JP4166851B2 - Novel inhibitor of ischemia / reperfusion injury - Google Patents
Novel inhibitor of ischemia / reperfusion injury Download PDFInfo
- Publication number
- JP4166851B2 JP4166851B2 JP27936897A JP27936897A JP4166851B2 JP 4166851 B2 JP4166851 B2 JP 4166851B2 JP 27936897 A JP27936897 A JP 27936897A JP 27936897 A JP27936897 A JP 27936897A JP 4166851 B2 JP4166851 B2 JP 4166851B2
- Authority
- JP
- Japan
- Prior art keywords
- ischemia
- heparin
- reperfusion injury
- sulfo
- disaccharide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は虚血に伴う生体組織の虚血障害及び/又は虚血後の再灌流に伴う生体組織の再灌流障害(これらの障害を総称して「虚血・再灌流障害」という)の抑制剤に関し、更に詳しくは、虚血及び/又は再灌流により誘起される心筋などの各種臓器の組織障害を抑制するための薬剤に関する。
【0002】
【従来の技術】
血管中の血流の停止及びその後に再度血液を流すことで、血管内壁、各種臓器、生体組織に障害が起こることが広く知られている。例えば、虚血障害としては脳梗塞の際の虚血による脳組織の障害、心筋梗塞もしくは心臓疾患治療のための手術に伴う虚血による心筋の障害又は腎臓、肝臓もしくは肺臓などの各種臓器の手術の際の虚血による臓器もしくは生体組織の障害などが挙げられる。また、心臓の手術においては心臓及びその周辺の血流を停止し、再度血液を流した際(再灌流時)に血管内皮細胞及び心筋に対し重大な障害(再灌流障害)を生じるため、生命が危ぶまれる例が跡を絶たないことも知られている。
【0003】
更に、近年、心筋梗塞や狭心症の治療として冠動脈インターベンションが行われるが、その一手法として経皮経管冠動脈形成術(percutaneous transluminal coronaryangioplasty;PTCA)が多用されている。当該手法は、心臓の冠状動脈の塞栓や狭窄部位を,カテーテルの先端に装着したバルーンを膨らませて開通させる手術であり、カテーテルは下肢などから経皮的に末梢動脈に導入され,血管内を伝わって冠状動脈まで挿入される。そしてバルーンを脹らませて開通させるが、虚血状態に陥っていた患部よりも血流の下流域にあたる部位において大量の血液の灌流が起こるため患部と同様の内皮細胞障害及び心筋障害が起こることが重大な問題点として指摘されている。
【0004】
ところで、例えば心筋梗塞の治療薬として、従来は低分子化したヘパリンを使用する試みがなされている(特表平7-503496)が、この薬剤は当該低分子化ヘパリンの抗血液凝固活性によって血栓を溶解させて血流を再開させることからなる心筋梗塞の抑制を目的としている。
PTCA時のバルーンによって血管内皮が損傷し、術後数か月に過修復によってしばしば再狭窄が起こるが、このような血管内皮細胞の増殖を抑制することを目的としてヘパリンの誘導体である過ヨウ素酸酸化還元ヘパリンの使用が試みられており(WO92/17187)、当該ヘパリン誘導体に平滑筋増殖抑制作用があることが知られている。
【0005】
一方、虚血・再灌流に伴う心筋の虚血・再灌流障害抑制剤として従来はグルタチオンの前駆体のメチルエステルや、スーパーオキシドジスムターゼ(SOD)の使用が試みられているが、前者は必ずしも優れた効果を有するとはいえず、後者は優れた効果を発揮するがその生体内における安定性に問題があり、生体内において活性を維持するための工夫が必要であった。
【0006】
【発明が解決しようとする課題】
血流停止(虚血)と血流の再開(再灌流)に伴う生体組織の障害、特に心筋の障害が重大な問題であるにもかかわらず、それを回避するために使用でき、しかも容易に入手可能である有効な虚血・再灌流障害抑制剤は未だ見出されておらず、その開発が期待されている。
【0007】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく、鋭意検討を繰り返した結果、特定のヘパリン誘導体が虚血・再潅流直後の組織障害を抑制する活性を有することを見出し、この知見に基づいて本発明に達した。
すなわち、本発明は下記構造式(I)に示す構造単位を含み、且つ下記(1)及び(2)に示す性質を有するヘパリン誘導体又はその薬理学的に許容される塩を有効成分として含む虚血・再潅流障害抑制剤を要旨とするものである。
(1)ヘパリン分解酵素による分解と高速液体クロマトグラフィーによる分析を組み合わせた二糖分析から算出した二糖組成において、2-デオキシ-2-スルファミノ-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコースのモル%が80%以上である。
(2)標準血漿に6μg/mlの濃度で添加した際の活性化部分トロンボプラスチン時間(activated partial thromboplastin time;APTT)が50秒を越えない。
構造式(I)
【0008】
【化3】
【0009】
【発明の実施の形態】
以下本発明の実施の形態をより詳述する。
本発明は虚血・再灌流障害抑制剤に係わるが、その有効成分は上記構造式(I)に示す構造単位、すなわちヘパリンの構成二糖中、一部のウロン酸が酸化的に開裂し、生じたアルデヒド基が還元された構造単位を含み、且つ下記(1)及び(2)に示す性質を有するヘパリン誘導体(以下NACヘパリンと記載することもある)又はその薬理学的に許容される塩である。
(1)ヘパリン誘導体のヘパリン分解酵素による分解と高速液体クロマトグラフィーによる分析を組み合わせた二糖分析から算出した二糖組成において、2-デオキシ-2-スルファミノ-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコースのモル%が80%以上である。
(2)標準血漿に6μg/mlの濃度で添加した際に活性化部分トロンボプラスチン時間(APTT)による凝固時間が50秒を越えない。
【0010】
上記NACヘパリンを製造する方法としては、例えばWO92/17187記載の製造法、あるいは特開昭63-278901記載の方法に基づき、所望の特性を有するように反応条件を実験的に確認選定した変更を加えた製造法などが挙げられ、例えば以下の方法により製造することができる。
分子量約14,000程度のヘパリンの0.5〜10%、好ましくは1〜7%溶液に、例えば過ヨウ素酸塩や過酸化水素等の酸化剤、好ましくは過ヨウ素酸アルカリ金属塩、より好ましくは過ヨウ素酸ナトリウムを、0.01〜0.3M、好ましくは0.05〜0.2Mの濃度で加えて該ヘパリンを酸化処理し、ヘパリン骨格中の硫酸基の置換していないウロン酸残基の2位及び3位の炭素同志の結合を酸化的に開裂させる。当該酸化反応は、pH3〜7、好ましくはpH4〜5、温度0〜37℃、好ましくは0〜10℃、さらに好ましくは4℃前後で1日以上、好ましくは3日間の条件下で行われる。
【0011】
上記酸化処理の後に、過剰の酸化剤、例えば過ヨウ素酸ナトリウムを100〜500mMのエチレングリコール或いはグリセリンにより処理して分解する。その後、必要に応じて蒸留水による透析を行ったり、更に凍結乾燥あるいはエタノール沈澱法などの方法を用いてヘパリンの過ヨウ素酸酸化生成物を得る。
【0012】
前記酸化剤によってヘパリンを酸化処理した結果得られる酸化生成物はその構造中にアルデヒド基を有しているので、当該アルデヒド基を還元剤の存在下で還元処理する。還元処理の方法は、上記目的を達成する限り限定されないが、例えば0.1〜0.5M、好ましくは0.2Mの水素化ホウ素ナトリウムを含む、pH8.5〜9.5の1〜20%(W/V)、好ましくは5〜10%(W/V)の上記酸化生成物溶液を、例えば4℃で3時間反応させることにより行うことが好ましい。
【0013】
反応終了後、反応液のpHを4〜5に調節することにより過剰の水素化ホウ素ナトリウムを分解し、次いで1〜2.5M、好ましくは2Mのアルカリ溶液(例えば水酸化ナトリウム溶液、水酸化カリウム溶液、水酸化マグネシウム溶液、水酸化カルシウム溶液など)に再溶解してpH9〜10に調整し、蒸留水に対して透析することによりNACヘパリンの塩を得ることが可能である。
上記NACヘパリンをその薬理学的に許容される塩としてもよく、例えばアルカリ金属塩(ナトリウム塩、カリウム塩)及びアルカリ土類金属塩(マグネシウム塩、カルシウム塩)などが挙げられるが、アルカリ金属塩が好ましく、その中でもナトリウム塩が最も好ましい。
【0014】
上記反応自体は公知であるが、本発明の虚血・再潅流障害剤の有効成分としての物性を有するヘパリン誘導体は、その反応条件を適宜調整することによって得ることが出来る。具体的にはNACヘパリンは、一般にヘパリン骨格と呼ばれるヘキスロン酸とグルコサミンの繰り返し構造中において、その中のウロン酸残基のうち、2位および3位に硫酸基を有さないウロン酸残基が、前記2位と3位の炭素原子間で開環、即ちそのピラノース環が開裂した構造を有するので、原料ヘパリンの特定位の炭素原子間結合が開裂する反応条件が選定される。また、NACヘパリンの中でも本発明薬剤の成分として有効なものは、NACヘパリンをヘパリン分解酵素により分解して生じる二糖を高速液体クロマトグラフィーで分析する方法によって求めた二糖組成において、2-デオキシ-2-スルファミノ-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコース(以下ΔDiHS-tri(U,6,N)Sとも記載する)のモル%が少なくとも80%以上であることが必要であり、85%以上であることが好ましい。
【0015】
更に、本発明薬剤の有効成分であるNACヘパリンは6μg/mlの濃度で標準血漿(健常人の血液より一般的な方法によって調整した血漿)に添加して測定された凝固時間である活性化部分トロンボプラスチン時間(APTT)が50秒を越えない特性を有するものである。
【0016】
本発明の虚血・再灌流障害抑制剤は、虚血時に生体組織に起こる虚血障害及び虚血後の再灌流時に起こる再灌流障害を抑制するための薬剤を包含し、虚血に先立ちあるいはその直後に使用されることに特徴を有している。その為、例えばPTCA後の血管内皮細胞の増殖を抑制して再狭窄を防止するための薬剤のように、手術後長期間に渡って使用される薬剤とは明確に区別される。本発明の虚血・再灌流障害抑制剤は虚血時及び/又は虚血後の再灌流において発生するフリーラジカル(活性酸素など)によって起こる障害から組織を保護するために有効な薬剤であり、主に心臓、脳、肺臓、腎臓、肝臓の組織を保護するための薬剤として使用されるが、心臓又は脳へ適用することが好ましく、心臓への適用が最も好ましい。
【0017】
具体的に心臓へ適用する薬剤としては、心臓及び周辺血管の手術時に手術前から手術後にかけて連続して投与して使用するための心筋虚血・再灌流障害抑制剤等が挙げられるが、これらに限定されず、脳梗塞時及びその治療時の血液の再灌流による脳の組織障害を抑制するための脳虚血・再灌流障害抑制剤としても使用することが可能である。本発明虚血・再灌流障害抑制剤は、優れた生体組織保護効果を有し、且つ抗血液凝固活性が低く、薬剤として投与した際に出血活性がないため、安全性が非常に高いことが特徴として挙げられる。
【0018】
本発明虚血・再灌流障害抑制剤の剤型としてはNACヘパリンの前記のような作用を発揮しうる形態であれば限定はされない。特にヒト、ウシ、ウマ、イヌ、ネコ、ヒツジ又はヤギなどの哺乳類の血管中に投与するために適した剤型が好ましい。この様な投与方法により投与が可能な剤型としては、例えば、注射用液剤及び点滴用液剤などが挙げられるが、アンプル、バイアル又は注射筒内に予め粉末として充填しておき、用時に溶解する形態であっても良い。この様な形態としては、例えば生理食塩水、マンニトール溶液、リンゲル液或いはリン酸緩衝液等の適当な溶媒を用いて使用時に溶解して投与できる剤型の製剤が挙げられ、このような製剤を溶解可能な容器を採用することが可能である。
【0019】
本発明虚血・再灌流障害抑制剤におけるNACヘパリンの配合量並びに投与量は、その製剤の投与方法、投与形態、使用目的、患者の具体的症状、患者の体重などの変化しうる要因に応じて個別的に決定されるべきものであり、特に限定はされないが、一般にNACヘパリンの臨床投与量として1日あたり概ね100μg/kg〜100mg/kg程度を例示することができる。また、上記製剤は、虚血及び再灌流を伴う手術、例えば各種バイパス手術、PTCA等の狭窄除去手術などの際に、その手術の直前から手術後少なくとも数時間の間、点滴して患者に投与し続けることが好ましい。
【0020】
なお、本発明虚血・再灌流障害抑制剤の有効成分であるNACヘパリンは、後述の実施例において生体に対する毒性は見られなかった。一方、ヘパリンのマウス(雄、雌)における急性毒性試験によるLD50は、経口投与で5,000mg/kg以上、皮下又は腹腔内投与で2,500mg/kg以上、静注で1,000mg/kg以上であることが知られている。また、WO92/17187にも記載されている如く、NACヘパリンの抗血液凝固活性が通常のヘパリンに比して大幅に低下している。このことからも本発明虚血・再灌流障害抑制剤の安全性は高いということができる。
【0021】
【実施例】
以下実施例により本発明をより詳述するが、本発明はその要旨を超えない限り、以下の実施例により本発明が限定されるものではない。
なお、本発明のNACヘパリンの合成、同定及び活性評価は以下の試験例の方法に基づいて行った。
【0022】
試験例1
[NACヘパリンの合成]
ヘパリンナトリウム塩(重量平均分子量:13,700Da、Syntex社製Lot No.40210910:以下原料ヘパリンと記載する)を使用してNACヘパリンを合成した。
原料ヘパリン1.3gを、過ヨウ素酸ナトリウムの存在下で酸化した。この反応は、50mlの0.05Nの過ヨウ素酸ナトリウム、50mMの酢酸ナトリウムを含んだpH5の溶液中で、4℃、3日間酸化処理して行った。酸化処理後、過剰の過ヨウ素酸を最終濃度250mMのグリセリンを加えることで分解し、蒸留水に対して2日間透析し、その後凍結乾燥することにより1.2gの過ヨウ素酸酸化ヘパリンを得た。
【0023】
この過ヨウ素酸酸化ヘパリンの生成時に生じたアルデヒド基は、30mlの0.2N水素化ホウ素ナトリウム、0.25N炭酸水素ナトリウム及び1.2gの該酸化ヘパリンを含むpH9の溶液を4℃、3時間反応させることで還元した。反応後のpHを氷酢酸で5に調節し、30分間室温に放置することで過剰な水素化ホウ素ナトリウムを分解し、ふたたび5Nの水酸化ナトリウムでpHを9に調節した後、蒸留水への2日間の透析と凍結乾燥により、1.1gのNACヘパリンのナトリウム塩を得た。
【0024】
試験例2
[酵素消化による二糖分析]
試験例1で得たNACヘパリンの二糖組成、すなわち構成二糖の硫酸基の位置の分析を、次のようにして行った。すなわち、NACヘパリンを酵素消化し、生成した不飽和二糖(前記構造式:(I))を、不飽和二糖スタンダードを対照として、高速液体クロマトグラフィー(HPLC)で分析した(新生化学実験講座3、糖質II(東京化学同人刊、1991)、49−62頁に記載の「2・8グリコサミノグリカン分解酵素とHPLCを組み合わせた構造解析」参照)。不飽和二糖スタンダードとしては、例えば不飽和ヘパラン/ヘパリン・二糖ミックス(Hミックス)(生化学工業(株)製)などを使用することができる。
構造決定可能な各不飽和二糖のピーク面積を計算して、全面積に対するピーク面積をパーセントとして表した。
【0025】
(1)NACヘパリンのヘパリン分解酵素による消化
新生化学実験講座3、糖質II 54-59頁に記載の方法により、ヘパリンあるいはNACヘパリン1.0mgを2mM酢酸カルシウムを含む20mM酢酸ナトリウム(pH7.0)220μlに溶解して、20mUのヘパリナーゼ、20mUのヘパリチナーゼI及びIIを加えて、37℃、2時間反応させた。
【0026】
(2)HPLCによる分析
上記(1)による消化を行った後の溶液20μlを、HPLC(医理化、モデル852型)を用いて分析した。イオン交換カラム(Dionex社、CarboPac PA-1カラム4.0mm×250mm)を使用し、232nmでの吸光度を測定した。流速1ml/分で、塩化リチウムを用いたグラジエント系(50mM→2.5M)を用いる方法に準拠した(Kariya, et al.,Comp.Biochem.Physiol.,103B,473− 479,(1992))。その結果、ΔDiHS-tri(U,6,N)S含量は、原料ヘパリンで64.2%、NACヘパリンで89.7%となった。
【0027】
試験例3
[分子量測定]
試験例1で得たNACヘパリンの3%溶液10μlをHPLCによるゲルろ過で分析した。カラムはTSKgel-(G4000+G3000+G2500)PW XL (東ソー、7.8mm×30cm)を用い、溶離液に0.2M塩化ナトリウムを使用して、1.0ml/分の流速で展開した。NACヘパリンの検出には、示差屈折計(島津製作所、AID-2A)を用いた。平均分子量はヘパリンの分子量標準品を対照にして求めた(Kaneda et al.,Biochem. Biophys. Res. Comm.,220 ,108-112(1996))。その結果、試験例1で得たNACヘパリンの分子量は約12,800であることが明らかになった。
【0028】
試験例4
[NACヘパリンの活性化部分トロンボプラスチン時間(APTT)測定]
APTTの測定のため、健常人より3.2%クエン酸1/10容量で採血した。血液を1,000×g、10分間遠心分離し、得た血奬にNACヘパリンを6μg/mlとなるように添加し、その混合液100μlを測定用カップに入れ、37℃で1分間保温した。その後、あらかじめ37℃に保温しておいたアクチン(商品名:(株)ミドリ十字)100μlを添加し、さらに2分間保温した。次いで、37℃に保温しておいた0.02M CaCl2溶液100μlを添加し、この時より凝固がおこるまでの時間を血液凝固自動測定装置(KC-10A:アメルング社製)で測定した。その結果、試験例1で得たNACヘパリンのAPTTは42秒となった。対象として用いた上記試験例1で使用した原料ヘパリンのAPTTは300秒以上となった。
【0029】
実施例1 本発明虚血・再灌流障害抑制剤の製造
試験例1によって調製したNACヘパリン(ΔDiHS-tri(U,6,N)S:89.7%、分子量:約12,800、標準血漿に6μg/ml濃度で添加した際のAPTT:42秒)を使用することにより本発明虚血・再灌流障害抑制剤を製造した。注射剤は、試験例1で製造したNACヘパリン50gを用い、このNACヘパリンを5mg/mlとなるようにマンニトール水溶液に溶解し、これを無菌濾過した後に、2mlずつアンプルに分注して製造した。液剤は、上記同様の製造法によって得たNACヘパリンを5μg/mlとなるように点滴用マンニトールに溶解した後に、無菌濾過して、点滴用液剤として500mlずつパックした。
【0030】
実施例2 本発明虚血・再灌流障害抑制剤の虚血・再灌流時におけるに組織保護効果
虚血・再灌流時に本発明虚血・再灌流障害抑制剤の組織保護効果を成犬(10〜20Kg)の虚血・再灌流モデルにより確認した。
すなわち、生理食塩水(対照群)、5mg/mlの試験例1の原料ヘパリンを溶解したマンニトール溶液2ml(ヘパリン群)、及び上記実施例1で製造したNACヘパリンの注射剤(NACヘパリン群)を用意し、対照群(生理食塩水を静注、n=5)、ヘパリン群(2mg/kgを静注、n=5)、NACヘパリン群(2mg/kgを静注、n=5)の3群を以下の方法で、15匹の成犬に投与した。
【0031】
初めにそれぞれの検体(各群5匹の成犬、3群)を左第VI肋間において開胸し、心臓の左室圧測定用の5Frミラーカテーテル(Millar、Mikro-Tip製)及び心臓の左室容積測定用の動物研究用5Frコンダクタンスカテーテル(Cordis,EuropaNV,Podeu製)を左室心尖部より挿入した後、冠動脈左前下行枝に咬合器を装着した。薬剤の投与は、左大腿動脈にシリコンカテーテルを留置して行った。咬合器による虚血は15分間行った。各項目の測定は薬剤投与前、投与5分後、閉塞15分後、再灌流15分後、再灌流60分後、再灌流120分後、再灌流180分後に行った。各時点における左室圧容積図を左室容積測定装置Sigma 5(Leycom製)により記録し、左室収縮性の指標であるEmax、血圧、心拍数を求めた。
【0032】
また、各時点において採血を行い、一般凝固系(部分トロンボプラスチン時間(PT)、活性化部分トロンボプラスチン時間(APTT)、血小板数、フィブリノーゲン量)、線溶系(プラスミノーゲン活性)及び内皮細胞障害系(NO2 -/NO3 -、エンドセリン-1量)を一般的手法を用いて測定した。特に、NO2 -/NO3 -の測定はCayman製のNO2 -/NO3 -測定キット、エンドセリン-1量の測定はIBL製のエンドセリン−1測定キットを使用した。
【0033】
その結果、薬剤投与前と比較して、虚血時に内皮細胞の障害の度合を示すNO2 -/NO3 -の増加がコントロール群に観察され(+0.3)、ヘパリン群で変化がほとんど見られなかった(-0.1)のに対し、NACヘパリン群は大きく減少し(-0.5)、他の2群と比較して内皮細胞障害が少ないことが明らかとなった。特にNACヘパリン群の内皮細胞障害の低さは虚血直後に顕著であった。また、NACヘパリン群は、血圧や心拍数に影響はなく、更にNACヘパリン群においてAPTT、PT、フィブリノーゲン量及びエンドセリン−1量は大きな上昇はなく、血小板数、プラスミノーゲン活性の減少が見られなかったことから、血液凝固系への影響が低いことが明らかであり、虚血・再灌流障害抑制剤として使用した際の安全性の高さを裏付ける結果が得られた。
【0034】
【発明の効果】
本発明によれば、虚血・再灌流に伴って誘起される虚血障害及び/又は再灌流障害から組織を保護するための虚血・再灌流障害抑制剤が提供され、脳梗塞や心筋梗塞などの血流障害、血管閉塞を改善する手術、特にPTCAや血管バイパス手術の際に起こる虚血障害及び/又は再灌流障害を抑制することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention suppresses ischemic injury of living tissue associated with ischemia and / or reperfusion injury of living tissue associated with reperfusion after ischemia (these disorders are collectively referred to as “ischemia / reperfusion injury”). More particularly, the present invention relates to a drug for suppressing tissue damage of various organs such as myocardium induced by ischemia and / or reperfusion.
[0002]
[Prior art]
It is widely known that the blood vessel inner wall, various organs, and biological tissues are damaged by stopping the blood flow in the blood vessel and then flowing the blood again thereafter. For example, as an ischemic injury, a brain tissue injury caused by ischemia in the case of cerebral infarction, an injury of myocardium due to ischemia accompanying surgery for treating myocardial infarction or heart disease, or surgery of various organs such as kidney, liver or lung Injury to organs or living tissues due to ischemia at the time. In cardiac surgery, when blood flow in and around the heart is stopped and blood is flowed again (at the time of reperfusion), serious damage to the vascular endothelial cells and myocardium (reperfusion injury) occurs. It is also known that there is no end to the examples that are endangered.
[0003]
In recent years, coronary intervention is performed as a treatment for myocardial infarction and angina. Percutaneous transluminal coronary angioplasty (PTCA) is frequently used as one technique. This technique is an operation in which a coronary artery embolus or stenosis of the heart is opened by inflating a balloon attached to the tip of the catheter, and the catheter is percutaneously introduced into the peripheral artery from the lower limbs and transmitted through the blood vessel. Inserted into the coronary artery. The balloon is inflated and opened, but a large amount of blood is perfused in the area downstream of the blood flow rather than the affected area that has been in an ischemic state, so that endothelial cell damage and myocardial damage similar to the affected area may occur. Has been pointed out as a serious problem.
[0004]
By the way, for example, attempts have been made to use low molecular weight heparin as a therapeutic agent for myocardial infarction (Japanese Patent Publication No. 7-503496). However, this drug is a thrombus due to the anticoagulant activity of the low molecular weight heparin. The purpose is to suppress myocardial infarction, which consists of dissolving the blood to resume blood flow.
The vascular endothelium is damaged by the balloon during PTCA, and restenosis often occurs due to over-repair several months after the operation. Periodic acid, a derivative of heparin, is used to suppress the proliferation of such vascular endothelial cells. Attempts have been made to use redox heparin (WO92 / 17187), and it is known that the heparin derivative has a smooth muscle growth inhibitory effect.
[0005]
On the other hand, the use of glutathione precursor methyl ester or superoxide dismutase (SOD) has been attempted as an inhibitor of myocardial ischemia / reperfusion injury associated with ischemia / reperfusion. However, the latter has an excellent effect, but has a problem with its stability in the living body, and a device for maintaining the activity in the living body is required.
[0006]
[Problems to be solved by the invention]
Can be used to easily and easily avoid damage to living tissue, especially myocardial damage, associated with cessation of blood flow (ischemia) and resumption of blood flow (reperfusion) An effective ischemia / reperfusion injury inhibitor that can be obtained has not yet been found, and its development is expected.
[0007]
[Means for Solving the Problems]
As a result of repeating earnest studies to solve the above problems, the present inventors have found that a specific heparin derivative has an activity of suppressing tissue damage immediately after ischemia / reperfusion. Reached.
That is, the present invention includes a structural unit represented by the following structural formula (I) and a heparin derivative having the properties shown in the following (1) and (2) or a pharmacologically acceptable salt thereof as an active ingredient. The main topic is a blood / reperfusion disorder inhibitor.
(1) 2-dioxy-2-sulfamino- (4-deoxy-2-O-sulfo-α- in the disaccharide composition calculated from disaccharide analysis that combines degradation by heparin degrading enzyme and analysis by high performance liquid chromatography L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose mol% is 80% or more.
(2) Standard plasma 6 [mu] g / ml concentration of activated partial thromboplastin time upon addition of (activated partial thro m boplastin time; APTT) does not exceed 50 seconds.
Structural formula (I)
[0008]
[Chemical 3]
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in more detail.
Although the present invention relates to an ischemia / reperfusion injury inhibitor, its active ingredient is a structural unit represented by the above structural formula (I), that is, part of uronic acid in the constituent disaccharide of heparin is oxidatively cleaved, A heparin derivative (hereinafter also referred to as NAC heparin) or a pharmacologically acceptable salt thereof having a structural unit in which the resulting aldehyde group is reduced and having the properties shown in the following (1) and (2) It is.
(1) 2-deoxy-2-sulfamino- (4-deoxy-2-O-sulfo) in a disaccharide composition calculated from disaccharide analysis combining heparin derivative degradation with heparin degrading enzyme and analysis by high performance liquid chromatography. The molar percentage of -α-L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose is 80% or more.
(2) Coagulation time by activated partial thromboplastin time (APTT) does not exceed 50 seconds when added to standard plasma at a concentration of 6 μg / ml.
[0010]
As a method for producing the above NAC heparin, for example, based on the production method described in WO92 / 17187, or the method described in JP-A-63-278901, the reaction conditions were experimentally confirmed and selected so as to have desired characteristics. The added manufacturing method etc. are mentioned, For example, it can manufacture with the following method.
A 0.5-10%, preferably 1-7% solution of heparin having a molecular weight of about 14,000, for example, an oxidizing agent such as periodate or hydrogen peroxide, preferably an alkali metal periodate, more preferably periodate Sodium is added at a concentration of 0.01 to 0.3 M, preferably 0.05 to 0.2 M, to oxidize the heparin, and the carbons at the 2nd and 3rd positions of the uronic acid residues in the heparin skeleton that are not substituted with sulfate groups Is oxidatively cleaved. The oxidation reaction is performed under conditions of pH 3-7, preferably pH 4-5, temperature 0-37 ° C., preferably 0-10 ° C., more preferably around 4 ° C. for 1 day or longer, preferably 3 days.
[0011]
After the oxidation treatment, an excess oxidizing agent such as sodium periodate is decomposed by treatment with 100 to 500 mM ethylene glycol or glycerin. Thereafter, dialysis with distilled water is performed as necessary, and a periodate oxidation product of heparin is obtained using a method such as freeze-drying or ethanol precipitation.
[0012]
Since the oxidation product obtained as a result of oxidizing heparin with the oxidizing agent has an aldehyde group in its structure, the aldehyde group is reduced in the presence of a reducing agent. The method of the reduction treatment is not limited as long as the above-described object is achieved. For example, 0.1 to 0.5M, preferably 0.2M sodium borohydride containing 1 to 20% (W / V) of pH 8.5 to 9.5, Preferably, 5 to 10% (W / V) of the oxidation product solution is reacted, for example, at 4 ° C. for 3 hours.
[0013]
After completion of the reaction, excess sodium borohydride is decomposed by adjusting the pH of the reaction solution to 4-5, and then 1-2.5M, preferably 2M alkaline solution (eg sodium hydroxide solution, potassium hydroxide solution) It is possible to obtain a salt of NAC heparin by redissolving it in a magnesium hydroxide solution, calcium hydroxide solution, etc.), adjusting the pH to 9-10, and dialyzing against distilled water.
May be a salt thereof pharmacologically acceptable the NAC heparin, for example, alkali metal salts (sodium salt, potassium salt) and alkaline earth metal salts (magnesium salt, calcium salt) and the like, alkali metal Salts are preferred, and sodium salt is most preferred among them.
[0014]
Although the reaction itself is well known, heparin-induced body having physical properties as an active ingredient of ischemia-reperfusion injury agent of the present invention can be obtained by appropriately adjusting the reaction conditions. Specifically, NAC heparin is a hexuronic acid and glucosamine repetitive structure generally called a heparin skeleton. Among the uronic acid residues therein, uronic acid residues having no sulfate groups at the 2nd and 3rd positions are present. Since the structure has a structure in which the ring is opened between the carbon atoms at the 2nd and 3rd positions, that is, the pyranose ring is cleaved, the reaction conditions for cleaving the bond between the carbon atoms at specific positions of the raw material heparin are selected. Among NAC heparins, those that are effective as components of the drug of the present invention include 2-deoxy-deoxy in a disaccharide composition determined by a method of analyzing a disaccharide produced by degrading NAC heparin with heparin degrading enzyme by high performance liquid chromatography. -2-sulfamino- (4-deoxy-2-O-sulfo-α-L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose (hereinafter referred to as ΔDiHS-tri (U , 6, N) S) is required to be at least 80%, preferably 85% or more.
[0015]
Furthermore, NAC heparin, which is an active ingredient of the drug of the present invention, is an activated part that is a clotting time measured by adding to standard plasma (plasma prepared by a general method from blood of a healthy person) at a concentration of 6 μg / ml. Thromboplastin time (APTT) has a characteristic that does not exceed 50 seconds.
[0016]
The agent for suppressing ischemia / reperfusion injury according to the present invention includes an agent for suppressing ischemic injury that occurs in a living tissue during ischemia and reperfusion injury that occurs during reperfusion after ischemia. It is characterized by being used immediately after that. Therefore, it is clearly distinguished from a drug used for a long period of time after surgery, such as a drug for suppressing restenosis by suppressing the proliferation of vascular endothelial cells after PTCA. The ischemia / reperfusion injury inhibitor of the present invention is an effective drug for protecting tissues from damage caused by free radicals (such as active oxygen) generated during ischemia and / or after ischemia reperfusion, It is mainly used as an agent for protecting the heart, brain, lungs, kidneys, and liver tissues, but is preferably applied to the heart or brain, and most preferably to the heart.
[0017]
Specific examples of drugs to be applied to the heart include myocardial ischemia / reperfusion injury inhibitors for continuous administration before and after surgery for the heart and peripheral blood vessels. However, the present invention can also be used as a cerebral ischemia / reperfusion injury inhibitor for suppressing cerebral tissue damage due to blood reperfusion during cerebral infarction and treatment thereof. The ischemia / reperfusion injury inhibitor of the present invention has an excellent biological tissue protective effect, has low anticoagulant activity, and has no bleeding activity when administered as a drug. Listed as a feature.
[0018]
The dosage form of the ischemia / reperfusion injury inhibitor of the present invention is not limited as long as it is a form capable of exerting the above-described action of NAC heparin. Particularly preferred are dosage forms suitable for administration into the blood vessels of mammals such as humans, cows, horses, dogs, cats, sheep or goats. Examples of dosage forms that can be administered by such administration methods include injection solutions and infusion solutions. The ampules, vials, or syringes are pre-filled as powder and dissolved at the time of use. Form may be sufficient. Examples of such forms include dosage forms that can be dissolved and administered at the time of use using an appropriate solvent such as physiological saline, mannitol solution, Ringer's solution or phosphate buffer. Possible containers can be employed.
[0019]
The compounding amount and dosage of NAC heparin in the ischemia / reperfusion injury inhibitor of the present invention depends on factors such as administration method, dosage form, purpose of use, specific symptoms of patient, patient weight, etc. In general, the clinical dosage of NAC heparin can be exemplified as about 100 μg / kg to 100 mg / kg per day. In addition, the above preparation is administered to a patient by instillation for at least several hours after the operation immediately before the operation in operations involving ischemia and reperfusion, for example, various bypass operations, stenosis removal operations such as PTCA, etc. It is preferable to continue.
[0020]
It should be noted that NAC heparin, which is an active ingredient of the present invention ischemic / reperfusion injury inhibitor, was not toxic to living bodies in the examples described later. On the other hand, LD50 of heparin in mice (male and female) by acute toxicity test should be 5,000 mg / kg or more by oral administration, 2,500 mg / kg or more by subcutaneous or intraperitoneal administration, and 1,000 mg / kg or more by intravenous injection. It has been known. Further, as described in WO92 / 17187, the anticoagulant activity of NAC heparin is greatly reduced as compared with normal heparin. From this, it can be said that the safety of the present invention ischemic / reperfusion injury inhibitor is high.
[0021]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless the gist of the present invention is exceeded.
The synthesis, identification and activity evaluation of the NAC heparin of the present invention were performed based on the methods of the following test examples.
[0022]
Test example 1
[Synthesis of NAC heparin]
NAC heparin was synthesized using heparin sodium salt (weight average molecular weight: 13,700 Da, manufactured by Syntex, Lot No. 40210910: hereinafter referred to as raw material heparin).
Raw material heparin 1.3 g was oxidized in the presence of sodium periodate. This reaction was performed by oxidation treatment at 4 ° C. for 3 days in a solution of pH 5 containing 50 ml of 0.05N sodium periodate and 50 mM sodium acetate. After the oxidation treatment, excess periodate was decomposed by adding glycerol having a final concentration of 250 mM, dialyzed against distilled water for 2 days, and then freeze-dried to obtain 1.2 g of periodate-oxidized heparin.
[0023]
The aldehyde group generated during the production of periodate-oxidized heparin is obtained by reacting a solution of pH 9 containing 30 ml of 0.2N sodium borohydride, 0.25N sodium bicarbonate and 1.2 g of the heparin oxide at 4 ° C. for 3 hours. Reduced. After the reaction, the pH is adjusted to 5 with glacial acetic acid, and the excess sodium borohydride is decomposed by allowing to stand at room temperature for 30 minutes. After adjusting the pH to 9 again with 5N sodium hydroxide, it is added to distilled water. By dialysis and lyophilization for 2 days, 1.1 g of sodium salt of NAC heparin was obtained.
[0024]
Test example 2
[Disaccharide analysis by enzyme digestion]
The disaccharide composition of NAC heparin obtained in Test Example 1, that is, the position of the sulfate group of the constituent disaccharide was analyzed as follows. That is, NAC heparin was enzymatically digested and the resulting unsaturated disaccharide (the structural formula: (I)) was analyzed by high performance liquid chromatography (HPLC) using the unsaturated disaccharide standard as a control (Shinsei Chemistry Laboratory) 3. Carbohydrate II (Tokyo Kagaku Doujin, 1991), page 49-62, see “2. 8 Structural analysis combining glycosaminoglycan degrading enzyme and HPLC”). As the unsaturated disaccharide standard, for example, unsaturated heparan / heparin disaccharide mix (H mix) (manufactured by Seikagaku Corporation) can be used.
The peak area of each unsaturated disaccharide capable of structure determination was calculated and expressed as a percentage of the peak area relative to the total area.
[0025]
(1) Digestion of NAC heparin with heparin-degrading enzyme 20 mM sodium acetate (pH 7.0) containing 2 mM calcium acetate with 1.0 mg of heparin or NAC heparin according to the method described in Neonatal Chemistry Experiment Course 3, Carbohydrate II, pages 54-59 was dissolved in 220 .mu.l, 20 mU of HEPA Lina over peptidase, the addition of heparitinase I and II of 20 mU, 37 ° C., the reaction was carried out for 2 hours.
[0026]
(2) Analysis by HPLC 20 μl of the solution after digestion by the above (1) was analyzed using HPLC (Medicalization, Model 852 type). Absorbance at 232 nm was measured using an ion exchange column (Dionex, CarboPac PA-1 column 4.0 mm × 250 mm). At a flow rate of 1 ml / min, gradient system using lithium chloride (50 mM → 2.5M) was in accordance with the method of using (Kariya, et al, Comp.Biochem.Physiol, 103B, 473 -.. 479, (1992)). As a result, the ΔDiHS-tri (U, 6, N) S content was 64.2% for raw material heparin and 89.7% for NAC heparin.
[0027]
Test example 3
[Molecular weight measurement]
10 μl of a 3% solution of NAC heparin obtained in Test Example 1 was analyzed by gel filtration by HPLC. The column was developed using TSKgel- (G4000 + G3000 + G2500) PW XL (Tosoh, 7.8 mm × 30 cm) and 0.2 M sodium chloride as an eluent at a flow rate of 1.0 ml / min. For the detection of NAC heparin, a differential refractometer (Shimadzu Corporation, AID-2A) was used. The average molecular weight was determined using a heparin molecular weight standard as a control (Kaneda et al., Biochem. Biophys. Res. Comm., 220, 108-112 (1996)). As a result, it became clear that the molecular weight of NAC heparin obtained in Test Example 1 was about 12,800.
[0028]
Test example 4
[Activated partial thromboplastin time (APTT) measurement of NAC heparin]
For APTT measurement, blood was collected from a healthy person at 1/10 volume of 3.2% citric acid. The blood was centrifuged at 1,000 × g for 10 minutes, NAC heparin was added to the obtained clot so as to be 6 μg / ml, and 100 μl of the mixed solution was placed in a measuring cup and kept at 37 ° C. for 1 minute. Thereafter, 100 μl of actin (trade name: Green Cross Co., Ltd.) that had been kept warm at 37 ° C. in advance was added, and the mixture was further kept warm for 2 minutes. Next, 100 μl of a 0.02M CaCl 2 solution kept at 37 ° C. was added, and the time from this time until coagulation occurred was measured with a blood coagulation automatic measuring device (KC-10A: manufactured by Amelung). As a result, APTT of NAC heparin obtained in Test Example 1 was 42 seconds. The APTT of the raw material heparin used in Test Example 1 used as a target was 300 seconds or more.
[0029]
Example 1 Production of Inhibitor for Ischemia / Reperfusion Injury of the Present Invention NAC heparin (ΔDiHS-tri (U, 6, N) S: 89.7%, molecular weight: about 12,800, 6 μg / ml in standard plasma prepared in Test Example 1 APTT when added at a concentration of 42 seconds) was used to produce the present ischemic / reperfusion injury inhibitor. The injection was prepared by using 50 g of NAC heparin produced in Test Example 1, dissolving this NAC heparin in an aqueous mannitol solution to 5 mg / ml, and subjecting this to aseptic filtration, and then dispensing 2 ml into ampoules. . The solution was prepared by dissolving NAC heparin obtained by the same production method as described above in drip mannitol so as to be 5 μg / ml, followed by sterile filtration to pack 500 ml each as a drip solution.
[0030]
Example 2 Tissue protective effect of the present ischemia / reperfusion injury inhibitor during ischemia / reperfusion The tissue protective effect of the present ischemia / reperfusion injury inhibitor during ischemia / reperfusion ˜20 kg) ischemia / reperfusion model.
That is, physiological saline (control group), 2 mg of mannitol solution (heparin group) in which 5 mg / ml of raw material heparin of Test Example 1 was dissolved, and an injection of NAC heparin prepared in Example 1 (NAC heparin group) 3 of the control group (saline intravenously, n = 5), heparin group (2 mg / kg intravenously, n = 5), NAC heparin group (2 mg / kg intravenously, n = 5) Groups were administered to 15 adult dogs in the following manner.
[0031]
First, open each specimen (5 adult dogs, 3 groups) at the left intercostal VI, 5Fr mirror catheter (Millar, manufactured by Mikro-Tip) for measuring left ventricular pressure of the heart and left of the heart An animal research 5Fr conductance catheter (Cordis, EuropaNV, Podeu) for chamber volume measurement was inserted from the left ventricular apex, and an articulator was attached to the left anterior descending coronary artery. The drug was administered by placing a silicone catheter in the left femoral artery. Arterial ischemia was performed for 15 minutes. Measurement of each item was performed before drug administration, 5 minutes after administration, 15 minutes after occlusion, 15 minutes after reperfusion, 60 minutes after reperfusion, 120 minutes after reperfusion, and 180 minutes after reperfusion. The left ventricular pressure volume diagram at each time point was recorded by a left ventricular volume measuring device Sigma 5 (manufactured by Leycom), and Emax, blood pressure, and heart rate, which are indicators of left ventricular contractility, were obtained.
[0032]
In addition, blood was collected at each time point, and the general coagulation system (partial thromboplastin time (PT), activated partial thromboplastin time (APTT), platelet count, fibrinogen amount), fibrinolytic system (plasminogen activity) and endothelial cell damage system ( NO 2 − / NO 3 − , endothelin-1 amount) was measured using a general method. In particular, NO 2 − / NO 3 − was measured using a Cayman NO 2 − / NO 3 − measurement kit, and endothelin-1 was measured using an IBL endothelin-1 measurement kit.
[0033]
As a result, compared to before drug administration, NO 2 indicates the degree of disorder of endothelial cells during ischemia - / NO 3 - increased is observed in the control group (+0.3), is little change in the heparin group The NAC heparin group decreased significantly (-0.5), while it was not (-0.1), and it was revealed that there was less endothelial cell damage than the other two groups. In particular, the low endothelial damage in the NAC heparin group was prominent immediately after ischemia. In the NAC heparin group, blood pressure and heart rate were not affected, and in the NAC heparin group, APTT, PT, fibrinogen and endothelin-1 levels did not increase significantly, and the platelet count and plasminogen activity decreased. From these results, it was clear that the influence on the blood coagulation system was low, and the results confirming the high safety when used as an ischemia / reperfusion injury inhibitor.
[0034]
【The invention's effect】
According to the present invention, an ischemia / reperfusion injury inhibitor for protecting tissue from ischemic injury and / or reperfusion injury induced by ischemia / reperfusion is provided, and cerebral infarction or myocardial infarction is provided. It is possible to suppress an ischemic injury and / or a reperfusion injury that occurs during an operation for improving blood flow disturbance such as vascular occlusion, especially PTCA or vascular bypass surgery.
Claims (4)
(1)ヘパリン分解酵素による分解と高速液体クロマトグラフィーによる分析を組み合わせた二糖分析から算出した二糖組成において、2-デオキシ-2-スルファミノ-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコースのモル%が80%以上である。
(2)標準血漿に6μg/mlの濃度で添加した際の活性化部分トロンボプラスチン時間(activated partial thromboplastin time;APTT)が50秒を越えない。
構造式(I)
(1) 2-dioxy-2-sulfamino- (4-deoxy-2-O-sulfo-α- in the disaccharide composition calculated from disaccharide analysis that combines degradation by heparin degrading enzyme and analysis by high performance liquid chromatography L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose mol% is 80% or more.
(2) The activated partial thromboplastin time (APTT) does not exceed 50 seconds when added to standard plasma at a concentration of 6 μg / ml.
Structural formula (I)
(1)ヘパリン分解酵素による分解と高速液体クロマトグラフィーによる分析を組み合わせた二糖分析から算出した二糖組成において、2-デオキシ-2-スルファミノ-(4-デオキシ-2-O-スルホ-α-L-threo-hex-4-エノピラノシルウロン酸)-6-O-スルホ-D-グルコースのモル%が85%以上である。Ischemia-reperfusion injury inhibitor according to claim 1, wherein the properties (1) is as follows with the heparin derivative.
(1) 2-dioxy-2-sulfamino- (4-deoxy-2-O-sulfo-α- in the disaccharide composition calculated from disaccharide analysis that combines degradation by heparin degrading enzyme and analysis by high performance liquid chromatography L-threo-hex-4-enopyranosyluronic acid) -6-O-sulfo-D-glucose mol% is 85% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27936897A JP4166851B2 (en) | 1997-09-29 | 1997-09-29 | Novel inhibitor of ischemia / reperfusion injury |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27936897A JP4166851B2 (en) | 1997-09-29 | 1997-09-29 | Novel inhibitor of ischemia / reperfusion injury |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11100322A JPH11100322A (en) | 1999-04-13 |
JP4166851B2 true JP4166851B2 (en) | 2008-10-15 |
Family
ID=17610190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27936897A Expired - Fee Related JP4166851B2 (en) | 1997-09-29 | 1997-09-29 | Novel inhibitor of ischemia / reperfusion injury |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4166851B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2800074B1 (en) * | 1999-10-22 | 2001-12-21 | Aventis Pharma Sa | NOVEL OLIGOSACCHARIDES, THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
-
1997
- 1997-09-29 JP JP27936897A patent/JP4166851B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11100322A (en) | 1999-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5767269A (en) | Processes for the preparation of low-affinity, low molecular weight heparins useful as antithrombotics | |
EP0706398B1 (en) | Pharmaceutical composition containing heparin, heparin fragments or their derivatives in combination with glycerol esters | |
US20080119438A1 (en) | Heparin compositions that inhibit clot associated coagulation factors | |
WO1998014481A9 (en) | Processes for the preparation of low-affinity, low molecular weight heparins useful as antithrombotics | |
ES2668273T3 (en) | Use of chemically modified heparin derivatives in sickle cell disease | |
JPS6218401A (en) | Polysaccharides and oligosaccharides used in production of drug useful in connection tissue pathology | |
JPH0813742B2 (en) | Anticoagulant | |
JP2001506603A (en) | Pharmaceutical composition containing a compound having anti-Xa activity and a platelet aggregation antagonist compound | |
KR20010110788A (en) | A Pharmaceutical Formulation Comprising a Low Molecular Weight Thrombin Inhibitor and Its Prodrug | |
JP3813169B2 (en) | Antithrombotic | |
JP3342007B2 (en) | Modified low-molecular-weight heparin and therapeutic agent for skin ulcer | |
EP1181048B1 (en) | A pharmaceutical formulation containing an inhibitor of carboxypeptidase u and a thrombin inhibitor | |
JP4051099B2 (en) | Low molecular weight heparin, process for producing the same, and pharmaceutical composition | |
JP4166851B2 (en) | Novel inhibitor of ischemia / reperfusion injury | |
HUT76895A (en) | Use of hyaluronic acid for preparing pharmaceutical compns. for treatment of disease and conditions associated with macrophage infiltration | |
JP2009522054A (en) | Sterilized peritoneal dialysis solution containing heparin | |
CA2212458C (en) | Vascular intimal hyperplasia-inhibitory composition | |
US20030092671A1 (en) | Antithrombotic composition | |
JP2018524067A (en) | Medical devices, systems and methods utilizing antithrombin-heparin compositions | |
CZ2003961A3 (en) | Pharmaceutical preparation intended for inhibition or prevention of thrombin formation or activity | |
EP2029161A2 (en) | Use of non-catalytic form of heparanase and peptides thereof for reversing the anti-coagulant effects of heparinoids | |
Kishimoto et al. | M118–A rationally engineered low-molecular-weight heparin designed specifically for the treatment of acute coronary syndromes | |
US20070196347A1 (en) | Methods for preventing neurological events | |
JP4270588B2 (en) | Neurotoxin reducing anesthetic | |
JPH10265503A (en) | Skeletal muscle growth agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040927 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040927 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080729 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080731 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |