EP1782738A2 - Lockout mechanism and surgical instruments including same - Google Patents
Lockout mechanism and surgical instruments including same Download PDFInfo
- Publication number
- EP1782738A2 EP1782738A2 EP06255683A EP06255683A EP1782738A2 EP 1782738 A2 EP1782738 A2 EP 1782738A2 EP 06255683 A EP06255683 A EP 06255683A EP 06255683 A EP06255683 A EP 06255683A EP 1782738 A2 EP1782738 A2 EP 1782738A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- lockout
- firing
- wedge member
- firing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007246 mechanism Effects 0.000 title claims description 42
- 238000010304 firing Methods 0.000 claims abstract description 157
- 230000033001 locomotion Effects 0.000 claims abstract description 45
- 239000012636 effector Substances 0.000 claims description 34
- 230000000994 depressogenic effect Effects 0.000 claims description 15
- 230000003028 elevating effect Effects 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 description 17
- 239000000463 material Substances 0.000 description 8
- 239000012530 fluid Substances 0.000 description 5
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B17/07207—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00535—Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/068—Surgical staplers, e.g. containing multiple staples or clamps
- A61B17/072—Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
- A61B2017/07214—Stapler heads
- A61B2017/07285—Stapler heads characterised by its cutter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2926—Details of heads or jaws
- A61B2017/2927—Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B2017/2926—Details of heads or jaws
- A61B2017/2932—Transmission of forces to jaw members
- A61B2017/2943—Toothed members, e.g. rack and pinion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/08—Accessories or related features not otherwise provided for
- A61B2090/0814—Preventing re-use
Definitions
- the disclosed invention relates generally and in various embodiments to surgical stapling and cutting instruments structured and configured for applying lines of staples from a reusable staple cartridge into tissue while cutting the tissue between the applied staple lines. More particularly the disclosed invention relates to locking mechanisms for use in articulating surgical stapling and cutting instruments that prevent cutting of the tissue when the staple cartridge is spent or otherwise not present in an unfired position.
- Surgical stapling and cutting instruments have been used in the prior art to simultaneously make a longitudinal incision in tissue and apply lines of staples on opposing sides of the incision.
- Such instruments commonly include a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway.
- One of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples.
- the other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge.
- the instrument includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.
- the staple cartridge provides numerous advantages, it is desirable to prevent inadvertent firing of the instrument when an unfired staple cartridge is not present. Otherwise, the severing of tissue may occur without the staples to minimize bleeding. It is particularly desirable that preventing such inadvertent firing be accomplished in a reliable way that is not subject to an intervening malfunction. Moreover, for ease of manufacturing and assembly, it is further desirable that the lockout features be accomplished with a minimum number of components.
- Lockout mechanisms based upon vertical movement of the knife are known and particularly well-suited for non-articulating endocutter designs in which the end effector is located at the end of a generally rigid shaft.
- the shaft enables insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby enabling the end effector to be positioned to a degree.
- a U.S. Pat. No. 5,878,938 to Bittner et al. discloses a locking mechanism, or lockout, that uses a leaf spring to automatically lift a knife of the cartridge after a firing operation, thus locking the instrument so that subsequent firing operations are prevented.
- U.S. Pat. No. 5,673,842 also to Bittner et al. , teaches a locking mechanism using an elongated member that automatically rotates from a first position to a second position as the instrument is fired. With the locking arm in the second position, the knife is free to translate upwardly and lock the instrument.
- Such lockout mechanisms may be less suited for use in articulating surgical stapling and cutting instrument designs in which the end effector is located at the end of a shaft incorporating an articulating mechanism.
- a U.S. Pat. No. 6,786,382 to Hoffman discloses a surgical stapling and severing instrument incorporating an articulation mechanism for coupling the shaft to the end effector. Firing of the staples and severing of tissue is effected by a flexible firing mechanism extending through the articulation mechanism that is capable of transferring large loads therethrough in both flexed or unflexed states.
- the geometry of the firing mechanism and/or the physical forces present while the firing mechanism is in a flexed state may sufficiently restrict its vertical movement such that the above-described lockout mechanisms cannot be effectively employed.
- This application discloses a surgical instrument comprising a handle portion, a channel, an anvil, and staple cartridge, a wedge member, a reciprocating firing device, and a lockout arm.
- the handle portion is operably configured to produce a firing motion and is coupled to the channel portion.
- the staple cartridge is engaged by the channel and includes a plurality of staple drivers and staples.
- the staple drivers are configured for camming the staples toward the anvil, which is pivotally attached to the channel.
- the wedge member is proximal to and longitudinally aligned with the staple drivers, and the reciprocating firing device is responsive to the firing motion to progressively drive the wedge member from an unfired to a fired position.
- the lockout arm is pivotally attached to the channel and operably configured to pivot between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- This application further discloses a surgical instrument comprising a handle portion, a channel, an anvil, and staple cartridge, a wedge member, a reciprocating firing device, and at least one lockout assembly.
- the handle portion is operably configured to produce a firing motion and is coupled to the channel portion.
- the staple cartridge is engaged by the channel and includes a plurality of staple drivers and staples.
- the staple drivers are configured for camming the staples toward the anvil, which is pivotally attached to the channel.
- the wedge member is proximal to and longitudinally aligned with the staple drivers, and the reciprocating firing device is responsive to the firing motion to progressively drive the wedge member from an unfired to a fired position.
- Each lockout assembly includes a lockout cartridge moveably disposed within a corresponding recess defined by the channel. The lockout cartridge is configured to move between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- This application further discloses a surgical instrument comprising a handle portion, a channel, an anvil, and staple cartridge, a wedge member, and a reciprocating firing device.
- the handle portion is operably configured to produce a firing motion and is coupled to the channel portion.
- the staple cartridge is engaged by the channel and includes a plurality of staple drivers and staples.
- the staple drivers are configured for camming the staples toward the anvil, which is pivotally attached to the channel.
- the wedge member is proximal to and longitudinally aligned with the staple drivers, and the reciprocating firing device is responsive to the firing motion to progressively drive the wedge member from an unfired to a fired position.
- the firing device includes a distal portion, a proximal portion, and pivot means connecting the proximal and distal portions. The distal portion is configured to pivot between a locked position and an unlocked position with respect to the channel based upon a position of the wedge member.
- This application further discloses an end effector for use with a surgical instrument, the end effector comprising a channel, a reciprocating firing device, and a lockout arm.
- the channel is configured for receiving a staple cartridge
- the firing device is responsive to a firing motion produced by the surgical instrument for progressively driving a wedge member of the staple cartridge from an unfired position to a fired position.
- the lockout arm is pivotally attached to the channel and operably configured to pivot between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- This application further discloses an end effector for use with a surgical instrument, the end effector comprising a channel, a reciprocating firing device, and at least one lockout assembly.
- the channel is configured for receiving a staple cartridge
- the firing device is responsive to a firing motion produced by the surgical instrument for progressively driving a wedge member of the staple cartridge from an unfired position to a fired position.
- Each lockout assembly is positioned in the channel and adjacent to a corresponding lateral surface of the firing device and comprises a lockout cartridge moveably disposed within a corresponding recess defined by the channel.
- the lockout cartridge is configured to move between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- This application further discloses an end effector for use with a surgical instrument, the end effector comprising a channel and a reciprocating firing device.
- the channel is configured for receiving a staple cartridge
- the firing device is responsive to a firing motion produced by the surgical instrument for progressively driving a wedge member of the staple cartridge from an unfired position to a fired position.
- the firing device comprises a distal portion, a proximal portion, and pivot means connecting the proximal and distal portions.
- the distal portion is configured to pivot between a locked position and an unlocked position with respect to the channel based upon a position of the wedge member.
- FIGURE 1 is a front top perspective view of a surgical stapling and severing instrument shown with an open end effector, or staple applying assembly, and with the staple cartridge removed, according to various embodiments;
- FIGURE 2 is a front top perspective view of the surgical stapling and severing instrument of FIG. 1 with an articulation mechanism actuated by a fluidic actuation control, according to various embodiments;
- FIGURE 3 is a perspective disassembled view of an elongate shaft and articulation mechanism of the surgical stapling and severing instrument of FIG. 1, according to various embodiments;
- FIGURE 4 is a perspective disassembled view of distal portions of an implement portion of the surgical stapling and severing instrument of FIG. 1, including the staple applying assembly and articulation mechanism, according to various embodiments;
- FIGURE 5 is a front top perspective view of the end effector at the distal end of the surgical stapling and severing instrument of FIGS. 3-4, with the anvil removed and only the wedge sled of the staple cartridge shown, according to various embodiments;
- FIGURES 6-8 are cross-sectional side views of the end effector of FIGS. 3-4 sequentially shown in a staple cartridge loaded and unfired state in FIG. 6, a staple cartridge being fired state in FIG. 7, and a spent staple cartridge with firing bar retracted state in FIG. 8, according to various embodiments;
- FIGURE 9 is a perspective disassembled view of distal portions of an implement portion of the surgical stapling and severing instrument of FIG. 1, including the staple applying assembly and articulation mechanism, according to various embodiments;
- FIGURE 10 is a front top perspective view of the end effector of FIG. 9 at the distal end of the surgical stapling and severing instrument, with the staple cartridge and anvil removed, according to various embodiments;
- FIGURES 11-13 are cross-sectional front views of the end effector of FIG. 9 sequentially shown in a staple cartridge loaded and unfired state in FIG. 11, a staple cartridge being fired state in FIG. 12, and a spent staple cartridge with firing bar retracted state in FIG. 13, according to various embodiments;
- FIGURE 14 is a perspective disassembled view of distal portions of an implement portion of the surgical stapling and severing instrument of FIG. 1, including the staple applying assembly and articulation mechanism, according to various embodiments;
- FIGURE 15 is a front top perspective view of the end effector of FIG. 14 at the distal end of the surgical stapling and severing instrument, with the anvil removed and only the wedge sled of the staple cartridge shown, according to various embodiments;
- FIGURES 16-18 are cross-sectional front views of the end effector of FIG. 14 sequentially shown in a staple cartridge loaded and unfired state in FIG. 16, a staple cartridge being fired state in FIG. 17, and a spent staple cartridge being re-fired state in FIG. 18, according to various embodiments.
- FIG. 1 depicts a surgical instrument, which in the illustrative versions is more particularly a surgical stapling and severing instrument 10, that is capable of practicing the unique benefits of the present invention.
- the surgical stapling and severing instrument 10 is sized for insertion, in a nonarticulated state as depicted in FIG. 1, through a trocar cannula passageway to a surgical site in a patient (not shown) for performing a surgical procedure.
- an articulation mechanism 14 incorporated into a distal portion of an elongate shaft 16 of the implement portion 12 may be remotely articulated, as depicted in FIG. 2, by an articulation control 18.
- An end effector depicted in the illustrative version as a staple applying assembly 20, is distally attached to the articulation mechanism 14.
- remotely articulating the articulation mechanism 14 thereby articulates the staple applying assembly 20 from a longitudinal axis of the elongate shaft 16.
- Such an angled position may have advantages in approaching tissue from a desired angle for severing and stapling, approaching tissue otherwise obstructed by other organs and tissue, and/or allowing an endoscope to be positioned behind and aligned with the staple applying assembly 20 for confirming placement.
- the surgical and stapling and severing instrument 10 includes a handle portion 22 proximally connected to the implement portion 12 for providing positioning, articulation, closure and firing motions thereto.
- the handle portion 22 includes a pistol grip 24 toward which a closure trigger 26 is pivotally and proximally drawn by the clinician to cause clamping, or closing, of the staple applying assembly 20.
- a firing trigger 28 is farther outboard of the closure trigger 26 and is pivotally drawn by the clinician to cause the stapling and severing of clamped tissue clamped in the staple applying assembly 20.
- a closure release button 30 is depressed to release the clamped closure trigger 26, and thus the severed and stapled ends of the clamped tissue.
- the handle portion 22 also includes a rotation knob 32 coupled for movement with the elongate shaft 16 to rotate the shaft 16 and the articulated staple applying assembly 20 about the longitudinal axis of the shaft 16.
- the handle portion 22 also includes a firing retraction handle 34 to assist in retracting a firing mechanism (not depicted in FIGS. 1-2) should binding occur, so that opening of the staple applying assembly 20 may occur thereafter.
- proximal and distal are used herein with reference to a clinician gripping a handle of an instrument.
- distal is distal with respect to the more proximal handle portion 22.
- spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings.
- surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
- FIGS. 1-2 An illustrative multi-stroke handle portion 22 for the surgical stapling and severing instrument 10 of FIGS. 1-2 is described in greater detail in the co-pending and commonly-owned U.S. patent application entitled “SURGICAL STAPLING INSTRUMENT INCORPORATING A MULTISTROKE FIRING POSITION INDICATOR AND RETRACTION MECHANISM” to Swayze and Shelton IV, Ser. No. 10/674,026, filed September 29, 2003 , the disclosure of which is hereby incorporated by reference in its entirety, with additional features and variation as described herein.
- a multi-stroke handle portion 22 advantageously supports applications with high firing forces over a long distance
- applications consistent with the present invention may incorporate a single firing stroke, such as described in co-pending and commonly owned U.S. patent application "SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS" to Frederick E. Shelton IV, Michael E. Setser, and Brian J. Hemmelgarn, Ser. No. 10/441,632, filed November 25, 2004 , the disclosure of which is hereby incorporated by reference in its entirety.
- the implement portion 12 advantageously incorporates the multiple actuation motions of longitudinal rotation, articulation, closure and firing within a small diameter suitable for endoscopic and laparoscopic procedures.
- the staple applying assembly 20 (“end effector") has a pair of pivotally opposed jaws, depicted as an elongate channel 40 with a pivotally attached anvil 42 (FIGS. 1-2, 4). Closure and clamping of the anvil 42 to the elongate channel 40 is achieved by longitudinally supporting the elongate channel 40 with a frame assembly 44 (FIG.
- the frame assembly 44 includes a single pivot frame ground 48 whose proximal end is engaged to the rotation knob 32, with a right half shell 50 thereon shown in FIG. 3.
- a proximal end of the closure sleeve assembly 46 specifically of a closure straight tube 52, encompasses the proximal end of the frame ground 48, passing further internally to the handle portion 22 to engage closure components (not shown) that longitudinally translate the closure sleeve assembly 46.
- a circular lip 54 at the proximal end of the closure straight tube 52 provides a rotating engagement to such components.
- Engaging components of the rotation knob 32 pass through a longitudinal slot 56 on a proximal portion of the straight closure tube 52 to engage an aperture 58 proximally positioned on the frame ground 48.
- the longitudinal slot 56 is of sufficient length to allow the closure longitudinal translation of the closure sleeve assembly 46 at various rotational angles set by the rotation knob 32 to the closure sleeve assembly 46 and the frame ground 48.
- the elongate shaft 16 supports the firing motion by receiving a firing rod 60 that rotatingly engages firing components of the handle portion 22 (not shown).
- the firing rod 60 enters a proximal opening 62 along the longitudinal centerline of the frame ground 48.
- the distal portion of the frame ground 48 includes a firing bar slot 64 along its bottom that communicates with the proximal opening 62.
- a firing bar 66 longitudinally translates in the firing bar slot 64 and includes an upwardly projecting proximal pin 68 that engages a distal end 70 of the firing rod 60.
- the elongate shaft 16 supports articulation by incorporating a rectangular reservoir cavity 72, one lateral portion of which is depicted in a distal portion of the rotation knob 32.
- a bottom compartment 74 that resides within the rectangular reservoir cavity 72 has laterally spaced apart left and right baffles 76, 78.
- An articulation actuator 80 slides laterally over top of the bottom compartment 74, its downward laterally spaced left and right flanges 82, 84, which are outboard of the baffles 76, 78, each communicating laterally to left and right push buttons 86, 88 that extend outwardly from the respective shell halves of the rotation knob 32.
- the lateral movement of the articulation actuator 80 draws left and right flanges 82, 84 nearer and farther respectively to the left and right baffles 76, 78, operating against left and right reservoir bladders 90, 92 of a fluidic articulation system 94, each bladder 90, 92 communicating respectively and distally to left and right fluid conduits or passageways 96, 98 that in turn communicate respectively with left and right actuating bladders 100, 102.
- the latter oppose and laterally pivot a T-bar 104 of the articulation mechanism 14.
- the frame assembly 44 constrains these fluidic actuations by including a top and distal recessed table 106 of the frame ground 48 upon which resides the fluid passages 96, 98 and actuating bladders 100, 102.
- the T-bar 104 also slidingly resides upon the recessed table 106 between the actuating bladders 100, 102.
- a raised barrier rib 108 is aligned thereto, serving to prevent inward expansion of the fluid passages 96, 98.
- the frame assembly 44 has a rounded top frame cover (spacer) 110 that slides over top of the frame ground 48, preventing vertical expansion of the fluid passages 96, 98 and actuating bladders 100, 102, as well as constraining any vertical movement of the T-bar 104.
- a distal end (“rack") 112 of the T-bar 104 engages to pivot a proximally directed gear segment 115 of an articulated distal frame member 114 of the articulation mechanism 14.
- An articulated closure ring 116 encompasses the articulated frame member 114 and includes a horseshoe aperture 118 that engages the anvil 42.
- a double pivoting attachment is formed between the closure straight tube 52 and articulating closure ring 116 over the articulating mechanism 14, allowing longitudinal closure motion even when the articulating mechanism 14 is articulated.
- top and bottom distally projecting pivot tabs 119, 120 on the closure straight tube 52 having pin holes 122, 124 respectively are longitudinally spaced away from corresponding top and bottom proximally projecting pivot tabs 126, 128 on the articulating closure ring 116 having pin holes 130, 132, respectively.
- An upper double pivot link 134 has longitudinally spaced upwardly directed distal and aft pins 136, 138 that engage pin holes 130, 122, respectively, and a lower double pivot link 140 has longitudinally spaced downwardly projecting distal and aft pins 142, 144 that engage pin holes 132, 124, respectively.
- the articulating closure ring 116 is shown for enhanced manufacturability to include a short tube 146 attached to an articulating attachment collar 148 that includes the proximally projecting pivot tabs 126, 128.
- the straight closure tube 52 is assembled from a long closure tube 160 that attaches to an aft attachment collar 152 that includes the distally projecting pivot tabs 119, 120.
- the horseshoe aperture 118 in the short closure tube 146 engages an upwardly projecting anvil feature 154 slightly proximal to lateral pivot pins 156 that engage pivot recesses 158 inside of the elongate channel 40.
- FIG. 4 The illustrative version of FIG. 4 includes a dog bone link 160 whose proximal pin 157 pivotally attaches to the frame ground 48 in a frame hole 161 and whose distal pin 159 rigidly attaches to a proximal undersurface 162 of the articulating frame member 114, thereby providing pivotal support therebetween.
- a bottom longitudinal knife slot 163 in the dog bone link 160 guides an articulating portion of the firing bar 66.
- the articulating frame member 114 also includes a bottom longitudinal slot 164 for guiding a distal portion of the firing bar 66.
- the firing bar 66 distally terminates in an E-beam 165 that includes upper guide pins 166 that enter an anvil slot 168 in the anvil 42 to verify and assist in maintaining the anvil 42 in a closed state during staple formation and severing. Spacing between the elongate channel 40 and anvil 42 is further maintained by the E-beam 165 by having middle pins 170 slide along the top surface of the elongate channel 40 while a bottom foot 172 opposingly slides along the undersurface of the elongate channel 40, guided by a longitudinal opening 174 in the elongate channel 40.
- a distally presented cutting surface 176 of the E-beam 165 which is between the upper guide pins 166 and middle pin 170, severs clamped tissue while the E-beam actuates a replaceable staple cartridge 178 by distally moving a wedge sled 180 that causes staple drivers 182 to cam upwardly driving staples 184 out of upwardly open staple holes 186 in a staple cartridge body 188, forming against a staple forming undersurface 190 of the anvil 42.
- a staple cartridge tray 192 encompasses from the bottom the other components of the staple cartridge 178 to hold them in place.
- the staple cartridge tray 192 includes a rearwardly open slot 194 that overlies the longitudinal opening 174 in the elongate channel 40.
- the middle pins 170 pass inside of the staple cartridge tray 192.
- Embodiments of the staple applying assembly 20 are described in greater detail in co-pending and commonly-owned U.S. Patent Application Ser. No. 10/955,042 , "ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM” to Frederick E. Shelton IV, et al., filed 30 September 2004, the disclosure of which is hereby incorporated by reference in its entirety.
- an articulation lock mechanism 200 is advantageously incorporated to maintain the staple applying assembly 20 at a desired articulation angle.
- the articulation lock mechanism 200 reduces loads on the left and right actuating bladders 100, 102.
- a compression spring 202 (FIG. 3) is proximally positioned between a proximal end 204 of the articulation locking member 111 and the handle portion 22, biasing the articulation locking member 111 distally.
- two parallel slots 206, 208 at a distal end 210 of the articulation locking member 111 receive respectively upwardly projecting guide ribs 212, 214 on the frame ground 48.
- the guide ribs 212, 214 are longitudinally shorter than the parallel slots 206, 208 allowing a range of relative longitudinal travel. Thereby, selective abutting engagement of a distal frictional surface, depicted as a toothed recess 216 distally projecting from the articulation locking member 111, is engaged to a corresponding locking gear segment 217 in a brake plate 218 received into a top proximal recess 220 of the articulating frame member 114. Distal and proximal holes 221, 222 in the brake plate 218 receive distal and proximal pins 223, 224 that upwardly project from the top proximal recess 220.
- Embodiments of the articulation lock mechanism 200 are described in greater detail in co-pending and commonly-owned U.S. Patent Application Ser. No. 11/061,908 , "SURGICAL INSTRUMENT INCORPORATING A FLUID TRANSFER CONTROLLLED ARTICULATION MECHANISM" to Kenneth S. Wales, et al., filed February 18, 2005, the disclosure of which is hereby incorporated by reference in its entirety.
- the implement portion 12 advantageously incorporates a lockout arm 226 pivotally attached to the elongate channel 40 and configured to pivot between a locked position and an unlocked position with respect to the firing bar 66 based upon a position of the wedge sled 180.
- the lockout arm 226 is positioned about the distal end of the firing bar 66 and includes a first end 228 proximately located with respect to the E-beam 165, a second end 230 extending in a proximal direction away from the first end 228 and along the firing bar 66, and pivot means 232 located between the first and second ends 228, 230 for cooperatively engaging corresponding pivot recesses 234 formed in the elongate channel 40.
- the pivot means 232 may be implemented as a pair of pivot pins 232 symmetrically formed on opposing sides of the lockout arm 226.
- the lockout arm 226 defines an open-ended slot 236 passing through the first end 228 and entering a portion of the second end 230, thus enabling the lockout arm 226 to be positioned about the firing bar 66 in a straddle-like configuration so that the firing bar 66 may pass through the lockout arm 226.
- the first end 228 of the lockout arm 226 includes a pair of symmetrical tines 238 formed by the passage of the open-ended slot 236 therethrough.
- each tine 238 is adjacently positioned with respect to a corresponding lateral surface of the E-beam 165 and distally extends therealong.
- each tine 238 is characterized by downward-sloping portion that transitions into to a tip portion having a flattened, upwardly-facing surface suitable for being depressibly engaged by a bottom surface of the wedge sled 180 when present in the unfired position.
- the first end 228 further includes biasing means 240 for applying an upwardly-directed force in opposition to the depressible engagement of the tines 238 by the wedge sled 180. Accordingly, when the wedge sled 180 is not present in the unfired position, the biasing means 240 causes the first end 228 of the lockout arm 226 to be pivotally elevated. As shown, the biasing means 240 may be implemented as a pair of downwardly-extending spring fingers 240 positioned between the tines 238 and contacting a bottom portion of the elongate channel 40.
- the second end 230 of the lockout arm 226 extends proximally away from the first end 228 along opposing lateral surfaces of the firing bar 66 and transitions into an upwardly-sloping portion having a flattened tip portion 242 positioned above the firing bar 66. As shown, the second end 230 may be suitably contoured so adequate clearance is provided between the lockout arm 226 and the pivot pins 156 of the anvil 42 during operation of the instrument 10.
- the second end 230 includes a locking pin 244 attached to the tip portion 242 and configured to engage a notch 246 defined by the firing bar 66 when the second end 230 is pivoted in a depressed position with respect thereto.
- the locking pin 244 is disengaged from the notch 246 when the second end 230 is pivoted in an elevated position with respect to the firing bar 66.
- An inclined contour 248 formed on the firing bar 66 adjacent to the notch 246 and sloping proximally therefrom is provided for guiding the locking pin 244 during reciprocating movement of the firing bar 66, as discussed below in connection with FIGS. 6-8.
- the position of the second end 230 of the lockout arm 226 is determined by the engagement of first end 228 by the wedge sled 180.
- the depressible engagement of the tines 238 by the wedge sled 180 causes the second end 230 to be pivotally elevated with respect to the firing bar 66.
- the locking pin 244 is caused to disengage the notch 246, thus permitting distal movement of the firing bar 66 in response to a firing motion.
- the depressed engagement of the first end 228 and the resulting pivotal elevation of the second end 230 correspond to the unlocked position of the lockout arm 226.
- the biasing means 240 serves to pivotally elevate the first end 228, causing the second end 230 to be pivotally depressed with respect to the firing bar 66. Accordingly, the locking pin 244 engages the notch 246, thus preventing distal movement of the firing bar 66.
- the elevation of the first end 228 and the resulting pivotal depression of the second end 230 correspond to the locked position of the lockout arm 226.
- FIG. 5 is a front top perspective view of the end effector 20 at the distal end of the surgical stapling and severing instrument 10 of FIGS. 3-4, with the anvil 42 removed and only the wedge sled 180 of the staple cartridge 178 shown for the sake of clarity.
- the firing bar 66 is depicted in a retracted state, with the lockout arm 226 in the unlocked position with respect thereto.
- the depressed engagement of the tines 238 resulting from the presence of the wedge sled 180 in the unfired position results in pivotal elevation of the second end 230 of the lockout arm 226 with respect to the firing bar 66. Accordingly, as shown in FIG.
- the locking pin 244 is disengaged from the notch 246, thus enabling distal movement of the firing bar 66.
- the position of the lockout arm 226 is based only upon the position of the wedge sled 180, operation of the lockout arm 226 is unaffected by flexure of the firing bar 66 resulting from actuation of the articulation mechanism 14.
- FIGS. 6-8 depict sequential operation of the lockout arm 226 within the end effector 20 of FIGS. 3-4 as the surgical stapling and severing instrument 10 is fired.
- an unfired staple cartridge 178 has been inserted into the elongate channel 40, with the wedge sled 180 depressibly engaging the tines 238 of the lockout arm 226. Accordingly, the lockout arm 226 is in the unlocked position and the locking pin 244 is disengaged from the slot 246 of the firing bar 66.
- firing of the staple cartridge 178 has commenced, with the wedge sled 180 having distally traversed off of the tines 238 of the lockout arm 226. Accordingly, the first end 228 of the lockout arm 226 is pivotally elevated by the biasing means 240, causing the locking pin 244 to contact the firing bar 66. During the subsequent distal movement of the firing bar 66, the locking pin 244 is continually maintained in sliding contact with the firing bar 66 and traverses a proximal portion thereof, including the contoured portion 248.
- the firing bar 66 is shown immediately subsequent to its retraction.
- the locking pin 244 has re-traversed the proximal portion of the firing bar 66 in the opposite direction, terminating with its vertical alignment with the notch 246. Because the wedge sled 180 is no longer present in the unfired position, the second end 230 of the lockout arm 226 is maintained in a depressed position with respect to the firing bar 66, resulting in the engagement of the notch 246 by the locking pin 244, as shown in FIG. 8.
- the compression of the biasing means 240 resulting from the traversal of the locking pin 244 upwardly over the contoured portion 248 ensures that the notch 246 is engaged by the locking pin 244 with a suitable amount of force. Accordingly, the lockout arm 226 is in the locking position, and distal movement of the firing bar 66 is prevented until the spent staple cartridge 178 is replaced.
- embodiments of the implement portion 12 of FIG. 9 advantageously incorporate at least one lockout assembly 250 mounted within the elongate channel 40 and adjacently positioned with respect to a corresponding lateral surface of the E-beam 165 when the firing bar 66 is in the retracted position.
- at least one lockout assembly 250 mounted within the elongate channel 40 and adjacently positioned with respect to a corresponding lateral surface of the E-beam 165 when the firing bar 66 is in the retracted position.
- two lockout assemblies 250 are provided, although it will be appreciated that a single lockout assembly 250 may be utilized instead.
- Each lockout assembly 250 includes a lockout cartridge 252 movably disposed within a corresponding recess 254 defined by the bottom surface of the elongate channel 40 and configured to move between a locked position and an unlocked position with respect to the E-beam 165 based upon the position of the wedge sled 180.
- Each lockout assembly 250 further includes biasing means 256 for applying an upwardly-directed force to the lockout cartridge 252 such that a portion of the lockout cartridge 252 is caused to protrude from the corresponding recess 254 when the wedge sled 180 is not present in the unfired position. As shown in FIG.
- the biasing means 256 for each lockout cartridge 252 may be implemented as a spring finger 256 having an inwardly extending first end 258 attached to the lockout cartridge 252, and an upwardly-extending second end 260 attached to a lateral surface of the elongate channel 40.
- the first end 258 When in a relaxed (i.e., non-compressed) state, the first end 258 is upwardly inclined such that a portion of the lockout cartridge 252 suitably protrudes from its corresponding recess 254, as best seen in FIG. 10 discussed below.
- each spring finger 256 is attached in a flush manner (e.g., within a formed recess) to the corresponding elongate channel 40 surface so that the staple cartridge 178 may be accommodated by the elongate channel 40 without modification.
- FIG. 10 is a front top perspective view of the assembled end effector 20 of FIG. 9 at the distal end of the surgical stapling and severing instrument 10, with the staple cartridge 178 and anvil 42 removed for the sake of clarity.
- each lockout cartridge 252 includes a first proximally-facing lateral surface 262 configured for engaging a corresponding middle pin 170 of the E-beam 165 when the lockout cartridge 252 is in the locked position (i.e., protruding from the recess 254 of the elongate channel 40). Engagement of the middle pins 170 by the lockout cartridges 252 when in the locked position thus prevents distal movement of the firing bar 66.
- Each lockout cartridge 252 may further include a second upwardly-facing surface 264 configured for engagement by a bottom surface of the wedge sled 180 when present in the unfired position. Engagement of the second surfaces 264 in this manner is sufficient to overcome the force applied to the lockout cartridges 252 by the biasing means 256. As a result, each lockout cartridge 252 is depressed into its corresponding recess 254 such that the first surface 262 is disengaged from the corresponding middle pin 170 of the E-beam 165, thus enabling distal movement of the firing bar 66. The depressed position of each lockout cartridge 252 corresponds to the locked position thereof.
- Each lockout cartridge 252 may further include a third distally-facing inclined surface 266 configured for slidingly engaging the corresponding middle pin 170 of the E-beam 165 immediately prior to the retraction of the firing bar 66. Engagement of the third surface 266 in this fashion operates to momentarily depress each lockout cartridge 252, thus permitting the firing bar 66 to fully retract. Upon full retraction of the firing bar 66, each lockout cartridge 252 is caused to protrude from its corresponding recess 254 in the locked position such that the first surface 262 engages the corresponding middle pin 170.
- FIGS. 11-13 depict sequential operation of the lockout assemblies 250 within the end effector of FIGS. 9-10 as the surgical stapling and severing instrument 10 is fired.
- an unfired staple cartridge 178 has been inserted into the elongate channel 40, with the wedge sled 180 engaging the second surfaces 264 such that each lockout cartridge 252 is depressed into its corresponding recess 254 within the elongate channel 40. Accordingly, each lockout cartridge 252 is maintained in the unlocked position, and the first surfaces 262 are disengaged from the corresponding middle pins 170 of the E-beam 165.
- the E-beam 165 is shown in the fully retracted position subsequent to the sliding engagement of the third surfaces 266 of the lockout cartridges 252 by the corresponding middle pins 170. Because the wedge sled 180 is no longer present in the unfired position, each lockout cartridge 252 protrudes from its corresponding recess 254 in the locked position such the middle pins 170 are engaged by the first surfaces 262, thus preventing subsequent distal movement of the firing bar 66 until the spent staple cartridge 178 is replaced.
- embodiments of the implement portion 12 of FIG. 14 advantageously incorporate a two-piece firing bar 268 including a distal portion 270 pivotally attached to a proximal portion 272.
- the distal portion 270 of the firing bar 268 is configured to pivot between locked and unlocked positions with respect to the elongate channel 40 based upon a position of the wedge sled 180.
- the proximal portion 272 includes a pair of pivot pins 274 distally positioned on opposing lateral surfaces thereof.
- the distal portion 270 includes a pair of symmetrically formed pivot plates 276, each having a proximal hole 278 formed therein for cooperatively engaging a corresponding pivot pin 274 of the proximal portion 272.
- the distal portion 270 further includes an E-beam 280 similar to the E-beam 165 of described above and having a contoured proximal recess 282 for engaging an oppositely-contoured pin 284 formed by the distal end of each pivot plate 276, thus enabling a generally rigid connection to be formed therebetween.
- the distal portion 270 of the firing bar 268, including the E-beam 280 is thus permitted to pivot in a vertical plane with respect to the proximal portion 272 thereof.
- Each pivot plate 276 further includes a downwardly-extending pin 286 formed on the bottom at distal end thereof and comprising a proximally-facing contoured surface 288.
- the pins 286 are maintained in alignment and thus effectively define a common pin.
- the firing bar 268 is in the fully retracted position, the pins 286 contact a bottom portion of the elongate channel 40 adjacent to the proximal end of the longitudinal opening 174, thus supportably maintaining the distal portion 270 in an elevated position with respect to the elongate channel 40.
- the pins 286 are aligned with the longitudinal slot 174 and no longer contact a bottom portion of the elongate channel 40. Thus, for such positions, the distal portion 270 is not supported by the pins 286.
- the E-beam 280 includes a nose 290 formed at the distal end thereof configured for supportable engagement by a proximal portion wedge sled 180. Accordingly, during distal movement of the wedge sled 180 resulting from extension of the firing bar 268, the nose 290 maintains the E-beam 280 (and thus the distal portion 270 of the firing bar 268) in an elevated position with respect to the elongate channel 40. The elevated position of the distal portion 270 resulting from supportable engagement of the nose 290 by the wedge sled 180 corresponds to the unlocked position thereof.
- the elongate channel 40 includes a pair of recesses 292 defined by a bottom portion thereof and symmetrically disposed on opposing sides of the longitudinal slot 174.
- the recesses 292 are positioned such that each is located under and slightly forward of a corresponding middle pin 170 of the E-beam 280 when the firing bar 268 is fully retracted.
- the nose 290 of the E-beam 280 is unsupported during extension of the firing bar 268.
- the distal portion 270 of the firing bar 268 is thus permitted to pivot downward into a depressed position with respect to the elongate channel 40 such that the middle pins 170 are received into the corresponding recesses 292.
- Each recess 292 defines a vertically-oriented distal surface 294 for engaging an opposing distal portion of the corresponding middle pin 170, thus preventing further distal movement of the firing bar 268.
- the depressed position of the distal portion 270 thus corresponds to the locked position thereof.
- biasing mean 296, depicted as spring member 296, may be incorporated within the implement portion 12 for downwardly urging the distal portion 270 into the locked position.
- each recess 292 further defines a sloped proximal surface 298 for slidingly engaging the corresponding middle pins 170 during retraction of the firing bar 268 such that the distal portion 270 is caused to pivot upward, thus facilitating extraction of the middle pins 170 from the recesses 292.
- Retraction of the firing bar 268 into the fully retracted position causes the contoured surfaces 288 of the pins 286 to slidingly engage the bottom portion of the elongate channel 40 adjacent to the proximal end of the longitudinal slot 174, thus transitioning the distal portion 270 into the unlocked position.
- the firing bar 268 is depicted in a fully retracted state, with the distal portion 270 maintained in the pivotally elevated position (i.e., unlocked position) with respect to the elongate channel 40.
- the locking mechanism is unaffected by any flexure of the proximal portion 272 resulting from actuation of the articulation mechanism 14.
- FIGS. 16-18 depict sequential operation of the firing bar 268 within the end effector 20 of FIG. 14 as the surgical stapling and severing instrument 10 is fired.
- an unfired staple cartridge 178 has been inserted into the elongate channel 40, with a proximal portion of the wedge sled 180 supportably engaging the nose 290 of the E-beam 280.
- the distal portion 270 is supported in the elevated (i.e., unlocked) position by the pins 286, and the middle pins 170 are positioned above the corresponding recesses 292.
- firing bar 268 is shown subsequent to being fully retracted and re-fired without replacement of the now-spent staple cartridge 178. Because the wedge sled 180 is no longer present, the nose 290 of the E-beam 280 is not supportingly engaged thereby.
- the biasing means 296 thus causes the distal portion 270 to be pivotally depressed into the locking position such that the middle pins 170 are received into their corresponding recesses 292. Engagement of the middle pins 170 by the distal surfaces 294 of the recesses 292 prevents further distal movement of the firing bar 268.
- embodiments of the above-described locking mechanisms may be incorporated into articulating surgical stapling and severing instruments having articulating mechanisms controllable by means other than a fluidic actuation, such as gear-driven articulation mechanisms. It will further be appreciated that embodiments of the above-described locking mechanisms are not limited in their application to articulating instrument designs and may also be advantageously incorporated within non-articulating instruments.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Description
- The disclosed invention relates generally and in various embodiments to surgical stapling and cutting instruments structured and configured for applying lines of staples from a reusable staple cartridge into tissue while cutting the tissue between the applied staple lines. More particularly the disclosed invention relates to locking mechanisms for use in articulating surgical stapling and cutting instruments that prevent cutting of the tissue when the staple cartridge is spent or otherwise not present in an unfired position.
- Surgical stapling and cutting instruments have been used in the prior art to simultaneously make a longitudinal incision in tissue and apply lines of staples on opposing sides of the incision. Such instruments commonly include a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.
- An example of a surgical stapler suitable for endoscopic applications is described in
U.S. Pat. No. 5,465,895 , which advantageously provides distinct closing and firing actions. Thereby, a clinician is able to close the jaw members upon tissue to position the tissue prior to firing. Once the clinician has determined that the jaw members are properly gripping tissue, the clinician can then fire the surgical stapler. Firing places all of the staples into the tissue and advances a knife to sever the tissue. The simultaneous severing and stapling avoids complications that may arise when performing such actions sequentially with different surgical tools that respectively only sever or staple. - It is often advantageous to build an end effector for the surgical stapler that is reusable. For instance, one patient may need a series of severing and stapling operations. Replacing an entire end effector for each operation tends to be economically inefficient. This is especially true if the end effector is built for strength and reliability over repeated operations. To that end, staple cartridges are fitted into the end effector prior to each operation of the surgical stapler. Thus, a much smaller amount of the surgical staples is discarded after each use.
- While the staple cartridge provides numerous advantages, it is desirable to prevent inadvertent firing of the instrument when an unfired staple cartridge is not present. Otherwise, the severing of tissue may occur without the staples to minimize bleeding. It is particularly desirable that preventing such inadvertent firing be accomplished in a reliable way that is not subject to an intervening malfunction. Moreover, for ease of manufacturing and assembly, it is further desirable that the lockout features be accomplished with a minimum number of components.
- Lockout mechanisms based upon vertical movement of the knife are known and particularly well-suited for non-articulating endocutter designs in which the end effector is located at the end of a generally rigid shaft. The shaft enables insertion to a desired depth and rotation about the longitudinal axis of the shaft, thereby enabling the end effector to be positioned to a degree. A
U.S. Pat. No. 5,878,938 to Bittner et al. discloses a locking mechanism, or lockout, that uses a leaf spring to automatically lift a knife of the cartridge after a firing operation, thus locking the instrument so that subsequent firing operations are prevented.U.S. Pat. No. 5,673,842, also to Bittner et al. , teaches a locking mechanism using an elongated member that automatically rotates from a first position to a second position as the instrument is fired. With the locking arm in the second position, the knife is free to translate upwardly and lock the instrument. - Such lockout mechanisms may be less suited for use in articulating surgical stapling and cutting instrument designs in which the end effector is located at the end of a shaft incorporating an articulating mechanism. A
U.S. Pat. No. 6,786,382 to Hoffman discloses a surgical stapling and severing instrument incorporating an articulation mechanism for coupling the shaft to the end effector. Firing of the staples and severing of tissue is effected by a flexible firing mechanism extending through the articulation mechanism that is capable of transferring large loads therethrough in both flexed or unflexed states. Despite the greater clinical flexibility generally afforded by articulating instrument designs, the geometry of the firing mechanism and/or the physical forces present while the firing mechanism is in a flexed state may sufficiently restrict its vertical movement such that the above-described lockout mechanisms cannot be effectively employed. - Consequently, a significant need exists for improved lockout mechanisms for use in articulating surgical stapling and severing instruments that prevent inadvertent firing (i.e., severing and stapling) when a staple cartridge is spent or otherwise not present in an unfired position.
- This application discloses a surgical instrument comprising a handle portion, a channel, an anvil, and staple cartridge, a wedge member, a reciprocating firing device, and a lockout arm. The handle portion is operably configured to produce a firing motion and is coupled to the channel portion. The staple cartridge is engaged by the channel and includes a plurality of staple drivers and staples. The staple drivers are configured for camming the staples toward the anvil, which is pivotally attached to the channel. The wedge member is proximal to and longitudinally aligned with the staple drivers, and the reciprocating firing device is responsive to the firing motion to progressively drive the wedge member from an unfired to a fired position. The lockout arm is pivotally attached to the channel and operably configured to pivot between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- This application further discloses a surgical instrument comprising a handle portion, a channel, an anvil, and staple cartridge, a wedge member, a reciprocating firing device, and at least one lockout assembly. The handle portion is operably configured to produce a firing motion and is coupled to the channel portion. The staple cartridge is engaged by the channel and includes a plurality of staple drivers and staples. The staple drivers are configured for camming the staples toward the anvil, which is pivotally attached to the channel. The wedge member is proximal to and longitudinally aligned with the staple drivers, and the reciprocating firing device is responsive to the firing motion to progressively drive the wedge member from an unfired to a fired position. Each lockout assembly includes a lockout cartridge moveably disposed within a corresponding recess defined by the channel. The lockout cartridge is configured to move between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- This application further discloses a surgical instrument comprising a handle portion, a channel, an anvil, and staple cartridge, a wedge member, and a reciprocating firing device. The handle portion is operably configured to produce a firing motion and is coupled to the channel portion. The staple cartridge is engaged by the channel and includes a plurality of staple drivers and staples. The staple drivers are configured for camming the staples toward the anvil, which is pivotally attached to the channel. The wedge member is proximal to and longitudinally aligned with the staple drivers, and the reciprocating firing device is responsive to the firing motion to progressively drive the wedge member from an unfired to a fired position. The firing device includes a distal portion, a proximal portion, and pivot means connecting the proximal and distal portions. The distal portion is configured to pivot between a locked position and an unlocked position with respect to the channel based upon a position of the wedge member.
- This application further discloses an end effector for use with a surgical instrument, the end effector comprising a channel, a reciprocating firing device, and a lockout arm. The channel is configured for receiving a staple cartridge, and the firing device is responsive to a firing motion produced by the surgical instrument for progressively driving a wedge member of the staple cartridge from an unfired position to a fired position. The lockout arm is pivotally attached to the channel and operably configured to pivot between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- This application further discloses an end effector for use with a surgical instrument, the end effector comprising a channel, a reciprocating firing device, and at least one lockout assembly. The channel is configured for receiving a staple cartridge, and the firing device is responsive to a firing motion produced by the surgical instrument for progressively driving a wedge member of the staple cartridge from an unfired position to a fired position. Each lockout assembly is positioned in the channel and adjacent to a corresponding lateral surface of the firing device and comprises a lockout cartridge moveably disposed within a corresponding recess defined by the channel. The lockout cartridge is configured to move between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- This application further discloses an end effector for use with a surgical instrument, the end effector comprising a channel and a reciprocating firing device. The channel is configured for receiving a staple cartridge, and the firing device is responsive to a firing motion produced by the surgical instrument for progressively driving a wedge member of the staple cartridge from an unfired position to a fired position. The firing device comprises a distal portion, a proximal portion, and pivot means connecting the proximal and distal portions. The distal portion is configured to pivot between a locked position and an unlocked position with respect to the channel based upon a position of the wedge member.
- FIGURE 1 is a front top perspective view of a surgical stapling and severing instrument shown with an open end effector, or staple applying assembly, and with the staple cartridge removed, according to various embodiments;
- FIGURE 2 is a front top perspective view of the surgical stapling and severing instrument of FIG. 1 with an articulation mechanism actuated by a fluidic actuation control, according to various embodiments;
- FIGURE 3 is a perspective disassembled view of an elongate shaft and articulation mechanism of the surgical stapling and severing instrument of FIG. 1, according to various embodiments;
- FIGURE 4 is a perspective disassembled view of distal portions of an implement portion of the surgical stapling and severing instrument of FIG. 1, including the staple applying assembly and articulation mechanism, according to various embodiments;
- FIGURE 5 is a front top perspective view of the end effector at the distal end of the surgical stapling and severing instrument of FIGS. 3-4, with the anvil removed and only the wedge sled of the staple cartridge shown, according to various embodiments;
- FIGURES 6-8 are cross-sectional side views of the end effector of FIGS. 3-4 sequentially shown in a staple cartridge loaded and unfired state in FIG. 6, a staple cartridge being fired state in FIG. 7, and a spent staple cartridge with firing bar retracted state in FIG. 8, according to various embodiments;
- FIGURE 9 is a perspective disassembled view of distal portions of an implement portion of the surgical stapling and severing instrument of FIG. 1, including the staple applying assembly and articulation mechanism, according to various embodiments;
- FIGURE 10 is a front top perspective view of the end effector of FIG. 9 at the distal end of the surgical stapling and severing instrument, with the staple cartridge and anvil removed, according to various embodiments;
- FIGURES 11-13 are cross-sectional front views of the end effector of FIG. 9 sequentially shown in a staple cartridge loaded and unfired state in FIG. 11, a staple cartridge being fired state in FIG. 12, and a spent staple cartridge with firing bar retracted state in FIG. 13, according to various embodiments;
- FIGURE 14 is a perspective disassembled view of distal portions of an implement portion of the surgical stapling and severing instrument of FIG. 1, including the staple applying assembly and articulation mechanism, according to various embodiments;
- FIGURE 15 is a front top perspective view of the end effector of FIG. 14 at the distal end of the surgical stapling and severing instrument, with the anvil removed and only the wedge sled of the staple cartridge shown, according to various embodiments; and
- FIGURES 16-18 are cross-sectional front views of the end effector of FIG. 14 sequentially shown in a staple cartridge loaded and unfired state in FIG. 16, a staple cartridge being fired state in FIG. 17, and a spent staple cartridge being re-fired state in FIG. 18, according to various embodiments.
- Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
- Turning to the Drawings, wherein like numerals denote like components throughout the several views, FIG. 1 depicts a surgical instrument, which in the illustrative versions is more particularly a surgical stapling and severing
instrument 10, that is capable of practicing the unique benefits of the present invention. In particular, the surgical stapling and severinginstrument 10 is sized for insertion, in a nonarticulated state as depicted in FIG. 1, through a trocar cannula passageway to a surgical site in a patient (not shown) for performing a surgical procedure. Once an implementportion 12 is inserted through a cannula passageway, anarticulation mechanism 14 incorporated into a distal portion of anelongate shaft 16 of the implementportion 12 may be remotely articulated, as depicted in FIG. 2, by anarticulation control 18. An end effector, depicted in the illustrative version as astaple applying assembly 20, is distally attached to thearticulation mechanism 14. Thus, remotely articulating thearticulation mechanism 14 thereby articulates thestaple applying assembly 20 from a longitudinal axis of theelongate shaft 16. Such an angled position may have advantages in approaching tissue from a desired angle for severing and stapling, approaching tissue otherwise obstructed by other organs and tissue, and/or allowing an endoscope to be positioned behind and aligned with thestaple applying assembly 20 for confirming placement. - The surgical and stapling and severing
instrument 10 includes ahandle portion 22 proximally connected to the implementportion 12 for providing positioning, articulation, closure and firing motions thereto. Thehandle portion 22 includes apistol grip 24 toward which aclosure trigger 26 is pivotally and proximally drawn by the clinician to cause clamping, or closing, of thestaple applying assembly 20. A firingtrigger 28 is farther outboard of theclosure trigger 26 and is pivotally drawn by the clinician to cause the stapling and severing of clamped tissue clamped in thestaple applying assembly 20. Thereafter, aclosure release button 30 is depressed to release the clampedclosure trigger 26, and thus the severed and stapled ends of the clamped tissue. Thehandle portion 22 also includes arotation knob 32 coupled for movement with theelongate shaft 16 to rotate theshaft 16 and the articulatedstaple applying assembly 20 about the longitudinal axis of theshaft 16. Thehandle portion 22 also includes a firing retraction handle 34 to assist in retracting a firing mechanism (not depicted in FIGS. 1-2) should binding occur, so that opening of thestaple applying assembly 20 may occur thereafter. - It will be appreciated that the terms "proximal" and "distal" are used herein with reference to a clinician gripping a handle of an instrument. Thus, the
surgical stapling assembly 20 is distal with respect to the moreproximal handle portion 22. It will be further appreciated that, for convenience and clarity, spatial terms such as "vertical" and "horizontal" are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute. - An illustrative
multi-stroke handle portion 22 for the surgical stapling and severinginstrument 10 of FIGS. 1-2 is described in greater detail in the co-pending and commonly-owned U.S. patent application entitled "SURGICAL STAPLING INSTRUMENT INCORPORATING A MULTISTROKE FIRING POSITION INDICATOR AND RETRACTION MECHANISM" to Swayze and Shelton IV, Ser.No. 10/674,026, filed September 29, 2003 multi-stroke handle portion 22 advantageously supports applications with high firing forces over a long distance, applications consistent with the present invention may incorporate a single firing stroke, such as described in co-pending and commonly owned U.S. patent application "SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS" to Frederick E. Shelton IV, Michael E. Setser, and Brian J. Hemmelgarn, Ser.No. 10/441,632, filed November 25, 2004 - In FIGS. 3-4, the implement
portion 12 advantageously incorporates the multiple actuation motions of longitudinal rotation, articulation, closure and firing within a small diameter suitable for endoscopic and laparoscopic procedures. The staple applying assembly 20 ("end effector") has a pair of pivotally opposed jaws, depicted as anelongate channel 40 with a pivotally attached anvil 42 (FIGS. 1-2, 4). Closure and clamping of theanvil 42 to theelongate channel 40 is achieved by longitudinally supporting theelongate channel 40 with a frame assembly 44 (FIG. 3) rotatingly attached to thehandle portion 22 over which a double pivotclosure sleeve assembly 46 longitudinally moves to impart a closing and opening respectively to a distal and proximal motion to theanvil 42, even with thestaple applying assembly 20 articulated as in FIG. 2. - With particular reference to FIG. 3, the
frame assembly 44 includes a singlepivot frame ground 48 whose proximal end is engaged to therotation knob 32, with aright half shell 50 thereon shown in FIG. 3. It should be appreciated a proximal end of theclosure sleeve assembly 46, specifically of a closurestraight tube 52, encompasses the proximal end of theframe ground 48, passing further internally to thehandle portion 22 to engage closure components (not shown) that longitudinally translate theclosure sleeve assembly 46. Acircular lip 54 at the proximal end of the closurestraight tube 52 provides a rotating engagement to such components. Engaging components of therotation knob 32 pass through alongitudinal slot 56 on a proximal portion of thestraight closure tube 52 to engage anaperture 58 proximally positioned on theframe ground 48. Thelongitudinal slot 56 is of sufficient length to allow the closure longitudinal translation of theclosure sleeve assembly 46 at various rotational angles set by therotation knob 32 to theclosure sleeve assembly 46 and theframe ground 48. - The
elongate shaft 16 supports the firing motion by receiving a firingrod 60 that rotatingly engages firing components of the handle portion 22 (not shown). The firingrod 60 enters aproximal opening 62 along the longitudinal centerline of theframe ground 48. The distal portion of theframe ground 48 includes a firingbar slot 64 along its bottom that communicates with theproximal opening 62. A firingbar 66 longitudinally translates in the firingbar slot 64 and includes an upwardly projectingproximal pin 68 that engages adistal end 70 of the firingrod 60. - The
elongate shaft 16 supports articulation by incorporating arectangular reservoir cavity 72, one lateral portion of which is depicted in a distal portion of therotation knob 32. Abottom compartment 74 that resides within therectangular reservoir cavity 72 has laterally spaced apart left and right baffles 76, 78. Anarticulation actuator 80 slides laterally over top of thebottom compartment 74, its downward laterally spaced left andright flanges baffles right push buttons rotation knob 32. The lateral movement of thearticulation actuator 80 draws left andright flanges right reservoir bladders fluidic articulation system 94, eachbladder passageways right actuating bladders bar 104 of thearticulation mechanism 14. - The
frame assembly 44 constrains these fluidic actuations by including a top and distal recessed table 106 of theframe ground 48 upon which resides thefluid passages bladders bar 104 also slidingly resides upon the recessed table 106 between the actuatingbladders Bar 104, a raisedbarrier rib 108 is aligned thereto, serving to prevent inward expansion of thefluid passages frame assembly 44 has a rounded top frame cover (spacer) 110 that slides over top of theframe ground 48, preventing vertical expansion of thefluid passages bladders bar 104. - A distal end ("rack") 112 of the T-
bar 104 engages to pivot a proximally directedgear segment 115 of an articulateddistal frame member 114 of thearticulation mechanism 14. An articulatedclosure ring 116 encompasses the articulatedframe member 114 and includes ahorseshoe aperture 118 that engages theanvil 42. A double pivoting attachment is formed between the closurestraight tube 52 and articulatingclosure ring 116 over the articulatingmechanism 14, allowing longitudinal closure motion even when the articulatingmechanism 14 is articulated. In particular, top and bottom distally projectingpivot tabs straight tube 52 havingpin holes pivot tabs closure ring 116 havingpin holes double pivot link 134 has longitudinally spaced upwardly directed distal andaft pins pin holes double pivot link 140 has longitudinally spaced downwardly projecting distal andaft pins pin holes - With particular reference to FIG. 4, the articulating
closure ring 116 is shown for enhanced manufacturability to include ashort tube 146 attached to an articulatingattachment collar 148 that includes the proximally projectingpivot tabs straight closure tube 52 is assembled from along closure tube 160 that attaches to anaft attachment collar 152 that includes the distally projectingpivot tabs horseshoe aperture 118 in theshort closure tube 146 engages an upwardly projectinganvil feature 154 slightly proximal to lateral pivot pins 156 that engagepivot recesses 158 inside of theelongate channel 40. - The illustrative version of FIG. 4 includes a
dog bone link 160 whoseproximal pin 157 pivotally attaches to theframe ground 48 in aframe hole 161 and whosedistal pin 159 rigidly attaches to aproximal undersurface 162 of the articulatingframe member 114, thereby providing pivotal support therebetween. A bottomlongitudinal knife slot 163 in thedog bone link 160 guides an articulating portion of the firingbar 66. The articulatingframe member 114 also includes a bottomlongitudinal slot 164 for guiding a distal portion of the firingbar 66. - With reference to FIG. 4, the firing
bar 66 distally terminates in an E-beam 165 that includes upper guide pins 166 that enter ananvil slot 168 in theanvil 42 to verify and assist in maintaining theanvil 42 in a closed state during staple formation and severing. Spacing between theelongate channel 40 andanvil 42 is further maintained by theE-beam 165 by havingmiddle pins 170 slide along the top surface of theelongate channel 40 while abottom foot 172 opposingly slides along the undersurface of theelongate channel 40, guided by alongitudinal opening 174 in theelongate channel 40. A distally presented cuttingsurface 176 of theE-beam 165, which is between the upper guide pins 166 andmiddle pin 170, severs clamped tissue while the E-beam actuates areplaceable staple cartridge 178 by distally moving awedge sled 180 that causesstaple drivers 182 to cam upwardly drivingstaples 184 out of upwardly openstaple holes 186 in astaple cartridge body 188, forming against a staple forming undersurface 190 of theanvil 42. Astaple cartridge tray 192 encompasses from the bottom the other components of thestaple cartridge 178 to hold them in place. Thestaple cartridge tray 192 includes a rearwardlyopen slot 194 that overlies thelongitudinal opening 174 in theelongate channel 40. Thus, themiddle pins 170 pass inside of thestaple cartridge tray 192. - Embodiments of the
staple applying assembly 20 are described in greater detail in co-pending and commonly-ownedU.S. Patent Application Ser. No. 10/955,042 - In FIGS. 3-4, an
articulation lock mechanism 200 is advantageously incorporated to maintain thestaple applying assembly 20 at a desired articulation angle. Thearticulation lock mechanism 200 reduces loads on the left andright actuating bladders proximal end 204 of thearticulation locking member 111 and thehandle portion 22, biasing thearticulation locking member 111 distally. With particular reference to FIG. 4, twoparallel slots distal end 210 of thearticulation locking member 111 receive respectively upwardly projectingguide ribs frame ground 48. Theguide ribs parallel slots toothed recess 216 distally projecting from thearticulation locking member 111, is engaged to a correspondinglocking gear segment 217 in abrake plate 218 received into a topproximal recess 220 of the articulatingframe member 114. Distal andproximal holes brake plate 218 receive distal andproximal pins proximal recess 220. - Embodiments of the
articulation lock mechanism 200 are described in greater detail in co-pending and commonly-ownedU.S. Patent Application Ser. No. 11/061,908 , "SURGICAL INSTRUMENT INCORPORATING A FLUID TRANSFER CONTROLLLED ARTICULATION MECHANISM" to Kenneth S. Wales, et al., filed February 18, 2005, the disclosure of which is hereby incorporated by reference in its entirety. - In FIGS. 3-4, the implement
portion 12 advantageously incorporates alockout arm 226 pivotally attached to theelongate channel 40 and configured to pivot between a locked position and an unlocked position with respect to the firingbar 66 based upon a position of thewedge sled 180. Thelockout arm 226 is positioned about the distal end of the firingbar 66 and includes afirst end 228 proximately located with respect to theE-beam 165, asecond end 230 extending in a proximal direction away from thefirst end 228 and along the firingbar 66, and pivot means 232 located between the first and second ends 228, 230 for cooperatively engaging corresponding pivot recesses 234 formed in theelongate channel 40. As shown, the pivot means 232 may be implemented as a pair of pivot pins 232 symmetrically formed on opposing sides of thelockout arm 226. Thelockout arm 226 defines an open-endedslot 236 passing through thefirst end 228 and entering a portion of thesecond end 230, thus enabling thelockout arm 226 to be positioned about the firingbar 66 in a straddle-like configuration so that the firingbar 66 may pass through thelockout arm 226. - The
first end 228 of thelockout arm 226 includes a pair ofsymmetrical tines 238 formed by the passage of the open-endedslot 236 therethrough. When the firingbar 66 is in the retracted position, eachtine 238 is adjacently positioned with respect to a corresponding lateral surface of theE-beam 165 and distally extends therealong. As shown, eachtine 238 is characterized by downward-sloping portion that transitions into to a tip portion having a flattened, upwardly-facing surface suitable for being depressibly engaged by a bottom surface of thewedge sled 180 when present in the unfired position. Thefirst end 228 further includes biasing means 240 for applying an upwardly-directed force in opposition to the depressible engagement of thetines 238 by thewedge sled 180. Accordingly, when thewedge sled 180 is not present in the unfired position, the biasing means 240 causes thefirst end 228 of thelockout arm 226 to be pivotally elevated. As shown, the biasing means 240 may be implemented as a pair of downwardly-extendingspring fingers 240 positioned between thetines 238 and contacting a bottom portion of theelongate channel 40. - The
second end 230 of thelockout arm 226 extends proximally away from thefirst end 228 along opposing lateral surfaces of the firingbar 66 and transitions into an upwardly-sloping portion having a flattenedtip portion 242 positioned above the firingbar 66. As shown, thesecond end 230 may be suitably contoured so adequate clearance is provided between thelockout arm 226 and the pivot pins 156 of theanvil 42 during operation of theinstrument 10. Thesecond end 230 includes alocking pin 244 attached to thetip portion 242 and configured to engage anotch 246 defined by the firingbar 66 when thesecond end 230 is pivoted in a depressed position with respect thereto. Conversely, the lockingpin 244 is disengaged from thenotch 246 when thesecond end 230 is pivoted in an elevated position with respect to the firingbar 66. Aninclined contour 248 formed on the firingbar 66 adjacent to thenotch 246 and sloping proximally therefrom is provided for guiding thelocking pin 244 during reciprocating movement of the firingbar 66, as discussed below in connection with FIGS. 6-8. - The position of the
second end 230 of thelockout arm 226 is determined by the engagement offirst end 228 by thewedge sled 180. In particular, when thewedge sled 180 is present in the unfired position, the depressible engagement of thetines 238 by thewedge sled 180 causes thesecond end 230 to be pivotally elevated with respect to the firingbar 66. Accordingly, the lockingpin 244 is caused to disengage thenotch 246, thus permitting distal movement of the firingbar 66 in response to a firing motion. The depressed engagement of thefirst end 228 and the resulting pivotal elevation of thesecond end 230 correspond to the unlocked position of thelockout arm 226. When thewedge sled 180 is not present in the unfired position (e.g., subsequent to a firing operation), the biasing means 240 serves to pivotally elevate thefirst end 228, causing thesecond end 230 to be pivotally depressed with respect to the firingbar 66. Accordingly, the lockingpin 244 engages thenotch 246, thus preventing distal movement of the firingbar 66. The elevation of thefirst end 228 and the resulting pivotal depression of thesecond end 230 correspond to the locked position of thelockout arm 226. - FIG. 5 is a front top perspective view of the
end effector 20 at the distal end of the surgical stapling and severinginstrument 10 of FIGS. 3-4, with theanvil 42 removed and only thewedge sled 180 of thestaple cartridge 178 shown for the sake of clarity. The firingbar 66 is depicted in a retracted state, with thelockout arm 226 in the unlocked position with respect thereto. The depressed engagement of thetines 238 resulting from the presence of thewedge sled 180 in the unfired position results in pivotal elevation of thesecond end 230 of thelockout arm 226 with respect to the firingbar 66. Accordingly, as shown in FIG. 5, the lockingpin 244 is disengaged from thenotch 246, thus enabling distal movement of the firingbar 66. Importantly, because the position of thelockout arm 226 is based only upon the position of thewedge sled 180, operation of thelockout arm 226 is unaffected by flexure of the firingbar 66 resulting from actuation of thearticulation mechanism 14. - FIGS. 6-8 depict sequential operation of the
lockout arm 226 within theend effector 20 of FIGS. 3-4 as the surgical stapling and severinginstrument 10 is fired. In FIG. 6, anunfired staple cartridge 178 has been inserted into theelongate channel 40, with thewedge sled 180 depressibly engaging thetines 238 of thelockout arm 226. Accordingly, thelockout arm 226 is in the unlocked position and thelocking pin 244 is disengaged from theslot 246 of the firingbar 66. - In FIG. 7, firing of the
staple cartridge 178 has commenced, with thewedge sled 180 having distally traversed off of thetines 238 of thelockout arm 226. Accordingly, thefirst end 228 of thelockout arm 226 is pivotally elevated by the biasing means 240, causing thelocking pin 244 to contact the firingbar 66. During the subsequent distal movement of the firingbar 66, the lockingpin 244 is continually maintained in sliding contact with the firingbar 66 and traverses a proximal portion thereof, including the contouredportion 248. - In FIG. 8, the firing
bar 66 is shown immediately subsequent to its retraction. Thelocking pin 244 has re-traversed the proximal portion of the firingbar 66 in the opposite direction, terminating with its vertical alignment with thenotch 246. Because thewedge sled 180 is no longer present in the unfired position, thesecond end 230 of thelockout arm 226 is maintained in a depressed position with respect to the firingbar 66, resulting in the engagement of thenotch 246 by the lockingpin 244, as shown in FIG. 8. The compression of the biasing means 240 resulting from the traversal of thelocking pin 244 upwardly over the contouredportion 248 ensures that thenotch 246 is engaged by the lockingpin 244 with a suitable amount of force. Accordingly, thelockout arm 226 is in the locking position, and distal movement of the firingbar 66 is prevented until the spentstaple cartridge 178 is replaced. - As an alternative to the
locking arm 226 of FIGS. 3-4, embodiments of the implementportion 12 of FIG. 9 advantageously incorporate at least onelockout assembly 250 mounted within theelongate channel 40 and adjacently positioned with respect to a corresponding lateral surface of theE-beam 165 when the firingbar 66 is in the retracted position. In preferred embodiments, and as shown in FIG. 9, twolockout assemblies 250 are provided, although it will be appreciated that asingle lockout assembly 250 may be utilized instead. Eachlockout assembly 250 includes alockout cartridge 252 movably disposed within acorresponding recess 254 defined by the bottom surface of theelongate channel 40 and configured to move between a locked position and an unlocked position with respect to theE-beam 165 based upon the position of thewedge sled 180. Eachlockout assembly 250 further includes biasing means 256 for applying an upwardly-directed force to thelockout cartridge 252 such that a portion of thelockout cartridge 252 is caused to protrude from thecorresponding recess 254 when thewedge sled 180 is not present in the unfired position. As shown in FIG. 9, the biasing means 256 for eachlockout cartridge 252 may be implemented as aspring finger 256 having an inwardly extendingfirst end 258 attached to thelockout cartridge 252, and an upwardly-extendingsecond end 260 attached to a lateral surface of theelongate channel 40. When in a relaxed (i.e., non-compressed) state, thefirst end 258 is upwardly inclined such that a portion of thelockout cartridge 252 suitably protrudes from itscorresponding recess 254, as best seen in FIG. 10 discussed below. Preferably, thesecond end 260 of eachspring finger 256 is attached in a flush manner (e.g., within a formed recess) to the correspondingelongate channel 40 surface so that thestaple cartridge 178 may be accommodated by theelongate channel 40 without modification. - FIG. 10 is a front top perspective view of the assembled
end effector 20 of FIG. 9 at the distal end of the surgical stapling and severinginstrument 10, with thestaple cartridge 178 andanvil 42 removed for the sake of clarity. As shown, eachlockout cartridge 252 includes a first proximally-facinglateral surface 262 configured for engaging a correspondingmiddle pin 170 of theE-beam 165 when thelockout cartridge 252 is in the locked position (i.e., protruding from therecess 254 of the elongate channel 40). Engagement of themiddle pins 170 by thelockout cartridges 252 when in the locked position thus prevents distal movement of the firingbar 66. - Each
lockout cartridge 252 may further include a second upwardly-facingsurface 264 configured for engagement by a bottom surface of thewedge sled 180 when present in the unfired position. Engagement of thesecond surfaces 264 in this manner is sufficient to overcome the force applied to thelockout cartridges 252 by the biasing means 256. As a result, eachlockout cartridge 252 is depressed into itscorresponding recess 254 such that thefirst surface 262 is disengaged from the correspondingmiddle pin 170 of theE-beam 165, thus enabling distal movement of the firingbar 66. The depressed position of eachlockout cartridge 252 corresponds to the locked position thereof. - Each
lockout cartridge 252 may further include a third distally-facinginclined surface 266 configured for slidingly engaging the correspondingmiddle pin 170 of theE-beam 165 immediately prior to the retraction of the firingbar 66. Engagement of thethird surface 266 in this fashion operates to momentarily depress eachlockout cartridge 252, thus permitting the firingbar 66 to fully retract. Upon full retraction of the firingbar 66, eachlockout cartridge 252 is caused to protrude from itscorresponding recess 254 in the locked position such that thefirst surface 262 engages the correspondingmiddle pin 170. Importantly, because the position of thelock cartridges 252 is based only upon the position of thewedge sled 180, operation of the operation of the lockout assemblies is unaffected by flexure of the firingbar 66 resulting from actuation of thearticulation mechanism 14. - FIGS. 11-13 depict sequential operation of the
lockout assemblies 250 within the end effector of FIGS. 9-10 as the surgical stapling and severinginstrument 10 is fired. In FIG. 11, anunfired staple cartridge 178 has been inserted into theelongate channel 40, with thewedge sled 180 engaging thesecond surfaces 264 such that eachlockout cartridge 252 is depressed into itscorresponding recess 254 within theelongate channel 40. Accordingly, eachlockout cartridge 252 is maintained in the unlocked position, and thefirst surfaces 262 are disengaged from the correspondingmiddle pins 170 of theE-beam 165. - In FIG. 12, firing of the
staple cartridge 178 has commenced, with the wedge sled 180 (not shown) having distally traversed off of thesecond surfaces 264 of thelockout cartridges 252. Accordingly, thelockout cartridges 252 are caused to protrude from their correspondingrecesses 254 as a result of the force applied thereto by the biasing means 256. - In FIG. 13, the
E-beam 165 is shown in the fully retracted position subsequent to the sliding engagement of thethird surfaces 266 of thelockout cartridges 252 by the corresponding middle pins 170. Because thewedge sled 180 is no longer present in the unfired position, eachlockout cartridge 252 protrudes from itscorresponding recess 254 in the locked position such themiddle pins 170 are engaged by thefirst surfaces 262, thus preventing subsequent distal movement of the firingbar 66 until the spentstaple cartridge 178 is replaced. - As an alternative to the
lockout arm 226 of FIGS. 3-4 and thelockout assemblies 250 of FIGS. 9-10, embodiments of the implementportion 12 of FIG. 14 advantageously incorporate a two-piece firing bar 268 including adistal portion 270 pivotally attached to aproximal portion 272. Thedistal portion 270 of the firingbar 268 is configured to pivot between locked and unlocked positions with respect to theelongate channel 40 based upon a position of thewedge sled 180. - As shown in FIG. 14, the
proximal portion 272 includes a pair of pivot pins 274 distally positioned on opposing lateral surfaces thereof. Thedistal portion 270 includes a pair of symmetrically formedpivot plates 276, each having aproximal hole 278 formed therein for cooperatively engaging acorresponding pivot pin 274 of theproximal portion 272. Thedistal portion 270 further includes an E-beam 280 similar to theE-beam 165 of described above and having a contouredproximal recess 282 for engaging an oppositely-contouredpin 284 formed by the distal end of eachpivot plate 276, thus enabling a generally rigid connection to be formed therebetween. Thedistal portion 270 of the firingbar 268, including theE-beam 280, is thus permitted to pivot in a vertical plane with respect to theproximal portion 272 thereof. - Each
pivot plate 276 further includes a downwardly-extendingpin 286 formed on the bottom at distal end thereof and comprising a proximally-facingcontoured surface 288. When thepivot plates 276 are engaged by theE-beam 280, thepins 286 are maintained in alignment and thus effectively define a common pin. When the firingbar 268 is in the fully retracted position, thepins 286 contact a bottom portion of theelongate channel 40 adjacent to the proximal end of thelongitudinal opening 174, thus supportably maintaining thedistal portion 270 in an elevated position with respect to theelongate channel 40. When the firingbar 268 is in a position other than the fully retracted position (e.g., during extension or retraction), thepins 286 are aligned with thelongitudinal slot 174 and no longer contact a bottom portion of theelongate channel 40. Thus, for such positions, thedistal portion 270 is not supported by thepins 286. - The
E-beam 280 includes anose 290 formed at the distal end thereof configured for supportable engagement by a proximalportion wedge sled 180. Accordingly, during distal movement of thewedge sled 180 resulting from extension of the firingbar 268, thenose 290 maintains the E-beam 280 (and thus thedistal portion 270 of the firing bar 268) in an elevated position with respect to theelongate channel 40. The elevated position of thedistal portion 270 resulting from supportable engagement of thenose 290 by thewedge sled 180 corresponds to the unlocked position thereof. - As best seen in FIG. 15, the
elongate channel 40 includes a pair ofrecesses 292 defined by a bottom portion thereof and symmetrically disposed on opposing sides of thelongitudinal slot 174. Therecesses 292 are positioned such that each is located under and slightly forward of a correspondingmiddle pin 170 of theE-beam 280 when the firingbar 268 is fully retracted. When thewedge sledge sled 180 is not present in the unfired position, thenose 290 of theE-beam 280 is unsupported during extension of the firingbar 268. Thedistal portion 270 of the firingbar 268 is thus permitted to pivot downward into a depressed position with respect to theelongate channel 40 such that themiddle pins 170 are received into the corresponding recesses 292. Eachrecess 292 defines a vertically-orienteddistal surface 294 for engaging an opposing distal portion of the correspondingmiddle pin 170, thus preventing further distal movement of the firingbar 268. The depressed position of thedistal portion 270 thus corresponds to the locked position thereof. As shown in FIG. 14, biasing mean 296, depicted asspring member 296, may be incorporated within the implementportion 12 for downwardly urging thedistal portion 270 into the locked position. - Referring again to FIG. 15, each
recess 292 further defines a slopedproximal surface 298 for slidingly engaging the correspondingmiddle pins 170 during retraction of the firingbar 268 such that thedistal portion 270 is caused to pivot upward, thus facilitating extraction of themiddle pins 170 from therecesses 292. Retraction of the firingbar 268 into the fully retracted position causes thecontoured surfaces 288 of thepins 286 to slidingly engage the bottom portion of theelongate channel 40 adjacent to the proximal end of thelongitudinal slot 174, thus transitioning thedistal portion 270 into the unlocked position. - In FIG. 15, the firing
bar 268 is depicted in a fully retracted state, with thedistal portion 270 maintained in the pivotally elevated position (i.e., unlocked position) with respect to theelongate channel 40. Importantly, because only thedistal portion 270 of the firingbar 268 need be elevated or depressed to transition between the unlocked and locked positions, the locking mechanism is unaffected by any flexure of theproximal portion 272 resulting from actuation of thearticulation mechanism 14. - FIGS. 16-18 depict sequential operation of the firing
bar 268 within theend effector 20 of FIG. 14 as the surgical stapling and severinginstrument 10 is fired. In FIG. 16, anunfired staple cartridge 178 has been inserted into theelongate channel 40, with a proximal portion of thewedge sled 180 supportably engaging thenose 290 of theE-beam 280. Thedistal portion 270 is supported in the elevated (i.e., unlocked) position by thepins 286, and themiddle pins 170 are positioned above the corresponding recesses 292. - In FIG. 17, firing of the
staple cartridge 178 has commenced. Although thedistal portion 270 is no longer supported by thepins 286, the engagement of thenose 290 by thewedge sled 180 prevents thedistal portion 270 from pivoting downward in response to the force applied thereto by the biasing means 296. Thus, thedistal portion 270 remains sufficiently elevated such that themiddle pins 170 are not received into therecesses 292, permitting continued distal movement of the firingbar 268. - In FIG. 18, firing
bar 268 is shown subsequent to being fully retracted and re-fired without replacement of the now-spentstaple cartridge 178. Because thewedge sled 180 is no longer present, thenose 290 of theE-beam 280 is not supportingly engaged thereby. The biasing means 296 thus causes thedistal portion 270 to be pivotally depressed into the locking position such that themiddle pins 170 are received into their correspondingrecesses 292. Engagement of themiddle pins 170 by thedistal surfaces 294 of therecesses 292 prevents further distal movement of the firingbar 268. - While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.
- For example, it will be appreciated that embodiments of the above-described locking mechanisms may be incorporated into articulating surgical stapling and severing instruments having articulating mechanisms controllable by means other than a fluidic actuation, such as gear-driven articulation mechanisms. It will further be appreciated that embodiments of the above-described locking mechanisms are not limited in their application to articulating instrument designs and may also be advantageously incorporated within non-articulating instruments.
Claims (13)
- A surgical instrument comprising:a handle portion operably configured to produce a firing motion;a channel coupled to the handle portion;an anvil pivotally attached to the channel;a staple cartridge engaged by the channel and including a plurality of staple drivers and staples, the staple drivers for camming the staples toward the anvil;a wedge member proximal to and longitudinally aligned with the staple drivers;a reciprocating firing device responsive to the firing motion to progressively drive the wedge member from an unfired position to a fired position; anda lockout arm pivotally attached to the channel and operably configured to pivot between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- The surgical instrument of claim 1, further comprising a shaft for connecting the handle portion to the channel, the shaft comprising an articulation mechanism.
- The surgical instrument of claim 1, wherein the lockout arm comprises a first end, a second end, and pivot means located between the first and second ends, the pivot means cooperative with the channel.
- The surgical instrument of claim 3, wherein the lockout arm defines an open-ended slot passing through the first end and entering a portion of the second end.
- The surgical instrument of claim 3, wherein the first end of the lockout arm is operably configured for depressible engagement by the wedge member when present in the unfired position such that the second end of the lockout arm is pivoted in an elevated position with respect to the firing device, the depressed engagement of the first end and the elevation of second end corresponding to the unlocked position of the lockout arm.
- The surgical instrument of claim 5, further comprising biasing means for applying a force for elevating the first end of the lockout arm such that the second end thereof is pivoted in a depressed position with respect to the firing device when the wedge member is not present in the unfired position, the elevation of the first end and the depression of the second end corresponding to the locked position of the lockout arm.
- The surgical instrument of claim 6 wherein the second end of the lockout arm is operably configured to engage the firing device when the lockout arm is in the locked position such that distal movement of the firing device is prevented.
- The surgical instrument of claim 7, wherein the second end of the lockout arm comprises a lock pin for engaging a notch defined by the firing device when the lockout arm is in the locked position.
- A surgical instrument comprising:a handle portion operably configured to produce a firing motion;a channel coupled to the handle portion;an anvil pivotally attached to the channel;a staple cartridge engaged by the channel and including a plurality of staple drivers and staples, the staple drivers for camming the staples toward the anvil;a wedge member proximal to and longitudinally aligned with the staple drivers;a reciprocating firing device responsive to the firing motion to progressively drive the wedge member from an unfired position to a fired position; andat least one lockout assembly positioned in the channel and adjacent to a corresponding lateral surface of the firing device, each lockout assembly comprising a lockout cartridge moveably disposed within a corresponding recess defined by the channel, wherein the lockout cartridge is configured to move between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- A surgical instrument comprising:a handle portion operably configured to produce a firing motion;a channel coupled to the handle portion;an anvil pivotally attached to the channel;a staple cartridge engaged by the channel and including a plurality of staple drivers and staples, the staple drivers for camming the staples toward the anvil;a wedge member proximal to and longitudinally aligned with the staple drivers; anda reciprocating firing device responsive to the firing motion to progressively drive the wedge member from an unfired position to a fired position, wherein the firing device comprises a distal portion, a proximal portion, and pivot means connecting the proximal and distal portions, wherein distal portion is configured to pivot between a locked position and an unlocked position with respect to the channel based upon a position of the wedge member.
- An end effector for use with a surgical instrument, the end effector comprising:a channel configured for receiving a staple cartridge;a reciprocating firing device responsive to a firing motion produced by the surgical instrument for progressively driving a wedge member of the staple cartridge from an unfired position to a fired position; anda lockout arm pivotally attached to the channel and operably configured to pivot between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- An end effector for use with a surgical instrument, the end effector comprising:a channel configured for receiving a staple cartridge;a reciprocating firing device responsive to a firing motion produced by the surgical instrument for progressively driving a wedge member of the staple cartridge from an unfired position to a fired position; andat least one lockout assembly positioned in the channel and adjacent to a corresponding lateral surface of the firing device, each lockout assembly comprising a lockout cartridge moveably disposed within a corresponding recess defined by the channel, wherein the lockout cartridge is configured to move between a locked position and an unlocked position with respect to the firing device based upon a position of the wedge member.
- An end effector for use with a surgical instrument, the end effector comprising:a channel configured for receiving a staple cartridge; anda reciprocating firing device responsive to a firing motion produced by the surgical instrument to progressively drive a wedge member of the staple cartridge from an unfired position to a fired position, wherein the firing device comprises a distal portion, a proximal portion, and pivot means connecting the proximal and distal portions, and wherein distal portion is configured to pivot between a locked position and an unlocked position with respect to the channel based upon a position of the wedge member.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/266,961 US7328828B2 (en) | 2005-11-04 | 2005-11-04 | Lockout mechanisms and surgical instruments including same |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1782738A2 true EP1782738A2 (en) | 2007-05-09 |
EP1782738A3 EP1782738A3 (en) | 2007-07-04 |
EP1782738B1 EP1782738B1 (en) | 2011-01-26 |
Family
ID=37716020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06255683A Active EP1782738B1 (en) | 2005-11-04 | 2006-11-03 | Lockout mechanisms and surgical instruments including same |
Country Status (10)
Country | Link |
---|---|
US (1) | US7328828B2 (en) |
EP (1) | EP1782738B1 (en) |
JP (1) | JP5154060B2 (en) |
CN (1) | CN1957854B (en) |
AT (1) | ATE496580T1 (en) |
AU (1) | AU2006230750B2 (en) |
BR (1) | BRPI0604524B8 (en) |
CA (1) | CA2566668C (en) |
DE (1) | DE602006019805D1 (en) |
MX (1) | MXPA06012763A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009039506A1 (en) * | 2007-09-21 | 2009-03-26 | Power Medical Interventions, Inc. | Surgical device |
EP1806103B1 (en) * | 2006-01-10 | 2013-05-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having an articulating end effector |
EP2777527A1 (en) * | 2013-03-13 | 2014-09-17 | Covidien LP | Surgical stapling apparatus |
US8906001B2 (en) | 2012-10-10 | 2014-12-09 | Covidien Lp | Electromechanical surgical apparatus including wire routing clock spring |
CN104434240A (en) * | 2013-09-24 | 2015-03-25 | 无锡德瑞克机械科技有限公司 | Lophodont tooth reciprocating motion control structure of endoscopic linear incision stitching instrument |
EP2838439A4 (en) * | 2012-04-18 | 2015-11-25 | Cardica Inc | Safety lockout for surgical stapler |
US9707005B2 (en) | 2014-02-14 | 2017-07-18 | Ethicon Llc | Lockout mechanisms for surgical devices |
EP3241502A4 (en) * | 2014-12-30 | 2017-12-13 | Suzhou Touchstone International Medical Science Co., Ltd. | Nail head assembly and suturing and cutting apparatus for endoscopic surgery |
EP3338660A1 (en) * | 2016-12-21 | 2018-06-27 | Ethicon LLC | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
EP3338704A1 (en) * | 2016-12-21 | 2018-06-27 | Ethicon LLC | Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present |
EP3338650A1 (en) * | 2016-12-21 | 2018-06-27 | Ethicon LLC | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
EP3315081A3 (en) * | 2014-06-13 | 2018-07-25 | Ethicon LLC | Closure lockout systems for surgical instruments |
WO2018115998A3 (en) * | 2016-12-21 | 2018-08-16 | Ethicon Llc | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
CN110087561A (en) * | 2016-12-21 | 2019-08-02 | 爱惜康有限责任公司 | For prevent firing member promoted in surgical end-effector (unless the storehouse that does not fire is mounted in the end effector) jaw actuation locking arrangement |
CN110114013A (en) * | 2016-12-21 | 2019-08-09 | 爱惜康有限责任公司 | For surgical stapling device, without storehouse and, hole capital after selling all securities locking is arranged |
CN110167458A (en) * | 2016-12-21 | 2019-08-23 | 爱惜康有限责任公司 | Surgical instruments with the locking arrangement for preventing in the presence of unless being not run out nail bin trigger system from activating |
EP3545858A1 (en) * | 2018-03-28 | 2019-10-02 | Ethicon LLC | Staple cartridge comprising a lockout key configured to lift a firing member |
WO2020260995A1 (en) * | 2019-06-25 | 2020-12-30 | Ethicon Llc | Surgical stapler assembly comprising an insertable deactivator element for defeating a lockout of the stapler |
CN112204673A (en) * | 2018-03-28 | 2021-01-08 | 爱惜康有限责任公司 | Surgical stapling device with cartridge compatible closure member and firing lockout arrangement |
EP3758618A4 (en) * | 2018-03-02 | 2021-10-06 | Covidien LP | Surgical stapling instrument |
EP4104775A1 (en) * | 2016-04-18 | 2022-12-21 | Ethicon LLC | Surgical instrument comprising a lockout |
EP4122404A3 (en) * | 2015-06-18 | 2023-06-28 | Ethicon LLC | Surgical stapling instruments with lockout arrangements for preventing firing system actuation when a cartridge is spent or missing |
Families Citing this family (1125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5865361A (en) | 1997-09-23 | 1999-02-02 | United States Surgical Corporation | Surgical stapling apparatus |
US7464847B2 (en) | 2005-06-03 | 2008-12-16 | Tyco Healthcare Group Lp | Surgical stapler with timer and feedback display |
US10285694B2 (en) | 2001-10-20 | 2019-05-14 | Covidien Lp | Surgical stapler with timer and feedback display |
US7380695B2 (en) * | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US10022123B2 (en) | 2012-07-09 | 2018-07-17 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
US20090090763A1 (en) * | 2007-10-05 | 2009-04-09 | Tyco Healthcare Group Lp | Powered surgical stapling device |
US9055943B2 (en) | 2007-09-21 | 2015-06-16 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US11311291B2 (en) | 2003-10-17 | 2022-04-26 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
US8806973B2 (en) * | 2009-12-02 | 2014-08-19 | Covidien Lp | Adapters for use between surgical handle assembly and surgical end effector |
US10041822B2 (en) | 2007-10-05 | 2018-08-07 | Covidien Lp | Methods to shorten calibration times for powered devices |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US11890012B2 (en) | 2004-07-28 | 2024-02-06 | Cilag Gmbh International | Staple cartridge comprising cartridge body and attached support |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8905977B2 (en) | 2004-07-28 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US7947034B2 (en) | 2004-07-30 | 2011-05-24 | Tyco Healthcare Group Lp | Flexible shaft extender and method of using same |
CA2820525C (en) | 2005-06-03 | 2015-08-04 | Tyco Healthcare Group Lp | Battery powered surgical instrument |
US11291443B2 (en) | 2005-06-03 | 2022-04-05 | Covidien Lp | Surgical stapler with timer and feedback display |
US9662116B2 (en) | 2006-05-19 | 2017-05-30 | Ethicon, Llc | Electrically self-powered surgical instrument with cryptographic identification of interchangeable part |
US7479608B2 (en) | 2006-05-19 | 2009-01-20 | Ethicon Endo-Surgery, Inc. | Force switch |
US10314583B2 (en) | 2005-07-26 | 2019-06-11 | Ethicon Llc | Electrically self-powered surgical instrument with manual release |
US8573462B2 (en) | 2006-05-19 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Electrical surgical instrument with optimized power supply and drive |
US8579176B2 (en) | 2005-07-26 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting device and method for using the device |
US9554803B2 (en) | 2005-07-26 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Electrically self-powered surgical instrument with manual release |
US8627995B2 (en) | 2006-05-19 | 2014-01-14 | Ethicon Endo-Sugery, Inc. | Electrically self-powered surgical instrument with cryptographic identification of interchangeable part |
US11751873B2 (en) | 2005-07-26 | 2023-09-12 | Cilag Gmbh International | Electrically powered surgical instrument with manual release |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US20070194082A1 (en) | 2005-08-31 | 2007-08-23 | Morgan Jerome R | Surgical stapling device with anvil having staple forming pockets of varying depths |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US7934630B2 (en) * | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7500979B2 (en) * | 2005-08-31 | 2009-03-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US20070102472A1 (en) * | 2005-11-04 | 2007-05-10 | Ethicon Endo-Surgery, Inc. | Electrosurgical stapling instrument with disposable severing / stapling unit |
US7673783B2 (en) | 2005-11-04 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for delivery of medical agents |
US7607557B2 (en) * | 2005-11-04 | 2009-10-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for pump-assisted delivery of medical agents |
US7673780B2 (en) * | 2005-11-09 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument |
US20070106317A1 (en) * | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7799039B2 (en) * | 2005-11-09 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a hydraulically actuated end effector |
US7766210B2 (en) | 2006-01-31 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with user feedback system |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US9861359B2 (en) | 2006-01-31 | 2018-01-09 | Ethicon Llc | Powered surgical instruments with firing system lockout arrangements |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US8161977B2 (en) * | 2006-01-31 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US7644848B2 (en) | 2006-01-31 | 2010-01-12 | Ethicon Endo-Surgery, Inc. | Electronic lockouts and surgical instrument including same |
US7770775B2 (en) | 2006-01-31 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with adaptive user feedback |
US8763879B2 (en) | 2006-01-31 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of surgical instrument |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US7568603B2 (en) | 2006-01-31 | 2009-08-04 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with articulatable end effector |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US20070225562A1 (en) * | 2006-03-23 | 2007-09-27 | Ethicon Endo-Surgery, Inc. | Articulating endoscopic accessory channel |
US8721630B2 (en) | 2006-03-23 | 2014-05-13 | Ethicon Endo-Surgery, Inc. | Methods and devices for controlling articulation |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US7552854B2 (en) | 2006-05-19 | 2009-06-30 | Applied Medical Resources Corporation | Surgical stapler with firing lock mechanism |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US20080029570A1 (en) * | 2006-08-02 | 2008-02-07 | Shelton Frederick E | Pneumatically powered surgical cutting and fastening instrument with improved volume storage |
US7740159B2 (en) | 2006-08-02 | 2010-06-22 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist |
US10130359B2 (en) | 2006-09-29 | 2018-11-20 | Ethicon Llc | Method for forming a staple |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US8485412B2 (en) * | 2006-09-29 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical staples having attached drivers and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US8733614B2 (en) | 2006-10-06 | 2014-05-27 | Covidien Lp | End effector identification by mechanical features |
US8608043B2 (en) | 2006-10-06 | 2013-12-17 | Covidien Lp | Surgical instrument having a multi-layered drive beam |
US7738971B2 (en) * | 2007-01-10 | 2010-06-15 | Ethicon Endo-Surgery, Inc. | Post-sterilization programming of surgical instruments |
US7721931B2 (en) * | 2007-01-10 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Prevention of cartridge reuse in a surgical instrument |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US7721936B2 (en) * | 2007-01-10 | 2010-05-25 | Ethicon Endo-Surgery, Inc. | Interlock and surgical instrument including same |
US7900805B2 (en) * | 2007-01-10 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Surgical instrument with enhanced battery performance |
US7954682B2 (en) | 2007-01-10 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument with elements to communicate between control unit and end effector |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8459520B2 (en) * | 2007-01-10 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and remote sensor |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US8701958B2 (en) | 2007-01-11 | 2014-04-22 | Ethicon Endo-Surgery, Inc. | Curved end effector for a surgical stapling device |
US7431188B1 (en) | 2007-03-15 | 2008-10-07 | Tyco Healthcare Group Lp | Surgical stapling apparatus with powered articulation |
US7438209B1 (en) | 2007-03-15 | 2008-10-21 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments having a releasable staple-forming pocket |
US7490749B2 (en) * | 2007-03-28 | 2009-02-17 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with manually retractable firing member |
US8056787B2 (en) | 2007-03-28 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with travel-indicating retraction member |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US11259802B2 (en) | 2007-04-13 | 2022-03-01 | Covidien Lp | Powered surgical instrument |
US20080255413A1 (en) | 2007-04-13 | 2008-10-16 | Michael Zemlok | Powered surgical instrument |
US8800837B2 (en) | 2007-04-13 | 2014-08-12 | Covidien Lp | Powered surgical instrument |
US7950560B2 (en) | 2007-04-13 | 2011-05-31 | Tyco Healthcare Group Lp | Powered surgical instrument |
US7823760B2 (en) * | 2007-05-01 | 2010-11-02 | Tyco Healthcare Group Lp | Powered surgical stapling device platform |
US7931660B2 (en) | 2007-05-10 | 2011-04-26 | Tyco Healthcare Group Lp | Powered tacker instrument |
US7549564B2 (en) * | 2007-06-22 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulating end effector |
US7798386B2 (en) | 2007-05-30 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument articulation joint cover |
US7810693B2 (en) | 2007-05-30 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with articulatable end effector |
US8157145B2 (en) | 2007-05-31 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with electrical feedback |
US20080296346A1 (en) * | 2007-05-31 | 2008-12-04 | Shelton Iv Frederick E | Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms |
US7832408B2 (en) * | 2007-06-04 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a directional switching mechanism |
US7819299B2 (en) * | 2007-06-04 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system |
US7905380B2 (en) | 2007-06-04 | 2011-03-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US8534528B2 (en) | 2007-06-04 | 2013-09-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a multiple rate directional switching mechanism |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US20080308602A1 (en) | 2007-06-18 | 2008-12-18 | Timm Richard W | Surgical stapling and cutting instruments |
US7441685B1 (en) | 2007-06-22 | 2008-10-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with a return mechanism |
US7604150B2 (en) * | 2007-06-22 | 2009-10-20 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an anti-back up mechanism |
US8408439B2 (en) | 2007-06-22 | 2013-04-02 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US7658311B2 (en) * | 2007-06-22 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with a geared return mechanism |
US7597229B2 (en) * | 2007-06-22 | 2009-10-06 | Ethicon Endo-Surgery, Inc. | End effector closure system for a surgical stapling instrument |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US8061576B2 (en) | 2007-08-31 | 2011-11-22 | Tyco Healthcare Group Lp | Surgical instrument |
EP3097869B1 (en) | 2007-09-21 | 2020-03-11 | Covidien LP | Surgical device |
US8517241B2 (en) | 2010-04-16 | 2013-08-27 | Covidien Lp | Hand-held surgical devices |
US8960520B2 (en) * | 2007-10-05 | 2015-02-24 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
US8967443B2 (en) | 2007-10-05 | 2015-03-03 | Covidien Lp | Method and apparatus for determining parameters of linear motion in a surgical instrument |
US10498269B2 (en) | 2007-10-05 | 2019-12-03 | Covidien Lp | Powered surgical stapling device |
US10779818B2 (en) | 2007-10-05 | 2020-09-22 | Covidien Lp | Powered surgical stapling device |
US7922063B2 (en) | 2007-10-31 | 2011-04-12 | Tyco Healthcare Group, Lp | Powered surgical instrument |
US7954685B2 (en) | 2007-11-06 | 2011-06-07 | Tyco Healthcare Group Lp | Articulation and firing force mechanisms |
US8758342B2 (en) | 2007-11-28 | 2014-06-24 | Covidien Ag | Cordless power-assisted medical cauterization and cutting device |
US7766209B2 (en) | 2008-02-13 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with improved firing trigger arrangement |
US8561870B2 (en) | 2008-02-13 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument |
US8348129B2 (en) * | 2009-10-09 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Surgical stapler having a closure mechanism |
US8453908B2 (en) | 2008-02-13 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with improved firing trigger arrangement |
US8540133B2 (en) | 2008-09-19 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Staple cartridge |
US7819296B2 (en) * | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with retractable firing systems |
US20090206133A1 (en) * | 2008-02-14 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | Articulatable loading units for surgical stapling and cutting instruments |
US7793812B2 (en) | 2008-02-14 | 2010-09-14 | Ethicon Endo-Surgery, Inc. | Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus |
US7819297B2 (en) * | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with reprocessible handle assembly |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US7913891B2 (en) * | 2008-02-14 | 2011-03-29 | Ethicon Endo-Surgery, Inc. | Disposable loading unit with user feedback features and surgical instrument for use therewith |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US7810692B2 (en) | 2008-02-14 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Disposable loading unit with firing indicator |
US8459525B2 (en) | 2008-02-14 | 2013-06-11 | Ethicon Endo-Sugery, Inc. | Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8584919B2 (en) | 2008-02-14 | 2013-11-19 | Ethicon Endo-Sugery, Inc. | Surgical stapling apparatus with load-sensitive firing mechanism |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8622274B2 (en) | 2008-02-14 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Motorized cutting and fastening instrument having control circuit for optimizing battery usage |
US7857185B2 (en) * | 2008-02-14 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Disposable loading unit for surgical stapling apparatus |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US7861906B2 (en) | 2008-02-14 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with articulatable components |
US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
US20090206141A1 (en) * | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | Buttress material having an activatable adhesive |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9615826B2 (en) | 2010-09-30 | 2017-04-11 | Ethicon Endo-Surgery, Llc | Multiple thickness implantable layers for surgical stapling devices |
US7959051B2 (en) * | 2008-02-15 | 2011-06-14 | Ethicon Endo-Surgery, Inc. | Closure systems for a surgical cutting and stapling instrument |
US7980443B2 (en) * | 2008-02-15 | 2011-07-19 | Ethicon Endo-Surgery, Inc. | End effectors for a surgical cutting and stapling instrument |
US20090206131A1 (en) | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | End effector coupling arrangements for a surgical cutting and stapling instrument |
US8608044B2 (en) * | 2008-02-15 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Feedback and lockout mechanism for surgical instrument |
US20090206137A1 (en) * | 2008-02-15 | 2009-08-20 | Ethicon Endo-Surgery, Inc. | Disposable loading units for a surgical cutting and stapling instrument |
US7922061B2 (en) * | 2008-05-21 | 2011-04-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument with automatically reconfigurable articulating end effector |
US8701959B2 (en) | 2008-06-06 | 2014-04-22 | Covidien Lp | Mechanically pivoting cartridge channel for surgical instrument |
US7789283B2 (en) | 2008-06-06 | 2010-09-07 | Tyco Healthcare Group Lp | Knife/firing rod connection for surgical instrument |
US7942303B2 (en) | 2008-06-06 | 2011-05-17 | Tyco Healthcare Group Lp | Knife lockout mechanisms for surgical instrument |
US8083120B2 (en) | 2008-09-18 | 2011-12-27 | Ethicon Endo-Surgery, Inc. | End effector for use with a surgical cutting and stapling instrument |
US7837080B2 (en) | 2008-09-18 | 2010-11-23 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with device for indicating when the instrument has cut through tissue |
US7857186B2 (en) * | 2008-09-19 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Surgical stapler having an intermediate closing position |
PL3476312T3 (en) | 2008-09-19 | 2024-03-11 | Ethicon Llc | Surgical stapler with apparatus for adjusting staple height |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US7896214B2 (en) | 2008-09-23 | 2011-03-01 | Tyco Healthcare Group Lp | Tissue stop for surgical instrument |
US9050083B2 (en) | 2008-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8628544B2 (en) | 2008-09-23 | 2014-01-14 | Covidien Lp | Knife bar for surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8215532B2 (en) | 2008-09-23 | 2012-07-10 | Tyco Healthcare Group Lp | Tissue stop for surgical instrument |
US7988028B2 (en) | 2008-09-23 | 2011-08-02 | Tyco Healthcare Group Lp | Surgical instrument having an asymmetric dynamic clamping member |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8020743B2 (en) * | 2008-10-15 | 2011-09-20 | Ethicon Endo-Surgery, Inc. | Powered articulatable surgical cutting and fastening instrument with flexible drive member |
US8397971B2 (en) * | 2009-02-05 | 2013-03-19 | Ethicon Endo-Surgery, Inc. | Sterilizable surgical instrument |
US8414577B2 (en) | 2009-02-05 | 2013-04-09 | Ethicon Endo-Surgery, Inc. | Surgical instruments and components for use in sterile environments |
US8485413B2 (en) | 2009-02-05 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising an articulation joint |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
AU2010210795A1 (en) | 2009-02-06 | 2011-08-25 | Ethicon Endo-Surgery, Inc. | Driven surgical stapler improvements |
US8453907B2 (en) | 2009-02-06 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with cutting member reversing mechanism |
US8066167B2 (en) * | 2009-03-23 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Circular surgical stapling instrument with anvil locking system |
US20100249698A1 (en) * | 2009-03-31 | 2010-09-30 | Bordoloi Binoy K | Controlled exotherm of cyanoacrylate formulations |
US8292154B2 (en) | 2009-04-16 | 2012-10-23 | Tyco Healthcare Group Lp | Surgical apparatus for applying tissue fasteners |
US8127976B2 (en) | 2009-05-08 | 2012-03-06 | Tyco Healthcare Group Lp | Stapler cartridge and channel interlock |
US8132706B2 (en) | 2009-06-05 | 2012-03-13 | Tyco Healthcare Group Lp | Surgical stapling apparatus having articulation mechanism |
US8821514B2 (en) | 2009-06-08 | 2014-09-02 | Covidien Lp | Powered tack applier |
US8342378B2 (en) | 2009-08-17 | 2013-01-01 | Covidien Lp | One handed stapler |
US8418907B2 (en) | 2009-11-05 | 2013-04-16 | Covidien Lp | Surgical stapler having cartridge with adjustable cam mechanism |
US8186558B2 (en) | 2009-11-10 | 2012-05-29 | Tyco Healthcare Group Lp | Locking mechanism for use with loading units |
US8353439B2 (en) * | 2009-11-19 | 2013-01-15 | Ethicon Endo-Surgery, Inc. | Circular stapler introducer with radially-openable distal end portion |
US8136712B2 (en) | 2009-12-10 | 2012-03-20 | Ethicon Endo-Surgery, Inc. | Surgical stapler with discrete staple height adjustment and tactile feedback |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8267300B2 (en) | 2009-12-30 | 2012-09-18 | Ethicon Endo-Surgery, Inc. | Dampening device for endoscopic surgical stapler |
US8608046B2 (en) | 2010-01-07 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Test device for a surgical tool |
US8074859B2 (en) | 2010-03-31 | 2011-12-13 | Tyco Healthcare Group Lp | Surgical instrument |
US8348127B2 (en) | 2010-04-07 | 2013-01-08 | Covidien Lp | Surgical fastener applying apparatus |
US8789740B2 (en) | 2010-07-30 | 2014-07-29 | Ethicon Endo-Surgery, Inc. | Linear cutting and stapling device with selectively disengageable cutting member |
US20120029272A1 (en) | 2010-07-30 | 2012-02-02 | Shelton Iv Frederick E | Apparatus and methods for protecting adjacent structures during the insertion of a surgical instrument into a tubular organ |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US8360296B2 (en) | 2010-09-09 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical stapling head assembly with firing lockout for a surgical stapler |
US9289212B2 (en) | 2010-09-17 | 2016-03-22 | Ethicon Endo-Surgery, Inc. | Surgical instruments and batteries for surgical instruments |
US8632525B2 (en) | 2010-09-17 | 2014-01-21 | Ethicon Endo-Surgery, Inc. | Power control arrangements for surgical instruments and batteries |
US20120078244A1 (en) | 2010-09-24 | 2012-03-29 | Worrell Barry C | Control features for articulating surgical device |
US8733613B2 (en) | 2010-09-29 | 2014-05-27 | Ethicon Endo-Surgery, Inc. | Staple cartridge |
US8978954B2 (en) | 2010-09-30 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising an adjustable distal portion |
US9211120B2 (en) | 2011-04-29 | 2015-12-15 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a plurality of medicaments |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US9220501B2 (en) | 2010-09-30 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensators |
US8893949B2 (en) | 2010-09-30 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Surgical stapler with floating anvil |
US9033203B2 (en) | 2010-09-30 | 2015-05-19 | Ethicon Endo-Surgery, Inc. | Fastening instrument for deploying a fastener system comprising a retention matrix |
US20120080498A1 (en) | 2010-09-30 | 2012-04-05 | Ethicon Endo-Surgery, Inc. | Curved end effector for a stapling instrument |
US9414838B2 (en) | 2012-03-28 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprised of a plurality of materials |
US9277919B2 (en) | 2010-09-30 | 2016-03-08 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising fibers to produce a resilient load |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9282962B2 (en) | 2010-09-30 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Adhesive film laminate |
US9301753B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Expandable tissue thickness compensator |
US9320523B2 (en) | 2012-03-28 | 2016-04-26 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising tissue ingrowth features |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9307989B2 (en) | 2012-03-28 | 2016-04-12 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorportating a hydrophobic agent |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9332974B2 (en) | 2010-09-30 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Layered tissue thickness compensator |
US9314246B2 (en) | 2010-09-30 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent |
AU2011308701B2 (en) | 2010-09-30 | 2013-11-14 | Ethicon Endo-Surgery, Inc. | Fastener system comprising a retention matrix and an alignment matrix |
CN102440813B (en) * | 2010-09-30 | 2013-05-08 | 上海创亿医疗器械技术有限公司 | Endoscopic surgical cutting anastomat with chain joints |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
USD650074S1 (en) | 2010-10-01 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US8899461B2 (en) | 2010-10-01 | 2014-12-02 | Covidien Lp | Tissue stop for surgical instrument |
US8308041B2 (en) | 2010-11-10 | 2012-11-13 | Tyco Healthcare Group Lp | Staple formed over the wire wound closure procedure |
CN101991452B (en) * | 2010-12-10 | 2012-07-04 | 苏州天臣国际医疗科技有限公司 | Linear type surgical stapling apparatus |
CN101991453B (en) * | 2010-12-10 | 2012-07-18 | 苏州天臣国际医疗科技有限公司 | Linear type cutting seaming device |
WO2012106398A1 (en) | 2011-02-01 | 2012-08-09 | St. Jude Medical, Inc. | Apparatus and method for heart valve repair |
US8336754B2 (en) | 2011-02-04 | 2012-12-25 | Covidien Lp | Locking articulation mechanism for surgical stapler |
US8986287B2 (en) | 2011-02-14 | 2015-03-24 | Adrian E. Park | Adjustable laparoscopic instrument handle |
US9033204B2 (en) | 2011-03-14 | 2015-05-19 | Ethicon Endo-Surgery, Inc. | Circular stapling devices with tissue-puncturing anvil features |
US8857693B2 (en) | 2011-03-15 | 2014-10-14 | Ethicon Endo-Surgery, Inc. | Surgical instruments with lockable articulating end effector |
US8540131B2 (en) | 2011-03-15 | 2013-09-24 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same |
US9044229B2 (en) | 2011-03-15 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical fastener instruments |
US8926598B2 (en) | 2011-03-15 | 2015-01-06 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulatable and rotatable end effector |
US8800841B2 (en) | 2011-03-15 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Surgical staple cartridges |
DE102011001372A1 (en) * | 2011-03-17 | 2012-09-20 | Aesculap Ag | Surgical system for connecting body tissue and control methods for such a surgical system |
US8573463B2 (en) | 2011-03-31 | 2013-11-05 | Covidien Lp | Locking articulation mechanism |
RU2606493C2 (en) | 2011-04-29 | 2017-01-10 | Этикон Эндо-Серджери, Инк. | Staple cartridge, containing staples, located inside its compressible part |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9451959B2 (en) | 2011-06-09 | 2016-09-27 | Covidien Lp | Surgical fastener applying apparatus |
US9289209B2 (en) | 2011-06-09 | 2016-03-22 | Covidien Lp | Surgical fastener applying apparatus |
US9271728B2 (en) | 2011-06-09 | 2016-03-01 | Covidien Lp | Surgical fastener applying apparatus |
US8763876B2 (en) | 2011-06-30 | 2014-07-01 | Covidien Lp | Surgical instrument and cartridge for use therewith |
US20130012958A1 (en) | 2011-07-08 | 2013-01-10 | Stanislaw Marczyk | Surgical Device with Articulation and Wrist Rotation |
US9155537B2 (en) | 2011-08-08 | 2015-10-13 | Covidien Lp | Surgical fastener applying apparatus |
US9724095B2 (en) | 2011-08-08 | 2017-08-08 | Covidien Lp | Surgical fastener applying apparatus |
US9539007B2 (en) | 2011-08-08 | 2017-01-10 | Covidien Lp | Surgical fastener applying aparatus |
US8833632B2 (en) | 2011-09-06 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Firing member displacement system for a stapling instrument |
US9050084B2 (en) | 2011-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Staple cartridge including collapsible deck arrangement |
US8899462B2 (en) | 2011-10-25 | 2014-12-02 | Covidien Lp | Apparatus for endoscopic procedures |
US9492146B2 (en) | 2011-10-25 | 2016-11-15 | Covidien Lp | Apparatus for endoscopic procedures |
US9480492B2 (en) | 2011-10-25 | 2016-11-01 | Covidien Lp | Apparatus for endoscopic procedures |
AU2014250629B2 (en) * | 2011-10-25 | 2016-06-16 | Covidien Lp | Multi-use loading unit |
US9016539B2 (en) | 2011-10-25 | 2015-04-28 | Covidien Lp | Multi-use loading unit |
US8657177B2 (en) | 2011-10-25 | 2014-02-25 | Covidien Lp | Surgical apparatus and method for endoscopic surgery |
US11207089B2 (en) | 2011-10-25 | 2021-12-28 | Covidien Lp | Apparatus for endoscopic procedures |
AU2016228164B2 (en) * | 2011-10-25 | 2018-11-15 | Covidien Lp | Multi-use loading unit |
US8672206B2 (en) | 2011-10-25 | 2014-03-18 | Covidien Lp | Apparatus for endoscopic procedures |
US9364231B2 (en) | 2011-10-27 | 2016-06-14 | Covidien Lp | System and method of using simulation reload to optimize staple formation |
US8740036B2 (en) | 2011-12-01 | 2014-06-03 | Covidien Lp | Surgical instrument with actuator spring arm |
US10299815B2 (en) | 2012-01-19 | 2019-05-28 | Covidien Lp | Surgical instrument with clam releases mechanism |
US8864010B2 (en) | 2012-01-20 | 2014-10-21 | Covidien Lp | Curved guide member for articulating instruments |
WO2013112795A1 (en) | 2012-01-25 | 2013-08-01 | St. Jude Medical, Inc. | Apparatus and method for heart valve repair |
EP2806804B1 (en) | 2012-01-25 | 2018-08-29 | St. Jude Medical, LLC | Apparatus for heart valve repair |
US10058348B2 (en) | 2012-02-02 | 2018-08-28 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and method for heart valve repair |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US8979827B2 (en) | 2012-03-14 | 2015-03-17 | Covidien Lp | Surgical instrument with articulation mechanism |
US9078653B2 (en) | 2012-03-26 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge |
JP6305979B2 (en) | 2012-03-28 | 2018-04-04 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Tissue thickness compensator with multiple layers |
JP6105041B2 (en) | 2012-03-28 | 2017-03-29 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Tissue thickness compensator containing capsules defining a low pressure environment |
MX353040B (en) | 2012-03-28 | 2017-12-18 | Ethicon Endo Surgery Inc | Retainer assembly including a tissue thickness compensator. |
US9198662B2 (en) | 2012-03-28 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator having improved visibility |
US9526497B2 (en) | 2012-05-07 | 2016-12-27 | Covidien Lp | Surgical instrument with articulation mechanism |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
AU2013203675B2 (en) * | 2012-05-31 | 2014-11-27 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US9868198B2 (en) | 2012-06-01 | 2018-01-16 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use |
US9597104B2 (en) | 2012-06-01 | 2017-03-21 | Covidien Lp | Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US10080563B2 (en) | 2012-06-01 | 2018-09-25 | Covidien Lp | Loading unit detection assembly and surgical device for use therewith |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9364220B2 (en) | 2012-06-19 | 2016-06-14 | Covidien Lp | Apparatus for endoscopic procedures |
US11278284B2 (en) | 2012-06-28 | 2022-03-22 | Cilag Gmbh International | Rotary drive arrangements for surgical instruments |
US9408606B2 (en) | 2012-06-28 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Robotically powered surgical device with manually-actuatable reversing system |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US20140005718A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Multi-functional powered surgical device with external dissection features |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
JP6290201B2 (en) | 2012-06-28 | 2018-03-07 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Lockout for empty clip cartridge |
US9649111B2 (en) | 2012-06-28 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Replaceable clip cartridge for a clip applier |
US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
US9232944B2 (en) | 2012-06-29 | 2016-01-12 | Covidien Lp | Surgical instrument and bushing |
US9839480B2 (en) | 2012-07-09 | 2017-12-12 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
US9955965B2 (en) | 2012-07-09 | 2018-05-01 | Covidien Lp | Switch block control assembly of a medical device |
US10492814B2 (en) | 2012-07-09 | 2019-12-03 | Covidien Lp | Apparatus for endoscopic procedures |
US9402604B2 (en) | 2012-07-20 | 2016-08-02 | Covidien Lp | Apparatus for endoscopic procedures |
US9662205B2 (en) | 2012-08-02 | 2017-05-30 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and method for heart valve repair |
US9125653B2 (en) | 2012-08-02 | 2015-09-08 | St. Jude Medical, Cardiology Division, Inc. | Flexible nosecone for percutaneous device |
US10105219B2 (en) | 2012-08-02 | 2018-10-23 | St. Jude Medical, Cardiology Division, Inc. | Mitral valve leaflet clip |
US9254141B2 (en) | 2012-08-02 | 2016-02-09 | St. Jude Medical, Inc. | Apparatus and method for heart valve repair |
US9364217B2 (en) | 2012-10-16 | 2016-06-14 | Covidien Lp | In-situ loaded stapler |
US9421014B2 (en) | 2012-10-18 | 2016-08-23 | Covidien Lp | Loading unit velocity and position feedback |
US9066710B2 (en) * | 2012-10-19 | 2015-06-30 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and method for heart valve repair |
WO2014080862A1 (en) * | 2012-11-20 | 2014-05-30 | オリンパスメディカルシステムズ株式会社 | Tissue ablation apparatus |
US9345480B2 (en) | 2013-01-18 | 2016-05-24 | Covidien Lp | Surgical instrument and cartridge members for use therewith |
US9782187B2 (en) | 2013-01-18 | 2017-10-10 | Covidien Lp | Adapter load button lockout |
US10918364B2 (en) | 2013-01-24 | 2021-02-16 | Covidien Lp | Intelligent adapter assembly for use with an electromechanical surgical system |
US9386984B2 (en) | 2013-02-08 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Staple cartridge comprising a releasable cover |
US9216013B2 (en) | 2013-02-18 | 2015-12-22 | Covidien Lp | Apparatus for endoscopic procedures |
US9421003B2 (en) | 2013-02-18 | 2016-08-23 | Covidien Lp | Apparatus for endoscopic procedures |
US10092292B2 (en) | 2013-02-28 | 2018-10-09 | Ethicon Llc | Staple forming features for surgical stapling instrument |
US9358003B2 (en) | 2013-03-01 | 2016-06-07 | Ethicon Endo-Surgery, Llc | Electromechanical surgical device with signal relay arrangement |
RU2672520C2 (en) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Hingedly turnable surgical instruments with conducting ways for signal transfer |
MX364729B (en) | 2013-03-01 | 2019-05-06 | Ethicon Endo Surgery Inc | Surgical instrument with a soft stop. |
US10561432B2 (en) | 2013-03-05 | 2020-02-18 | Covidien Lp | Pivoting screw for use with a pair of jaw members of a surgical instrument |
US9642706B2 (en) | 2013-03-11 | 2017-05-09 | St. Jude Medical, Llc | Apparatus and method for heart valve repair |
US9717498B2 (en) * | 2013-03-13 | 2017-08-01 | Covidien Lp | Surgical stapling apparatus |
US9566064B2 (en) | 2013-03-13 | 2017-02-14 | Covidien Lp | Surgical stapling apparatus |
US9814463B2 (en) | 2013-03-13 | 2017-11-14 | Covidien Lp | Surgical stapling apparatus |
US9492189B2 (en) | 2013-03-13 | 2016-11-15 | Covidien Lp | Apparatus for endoscopic procedures |
US20140263552A1 (en) | 2013-03-13 | 2014-09-18 | Ethicon Endo-Surgery, Inc. | Staple cartridge tissue thickness sensor system |
EP2967564B1 (en) | 2013-03-14 | 2018-09-12 | Applied Medical Resources Corporation | Surgical stapler with partial pockets |
US9351727B2 (en) | 2013-03-14 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Drive train control arrangements for modular surgical instruments |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
ES2937067T3 (en) | 2013-03-15 | 2023-03-23 | Applied Med Resources | Surgical stapler with expandable jaw |
EP4230151A3 (en) | 2013-03-15 | 2023-10-25 | Applied Medical Resources Corporation | Surgical stapler having actuation mechanism with rotatable shaft |
US9510827B2 (en) | 2013-03-25 | 2016-12-06 | Covidien Lp | Micro surgical instrument and loading unit for use therewith |
US9572577B2 (en) | 2013-03-27 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a tissue thickness compensator including openings therein |
US9332984B2 (en) | 2013-03-27 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Fastener cartridge assemblies |
US9795384B2 (en) | 2013-03-27 | 2017-10-24 | Ethicon Llc | Fastener cartridge comprising a tissue thickness compensator and a gap setting element |
US9775610B2 (en) | 2013-04-09 | 2017-10-03 | Covidien Lp | Apparatus for endoscopic procedures |
US9700318B2 (en) | 2013-04-09 | 2017-07-11 | Covidien Lp | Apparatus for endoscopic procedures |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US9814460B2 (en) | 2013-04-16 | 2017-11-14 | Ethicon Llc | Modular motor driven surgical instruments with status indication arrangements |
CN103230288B (en) * | 2013-05-09 | 2016-01-06 | 常州威克医疗器械有限公司 | The nail bin seat of disposable intracavity Endo-GIA |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
US9801646B2 (en) | 2013-05-30 | 2017-10-31 | Covidien Lp | Adapter load button decoupled from loading unit sensor |
US9445810B2 (en) | 2013-06-12 | 2016-09-20 | Covidien Lp | Stapling device with grasping jaw mechanism |
US9797486B2 (en) | 2013-06-20 | 2017-10-24 | Covidien Lp | Adapter direct drive with manual retraction, lockout and connection mechanisms |
US9757129B2 (en) | 2013-07-08 | 2017-09-12 | Covidien Lp | Coupling member configured for use with surgical devices |
MX369362B (en) | 2013-08-23 | 2019-11-06 | Ethicon Endo Surgery Llc | Firing member retraction devices for powered surgical instruments. |
US9987006B2 (en) | 2013-08-23 | 2018-06-05 | Ethicon Llc | Shroud retention arrangement for sterilizable surgical instruments |
US9662108B2 (en) | 2013-08-30 | 2017-05-30 | Covidien Lp | Surgical stapling apparatus |
US20140171986A1 (en) | 2013-09-13 | 2014-06-19 | Ethicon Endo-Surgery, Inc. | Surgical Clip Having Comliant Portion |
US9955966B2 (en) | 2013-09-17 | 2018-05-01 | Covidien Lp | Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention |
US9962157B2 (en) | 2013-09-18 | 2018-05-08 | Covidien Lp | Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument |
US9974540B2 (en) | 2013-10-18 | 2018-05-22 | Covidien Lp | Adapter direct drive twist-lock retention mechanism |
US11033264B2 (en) | 2013-11-04 | 2021-06-15 | Covidien Lp | Surgical fastener applying apparatus |
WO2015065487A1 (en) | 2013-11-04 | 2015-05-07 | Covidien Lp | Surgical fastener applying apparatus |
CA2926748A1 (en) | 2013-11-04 | 2015-05-07 | Covidien Lp | Surgical fastener applying apparatus |
US9295522B2 (en) | 2013-11-08 | 2016-03-29 | Covidien Lp | Medical device adapter with wrist mechanism |
US10236616B2 (en) | 2013-12-04 | 2019-03-19 | Covidien Lp | Adapter assembly for interconnecting surgical devices and surgical attachments, and surgical systems thereof |
ES2755485T3 (en) | 2013-12-09 | 2020-04-22 | Covidien Lp | Adapter assembly for the interconnection of electromechanical surgical devices and surgical load units, and surgical systems thereof |
US9918713B2 (en) | 2013-12-09 | 2018-03-20 | Covidien Lp | Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
EP3578119B1 (en) | 2013-12-11 | 2021-03-17 | Covidien LP | Wrist and jaw assemblies for robotic surgical systems |
WO2015088655A1 (en) | 2013-12-12 | 2015-06-18 | Covidien Lp | Gear train assemblies for robotic surgical systems |
US9808245B2 (en) | 2013-12-13 | 2017-11-07 | Covidien Lp | Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof |
US9867613B2 (en) | 2013-12-19 | 2018-01-16 | Covidien Lp | Surgical staples and end effectors for deploying the same |
US10265065B2 (en) | 2013-12-23 | 2019-04-23 | Ethicon Llc | Surgical staples and staple cartridges |
US9681870B2 (en) | 2013-12-23 | 2017-06-20 | Ethicon Llc | Articulatable surgical instruments with separate and distinct closing and firing systems |
US20150173756A1 (en) | 2013-12-23 | 2015-06-25 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling methods |
US9839428B2 (en) | 2013-12-23 | 2017-12-12 | Ethicon Llc | Surgical cutting and stapling instruments with independent jaw control features |
US9642620B2 (en) | 2013-12-23 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical cutting and stapling instruments with articulatable end effectors |
US9724092B2 (en) | 2013-12-23 | 2017-08-08 | Ethicon Llc | Modular surgical instruments |
US9839424B2 (en) | 2014-01-17 | 2017-12-12 | Covidien Lp | Electromechanical surgical assembly |
US9655616B2 (en) | 2014-01-22 | 2017-05-23 | Covidien Lp | Apparatus for endoscopic procedures |
US9629627B2 (en) * | 2014-01-28 | 2017-04-25 | Coviden Lp | Surgical apparatus |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
US10226305B2 (en) | 2014-02-12 | 2019-03-12 | Covidien Lp | Surgical end effectors and pulley assemblies thereof |
US9848874B2 (en) | 2014-02-14 | 2017-12-26 | Covidien Lp | Small diameter endoscopic stapler |
US9301691B2 (en) | 2014-02-21 | 2016-04-05 | Covidien Lp | Instrument for optically detecting tissue attributes |
US9884456B2 (en) | 2014-02-24 | 2018-02-06 | Ethicon Llc | Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments |
CN106232029B (en) | 2014-02-24 | 2019-04-12 | 伊西康内外科有限责任公司 | Fastening system including firing member locking piece |
US9733663B2 (en) | 2014-03-26 | 2017-08-15 | Ethicon Llc | Power management through segmented circuit and variable voltage protection |
US9913642B2 (en) | 2014-03-26 | 2018-03-13 | Ethicon Llc | Surgical instrument comprising a sensor system |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US20150272582A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Power management control systems for surgical instruments |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
US10660713B2 (en) | 2014-03-31 | 2020-05-26 | Covidien Lp | Wrist and jaw assemblies for robotic surgical systems |
US9757126B2 (en) * | 2014-03-31 | 2017-09-12 | Covidien Lp | Surgical stapling apparatus with firing lockout mechanism |
US10470768B2 (en) | 2014-04-16 | 2019-11-12 | Ethicon Llc | Fastener cartridge including a layer attached thereto |
US9943310B2 (en) | 2014-09-26 | 2018-04-17 | Ethicon Llc | Surgical stapling buttresses and adjunct materials |
JP6532889B2 (en) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | Fastener cartridge assembly and staple holder cover arrangement |
US20150297223A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
BR112016023698B1 (en) | 2014-04-16 | 2022-07-26 | Ethicon Endo-Surgery, Llc | FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT |
CN106456158B (en) | 2014-04-16 | 2019-02-05 | 伊西康内外科有限责任公司 | Fastener cartridge including non-uniform fastener |
US10164466B2 (en) | 2014-04-17 | 2018-12-25 | Covidien Lp | Non-contact surgical adapter electrical interface |
US10080552B2 (en) | 2014-04-21 | 2018-09-25 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US9668733B2 (en) | 2014-04-21 | 2017-06-06 | Covidien Lp | Stapling device with features to prevent inadvertent firing of staples |
US9861366B2 (en) | 2014-05-06 | 2018-01-09 | Covidien Lp | Ejecting assembly for a surgical stapler |
EP3142569B1 (en) * | 2014-05-15 | 2023-12-27 | Covidien LP | Surgical fastener applying apparatus |
US9713466B2 (en) | 2014-05-16 | 2017-07-25 | Covidien Lp | Adaptor for surgical instrument for converting rotary input to linear output |
EP3785644B1 (en) | 2014-06-11 | 2023-11-01 | Applied Medical Resources Corporation | Surgical stapler with circumferential firing |
US9693774B2 (en) | 2014-06-25 | 2017-07-04 | Ethicon Llc | Pivotable articulation joint unlocking feature for surgical stapler |
US10292701B2 (en) * | 2014-06-25 | 2019-05-21 | Ethicon Llc | Articulation drive features for surgical stapler |
US9839425B2 (en) | 2014-06-26 | 2017-12-12 | Covidien Lp | Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US9987095B2 (en) | 2014-06-26 | 2018-06-05 | Covidien Lp | Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units |
US10163589B2 (en) | 2014-06-26 | 2018-12-25 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US10561418B2 (en) | 2014-06-26 | 2020-02-18 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US9763661B2 (en) | 2014-06-26 | 2017-09-19 | Covidien Lp | Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US10111679B2 (en) | 2014-09-05 | 2018-10-30 | Ethicon Llc | Circuitry and sensors for powered medical device |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
EP3682815B1 (en) | 2014-09-15 | 2021-11-10 | Applied Medical Resources Corporation | Surgical stapler with self-adjusting staple height |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
MX2017003960A (en) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Surgical stapling buttresses and adjunct materials. |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US10603128B2 (en) | 2014-10-07 | 2020-03-31 | Covidien Lp | Handheld electromechanical surgical system |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10226254B2 (en) | 2014-10-21 | 2019-03-12 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US10729443B2 (en) | 2014-10-21 | 2020-08-04 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US10085750B2 (en) | 2014-10-22 | 2018-10-02 | Covidien Lp | Adapter with fire rod J-hook lockout |
US9949737B2 (en) | 2014-10-22 | 2018-04-24 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
BR112017012996B1 (en) | 2014-12-18 | 2022-11-08 | Ethicon Llc | SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE |
US10117649B2 (en) | 2014-12-18 | 2018-11-06 | Ethicon Llc | Surgical instrument assembly comprising a lockable articulation system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9968355B2 (en) | 2014-12-18 | 2018-05-15 | Ethicon Llc | Surgical instruments with articulatable end effectors and improved firing beam support arrangements |
CN105796145B (en) * | 2014-12-30 | 2018-10-30 | 苏州天臣国际医疗科技有限公司 | A kind of nail-head component and hysteroscope surgical operation seaming and cutting device |
US10111665B2 (en) | 2015-02-19 | 2018-10-30 | Covidien Lp | Electromechanical surgical systems |
US10039545B2 (en) | 2015-02-23 | 2018-08-07 | Covidien Lp | Double fire stapling |
US10130367B2 (en) | 2015-02-26 | 2018-11-20 | Covidien Lp | Surgical apparatus |
US10085749B2 (en) | 2015-02-26 | 2018-10-02 | Covidien Lp | Surgical apparatus with conductor strain relief |
US10226250B2 (en) | 2015-02-27 | 2019-03-12 | Ethicon Llc | Modular stapling assembly |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10182816B2 (en) | 2015-02-27 | 2019-01-22 | Ethicon Llc | Charging system that enables emergency resolutions for charging a battery |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10045776B2 (en) | 2015-03-06 | 2018-08-14 | Ethicon Llc | Control techniques and sub-processor contained within modular shaft with select control processing from handle |
US9895148B2 (en) | 2015-03-06 | 2018-02-20 | Ethicon Endo-Surgery, Llc | Monitoring speed control and precision incrementing of motor for powered surgical instruments |
US10190888B2 (en) | 2015-03-11 | 2019-01-29 | Covidien Lp | Surgical stapling instruments with linear position assembly |
US9918717B2 (en) | 2015-03-18 | 2018-03-20 | Covidien Lp | Pivot mechanism for surgical device |
US10390825B2 (en) | 2015-03-31 | 2019-08-27 | Ethicon Llc | Surgical instrument with progressive rotary drive systems |
US10226239B2 (en) | 2015-04-10 | 2019-03-12 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US11432902B2 (en) | 2015-04-10 | 2022-09-06 | Covidien Lp | Surgical devices with moisture control |
US10327779B2 (en) | 2015-04-10 | 2019-06-25 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US10463368B2 (en) | 2015-04-10 | 2019-11-05 | Covidien Lp | Endoscopic stapler |
EP3741309A1 (en) | 2015-04-22 | 2020-11-25 | Covidien LP | Handheld electromechanical surgical system |
US11278286B2 (en) | 2015-04-22 | 2022-03-22 | Covidien Lp | Handheld electromechanical surgical system |
US10299789B2 (en) | 2015-05-05 | 2019-05-28 | Covidie LP | Adapter assembly for surgical stapling devices |
US10117650B2 (en) | 2015-05-05 | 2018-11-06 | Covidien Lp | Adapter assembly and loading units for surgical stapling devices |
US10039532B2 (en) | 2015-05-06 | 2018-08-07 | Covidien Lp | Surgical instrument with articulation assembly |
US10143474B2 (en) | 2015-05-08 | 2018-12-04 | Just Right Surgical, Llc | Surgical stapler |
CN107635481B (en) | 2015-05-25 | 2021-01-05 | 柯惠有限合伙公司 | Minor diameter surgical suturing device |
US10349941B2 (en) | 2015-05-27 | 2019-07-16 | Covidien Lp | Multi-fire lead screw stapling device |
US10172615B2 (en) | 2015-05-27 | 2019-01-08 | Covidien Lp | Multi-fire push rod stapling device |
BR112017027319B1 (en) * | 2015-06-18 | 2022-08-16 | Ethicon Llc | ARTICULABLE SURGICAL INSTRUMENT WITH COMPOSITE TRIG ARM STRUCTURES WITH TRIG ARM SUPPORT MEMBER FOR JOINT SUPPORT |
BR112017027281B1 (en) | 2015-06-18 | 2022-12-13 | Ethicon Llc | SURGICAL INSTRUMENT |
US10548599B2 (en) | 2015-07-20 | 2020-02-04 | Covidien Lp | Endoscopic stapler and staple |
US9987012B2 (en) | 2015-07-21 | 2018-06-05 | Covidien Lp | Small diameter cartridge design for a surgical stapling instrument |
US10751058B2 (en) | 2015-07-28 | 2020-08-25 | Covidien Lp | Adapter assemblies for surgical devices |
US10064622B2 (en) | 2015-07-29 | 2018-09-04 | Covidien Lp | Surgical stapling loading unit with stroke counter and lockout |
JP6858746B2 (en) * | 2015-07-30 | 2021-04-14 | エシコン エルエルシーEthicon LLC | Surgical instrument with a system for bypassing the operating process of the surgical instrument |
US10045782B2 (en) | 2015-07-30 | 2018-08-14 | Covidien Lp | Surgical stapling loading unit with stroke counter and lockout |
KR20240027156A (en) | 2015-08-06 | 2024-02-29 | 어플라이드 메디컬 리소시스 코포레이션 | Surgical stapler having locking articulation joint |
US10245036B1 (en) * | 2015-08-12 | 2019-04-02 | Aesculap Ag | Stapling device clamp and deployment lockout safety apparatus and method |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
RU2725081C2 (en) | 2015-08-26 | 2020-06-29 | ЭТИКОН ЭлЭлСи | Strips with surgical staples allowing the presence of staples with variable properties and providing simple loading of the cartridge |
US10098642B2 (en) | 2015-08-26 | 2018-10-16 | Ethicon Llc | Surgical staples comprising features for improved fastening of tissue |
MX2022009705A (en) | 2015-08-26 | 2022-11-07 | Ethicon Llc | Surgical staples comprising hardness variations for improved fastening of tissue. |
MX2022006192A (en) | 2015-09-02 | 2022-06-16 | Ethicon Llc | Surgical staple configurations with camming surfaces located between portions supporting surgical staples. |
US10251648B2 (en) | 2015-09-02 | 2019-04-09 | Ethicon Llc | Surgical staple cartridge staple drivers with central support features |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10085751B2 (en) | 2015-09-23 | 2018-10-02 | Ethicon Llc | Surgical stapler having temperature-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10076326B2 (en) | 2015-09-23 | 2018-09-18 | Ethicon Llc | Surgical stapler having current mirror-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
WO2017053363A1 (en) | 2015-09-25 | 2017-03-30 | Covidien Lp | Robotic surgical assemblies and instrument drive connectors thereof |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10327777B2 (en) | 2015-09-30 | 2019-06-25 | Ethicon Llc | Implantable layer comprising plastically deformed fibers |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10213204B2 (en) | 2015-10-02 | 2019-02-26 | Covidien Lp | Micro surgical instrument and loading unit for use therewith |
US10371238B2 (en) | 2015-10-09 | 2019-08-06 | Covidien Lp | Adapter assembly for surgical device |
US10413298B2 (en) | 2015-10-14 | 2019-09-17 | Covidien Lp | Adapter assembly for surgical devices |
US10772632B2 (en) | 2015-10-28 | 2020-09-15 | Covidien Lp | Surgical stapling device with triple leg staples |
US10729435B2 (en) | 2015-11-06 | 2020-08-04 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US10292705B2 (en) | 2015-11-06 | 2019-05-21 | Covidien Lp | Surgical apparatus |
US10939952B2 (en) | 2015-11-06 | 2021-03-09 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US10595864B2 (en) | 2015-11-24 | 2020-03-24 | Covidien Lp | Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US10617411B2 (en) | 2015-12-01 | 2020-04-14 | Covidien Lp | Adapter assembly for surgical device |
US10111660B2 (en) | 2015-12-03 | 2018-10-30 | Covidien Lp | Surgical stapler flexible distal tip |
US10433841B2 (en) | 2015-12-10 | 2019-10-08 | Covidien Lp | Adapter assembly for surgical device |
US10420554B2 (en) | 2015-12-22 | 2019-09-24 | Covidien Lp | Personalization of powered surgical devices |
US10253847B2 (en) | 2015-12-22 | 2019-04-09 | Covidien Lp | Electromechanical surgical devices with single motor drives and adapter assemblies therfor |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10314579B2 (en) | 2016-01-07 | 2019-06-11 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US10966717B2 (en) | 2016-01-07 | 2021-04-06 | Covidien Lp | Surgical fastener apparatus |
US10524797B2 (en) | 2016-01-13 | 2020-01-07 | Covidien Lp | Adapter assembly including a removable trocar assembly |
US10660623B2 (en) | 2016-01-15 | 2020-05-26 | Covidien Lp | Centering mechanism for articulation joint |
US10508720B2 (en) | 2016-01-21 | 2019-12-17 | Covidien Lp | Adapter assembly with planetary gear drive for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10245029B2 (en) | 2016-02-09 | 2019-04-02 | Ethicon Llc | Surgical instrument with articulating and axially translatable end effector |
CN109069148B (en) * | 2016-02-09 | 2021-06-22 | 伊西康有限责任公司 | Surgical instrument with articulatable and axially translatable end effector |
JP6911054B2 (en) | 2016-02-09 | 2021-07-28 | エシコン エルエルシーEthicon LLC | Surgical instruments with asymmetric joint composition |
US10398439B2 (en) | 2016-02-10 | 2019-09-03 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US10349937B2 (en) | 2016-02-10 | 2019-07-16 | Covidien Lp | Surgical stapler with articulation locking mechanism |
US10420559B2 (en) | 2016-02-11 | 2019-09-24 | Covidien Lp | Surgical stapler with small diameter endoscopic portion |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
US11284890B2 (en) | 2016-04-01 | 2022-03-29 | Cilag Gmbh International | Circular stapling system comprising an incisable tissue support |
US10568632B2 (en) | 2016-04-01 | 2020-02-25 | Ethicon Llc | Surgical stapling system comprising a jaw closure lockout |
US10307159B2 (en) | 2016-04-01 | 2019-06-04 | Ethicon Llc | Surgical instrument handle assembly with reconfigurable grip portion |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
AU2017250206B2 (en) | 2016-04-12 | 2022-03-24 | Applied Medical Resources Corporation | Surgical stapler having a powered handle |
ES2882141T3 (en) * | 2016-04-12 | 2021-12-01 | Applied Med Resources | Refill Stem Assembly for Surgical Stapler |
EP3442440B1 (en) | 2016-04-12 | 2021-06-02 | Applied Medical Resources Corporation | Surgical stapler having articulation mechanism |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10561419B2 (en) | 2016-05-04 | 2020-02-18 | Covidien Lp | Powered end effector assembly with pivotable channel |
US10799239B2 (en) | 2016-05-09 | 2020-10-13 | Covidien Lp | Adapter assembly with pulley system and worm gear drive for interconnecting electromechanical surgical devices and surgical end effectors |
US10736637B2 (en) | 2016-05-10 | 2020-08-11 | Covidien Lp | Brake for adapter assemblies for surgical devices |
US10588610B2 (en) | 2016-05-10 | 2020-03-17 | Covidien Lp | Adapter assemblies for surgical devices |
US10463374B2 (en) | 2016-05-17 | 2019-11-05 | Covidien Lp | Adapter assembly for a flexible circular stapler |
US11065022B2 (en) | 2016-05-17 | 2021-07-20 | Covidien Lp | Cutting member for a surgical instrument |
US10702302B2 (en) | 2016-05-17 | 2020-07-07 | Covidien Lp | Adapter assembly including a removable trocar assembly |
JP6945560B2 (en) | 2016-05-26 | 2021-10-06 | コヴィディエン リミテッド パートナーシップ | Robot Surgical Surgery Assembly |
USD847989S1 (en) | 2016-06-24 | 2019-05-07 | Ethicon Llc | Surgical fastener cartridge |
USD822206S1 (en) | 2016-06-24 | 2018-07-03 | Ethicon Llc | Surgical fastener |
USD850617S1 (en) | 2016-06-24 | 2019-06-04 | Ethicon Llc | Surgical fastener cartridge |
USD826405S1 (en) | 2016-06-24 | 2018-08-21 | Ethicon Llc | Surgical fastener |
CN109310431B (en) | 2016-06-24 | 2022-03-04 | 伊西康有限责任公司 | Staple cartridge comprising wire staples and punch staples |
US10542979B2 (en) | 2016-06-24 | 2020-01-28 | Ethicon Llc | Stamped staples and staple cartridges using the same |
CN106037850B (en) * | 2016-07-07 | 2019-01-29 | 江苏风和医疗器材股份有限公司 | Surgical instruments |
CN106073841B (en) * | 2016-07-07 | 2019-05-31 | 江苏风和医疗器材股份有限公司 | Surgical instruments |
US10653398B2 (en) | 2016-08-05 | 2020-05-19 | Covidien Lp | Adapter assemblies for surgical devices |
US10363035B2 (en) * | 2016-08-16 | 2019-07-30 | Ethicon Llc | Stapler tool with rotary drive lockout |
US10631857B2 (en) | 2016-11-04 | 2020-04-28 | Covidien Lp | Loading unit for surgical instruments with low profile pushers |
US11642126B2 (en) | 2016-11-04 | 2023-05-09 | Covidien Lp | Surgical stapling apparatus with tissue pockets |
US10492784B2 (en) | 2016-11-08 | 2019-12-03 | Covidien Lp | Surgical tool assembly with compact firing assembly |
US11116594B2 (en) | 2016-11-08 | 2021-09-14 | Covidien Lp | Surgical systems including adapter assemblies for interconnecting electromechanical surgical devices and end effectors |
US10463371B2 (en) | 2016-11-29 | 2019-11-05 | Covidien Lp | Reload assembly with spent reload indicator |
US11684367B2 (en) | 2016-12-21 | 2023-06-27 | Cilag Gmbh International | Stepped assembly having and end-of-life indicator |
CN110114014B (en) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | Surgical instrument system including end effector and firing assembly lockout |
US10758230B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument with primary and safety processors |
US10667811B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Surgical stapling instruments and staple-forming anvils |
US10682138B2 (en) | 2016-12-21 | 2020-06-16 | Ethicon Llc | Bilaterally asymmetric staple forming pocket pairs |
US10993715B2 (en) | 2016-12-21 | 2021-05-04 | Ethicon Llc | Staple cartridge comprising staples with different clamping breadths |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US20180168650A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Connection portions for disposable loading units for surgical stapling instruments |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US20180168608A1 (en) * | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
JP7013470B2 (en) * | 2016-12-21 | 2022-01-31 | エシコン エルエルシー | Lockout configuration for surgical end effectors |
US10485543B2 (en) | 2016-12-21 | 2019-11-26 | Ethicon Llc | Anvil having a knife slot width |
US10537325B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Staple forming pocket arrangement to accommodate different types of staples |
US10687810B2 (en) | 2016-12-21 | 2020-06-23 | Ethicon Llc | Stepped staple cartridge with tissue retention and gap setting features |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10945727B2 (en) | 2016-12-21 | 2021-03-16 | Ethicon Llc | Staple cartridge with deformable driver retention features |
JP7010957B2 (en) * | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | Shaft assembly with lockout |
CN110087565A (en) | 2016-12-21 | 2019-08-02 | 爱惜康有限责任公司 | Surgical stapling system |
CN110099619B (en) | 2016-12-21 | 2022-07-15 | 爱惜康有限责任公司 | Lockout device for surgical end effector and replaceable tool assembly |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US10709901B2 (en) | 2017-01-05 | 2020-07-14 | Covidien Lp | Implantable fasteners, applicators, and methods for brachytherapy |
US10952767B2 (en) | 2017-02-06 | 2021-03-23 | Covidien Lp | Connector clip for securing an introducer to a surgical fastener applying apparatus |
US20180235618A1 (en) | 2017-02-22 | 2018-08-23 | Covidien Lp | Loading unit for surgical instruments with low profile pushers |
US11350915B2 (en) | 2017-02-23 | 2022-06-07 | Covidien Lp | Surgical stapler with small diameter endoscopic portion |
US10849621B2 (en) | 2017-02-23 | 2020-12-01 | Covidien Lp | Surgical stapler with small diameter endoscopic portion |
US10631945B2 (en) | 2017-02-28 | 2020-04-28 | Covidien Lp | Autoclavable load sensing device |
US10299790B2 (en) | 2017-03-03 | 2019-05-28 | Covidien Lp | Adapter with centering mechanism for articulation joint |
US11272929B2 (en) | 2017-03-03 | 2022-03-15 | Covidien Lp | Dynamically matching input and output shaft speeds of articulating adapter assemblies for surgical instruments |
US10660641B2 (en) | 2017-03-16 | 2020-05-26 | Covidien Lp | Adapter with centering mechanism for articulation joint |
US10390858B2 (en) | 2017-05-02 | 2019-08-27 | Covidien Lp | Powered surgical device with speed and current derivative motor shut off |
US10603035B2 (en) | 2017-05-02 | 2020-03-31 | Covidien Lp | Surgical loading unit including an articulating end effector |
US11324502B2 (en) | 2017-05-02 | 2022-05-10 | Covidien Lp | Surgical loading unit including an articulating end effector |
US10524784B2 (en) | 2017-05-05 | 2020-01-07 | Covidien Lp | Surgical staples with expandable backspan |
US10390826B2 (en) | 2017-05-08 | 2019-08-27 | Covidien Lp | Surgical stapling device with elongated tool assembly and methods of use |
US11311295B2 (en) | 2017-05-15 | 2022-04-26 | Covidien Lp | Adaptive powered stapling algorithm with calibration factor |
US10420551B2 (en) | 2017-05-30 | 2019-09-24 | Covidien Lp | Authentication and information system for reusable surgical instruments |
US10478185B2 (en) | 2017-06-02 | 2019-11-19 | Covidien Lp | Tool assembly with minimal dead space |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10888325B2 (en) * | 2017-06-28 | 2021-01-12 | Ethicon Llc | Cartridge arrangements for surgical cutting and fastening instruments with lockout disablement features |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
EP4070740A1 (en) | 2017-06-28 | 2022-10-12 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US11478242B2 (en) | 2017-06-28 | 2022-10-25 | Cilag Gmbh International | Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US10624636B2 (en) | 2017-08-23 | 2020-04-21 | Covidien Lp | Surgical stapling device with floating staple cartridge |
US10772700B2 (en) | 2017-08-23 | 2020-09-15 | Covidien Lp | Contactless loading unit detection |
US10806452B2 (en) | 2017-08-24 | 2020-10-20 | Covidien Lp | Loading unit for a surgical stapling instrument |
JP2020533061A (en) | 2017-09-06 | 2020-11-19 | コヴィディエン リミテッド パートナーシップ | Boundary scaling of surgical robots |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US11564703B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Surgical suturing instrument comprising a capture width which is larger than trocar diameter |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11207066B2 (en) | 2017-10-30 | 2021-12-28 | Covidien Lp | Apparatus for endoscopic procedures |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11123070B2 (en) | 2017-10-30 | 2021-09-21 | Cilag Gmbh International | Clip applier comprising a rotatable clip magazine |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US10987104B2 (en) | 2017-10-30 | 2021-04-27 | Covidien Lp | Apparatus for endoscopic procedures |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10925603B2 (en) | 2017-11-14 | 2021-02-23 | Covidien Lp | Reload with articulation stabilization system |
US10863987B2 (en) | 2017-11-16 | 2020-12-15 | Covidien Lp | Surgical instrument with imaging device |
US10863988B2 (en) | 2017-11-29 | 2020-12-15 | Intuitive Surgical Operations, Inc. | Surgical instrument with lockout mechanism |
CA3084199C (en) * | 2017-12-14 | 2022-09-20 | Touchstone International Medical Science Co., Ltd. | Staple cartridge assembly and medical stapler using the staple cartridge assembly |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10729509B2 (en) * | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US10682134B2 (en) | 2017-12-21 | 2020-06-16 | Ethicon Llc | Continuous use self-propelled stapling instrument |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
WO2019133144A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
US20190201087A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Smoke evacuation system including a segmented control circuit for interactive surgical platform |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11213359B2 (en) | 2017-12-28 | 2022-01-04 | Cilag Gmbh International | Controllers for robot-assisted surgical platforms |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
CN109984793B (en) * | 2017-12-29 | 2024-04-12 | 天臣国际医疗科技股份有限公司 | Firing equipment |
JP7005773B2 (en) | 2018-01-04 | 2022-01-24 | コヴィディエン リミテッド パートナーシップ | Robotic surgical instruments including high range of motion wrist assembly with torque transmission and mechanical manipulation |
US10945732B2 (en) | 2018-01-17 | 2021-03-16 | Covidien Lp | Surgical stapler with self-returning assembly |
WO2019157500A2 (en) * | 2018-02-12 | 2019-08-15 | Intuitive Surgical, Inc. | Surgical instrument with lockout mechanism |
US11439390B2 (en) | 2018-02-26 | 2022-09-13 | Intuitive Surgical Operations, Inc. | Surgical instrument with lockout mechanism |
AU2019228507A1 (en) | 2018-02-27 | 2020-08-13 | Applied Medical Resources Corporation | Surgical stapler having a powered handle |
US11678901B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Vessel sensing for adaptive advanced hemostasis |
US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11589865B2 (en) | 2018-03-28 | 2023-02-28 | Cilag Gmbh International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
US11278280B2 (en) * | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
BR112020019462A2 (en) * | 2018-03-28 | 2020-12-29 | Ethicon Llc | STAPLING INSTRUMENT COMPRISING A DISABLED LOCK |
US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
AU2019242611A1 (en) | 2018-03-29 | 2020-08-20 | Covidien Lp | Robotic surgical systems and instrument drive assemblies |
US11160556B2 (en) | 2018-04-23 | 2021-11-02 | Covidien Lp | Threaded trocar for adapter assemblies |
US11534172B2 (en) | 2018-05-07 | 2022-12-27 | Covidien Lp | Electromechanical surgical stapler including trocar assembly release mechanism |
US11896230B2 (en) | 2018-05-07 | 2024-02-13 | Covidien Lp | Handheld electromechanical surgical device including load sensor having spherical ball pivots |
US11399839B2 (en) | 2018-05-07 | 2022-08-02 | Covidien Lp | Surgical devices including trocar lock and trocar connection indicator |
US12029473B2 (en) | 2018-05-31 | 2024-07-09 | Intuitive Surgical Operations, Inc. | Surgical instruments having a jaw locking mechanism |
US10849622B2 (en) | 2018-06-21 | 2020-12-01 | Covidien Lp | Articulated stapling with fire lock |
US20190388091A1 (en) | 2018-06-21 | 2019-12-26 | Covidien Lp | Powered surgical devices including strain gauges incorporated into flex circuits |
US11497490B2 (en) | 2018-07-09 | 2022-11-15 | Covidien Lp | Powered surgical devices including predictive motor control |
US11241233B2 (en) | 2018-07-10 | 2022-02-08 | Covidien Lp | Apparatus for ensuring strain gauge accuracy in medical reusable device |
EP3826566A4 (en) | 2018-07-26 | 2022-08-10 | Covidien LP | Surgical robotic systems |
US10736631B2 (en) | 2018-08-07 | 2020-08-11 | Covidien Lp | End effector with staple cartridge ejector |
US11596496B2 (en) | 2018-08-13 | 2023-03-07 | Covidien Lp | Surgical devices with moisture control |
US11076858B2 (en) | 2018-08-14 | 2021-08-03 | Covidien Lp | Single use electronics for surgical devices |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10849620B2 (en) | 2018-09-14 | 2020-12-01 | Covidien Lp | Connector mechanisms for surgical stapling instruments |
US11510669B2 (en) | 2020-09-29 | 2022-11-29 | Covidien Lp | Hand-held surgical instruments |
US12029426B2 (en) | 2018-10-19 | 2024-07-09 | Intuitive Surgical Operations, Inc. | Endoscopic purse string suture surgical device |
US11090051B2 (en) | 2018-10-23 | 2021-08-17 | Covidien Lp | Surgical stapling device with floating staple cartridge |
US11197734B2 (en) | 2018-10-30 | 2021-12-14 | Covidien Lp | Load sensing devices for use in surgical instruments |
US11197673B2 (en) | 2018-10-30 | 2021-12-14 | Covidien Lp | Surgical stapling instruments and end effector assemblies thereof |
US11717276B2 (en) | 2018-10-30 | 2023-08-08 | Covidien Lp | Surgical devices including adapters and seals |
CN111134752A (en) * | 2018-11-02 | 2020-05-12 | 逸思(苏州)医疗科技有限公司 | Safety mechanism ensuring single use of instrument |
US11369372B2 (en) | 2018-11-28 | 2022-06-28 | Covidien Lp | Surgical stapler adapter with flexible cable assembly, flexible fingers, and contact clips |
JP7241178B2 (en) | 2018-12-21 | 2023-03-16 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | Surgical instrument with reinforced staple cartridge |
US11806015B2 (en) | 2018-12-21 | 2023-11-07 | Intuitive Surgical Operations, Inc. | Surgical instruments having mechanisms for identifying and/or deactivating stapler cartridges |
CN113194847A (en) | 2018-12-21 | 2021-07-30 | 直观外科手术操作公司 | Actuation mechanism for a surgical instrument |
WO2020131290A1 (en) | 2018-12-21 | 2020-06-25 | Intuitive Surgical Operations, Inc. | Articulation assemblies for surgical instruments |
US10912563B2 (en) | 2019-01-02 | 2021-02-09 | Covidien Lp | Stapling device including tool assembly stabilizing member |
US11202635B2 (en) | 2019-02-04 | 2021-12-21 | Covidien Lp | Programmable distal tilt position of end effector for powered surgical devices |
US11376006B2 (en) | 2019-02-06 | 2022-07-05 | Covidien Lp | End effector force measurement with digital drive circuit |
US11517309B2 (en) | 2019-02-19 | 2022-12-06 | Cilag Gmbh International | Staple cartridge retainer with retractable authentication key |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
KR20210132146A (en) * | 2019-02-27 | 2021-11-03 | 어플라이드 메디컬 리소시스 코포레이션 | Surgical Stapling Instrument with 2-Position Lockout Mechanism |
US11344297B2 (en) | 2019-02-28 | 2022-05-31 | Covidien Lp | Surgical stapling device with independently movable jaws |
US11219461B2 (en) | 2019-03-08 | 2022-01-11 | Covidien Lp | Strain gauge stabilization in a surgical device |
US11259808B2 (en) | 2019-03-13 | 2022-03-01 | Covidien Lp | Tool assemblies with a gap locking member |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
KR20210145248A (en) * | 2019-03-29 | 2021-12-01 | 어플라이드 메디컬 리소시스 코포레이션 | Reload cover for surgical stapling system |
US11284892B2 (en) | 2019-04-01 | 2022-03-29 | Covidien Lp | Loading unit and adapter with modified coupling assembly |
US11284893B2 (en) | 2019-04-02 | 2022-03-29 | Covidien Lp | Stapling device with articulating tool assembly |
US11241228B2 (en) | 2019-04-05 | 2022-02-08 | Covidien Lp | Surgical instrument including an adapter assembly and an articulating surgical loading unit |
CN113710170B (en) | 2019-04-15 | 2024-05-31 | 直观外科手术操作公司 | Staple cartridge for surgical instrument |
US12011168B2 (en) | 2019-04-17 | 2024-06-18 | Intuitive Surgical Operations, Inc. | Surgical stapling instrument |
US11369378B2 (en) | 2019-04-18 | 2022-06-28 | Covidien Lp | Surgical instrument including an adapter assembly and an articulating surgical loading unit |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
CN113905675A (en) | 2019-05-31 | 2022-01-07 | 直观外科手术操作公司 | Staple cartridge for surgical instruments |
US11464541B2 (en) | 2019-06-24 | 2022-10-11 | Covidien Lp | Retaining mechanisms for trocar assembly |
US11123101B2 (en) | 2019-07-05 | 2021-09-21 | Covidien Lp | Retaining mechanisms for trocar assemblies |
US11058429B2 (en) | 2019-06-24 | 2021-07-13 | Covidien Lp | Load sensing assemblies and methods of manufacturing load sensing assemblies |
US11446035B2 (en) | 2019-06-24 | 2022-09-20 | Covidien Lp | Retaining mechanisms for trocar assemblies |
US11426168B2 (en) | 2019-07-05 | 2022-08-30 | Covidien Lp | Trocar coupling assemblies for a surgical stapler |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11241235B2 (en) | 2019-06-28 | 2022-02-08 | Cilag Gmbh International | Method of using multiple RFID chips with a surgical assembly |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11219455B2 (en) * | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11786325B2 (en) | 2019-07-02 | 2023-10-17 | Intuitive Surgical Operations, Inc. | Remotely controlling a system using video |
US11224424B2 (en) | 2019-08-02 | 2022-01-18 | Covidien Lp | Linear stapling device with vertically movable knife |
US11406385B2 (en) | 2019-10-11 | 2022-08-09 | Covidien Lp | Stapling device with a gap locking member |
CN110755122B (en) * | 2019-10-22 | 2020-10-23 | 常州安克医疗科技有限公司 | Endoscope cutting anastomat |
US11123068B2 (en) | 2019-11-08 | 2021-09-21 | Covidien Lp | Surgical staple cartridge |
US11534163B2 (en) | 2019-11-21 | 2022-12-27 | Covidien Lp | Surgical stapling instruments |
US11076850B2 (en) | 2019-11-26 | 2021-08-03 | Covidien Lp | Surgical instrument including an adapter assembly and an articulating surgical loading unit |
US11974743B2 (en) | 2019-12-02 | 2024-05-07 | Covidien Lp | Linear stapling device with a gap locking member |
US11707274B2 (en) | 2019-12-06 | 2023-07-25 | Covidien Lp | Articulating mechanism for surgical instrument |
US11109862B2 (en) | 2019-12-12 | 2021-09-07 | Covidien Lp | Surgical stapling device with flexible shaft |
US11737747B2 (en) | 2019-12-17 | 2023-08-29 | Covidien Lp | Hand-held surgical instruments |
US11291446B2 (en) | 2019-12-18 | 2022-04-05 | Covidien Lp | Surgical instrument including an adapter assembly and an articulating surgical loading unit |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11583275B2 (en) | 2019-12-27 | 2023-02-21 | Covidien Lp | Surgical instruments including sensor assembly |
CA3163998A1 (en) | 2019-12-31 | 2021-07-08 | Applied Medical Resources Corporation | Electrosurgical system with tissue and maximum current identification |
US11642129B2 (en) | 2020-01-15 | 2023-05-09 | Intuitive Surgical Operations, Inc. | Staple cartridge and drive member for surgical instrument |
US12102305B2 (en) | 2020-01-15 | 2024-10-01 | Covidien Lp | Adapter assemblies and surgical loading units |
US11452524B2 (en) | 2020-01-31 | 2022-09-27 | Covidien Lp | Surgical stapling device with lockout |
US11278282B2 (en) | 2020-01-31 | 2022-03-22 | Covidien Lp | Stapling device with selective cutting |
US11458244B2 (en) | 2020-02-07 | 2022-10-04 | Covidien Lp | Irrigating surgical apparatus with positive pressure fluid |
US11553913B2 (en) | 2020-02-11 | 2023-01-17 | Covidien Lp | Electrically-determining tissue cut with surgical stapling apparatus |
WO2021159483A1 (en) | 2020-02-14 | 2021-08-19 | Covidien Lp | Cartridge holder for surgical staples and having ridges in peripheral walls for gripping tissue |
US11344301B2 (en) | 2020-03-02 | 2022-05-31 | Covidien Lp | Surgical stapling device with replaceable reload assembly |
US11344302B2 (en) | 2020-03-05 | 2022-05-31 | Covidien Lp | Articulation mechanism for surgical stapling device |
US11246593B2 (en) | 2020-03-06 | 2022-02-15 | Covidien Lp | Staple cartridge |
US11707278B2 (en) | 2020-03-06 | 2023-07-25 | Covidien Lp | Surgical stapler tool assembly to minimize bleeding |
US11317911B2 (en) | 2020-03-10 | 2022-05-03 | Covidien Lp | Tool assembly with replaceable cartridge assembly |
US11357505B2 (en) | 2020-03-10 | 2022-06-14 | Covidien Lp | Surgical stapling apparatus with firing lockout mechanism |
US11406383B2 (en) | 2020-03-17 | 2022-08-09 | Covidien Lp | Fire assisted powered EGIA handle |
CN115315219A (en) | 2020-03-24 | 2022-11-08 | 柯惠有限合伙公司 | Surgical stapling device with replaceable staple cartridge |
US11426159B2 (en) | 2020-04-01 | 2022-08-30 | Covidien Lp | Sled detection device |
US11331098B2 (en) | 2020-04-01 | 2022-05-17 | Covidien Lp | Sled detection device |
US11504117B2 (en) | 2020-04-02 | 2022-11-22 | Covidien Lp | Hand-held surgical instruments |
US11937794B2 (en) | 2020-05-11 | 2024-03-26 | Covidien Lp | Powered handle assembly for surgical devices |
US11191537B1 (en) | 2020-05-12 | 2021-12-07 | Covidien Lp | Stapling device with continuously parallel jaws |
US11406387B2 (en) | 2020-05-12 | 2022-08-09 | Covidien Lp | Surgical stapling device with replaceable staple cartridge |
US12029470B2 (en) | 2020-05-21 | 2024-07-09 | Covidien Lp | Simultaneous RF monopolar calibration using a shared return electrode |
US11534167B2 (en) | 2020-05-28 | 2022-12-27 | Covidien Lp | Electrotaxis-conducive stapling |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
US11191538B1 (en) | 2020-06-08 | 2021-12-07 | Covidien Lp | Surgical stapling device with parallel jaw closure |
US12016557B2 (en) | 2020-06-10 | 2024-06-25 | Covidien Lp | Sealed electrical connection between surgical loading unit and adapter |
US11844517B2 (en) | 2020-06-25 | 2023-12-19 | Covidien Lp | Linear stapling device with continuously parallel jaws |
US11324500B2 (en) | 2020-06-30 | 2022-05-10 | Covidien Lp | Surgical stapling device |
US12023027B2 (en) | 2020-07-02 | 2024-07-02 | Covidien Lp | Surgical stapling device with compressible staple cartridge |
US11446028B2 (en) | 2020-07-09 | 2022-09-20 | Covidien Lp | Tool assembly with pivotable clamping beam |
US11517305B2 (en) | 2020-07-09 | 2022-12-06 | Covidien Lp | Contoured staple pusher |
US11622768B2 (en) | 2020-07-13 | 2023-04-11 | Covidien Lp | Methods and structure for confirming proper assembly of powered surgical stapling systems |
WO2022016357A1 (en) | 2020-07-21 | 2022-01-27 | Covidien Lp | Shipping cover for staple cartridge |
US11974741B2 (en) | 2020-07-28 | 2024-05-07 | Cilag Gmbh International | Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators |
US11266402B2 (en) | 2020-07-30 | 2022-03-08 | Covidien Lp | Sensing curved tip for surgical stapling instruments |
US11439392B2 (en) | 2020-08-03 | 2022-09-13 | Covidien Lp | Surgical stapling device and fastener for pathological exam |
US11395654B2 (en) | 2020-08-07 | 2022-07-26 | Covidien Lp | Surgical stapling device with articulation braking assembly |
US11602342B2 (en) | 2020-08-27 | 2023-03-14 | Covidien Lp | Surgical stapling device with laser probe |
US11660091B2 (en) | 2020-09-08 | 2023-05-30 | Covidien Lp | Surgical device with seal assembly |
US11678878B2 (en) | 2020-09-16 | 2023-06-20 | Covidien Lp | Articulation mechanism for surgical stapling device |
US11571192B2 (en) | 2020-09-25 | 2023-02-07 | Covidien Lp | Adapter assembly for surgical devices |
US11660092B2 (en) | 2020-09-29 | 2023-05-30 | Covidien Lp | Adapter for securing loading units to handle assemblies of surgical stapling instruments |
US11406384B2 (en) | 2020-10-05 | 2022-08-09 | Covidien Lp | Stapling device with drive assembly stop member |
US11576674B2 (en) | 2020-10-06 | 2023-02-14 | Covidien Lp | Surgical stapling device with articulation lock assembly |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
JP2023547908A (en) | 2020-10-29 | 2023-11-14 | アプライド メディカル リソーシーズ コーポレイション | Actuation shaft retention mechanism for surgical stapler |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
AU2021369828A1 (en) | 2020-10-29 | 2023-06-01 | Applied Medical Resources Corporation | Surgical stapler having a powered handle |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
JP2023547909A (en) | 2020-10-29 | 2023-11-14 | アプライド メディカル リソーシーズ コーポレイション | Material combination and processing method for surgical instruments |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11890007B2 (en) | 2020-11-18 | 2024-02-06 | Covidien Lp | Stapling device with flex cable and tensioning mechanism |
US11744580B2 (en) | 2020-11-24 | 2023-09-05 | Covidien Lp | Long stapler reloads with continuous cartridge |
US11653919B2 (en) | 2020-11-24 | 2023-05-23 | Covidien Lp | Stapler line reinforcement continuity |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11737774B2 (en) | 2020-12-04 | 2023-08-29 | Covidien Lp | Surgical instrument with articulation assembly |
US11819200B2 (en) | 2020-12-15 | 2023-11-21 | Covidien Lp | Surgical instrument with articulation assembly |
US11553914B2 (en) | 2020-12-22 | 2023-01-17 | Covidien Lp | Surgical stapling device with parallel jaw closure |
US11759206B2 (en) | 2021-01-05 | 2023-09-19 | Covidien Lp | Surgical stapling device with firing lockout mechanism |
US11744582B2 (en) | 2021-01-05 | 2023-09-05 | Covidien Lp | Surgical stapling device with firing lockout mechanism |
US11517313B2 (en) | 2021-01-27 | 2022-12-06 | Covidien Lp | Surgical stapling device with laminated drive member |
US11759207B2 (en) | 2021-01-27 | 2023-09-19 | Covidien Lp | Surgical stapling apparatus with adjustable height clamping member |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11717300B2 (en) | 2021-03-11 | 2023-08-08 | Covidien Lp | Surgical stapling apparatus with integrated visualization |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11974750B2 (en) | 2021-03-26 | 2024-05-07 | Covidien Lp | Surgical staple cartridge |
US11497495B2 (en) | 2021-03-31 | 2022-11-15 | Covidien Lp | Continuous stapler strip for use with a surgical stapling device |
US11666330B2 (en) * | 2021-04-05 | 2023-06-06 | Covidien Lp | Surgical stapling device with lockout mechanism |
US12016556B2 (en) | 2021-05-03 | 2024-06-25 | Covidien Lp | Handheld electromechanical surgical system |
US11576670B2 (en) | 2021-05-06 | 2023-02-14 | Covidien Lp | Surgical stapling device with optimized drive assembly |
US11812956B2 (en) | 2021-05-18 | 2023-11-14 | Covidien Lp | Dual firing radial stapling device |
US11696755B2 (en) | 2021-05-19 | 2023-07-11 | Covidien Lp | Surgical stapling device with reload assembly removal lockout |
US11510673B1 (en) | 2021-05-25 | 2022-11-29 | Covidien Lp | Powered stapling device with manual retraction |
US11771423B2 (en) | 2021-05-25 | 2023-10-03 | Covidien Lp | Powered stapling device with manual retraction |
US11701119B2 (en) | 2021-05-26 | 2023-07-18 | Covidien Lp | Powered stapling device with rack release |
US20220378425A1 (en) | 2021-05-28 | 2022-12-01 | Cilag Gmbh International | Stapling instrument comprising a control system that controls a firing stroke length |
US11576675B2 (en) | 2021-06-07 | 2023-02-14 | Covidien Lp | Staple cartridge with knife |
US11684362B2 (en) | 2021-06-07 | 2023-06-27 | Covidien Lp | Handheld electromechanical surgical system |
US11707275B2 (en) | 2021-06-29 | 2023-07-25 | Covidien Lp | Asymmetrical surgical stapling device |
US11617579B2 (en) | 2021-06-29 | 2023-04-04 | Covidien Lp | Ultra low profile surgical stapling instrument for tissue resections |
US11771432B2 (en) | 2021-06-29 | 2023-10-03 | Covidien Lp | Stapling and cutting to default values in the event of strain gauge data integrity loss |
US11602344B2 (en) | 2021-06-30 | 2023-03-14 | Covidien Lp | Surgical stapling apparatus with firing lockout assembly |
US11786248B2 (en) | 2021-07-09 | 2023-10-17 | Covidien Lp | Surgical stapling device including a buttress retention assembly |
US11819209B2 (en) | 2021-08-03 | 2023-11-21 | Covidien Lp | Hand-held surgical instruments |
US11540831B1 (en) | 2021-08-12 | 2023-01-03 | Covidien Lp | Staple cartridge with actuation sled detection |
US12011164B2 (en) * | 2021-08-16 | 2024-06-18 | Cilag Gmbh International | Cartridge-based firing lockout mechanism for surgical stapler |
US11862884B2 (en) | 2021-08-16 | 2024-01-02 | Covidien Lp | Surgical instrument with electrical connection |
US11779334B2 (en) | 2021-08-19 | 2023-10-10 | Covidien Lp | Surgical stapling device including a manual retraction assembly |
US12023028B2 (en) | 2021-08-20 | 2024-07-02 | Covidien Lp | Articulating surgical stapling apparatus with pivotable knife bar guide assembly |
US11707277B2 (en) | 2021-08-20 | 2023-07-25 | Covidien Lp | Articulating surgical stapling apparatus with pivotable knife bar guide assembly |
US11576671B1 (en) * | 2021-08-20 | 2023-02-14 | Covidien Lp | Small diameter linear surgical stapling apparatus |
CN113693712B (en) * | 2021-08-30 | 2022-09-13 | 浙江微度医疗器械有限公司 | Electric coagulation cutting instrument with double operating handles |
US11864761B2 (en) | 2021-09-14 | 2024-01-09 | Covidien Lp | Surgical instrument with illumination mechanism |
US11660094B2 (en) | 2021-09-29 | 2023-05-30 | Covidien Lp | Surgical fastening instrument with two-part surgical fasteners |
US11653922B2 (en) | 2021-09-29 | 2023-05-23 | Covidien Lp | Surgical stapling device with firing lockout mechanism |
US11849949B2 (en) | 2021-09-30 | 2023-12-26 | Covidien Lp | Surgical stapling device with firing lockout member |
US12035909B2 (en) | 2021-10-13 | 2024-07-16 | Covidien Lp | Surgical stapling device with firing lockout mechanism |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11832823B2 (en) | 2022-02-08 | 2023-12-05 | Covidien Lp | Determination of anvil release during anastomosis |
CN115153702B (en) * | 2022-06-30 | 2023-03-21 | 天津瑞奇外科器械股份有限公司 | Loading unit and surgical instrument |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5673842A (en) | 1996-03-05 | 1997-10-07 | Ethicon Endo-Surgery | Surgical stapler with locking mechanism |
US5878938A (en) | 1997-08-11 | 1999-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapler with improved locking mechanism |
US6786382B1 (en) | 2003-07-09 | 2004-09-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an articulation joint for a firing bar track |
US20050165415A1 (en) | 2003-07-09 | 2005-07-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint |
US20050173490A1 (en) | 2003-05-20 | 2005-08-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing |
Family Cites Families (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2037727A (en) * | 1934-12-27 | 1936-04-21 | United Shoe Machinery Corp | Fastening |
US3269630A (en) | 1964-04-30 | 1966-08-30 | Fleischer Harry | Stapling instrument |
US3734207A (en) * | 1971-12-27 | 1973-05-22 | M Fishbein | Battery powered orthopedic cutting tool |
US3940844A (en) * | 1972-02-22 | 1976-03-02 | Pci Group, Inc. | Method of installing an insulating sleeve on a staple |
US3894174A (en) | 1974-07-03 | 1975-07-08 | Emhart Corp | Insulated staple and method of making the same |
AU534210B2 (en) * | 1980-02-05 | 1984-01-12 | United States Surgical Corporation | Surgical staples |
US4606343A (en) | 1980-08-18 | 1986-08-19 | United States Surgical Corporation | Self-powered surgical fastening instrument |
US4526174A (en) | 1981-03-27 | 1985-07-02 | Minnesota Mining And Manufacturing Company | Staple and cartridge for use in a tissue stapling device and a tissue closing method |
US4475679A (en) | 1981-08-07 | 1984-10-09 | Fleury Jr George J | Multi-staple cartridge for surgical staplers |
US4415112A (en) | 1981-10-27 | 1983-11-15 | United States Surgical Corporation | Surgical stapling assembly having resiliently mounted anvil |
US4608981A (en) * | 1984-10-19 | 1986-09-02 | Senmed, Inc. | Surgical stapling instrument with staple height adjusting mechanism |
US4605001A (en) * | 1984-10-19 | 1986-08-12 | Senmed, Inc. | Surgical stapling instrument with dual staple height mechanism |
US5497500A (en) * | 1986-04-14 | 1996-03-05 | National Instruments Corporation | Method and apparatus for more efficient function synchronization in a data flow program |
US4709120A (en) | 1986-06-06 | 1987-11-24 | Pearson Dean C | Underground utility equipment vault |
JP2553390B2 (en) * | 1987-02-10 | 1996-11-13 | ヴァーソ プロダクツ オーストラリア ピーティワイ.リミテッド | IV cuff mount |
US4941623A (en) | 1987-05-12 | 1990-07-17 | United States Surgical Corporation | Stapling process and device for use on the mesentery of the abdomen |
US5027834A (en) | 1987-06-11 | 1991-07-02 | United States Surgical Corporation | Stapling process for use on the mesenteries of the abdomen |
US4869415A (en) * | 1988-09-26 | 1989-09-26 | Ethicon, Inc. | Energy storage means for a surgical stapler |
US4892244A (en) * | 1988-11-07 | 1990-01-09 | Ethicon, Inc. | Surgical stapler cartridge lockout device |
US5111987A (en) * | 1989-01-23 | 1992-05-12 | Moeinzadeh Manssour H | Semi-disposable surgical stapler |
US5522817A (en) * | 1989-03-31 | 1996-06-04 | United States Surgical Corporation | Absorbable surgical fastener with bone penetrating elements |
US5040715B1 (en) | 1989-05-26 | 1994-04-05 | United States Surgical Corp | Apparatus and method for placing staples in laparoscopic or endoscopic procedures |
US5413268A (en) * | 1989-05-26 | 1995-05-09 | United States Surgical Corporation | Apparatus and method for placing stables in laparoscopic or endoscopic procedures |
US4955959A (en) | 1989-05-26 | 1990-09-11 | United States Surgical Corporation | Locking mechanism for a surgical fastening apparatus |
US5106008A (en) * | 1989-05-26 | 1992-04-21 | United States Surgical Corporation | Locking mechanism for a surgical fastening apparatus |
US5031814A (en) | 1989-05-26 | 1991-07-16 | United States Surgical Corporation | Locking mechanism for surgical fastening apparatus |
US4978049A (en) | 1989-05-26 | 1990-12-18 | United States Surgical Corporation | Three staple drive member |
US5318221A (en) * | 1989-05-26 | 1994-06-07 | United States Surgical Corporation | Apparatus and method for placing staples in laparoscopic or endoscopic procedures |
US5253793A (en) | 1990-09-17 | 1993-10-19 | United States Surgical Corporation | Apparatus for applying two-part surgical fasteners |
US5156315A (en) * | 1990-09-17 | 1992-10-20 | United States Surgical Corporation | Arcuate apparatus for applying two-part surgical fasteners |
US5104025A (en) * | 1990-09-28 | 1992-04-14 | Ethicon, Inc. | Intraluminal anastomotic surgical stapler with detached anvil |
US5080556A (en) * | 1990-09-28 | 1992-01-14 | General Electric Company | Thermal seal for a gas turbine spacer disc |
US5129570A (en) * | 1990-11-30 | 1992-07-14 | Ethicon, Inc. | Surgical stapler |
CA2055943C (en) | 1990-12-06 | 2003-09-23 | Daniel P. Rodak | Surgical fastening apparatus with locking mechanism |
JP3310668B2 (en) | 1990-12-18 | 2002-08-05 | ユナイテッド ステイツ サージカル コーポレイション | Safety device for surgical stapler cartridge |
US5065929A (en) * | 1991-04-01 | 1991-11-19 | Ethicon, Inc. | Surgical stapler with locking means |
US5246156A (en) | 1991-09-12 | 1993-09-21 | Ethicon, Inc. | Multiple fire endoscopic stapling mechanism |
US5413267A (en) * | 1991-05-14 | 1995-05-09 | United States Surgical Corporation | Surgical stapler with spent cartridge sensing and lockout means |
US5207697A (en) * | 1991-06-27 | 1993-05-04 | Stryker Corporation | Battery powered surgical handpiece |
US5200280A (en) * | 1991-09-05 | 1993-04-06 | Black & Decker Inc. | Terminal cover for a battery pack |
US5307976A (en) * | 1991-10-18 | 1994-05-03 | Ethicon, Inc. | Linear stapling mechanism with cutting means |
CA2078794C (en) | 1991-10-18 | 1998-10-06 | Frank J. Viola | Locking device for an apparatus for applying surgical fasteners |
US5431322A (en) | 1991-10-18 | 1995-07-11 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US6250532B1 (en) * | 1991-10-18 | 2001-06-26 | United States Surgical Corporation | Surgical stapling apparatus |
US5326013A (en) * | 1991-10-18 | 1994-07-05 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
DE69217808T2 (en) * | 1991-10-18 | 1997-07-24 | United States Surgical Corp | Device for attaching surgical fasteners |
US5332142A (en) * | 1991-10-18 | 1994-07-26 | Ethicon, Inc. | Linear stapling mechanism with cutting means |
US5397046A (en) | 1991-10-18 | 1995-03-14 | United States Surgical Corporation | Lockout mechanism for surgical apparatus |
US5350400A (en) | 1991-10-30 | 1994-09-27 | American Cyanamid Company | Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple |
US5395034A (en) | 1991-11-07 | 1995-03-07 | American Cyanamid Co. | Linear surgical stapling instrument |
US5383880A (en) * | 1992-01-17 | 1995-01-24 | Ethicon, Inc. | Endoscopic surgical system with sensing means |
US5433721A (en) | 1992-01-17 | 1995-07-18 | Ethicon, Inc. | Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue |
US5484095A (en) | 1992-03-31 | 1996-01-16 | United States Surgical Corporation | Apparatus for endoscopically applying staples individually to body tissue |
US5389098A (en) * | 1992-05-19 | 1995-02-14 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
US5484638A (en) * | 1992-06-17 | 1996-01-16 | Crabtree; William M. | Table top advertising display |
US5485952A (en) * | 1992-09-23 | 1996-01-23 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
US5309927A (en) * | 1992-10-22 | 1994-05-10 | Ethicon, Inc. | Circular stapler tissue retention spring method |
US5807393A (en) * | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US5403312A (en) * | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
US5415334A (en) * | 1993-05-05 | 1995-05-16 | Ethicon Endo-Surgery | Surgical stapler and staple cartridge |
CA2124109A1 (en) * | 1993-05-24 | 1994-11-25 | Mark T. Byrne | Endoscopic surgical instrument with electromagnetic sensor |
US5688270A (en) | 1993-07-22 | 1997-11-18 | Ethicon Endo-Surgery,Inc. | Electrosurgical hemostatic device with recessed and/or offset electrodes |
US5709680A (en) * | 1993-07-22 | 1998-01-20 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
US5503320A (en) * | 1993-08-19 | 1996-04-02 | United States Surgical Corporation | Surgical apparatus with indicator |
US5487499A (en) * | 1993-10-08 | 1996-01-30 | United States Surgical Corporation | Surgical apparatus for applying surgical fasteners including a counter |
US5487500A (en) | 1994-02-03 | 1996-01-30 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5465895A (en) | 1994-02-03 | 1995-11-14 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5503638A (en) | 1994-02-10 | 1996-04-02 | Bio-Vascular, Inc. | Soft tissue stapling buttress |
WO1995023557A1 (en) * | 1994-03-01 | 1995-09-08 | United States Surgical Corporation | Surgical stapler with anvil sensor and lockout |
US5415335A (en) * | 1994-04-07 | 1995-05-16 | Ethicon Endo-Surgery | Surgical stapler cartridge containing lockout mechanism |
US5529235A (en) | 1994-04-28 | 1996-06-25 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
US5489058A (en) | 1994-05-02 | 1996-02-06 | Minnesota Mining And Manufacturing Company | Surgical stapler with mechanisms for reducing the firing force |
US5628446A (en) * | 1994-05-05 | 1997-05-13 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5474566A (en) | 1994-05-05 | 1995-12-12 | United States Surgical Corporation | Self-contained powered surgical apparatus |
CA2148667A1 (en) | 1994-05-05 | 1995-11-06 | Carlo A. Mililli | Self-contained powered surgical apparatus |
US5553675A (en) | 1994-06-10 | 1996-09-10 | Minnesota Mining And Manufacturing Company | Orthopedic surgical device |
EP0699418A1 (en) | 1994-08-05 | 1996-03-06 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5636779A (en) | 1994-12-13 | 1997-06-10 | United States Surgical Corporation | Apparatus for applying surgical fasteners |
US5704534A (en) * | 1994-12-19 | 1998-01-06 | Ethicon Endo-Surgery, Inc. | Articulation assembly for surgical instruments |
US5713505A (en) * | 1996-05-13 | 1998-02-03 | Ethicon Endo-Surgery, Inc. | Articulation transmission mechanism for surgical instruments |
US5632432A (en) * | 1994-12-19 | 1997-05-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US5735445A (en) * | 1995-03-07 | 1998-04-07 | United States Surgical Corporation | Surgical stapler |
US5678748A (en) | 1995-05-24 | 1997-10-21 | Vir Engineering | Surgical stapler with improved safety mechanism |
US5752644A (en) * | 1995-07-11 | 1998-05-19 | United States Surgical Corporation | Disposable loading unit for surgical stapler |
USRE38708E1 (en) * | 1995-07-11 | 2005-03-01 | United States Surgical Corporation | Disposable loading unit for surgical stapler |
US5706998A (en) * | 1995-07-17 | 1998-01-13 | United States Surgical Corporation | Surgical stapler with alignment pin locking mechanism |
US5715988A (en) * | 1995-08-14 | 1998-02-10 | United States Surgical Corporation | Surgical stapler with lockout mechanism |
US5718359A (en) * | 1995-08-14 | 1998-02-17 | United States Of America Surgical Corporation | Surgical stapler with lockout mechanism |
US5762256A (en) * | 1995-08-28 | 1998-06-09 | United States Surgical Corporation | Surgical stapler |
US6032849A (en) * | 1995-08-28 | 2000-03-07 | United States Surgical | Surgical stapler |
US5574431A (en) | 1995-08-29 | 1996-11-12 | Checkpoint Systems, Inc. | Deactivateable security tag |
US5655593A (en) * | 1995-09-18 | 1997-08-12 | Kaiser Aluminum & Chemical Corp. | Method of manufacturing aluminum alloy sheet |
US5651491A (en) | 1995-10-27 | 1997-07-29 | United States Surgical Corporation | Surgical stapler having interchangeable loading units |
US5941442A (en) * | 1995-10-27 | 1999-08-24 | United States Surgical | Surgical stapler |
US6010054A (en) * | 1996-02-20 | 2000-01-04 | Imagyn Medical Technologies | Linear stapling instrument with improved staple cartridge |
US5747953A (en) * | 1996-03-29 | 1998-05-05 | Stryker Corporation | Cordless, battery operated surical tool |
US5702408A (en) | 1996-07-17 | 1997-12-30 | Ethicon Endo-Surgery, Inc. | Articulating surgical instrument |
US6024748A (en) * | 1996-07-23 | 2000-02-15 | United States Surgical Corporation | Singleshot anastomosis instrument with detachable loading unit and method |
US5810821A (en) * | 1997-03-28 | 1998-09-22 | Biomet Inc. | Bone fixation screw system |
US6017356A (en) * | 1997-09-19 | 2000-01-25 | Ethicon Endo-Surgery Inc. | Method for using a trocar for penetration and skin incision |
US5865361A (en) * | 1997-09-23 | 1999-02-02 | United States Surgical Corporation | Surgical stapling apparatus |
US6511468B1 (en) * | 1997-10-17 | 2003-01-28 | Micro Therapeutics, Inc. | Device and method for controlling injection of liquid embolic composition |
DE19905085A1 (en) * | 1999-01-29 | 2000-08-03 | Black & Decker Inc N D Ges D S | Battery operated, hand-held power tool |
US6308089B1 (en) * | 1999-04-14 | 2001-10-23 | O.B. Scientific, Inc. | Limited use medical probe |
US6793652B1 (en) * | 1999-06-02 | 2004-09-21 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US7032798B2 (en) * | 1999-06-02 | 2006-04-25 | Power Medical Interventions, Inc. | Electro-mechanical surgical device |
US6491201B1 (en) * | 2000-02-22 | 2002-12-10 | Power Medical Interventions, Inc. | Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments |
US6981941B2 (en) * | 1999-06-02 | 2006-01-03 | Power Medical Interventions | Electro-mechanical surgical device |
US6716233B1 (en) * | 1999-06-02 | 2004-04-06 | Power Medical Interventions, Inc. | Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities |
US6358224B1 (en) * | 1999-09-24 | 2002-03-19 | Tyco Healthcare Group Lp | Irrigation system for endoscopic surgery |
US6184655B1 (en) * | 1999-12-10 | 2001-02-06 | Stryker Corporation | Battery charging system with internal power manager |
US6488197B1 (en) * | 2000-02-22 | 2002-12-03 | Power Medical Interventions, Inc. | Fluid delivery device for use with anastomosing resecting and stapling instruments |
EP1313401A4 (en) * | 2000-08-30 | 2006-09-20 | Cerebral Vascular Applic Inc | Medical instrument |
US7055730B2 (en) * | 2000-10-13 | 2006-06-06 | Tyco Healthcare Group Lp | Surgical fastener applying apparatus |
US6503257B2 (en) * | 2001-05-07 | 2003-01-07 | Ethicon Endo-Surgery, Inc. | Method for releasing buttress material attached to a surgical fastening device |
IES20010547A2 (en) * | 2001-06-07 | 2002-12-11 | Christy Cummins | Surgical Staple |
US6692507B2 (en) * | 2001-08-23 | 2004-02-17 | Scimed Life Systems, Inc. | Impermanent biocompatible fastener |
US8281973B2 (en) * | 2001-10-05 | 2012-10-09 | Tyco Healthcare Group Lp | Surgical stapling device |
US6602252B2 (en) * | 2002-01-03 | 2003-08-05 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
ES2278167T3 (en) * | 2002-06-14 | 2007-08-01 | Power Medical Interventions, Inc. | DEVICE FOR CLAMPING, CUTTING AND STAPLING FABRIC. |
JP4398865B2 (en) * | 2002-10-04 | 2010-01-13 | タイコ ヘルスケア グループ エルピー | Surgical stapler with universal joint and tissue reserve |
US7160299B2 (en) * | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
US6988649B2 (en) * | 2003-05-20 | 2006-01-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a spent cartridge lockout |
US7380695B2 (en) * | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
US7111769B2 (en) * | 2003-07-09 | 2006-09-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis |
US6981628B2 (en) * | 2003-07-09 | 2006-01-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument with a lateral-moving articulation control |
US6964363B2 (en) * | 2003-07-09 | 2005-11-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having articulation joint support plates for supporting a firing bar |
US7364061B2 (en) * | 2003-09-29 | 2008-04-29 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism |
US7434715B2 (en) * | 2003-09-29 | 2008-10-14 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having multistroke firing with opening lockout |
US7066944B2 (en) * | 2004-03-11 | 2006-06-27 | Laufer Michael D | Surgical fastening system |
US20060025812A1 (en) * | 2004-07-28 | 2006-02-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated pivoting articulation mechanism |
US8905977B2 (en) * | 2004-07-28 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser |
US7147138B2 (en) * | 2004-07-28 | 2006-12-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism |
US7336184B2 (en) * | 2004-09-24 | 2008-02-26 | Intel Corporation | Inertially controlled switch and RFID tag |
US7407075B2 (en) * | 2005-08-15 | 2008-08-05 | Tyco Healthcare Group Lp | Staple cartridge having multiple staple sizes for a surgical stapling instrument |
US7669746B2 (en) * | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
-
2005
- 2005-11-04 US US11/266,961 patent/US7328828B2/en active Active
-
2006
- 2006-10-20 AU AU2006230750A patent/AU2006230750B2/en not_active Ceased
- 2006-10-30 CA CA2566668A patent/CA2566668C/en not_active Expired - Fee Related
- 2006-11-02 JP JP2006299353A patent/JP5154060B2/en not_active Expired - Fee Related
- 2006-11-03 CN CN2006101437533A patent/CN1957854B/en not_active Expired - Fee Related
- 2006-11-03 BR BRPI0604524A patent/BRPI0604524B8/en not_active IP Right Cessation
- 2006-11-03 EP EP06255683A patent/EP1782738B1/en active Active
- 2006-11-03 AT AT06255683T patent/ATE496580T1/en not_active IP Right Cessation
- 2006-11-03 MX MXPA06012763A patent/MXPA06012763A/en active IP Right Grant
- 2006-11-03 DE DE602006019805T patent/DE602006019805D1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5673842A (en) | 1996-03-05 | 1997-10-07 | Ethicon Endo-Surgery | Surgical stapler with locking mechanism |
US5878938A (en) | 1997-08-11 | 1999-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapler with improved locking mechanism |
US20050173490A1 (en) | 2003-05-20 | 2005-08-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing |
US6786382B1 (en) | 2003-07-09 | 2004-09-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an articulation joint for a firing bar track |
US20050165415A1 (en) | 2003-07-09 | 2005-07-28 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1806103B1 (en) * | 2006-01-10 | 2013-05-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having an articulating end effector |
CN102793571B (en) * | 2007-09-21 | 2014-12-17 | 柯惠Lp公司 | Surgical device |
CN102793571A (en) * | 2007-09-21 | 2012-11-28 | Tyco医疗健康集团 | Surgical device |
WO2009039506A1 (en) * | 2007-09-21 | 2009-03-26 | Power Medical Interventions, Inc. | Surgical device |
EP2838439A4 (en) * | 2012-04-18 | 2015-11-25 | Cardica Inc | Safety lockout for surgical stapler |
US9814450B2 (en) | 2012-10-10 | 2017-11-14 | Covidien Lp | Electromechanical surgical apparatus including wire routing clock spring |
US11642111B2 (en) | 2012-10-10 | 2023-05-09 | Covidien Lp | Electromechanical surgical apparatus including wire routing clock spring |
US10631837B2 (en) | 2012-10-10 | 2020-04-28 | Covidien Lp | Electromechanical surgical apparatus including wire routing clock spring |
US8906001B2 (en) | 2012-10-10 | 2014-12-09 | Covidien Lp | Electromechanical surgical apparatus including wire routing clock spring |
US11395656B2 (en) | 2013-03-13 | 2022-07-26 | Covidien Lp | Surgical stapling apparatus |
EP2777527A1 (en) * | 2013-03-13 | 2014-09-17 | Covidien LP | Surgical stapling apparatus |
US10499915B2 (en) | 2013-03-13 | 2019-12-10 | Covidien Lp | Surgical stapling apparatus |
US20140263546A1 (en) * | 2013-03-13 | 2014-09-18 | Covidien Lp | Surgical stapling apparatus |
AU2014200486B2 (en) * | 2013-03-13 | 2018-08-16 | Covidien Lp | Surgical stapling apparatus |
CN104042277B (en) * | 2013-03-13 | 2018-07-24 | 柯惠Lp公司 | Surgical stapling apparatus |
CN104042277A (en) * | 2013-03-13 | 2014-09-17 | 柯惠Lp公司 | Surgical stapling apparatus |
US9629628B2 (en) | 2013-03-13 | 2017-04-25 | Covidien Lp | Surgical stapling apparatus |
CN104434240A (en) * | 2013-09-24 | 2015-03-25 | 无锡德瑞克机械科技有限公司 | Lophodont tooth reciprocating motion control structure of endoscopic linear incision stitching instrument |
US10842524B2 (en) | 2014-02-14 | 2020-11-24 | Ethicon Llc | Lockout mechanisms for surgical devices |
US9707005B2 (en) | 2014-02-14 | 2017-07-18 | Ethicon Llc | Lockout mechanisms for surgical devices |
EP3315081A3 (en) * | 2014-06-13 | 2018-07-25 | Ethicon LLC | Closure lockout systems for surgical instruments |
US12070215B2 (en) | 2014-06-13 | 2024-08-27 | Cilag Gmbh International | Closure lockout systems for surgical instruments |
EP3241502A4 (en) * | 2014-12-30 | 2017-12-13 | Suzhou Touchstone International Medical Science Co., Ltd. | Nail head assembly and suturing and cutting apparatus for endoscopic surgery |
EP4122404A3 (en) * | 2015-06-18 | 2023-06-28 | Ethicon LLC | Surgical stapling instruments with lockout arrangements for preventing firing system actuation when a cartridge is spent or missing |
EP4104775A1 (en) * | 2016-04-18 | 2022-12-21 | Ethicon LLC | Surgical instrument comprising a lockout |
EP3338679A3 (en) * | 2016-12-21 | 2018-08-29 | Ethicon LLC | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
CN110114013B (en) * | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | Bin-less and empty cartridge lockout arrangements for surgical staplers |
CN110167458A (en) * | 2016-12-21 | 2019-08-23 | 爱惜康有限责任公司 | Surgical instruments with the locking arrangement for preventing in the presence of unless being not run out nail bin trigger system from activating |
EP3338660A1 (en) * | 2016-12-21 | 2018-06-27 | Ethicon LLC | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
EP3338704A1 (en) * | 2016-12-21 | 2018-06-27 | Ethicon LLC | Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present |
EP3338650A1 (en) * | 2016-12-21 | 2018-06-27 | Ethicon LLC | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
WO2018118242A1 (en) * | 2016-12-21 | 2018-06-28 | Ethicon Llc | Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present |
CN110087561A (en) * | 2016-12-21 | 2019-08-02 | 爱惜康有限责任公司 | For prevent firing member promoted in surgical end-effector (unless the storehouse that does not fire is mounted in the end effector) jaw actuation locking arrangement |
WO2018115998A3 (en) * | 2016-12-21 | 2018-08-16 | Ethicon Llc | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
EP3735909A1 (en) * | 2016-12-21 | 2020-11-11 | Ethicon LLC | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
WO2018116002A1 (en) * | 2016-12-21 | 2018-06-28 | Ethicon Llc | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
CN110087561B (en) * | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | Lockout arrangements for jaw actuation to prevent advancement of a firing member in a surgical end effector (unless an unfired cartridge is mounted in the end effector) |
CN110114013A (en) * | 2016-12-21 | 2019-08-09 | 爱惜康有限责任公司 | For surgical stapling device, without storehouse and, hole capital after selling all securities locking is arranged |
WO2018118406A1 (en) * | 2016-12-21 | 2018-06-28 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
CN110167458B (en) * | 2016-12-21 | 2022-07-22 | 爱惜康有限责任公司 | Surgical instrument with lockout arrangement for preventing firing system actuation unless an unspent staple cartridge is present |
US11369371B2 (en) | 2018-03-02 | 2022-06-28 | Covidien Lp | Surgical stapling instrument |
EP3758618A4 (en) * | 2018-03-02 | 2021-10-06 | Covidien LP | Surgical stapling instrument |
EP3912565A1 (en) * | 2018-03-28 | 2021-11-24 | Ethicon LLC | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
CN112204673A (en) * | 2018-03-28 | 2021-01-08 | 爱惜康有限责任公司 | Surgical stapling device with cartridge compatible closure member and firing lockout arrangement |
WO2019186431A1 (en) * | 2018-03-28 | 2019-10-03 | Ethicon Llc | Staple cartridge comprising a lockout key configured to lift a firing member |
WO2019186438A1 (en) * | 2018-03-28 | 2019-10-03 | Ethicon Llc | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
EP3545867A1 (en) * | 2018-03-28 | 2019-10-02 | Ethicon LLC | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
EP3545858A1 (en) * | 2018-03-28 | 2019-10-02 | Ethicon LLC | Staple cartridge comprising a lockout key configured to lift a firing member |
EP3756561A1 (en) * | 2019-06-25 | 2020-12-30 | Ethicon LLC | Insertable deactivator element for surgical stapler lockouts |
WO2020260995A1 (en) * | 2019-06-25 | 2020-12-30 | Ethicon Llc | Surgical stapler assembly comprising an insertable deactivator element for defeating a lockout of the stapler |
Also Published As
Publication number | Publication date |
---|---|
BRPI0604524A (en) | 2007-08-28 |
JP2007125396A (en) | 2007-05-24 |
US7328828B2 (en) | 2008-02-12 |
BRPI0604524B1 (en) | 2018-05-02 |
MXPA06012763A (en) | 2007-05-03 |
DE602006019805D1 (en) | 2011-03-10 |
AU2006230750B2 (en) | 2012-03-08 |
JP5154060B2 (en) | 2013-02-27 |
CN1957854A (en) | 2007-05-09 |
BRPI0604524B8 (en) | 2021-06-22 |
AU2006230750A1 (en) | 2007-05-24 |
EP1782738B1 (en) | 2011-01-26 |
EP1782738A3 (en) | 2007-07-04 |
CA2566668A1 (en) | 2007-05-04 |
ATE496580T1 (en) | 2011-02-15 |
CN1957854B (en) | 2011-04-20 |
US20070102475A1 (en) | 2007-05-10 |
CA2566668C (en) | 2014-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7328828B2 (en) | Lockout mechanisms and surgical instruments including same | |
EP1709913B1 (en) | Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground | |
US9566067B2 (en) | Surgical stapling apparatus including sensing mechanism | |
US7455208B2 (en) | Surgical instrument with articulating shaft with rigid firing bar supports | |
AU2006202051B2 (en) | Surgical instrument with articulation shaft with double pivot closure and single pivot frame ground |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20071219 |
|
17Q | First examination report despatched |
Effective date: 20080128 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: LOCKOUT MECHANISMS AND SURGICAL INSTRUMENTS INCLUDING SAME |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602006019805 Country of ref document: DE Date of ref document: 20110310 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006019805 Country of ref document: DE Effective date: 20110310 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20110126 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20110126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110427 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110526 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110507 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110426 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20111027 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006019805 Country of ref document: DE Effective date: 20111027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110126 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220930 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221010 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221011 Year of fee payment: 17 Ref country code: DE Payment date: 20220621 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006019805 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231130 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 |