20 1992-10-13 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Complexes of nitric oxide with polyamines
US5683668A (en) 1990-09-20 1997-11-04 The United States Of America As Represented By The Department Of Health And Human Services Method of generating nitric oxide gas using nitric oxide complexes
US5268465A (en) 1991-01-18 1993-12-07 The Johns Hopkins University Purification and molecular cloning of nitric oxide synthase
US5185376A (en) 1991-09-24 1993-02-09 The United States Of America As Represented By The Department Of Health And Human Services Therapeutic inhibition of platelet aggregation by nucleophile-nitric oxide complexes and derivatives thereof
CA2119572C (en) 1991-09-24 2005-07-05 Larry Kay Keefer Oxygen substituted derivatives of nucleophile-nitric oxide adducts as nitric oxide donor prodrugs
US5389675A (en) 1992-03-27 1995-02-14 The United States Of America As Represented By The Department Of Health And Human Services Mixed ligand metal complexes of nitric oxide-nucleophile adducts useful as cardiovascular agents
US5814666A (en) 1992-04-13 1998-09-29 The United States As Represented By The Department Of Health And Human Services Encapsulated and non-encapsulated nitric oxide generators used as antimicrobial agents
US5632981A (en) 1992-08-24 1997-05-27 The United States Of America As Represented By The Department Of Health And Human Services Biopolymer-bound nitric oxide-releasing compositions, pharmaceutical compositions incorporating same and methods of treating biological disorders using same
US5910316A (en) 1992-08-24 1999-06-08 The United States Of America, As Represented By The Department Of Health And Human Services Use of nitric oxide-releasing agents to treat impotency
US5405919A (en) 1992-08-24 1995-04-11 The United States Of America As Represented By The Secretary Of Health And Human Services Polymer-bound nitric oxide/nucleophile adduct compositions, pharmaceutical compositions and methods of treating biological disorders
US5525357A (en) 1992-08-24 1996-06-11 The United States Of America As Represented By The Department Of Health And Human Services Polymer-bound nitric oxide/nucleophile adduct compositions, pharmaceutical compositions incorporating same and methods of treating biological disorders using same
US5691423A (en) 1992-08-24 1997-11-25 The United States Of America As Represented By The Department Of Health And Human Services Polysaccharide-bound nitric oxide-nucleophile adducts
US5650447A (en) 1992-08-24 1997-07-22 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Nitric oxide-releasing polymers to treat restenosis and related disorders
US6200558B1 (en) 1993-09-14 2001-03-13 The United States Of America As Represented By The Department Of Health And Human Services Biopolymer-bound nitric oxide-releasing compositions, pharmaceutical compositions incorporating same and methods of treating biological disorders using same
JPH08503852A (en) 1992-11-25 1996-04-30 ユニバーシティ オブ ピッツバーグ オブ ザ コモンウェルス システム オブハイヤー エデュケーション Human inducible nitric oxide synthase cDNA clone and method for producing the same
US5658565A (en) 1994-06-24 1997-08-19 University Of Pittsburgh Of The Commonwealth System Of Higher Education Inducible nitric oxide synthase gene for treatment of disease
US5891459A (en) 1993-06-11 1999-04-06 The Board Of Trustees Of The Leland Stanford Junior University Enhancement of vascular function by modulation of endogenous nitric oxide production or activity
US5945452A (en) 1993-06-11 1999-08-31 The Board Of Trustees Of The Leland Stanford Junior University Treatment of vascular degenerative diseases by modulation of endogenous nitric oxide production or activity
US5428070A (en) 1993-06-11 1995-06-27 The Board Of Trustees Of The Leland Stanford Junior University Treatment of vascular degenerative diseases by modulation of endogenous nitric oxide production of activity
US5482925A (en) 1994-03-17 1996-01-09 Comedicus Incorporated Complexes of nitric oxide with cardiovascular amines as dual acting cardiovascular agents
US5700830A (en) 1994-11-22 1997-12-23 The United States Of America As Represented By The Department Of Health And Human Services Use of nitric oxide-releasing agents for reducing metastasis risk
US5814565A (en) 1995-02-23 1998-09-29 University Of Utah Research Foundation Integrated optic waveguide immunosensor
US5698738A (en) * 1995-05-15 1997-12-16 Board Of Regents, The University Of Texas System N-nitroso-N-substituted hydroxylamines as nitric oxide donors
US5609629A (en) 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5714511A (en) 1995-07-31 1998-02-03 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Selective prevention of organ injury in sepsis and shock using selection release of nitric oxide in vulnerable organs
CA2705474C (en) 1996-09-27 2013-07-16 The Government Of The United States Of America, Represented By The Secre Tary, Department Of Health And Human Services O2-glycosylated 1-substituted diazen-1-ium-1,2-diolates
EP1439187B1 (en) * 1996-09-27 2013-12-18 THE UNITED STATES GOVERNMENT as represented by THE DEPARTMENT OF HEALTH AND HUMAN SERVICES O2-arylated or o2-glycosylated 1-substituted diazen-1-ium-1,2-diolates and o2-substituted 1- (2-carboxylato)pyrrolidin-1-yl diazen-1-ium-1,2-diolates
AU726861B2 (en) 1997-07-03 2000-11-23 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Novel nitric oxide-releasing amidine- and enamine-derived diazeniumdiolates, compositions and uses thereof and method of making same
US6261594B1 (en) * 1998-11-25 2001-07-17 The University Of Akron Chitosan-based nitric oxide donor compositions
WO2000063462A1 (en) 1999-04-14 2000-10-26 University Of Cincinnati Silane coatings for adhesion promotion
US6270779B1 (en) 2000-05-10 2001-08-07 United States Of America Nitric oxide-releasing metallic medical devices
US6673338B1 (en) 2001-09-10 2004-01-06 The United States Of America As Represented By The Department Of Health And Human Services Nitric oxide-releasing imidate and thioimidate diazeniumdiolates, compositions, uses thereof and method of making same
US6703046B2 (en) 2001-10-04 2004-03-09 Medtronic Ave Inc. Highly cross-linked, extremely hydrophobic nitric oxide-releasing polymers and methods for their manufacture and use
US6951902B2 (en) 2002-08-16 2005-10-04 Michigan Biotechnology Institute Two dimensional polymer that generates nitric oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007053292A2 *

Also Published As

Publication number Publication date
US7928079B2 (en) 2011-04-19
CA2628055A1 (en) 2007-05-10
AU2006309212B2 (en) 2011-09-15
US20080306012A1 (en) 2008-12-11
WO2007053292A3 (en) 2008-03-27
AU2006309212A1 (en) 2007-05-10
CA2628055C (en) 2013-10-01
WO2007053292A2 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
AU2006309212B2 (en) Polysaccharide-derived nitric oxide-releasing carbon-bound diazeniumdiolates
AU2011200972C1 (en) Nitric oxide-releasing compounds and uses thereof
US6451337B1 (en) Chitosan-based nitric oxide donor compositions
ES2668273T3 (en) Use of chemically modified heparin derivatives in sickle cell disease
JP2018513217A (en) Antithrombin-heparin compositions and methods
EP1911769B1 (en) Cellulose derivative
IL154848A (en) Polysaccharides with antithrombotic activity comprising at least one covalent bond with biotin or a biotin derivative
CA2879843C (en) Nitric oxide-releasing diazeniumdiolated polyvinylpyrrolidone-based polymers, and compositions, medical devices, and uses thereof
EP0019403B1 (en) Hydroxyalkyl-starch drug carrier
JPH08109134A (en) Cell degeneration suppressing and organ toxicity reducing agent
WO2004004794A1 (en) Resin compatible with body fluid and living tissue
AU2016274868B2 (en) Medical devices, systems, and methods utilizing antithrombin-heparin compositions
EP4245764A1 (en) New carbohydrate derivatives as mimetics of blood group a and b antigens
JP4166851B2 (en) Novel inhibitor of ischemia / reperfusion injury
CN100415761C (en) Nucleophilic N0 donor of alkyl modified amido glucose, and synthetic method
JPH09124512A (en) Water-soluble medicine-pullulan combination preparation for targeting liver
JP2997848B2 (en) Complex of N-acetylchitooligosaccharide and mitomycins and antitumor agent
JPH02231077A (en) Superoxide dismutase modified with heparin
JPH10306102A (en) Novel polysaccharide sulfate ester derivative and its use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080424

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20091027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20130817