EP1668310B1 - Method and device for protecting ships against end-stage guided missiles - Google Patents
Method and device for protecting ships against end-stage guided missiles Download PDFInfo
- Publication number
- EP1668310B1 EP1668310B1 EP04764698A EP04764698A EP1668310B1 EP 1668310 B1 EP1668310 B1 EP 1668310B1 EP 04764698 A EP04764698 A EP 04764698A EP 04764698 A EP04764698 A EP 04764698A EP 1668310 B1 EP1668310 B1 EP 1668310B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- decoy
- ship
- missile
- sensors
- ammunitions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000033001 locomotion Effects 0.000 claims abstract description 37
- 238000007405 data analysis Methods 0.000 claims abstract description 14
- 238000005096 rolling process Methods 0.000 claims abstract description 10
- 238000010304 firing Methods 0.000 claims description 23
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 230000002123 temporal effect Effects 0.000 claims description 14
- 230000001681 protective effect Effects 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 7
- 230000035939 shock Effects 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 239000006096 absorbing agent Substances 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 2
- 238000011105 stabilization Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 7
- 239000011888 foil Substances 0.000 claims 2
- 229920000914 Metallic fiber Polymers 0.000 claims 1
- 238000005474 detonation Methods 0.000 claims 1
- 238000009966 trimming Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 4
- 239000011295 pitch Substances 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 230000007123 defense Effects 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000002023 somite Anatomy 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000030560 Styx Species 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
- F41H11/02—Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/04—Aiming or laying means for dispersing fire from a battery ; for controlling spread of shots; for coordinating fire from spaced weapons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H11/00—Defence installations; Defence devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H3/00—Camouflage, i.e. means or methods for concealment or disguise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H3/00—Camouflage, i.e. means or methods for concealment or disguise
- F41H3/02—Flexible, e.g. fabric covers, e.g. screens, nets characterised by their material or structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41J—TARGETS; TARGET RANGES; BULLET CATCHERS
- F41J2/00—Reflecting targets, e.g. radar-reflector targets; Active targets transmitting electromagnetic or acoustic waves
Definitions
- the present invention relates to a method for protecting ships from end-phase guided missiles with target data analysis system according to claim 1 and a protective system device according to claim 8.
- Modern anti-ship missiles have radar (RF), infrared (IR), or DUAL MODE (RFIIR) sensors for final phase steering. Through appropriate "intelligent" data analysis, these missiles are able to distinguish between target and false target.
- RF radar
- IR infrared
- RFIDIR DUAL MODE
- RF and IR decoys For the protection of military objects from missiles, RF and IR decoys have been used for some time in the prior art. These, like the missiles, were optimized over time and provided an effective countermeasure.
- the DE 38 35 887 A1 describes a cartridge for fake target generation, in particular for use in tanks for protection against sensor-guided ammunition.
- the dummy target cartridge is designed as a dual-mode ammunition, containing Kornerreflektoren for imitation of the radar signature of a tank and incendiary devices for imitation of the infrared signature of a tank. Kornerreflektoren and incendiary devices are distributed by an explosive charge so that a tank signature results in both spectral ranges.
- An infrared effective mass for the generation of decoys is, for example, in the DE 43 27 976 C1 described.
- This is a flare composition based on red phosphorus, which preferably emits in the medium-wave range when burned.
- These flares can - used in appropriate decoy ammunition - be used for example for the protection of tanks, ships and drilling platforms.
- the DE 196 17 701 A1 also describes a method for providing a decoy target for protecting land, air or water vehicles to defend against dual-mode or serial-based steering search missiles, wherein an IR-emitting radiation and RF-backscattering active mass is in the proper position be brought as a decoy simultaneously to the effectiveness.
- the EP 1 336 814 A2 discloses a RADAR-counter measure system for protecting ships by deploying corner reflectors defined in azimuth and elevation in the trajectory of an approaching missile.
- HERRMANN Helmut wt 2/89 'Camouflaging and Deceiving the Navy' reveals a method for protecting ships from end-phase guided missiles with target data analysis system. This document further describes that the moving in the direction of the ship to be protected missile detected by suitable sensors, located and its expected trajectory is calculated by means of a computer.
- HERRMANN For a successful defense of the missile according to HERRMANN the approach direction, azimuth and elevation as well as the distance must be known. In addition, HERRMANN describes the dependence of the effective chaff deployment on the ship's course, wind strength and wind direction, as well as the direction of the missile threat. HERRMANN also describes the use and consideration of the vessel's own driving speed, direction of travel, rolling and pitching motion for the effective deployment of decoys.
- This decoy formation must correspond to the ship signature in all spectral, spatial and temporal criteria relevant to the missile target search heads.
- the exchange body structure must be composed of individual decoys ammunitions in order to ensure the highest possible flexibility and possible variation in terms of shape and size of the decoy formation.
- the decoys include decoys ammunitions that have either RF, and / or IR and / or combined RF / IR modes of action to emulate the ship's RF and IR signature,
- the inventive method uses decoy ammunition whose generated apparent target diameter each about 10m to 20 m corresponds to reproduce the spatial signature of the ship to be protected,
- the decoys can be deployed in such a way that a ship-like expansion and movement of the decoupler structure, which separates from the ship to be protected, is generated by the arrangement of individual decoy ammunitions, in particular in the width and height staggered patterns.
- RF and / or IR and / or UV sensors are used to detect the approaching missile.
- the ship's reconnaissance radars are used.
- the wind measurement sensors of the ship's wind measurement system are preferably used to detect wind direction and wind speed.
- the vessel data is recorded by the navigation system and the gyrostabilization system on board the ship to be protected or by means of separate acceleration sensors, in particular pitching and rolling movements.
- standardized interfaces in particular NTDS, RS232, RS422, ETHERNET, IR, or BLUETOOTH interfaces are used as data interfaces.
- the fire control computer transmits the data determined for deploying the Täuschterrorismgesentes via a standardized data interface, in particular via a CAN bus (Controller Area Network Bus) to the Täuschterrorismwerfer ,
- a CAN bus Controller Area Network Bus
- a decoy radio frequency reflector in particular a radar reflector, preferably an angle reflector, preferably a Radar reflector with eight tri-angle reflectors (tri-hedrals), particularly preferably a known corner reflector; preferably in the form of nets or films.
- a radar reflector preferably an angle reflector, preferably a Radar reflector with eight tri-angle reflectors (tri-hedrals), particularly preferably a known corner reflector; preferably in the form of nets or films.
- a missile attacking the ship to be protected is detected, localized and identified by means of suitable sensors ( Fig. 1, A).
- sensors preferably include RF, IR and / or UV sensors (eg EloUM systems such as FL1800, MSP, MILDS or the like).
- the current wind speed and wind direction are continuously recorded ( Fig. 1, A ), this sensor is realized in the example case by the ship's wind gauge.
- the vessel data are also recorded by means of suitable sensors.
- the speed of travel, direction of travel, rolling movements and pitching movements of the ship to be protected are detected ( Fig. 1 A) .
- This sensor is adopted in the embodiment of the ship's navigation and gyro stabilization system.
- the measurements of these parameters can also be realized by separate devices for determining the rolling and pitching movements of the ship.
- the determined sensor data are transmitted to a fire control computer by means of suitable data interfaces ( Fig. 1, B ), where these Data interfaces in the present embodiment are designed as RS232 interfaces.
- NTDS e.g. NTDS, RS 422, ETHERNET, IR or BLUETOOTH interfaces.
- a detected approaching missile is a decoy in Fig. 1 , C using a suitable Feuerleitrechners, in the example, a PC, driven.
- the calculated data of the fire control computer with regard to optimum ship's course and ship speed are transmitted to the command post of the ship by means of an RS 232 data interface.
- RS 232 data interface ( Fig. 1, B ).
- other standardized interfaces such as, NTDS, RS 422, ETHERNET, IR and BLUETOOTH interfaces can be used.
- the transmission of the data of the fire control computer to one or more decoys takes place in the present embodiment via CAN bus interfaces.
- the exemplarily used decoy projector is rotatable at least in two axes (azimuth and elevation) ( Fig. 1, C ).
- Fig. 1, C For application of a decoy formation, which in Fig. 1 is shown in section E, the decoy ammunition are shot in elevation and azimuth directed.
- the decoy munitions have integrated, electronically freely programmable delay elements in which the delay times transmitted by the launcher or by the fire control computer are stored, so that the activation of the active compounds is initiated after the delay time has elapsed ( Fig. 1, D
- these delay elements are embodied as a microcontroller circuit, the decoys ammunition having its own energy store, by means of which the power supply of the programmable delay element and the energy supply of the active mass inference and distribution takes place in the decoy ammunition ( Fig. 1, D ), this one Energy storage can be realized in the example case by rechargeable capacitors, by rechargeable batteries or by batteries.
- variable-length decoy ammunition in conjunction with the directional decoy body, a swap body pattern is freely selectable in all spatial and temporal dimensions ( Fig. 1, E ), wherein the effective masses contained in the decoy ammunition comprise RF, IR or combined RF / IR effective active charges, which simulate the signature of the ship to be protected.
- FIGS. 2a and 2b show by way of example in plan view and side view a possible exchange body formation in an approaching RF-steered missile ( Fig. 2 a) and an IR-guided missile approaching the ship to be protected.
- Missile targets are equipped with sensors for target detection and tracking in the electromagnetic wavelength ranges: ultraviolet (UV), visual / electro-optical (EO), LASER (eg 1.06 ⁇ m and 10.6 ⁇ m), infrared (IR) as well as RADAR (eg I / J band and mmW).
- UV ultraviolet
- EO visual / electro-optical
- LASER eg 1.06 ⁇ m and 10.6 ⁇ m
- IR infrared
- RADAR eg I / J band and mmW.
- these modern missiles are capable of distinguishing real sea targets (e.g., ships, derricks, ...) from false targets based on spectral, temporal, kinematic, and spatial differentials.
- FIGS. 3 to 7 show exemplary some needed for missile defense, temporally and spatially staggered decoy patterns which are composed of individual decoy (shown as circles / spheres), which are stored in a database of the computer and which are tailored to the particular type of missile and the associated attack structure.
- Fig. 3 shows a decoy pattern which can sandwich the flanks of a ship on both sides protect against approaching missiles. The decoy pattern is shown in plan view.
- Fig. 4 shows in plan view a shield-like decoy pattern, which is suitable for example for the defense against frontal and oblique frontal attacks.
- Fig. 5 is a side view of a decoy pattern in the form of a tower for the defense of frontalanfuse steering missiles shown.
- Fig. 6 shows a schematic representation of a side view of a camouflage wall, which also serves for flank protection.
- Fig. 7 is a side view of a decoy pattern shown, which serves to ward off attacks from above, so-called top attacks.
- a decoy is described that the required number of decoy (s) and their spatial and temporal target coordinates (x n, y n, z n, t n) by means of a tactical mission computer the optimum for the specific security threat missile defense decoy calculated with respect to and then realized by means of a Täusch stressestechnikstrom the exact spatial (x n , y n , z n ) and temporal (t n ) positioning of the decoys.
- the essence of the invention lies in the fact that almost any pattern of decoy clouds can be formed even under the conditions of rough seas.
- the optimal decoy pattern with regard to the number of decoys required for anti-aircraft defense decoy (s) and their spatial and temporal target coordinates (x n, y n, z n, t n) is determined (for examples, see Fig. 1 ... 5 ). If no data about the missile are available in the correlation database, a generic decoy pattern is stored, which is also stored in a database for specific threat situations and missiles (for example, a "cloak wall”) Fig. 6 ).
- the spatial (x n , y n , z n ) and the desired time coordinates (t n ) are with respect to the installed on the ship Täusch stressesstrom ( Fig. 10 , Numeral 2) (n TK (x, y n, z n, t n) is clearly defined).
- the ship's movements, roles and pitches are detected by a gyrostabilizer, preferably by an inclinometer.
- all common computer 2 are suitable, but preferably a microprocessor-based PC or a PLC controls is used.
- the computer calculates the time staggering ( ⁇ t) and the given ballistics (At the same outflow speed v 0 ) by means of a mathematical approximation method, eg 'Runge-Kutta method', the Abschußazimut ⁇ n , the Abschußelevation ⁇ n and the required time of flight and thus the effective distance d n of the individual decoy munitions.
- a mathematical approximation method eg 'Runge-Kutta method', the Abschußazimut ⁇ n , the Abschußelevation ⁇ n and the required time of flight and thus the effective distance d n of the individual decoy munitions.
- the calculated data are transmitted from control systems, preferably servo controllers, to machine commands for the described 2-axis, azimuth and elevation mobile launchers ( Fig. 9 3) are converted and transmitted.
- the launcher which can move in two axes, is realized by means of electric, hydraulic or pneumatic directional drives.
- an electric drive is used, which either acts directly on the launching platform or preferably indirectly transmits the movement to the launching platform via a gearbox.
- the strength of the drives for the Azimutrichtterrorism and the Elevationsrichtterrorism is adapted to the moving weights and moments.
- the drives are designed so that an angular velocity of more than 50 ° / s, or an angular acceleration of more than 50 ° / s, both for the azimuth direction movement and for the elevation. s 2 (positive and negative acceleration) is reached.
- the straightening range is designed such that, taking into account the conditions of the launching platform, a weft direction in azimuth of 0 ° to 360 ° and in elevation a weft direction of 0 ° to 90 ° is achieved.
- Programmable launch limits are implemented so that firing of the decoy ammunition in the direction of the ship's superstructure should be prevented.
- program memories based on EPROM are preferably used.
- a launching platform with a large number of individually activatable launching elements ( Fig. 9 , Reference 4)
- the launching platform is designed so that it is possible to shoot at least 20 individual decoys.
- each decoy ammunition is individually 29iessbar.
- programming of the flying time of the decoy ammunition takes place via the launching platform up to the desired effective distance.
- the interface to the decoy ammunition can be implemented via contacts, but is preferably implemented by an inductive interface in order to prevent corrosion effects on the data transmission.
- Decoy ammunitions with programmable delay elements that can be programmed via a data interface from the launching platform ( Fig. 9 , Reference 5)
- the decoy ammunitions are designed so that they all have the same exit velocity (v 0 ). This is necessary to ensure the correct and accurate placement of the decoys based on the computer's ballistic calculations.
- the maximum flight distance is preferably at least 100 m.
- the v 0 is designed according to the ammunition weight, the drag coefficient (c w ) and the end face (A).
- the decoy ammunition each have a programmable delay element, so that the flight times are variable up to the effective deployment at the desired coordinates (x n , y n , z n ) and can be programmed immediately before the launch of the launching platform.
- the interfaces to the launching platform are preferably inductive, ie in each case implemented via a coil system.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren zum Schützen von Schiffen vor endphasengelenkten Flugkörpern mit Zieldatenanalysesystem gemäß Anspruch 1 sowie eine Schutzsystemvorrichtung gemäß Anspruch 8.The present invention relates to a method for protecting ships from end-phase guided missiles with target data analysis system according to
Seit der Versenkung des israelischen Zerstörers "EILAT' durch Styx-Flugkörper der ägyptischen Marine im Jahre 1967 stellen Seezielflugkörper eine massive Bedrohung für Schiffe dar.Since the sinking of the Israeli destroyer 'EILAT' by Styx missiles of the Egyptian Navy in 1967, anti-ship missiles pose a massive threat to ships.
Moderne Seezielflugkörper besitzen für die Endphasenlenkung Radar (RF)-, Infrarot (IR)- oder DUAL MODE (RFIIR)-Sensoren. Durch entsprechende "intelligente" Datenanalysen sind diese Flugkörper in der Lage, zwischen Ziel und Falschziel zu unterscheiden.Modern anti-ship missiles have radar (RF), infrared (IR), or DUAL MODE (RFIIR) sensors for final phase steering. Through appropriate "intelligent" data analysis, these missiles are able to distinguish between target and false target.
Diese flugkörperimmanenten Datenanalysen umfassen mittlerweile alle relevanten zeitlichen, räumlichen, spektralen und kinematischen Merkmale, wie zum Beispiel:
- ■ RF-/IR-Signaturanalyse (Dual Mode Zielsuchköpfe)
- ■ Abbildendende Verfahren (Imaging IR)
- ■ Signalfrequenzanalyse (FFT-Analysen)
- ■ Räumliche Höhen-, Tiefen- und Seitendiskriminierung
- ■ Kanten-Track-Verfahren
- ■ Bild- zu Bild Korrelation
- ■ Geschwindigkeit und Beschleunigung
- ■ RF / IR signature analysis (Dual Mode homing heads)
- ■ Imaging procedures (Imaging IR)
- ■ Signal frequency analysis (FFT analyzes)
- ■ Spatial height, depth and side discrimination
- ■ Edge track method
- ■ image-to-image correlation
- ■ Speed and acceleration
Zum Schutz von militärischen Objekten vor Flugkörpern werden seit längerer Zeit im Stand der Technik RF- und IR-Täuschkörper eingesetzt. Diese wurden ebenso wie die Flugkörper im Laufe der Zeit optimiert und stellten eine wirksame Gegenmaßnahme dar.For the protection of military objects from missiles, RF and IR decoys have been used for some time in the prior art. These, like the missiles, were optimized over time and provided an effective countermeasure.
Allerdings sind die derzeitigen Täuschkörper bzw. Täuschkörperverfahren gegen die Bedrohung eines Schiffes durch Lenksuchwaffen wegen der doch eher unbefriedigenden Nachahmung der Schiffssignatur in sämtlichen Spektralbereichen, in denen die Sensorik der angreifenden Flugkörper arbeitet, nicht optimal geeignet.However, the current decoys or decoy processes against the threat of a ship by Lenosuchwaffen because of the rather unsatisfactory imitation of the ship's signature in all spectral ranges in which the sensors of the attacking missiles works, not optimally suited.
Insbesondere wird durch die bekannten Täuschkörperverfahr.en bzw. -systeme die "und"-verknüpfte Forderung nach:
- ■ der richtige Täuschkörper
- ■ zur richtigen Zeit
- ■ am richtigen Ort
- ■ the right decoy
- ■ at the right time
- ■ in the right place
Die
Eine Infrarotwirkmasse zur Scheinzielerzeugung wird beispielsweise in der
Die
Die
Darüber hinaus offenbart die
HERRMANN, Helmut wt 2/89 'Tarnen und Täuschen bei der Marine' offenbart ein Verfahren zum Schützen von Schiffen vor endphasengelenkten Flugkörpern mit Zieldatenanalysesystem. Diese Druckschrift beschreibt ferner, dass der sich in Richtung des zu schützenden Schiffes bewegende Flugkörper durch geeignete Sensoren erfasst, lokalisiert und seine voraussichtliche Flugbahn mittels eines Computers berechnet wird.HERRMANN, Helmut wt 2/89 'Camouflaging and Deceiving the Navy' reveals a method for protecting ships from end-phase guided missiles with target data analysis system. This document further describes that the moving in the direction of the ship to be protected missile detected by suitable sensors, located and its expected trajectory is calculated by means of a computer.
Für eine erfolgreiche Abwehr des Flugkörpers müssen gemäß HERRMANN die Anflugrichtung, Azimut und Elevation sowie die Entfernung bekannt sein. Darüberhinaus beschreibt HERRMANN die Abhängigkeit des wirksamen Chaff-Einsatzes vom Schiffskurs, Windstärke und Windrichtung, sowie Richtung der Flugkörperbedrohung. HERRMANN beschreibt ebenfalls die Verwendung und Berücksichtigung der Schiffseigendaten Fahrgeschwindigkeit, Fahrtrichtung, Roll- und Nickbewegung zum wirkungsvollen Ausbringen von Täuschkörpern.For a successful defense of the missile according to HERRMANN the approach direction, azimuth and elevation as well as the distance must be known. In addition, HERRMANN describes the dependence of the effective chaff deployment on the ship's course, wind strength and wind direction, as well as the direction of the missile threat. HERRMANN also describes the use and consideration of the vessel's own driving speed, direction of travel, rolling and pitching motion for the effective deployment of decoys.
Ebenso wird beschrieben, dass ein Computer einen optimalen Schiffskurs und eine optimale Schiffsfahrt zur Unterstützung der Trennung des feuerleitrechnergestützt ausgegebenen Täuschkörpergebildes vom zu schützenden Schiff berechnet wird.Likewise, it is described that a computer is calculated an optimal ship's course and an optimal boat trip in support of the separation of the decoy-based issued Buggergebildes from the ship to be protected.
Ein ähnliches Schiffsschutzsystem wird in
Die Erzeuger spezieller Täuschkörpermuster in Abhängigkeit von Täuschkörper und Angriffsstruktur werden nicht beschrieben.Producers of special decoy patterns as a function of decoy and attack structure are not described.
Zwar beschreiben alle genannten Dokumente Täuschkörper bzw. Scheinzielerzeugungen mit teilweise schiffsähnlicher Signatur. In Kombination mit den zur Verfügung stehenden Täuschkörperwurfanlagen ist jedoch ein wirksamer zeitlicher und räumlicher Täuschkörpereinsatz zum Schutz von Schiffen mit keinem der bislang beschriebenen Verfahren und Vorrichtungen optimal erreichbar.It is true that all the documents mentioned describe decoys or decoy-target generations with a partially ship-like signature. In combination with the available Täuschkörperwurfanlagen is However, an effective temporal and spatial Täuschkörpereinsatz for the protection of ships with any of the methods and devices described so far optimally achievable.
Die meisten Täuschkörper werden entweder als Täuschkörperraketen oder nach dem Mörserprinzip aus starren Werferanlagen ausgebracht, so dass eine genaue Positionierung nicht möglich ist. Selbst bei Verschuß aus richtbaren Täuschkörperwurfanlagen ist die geforderte zeitliche und räumliche Staffelung der Täuschkörper mit den bislang beschriebenen Verfahren und Vorrichtungen äußerst schwierig, da eine sequentielle Ausbringung mit spontan (als Reaktion auf die aktuelle Bedrohungssituation) wählbaren Abschussintervallen und spontan wählbaren Schussentfernungen nicht realisiert werden kann.Most decoys are deployed either as decoy missiles or after the mortar principle of rigid launcher, so that an accurate positioning is not possible. Even when fired from directable Täuschkörperwurfanlagen the required temporal and spatial staggering of the decoy with the previously described methods and devices is extremely difficult because a sequential application with spontaneous (in response to the current threat situation) selectable launch intervals and spontaneously selectable firing ranges can not be realized.
Ausgehend vom Stand der Technik des Artikels von HERRMANN ist es daher Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren sowie eine Vorrichtung zum Schützen von Schiffen mittels Täuschkörpern zur Verfügung zu stellen.Based on the prior art of the article by HERRMANN, it is therefore an object of the present invention to provide an improved method and a device for protecting ships by means of decoys.
Verfahrenstechnisch erfolgt die Lösung dieser Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1.Technically, the solution of this problem is achieved by the characterizing features of
Vorrichtungstechnisch wird die obige Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 8 gelöst.Technically, the above object is achieved by the characterizing features of claim 8.
Folgende Anforderungen werden an ein Verfahren und eine Vorrichtung zum Schutz von Schiffen vor "intelligenten" endphasengelenkten Flugkörpern gestellt:The following requirements are made of a method and a device for protecting ships from "intelligent" end-phase guided missiles:
Ein effektives Täuschkörperverfahren bzw. -system muss gewährleisten, dass in Abhängigkeit von
- ■ Flugkörpertyp
- ■ Flugkörperangriffsrichtung
- ■ Flugkörperentfernung
- ■ Flugkörpergeschwindigkeit
- ■ Schiffsaspektl-signatur
- ■ Fahrtrichtung des Schiffes
- ■ Schiffsgeschwindigkeit
- ■ überlagerten Schiffseigenbewegungen (Rollen, Nicken)
- ■ Windgeschwindigkeit
- ■ Windrichtung
- ■ Type of missile
- ■ Missile attack direction
- ■ Missile removal
- ■ missile speed
- ■ Ship aspect signature
- ■ Direction of travel of the ship
- ■ Ship speed
- ■ Superimposed ship's movements (roles, pitches)
- ■ Wind speed
- ■ Wind direction
Dieses Täuschkörpergebilde muss dabei der Schiffssignatur in allen für die Flugkörperzielsuchköpfe relevanten spektralen, räumlichen und zeitlichen Kriterien entsprechen. Das Tauschkörpergebilde muss aus einzelnen Täuschkörpermunitionen zusammengesetzt werden, um eine möglichst hohe Flexibilität und Variationsmöglichkeit hinsichtlich Form und Größe des Täuschkörpergebildes gewährleisten zu können.This decoy formation must correspond to the ship signature in all spectral, spatial and temporal criteria relevant to the missile target search heads. The exchange body structure must be composed of individual decoys ammunitions in order to ensure the highest possible flexibility and possible variation in terms of shape and size of the decoy formation.
Die Täuschkörper umfassen Täuschkörpermunitionen, die entweder RF-, und/oder IR- und/oder kombinierte RF/IR-Wirkmassen aufweisen, um die RF- und IR-Signatur des Schiffes nachbilden zu können,The decoys include decoys ammunitions that have either RF, and / or IR and / or combined RF / IR modes of action to emulate the ship's RF and IR signature,
Das erfindungsgemäße Verfahren verwendet Täuschkörpermunitionen deren erzeugter Scheinzieldurchmesser jeweils etwa 10m bis 20 m entspricht, um die räumliche Signatur des zu schützenden Schiffes nachbilden zu können,The inventive method uses decoy ammunition whose generated apparent target diameter each about 10m to 20 m corresponds to reproduce the spatial signature of the ship to be protected,
Erfindungsgemäß sind die Täuschkörper derart ausbringbar, dass durch die Anordnung von einzelnen Täuschkörpermunitionen, im speziellen in der Weite und Höhe gestaffelten Mustern, eine schiffsähnliche Ausdehnung und Bewegung des Täuschkörpergebildes erzeugt wird, welches sich vom zu schützenden Schiff separiert.According to the invention, the decoys can be deployed in such a way that a ship-like expansion and movement of the decoupler structure, which separates from the ship to be protected, is generated by the arrangement of individual decoy ammunitions, in particular in the width and height staggered patterns.
Mit dem erfindungsgemäßen Verfahren und der Schutzsystemvorrichtung zur Durchführung des Verfahrens ist gewährleistet, dass in Abhängigkeit aller beschriebenen Eingangsparameter (Flugkörper, Schiff, Wind), spontan ein Tauschkörpergebilde generiert werden kann, welches bezüglich der Parameter
- ■ Art der Täuschkörpermunitionen (IR, RF, IR/RF),
- ■ Anzahl der unterschiedlichen Arten an Täuschkörpermunitionen,
- ■ Zeitintervall zwischen der Ausbringung der einzelnen Täuschkörpermunitionen,
- ■ räumliche Ausbringkoordinaten der einzelnen Täuschkörper,
- ■ Kinematik des Täuschkörpergebildes; sowie
- ■ Form und Größe des Täuschkörpergebildes
- ■ type of decoy ammunition (IR, RF, IR / RF),
- ■ number of different types of decoy ammunition,
- ■ time interval between the application of the individual decoys ammunition,
- ■ spatial application coordinates of the individual decoys,
- ■ kinematics of the decoy formation; such as
- ■ Shape and size of the decoy formation
Insbesondere betrifft die vorliegende Erfindung ein Verfahren zum Schützen von Schiffen vor endphasengelenkten Flugkörper mit Zieldatenanalysesystem, wobei
- (1) der sich in Richtung des zu schützenden Schiffes bewegende Flugkörper durch geeignete Sensoren erfaßt, lokalisiert und seine voraussichtliche Flugbahn mittels eines Computers berechnet wird;
- (2) die Art der von dem Flugkörper durchgeführten Zieldatenanalyse mittels geeigneter Sensoren und Algorithmen erfaßt wird und der Flugkörper hinsichtlich seiner Art der Zieldatenanalyse klassifiziert wird;
- (3) die aktuelle Windgeschwindigkeit und Windrichtung mittels Windmeßsensoren kontinuierlich erfaßt wird;
- (4) die Schiffseigendaten:
- Fahrtgeschwindigkeit, Fahrtrichtung, Roll- und Nickbewegungen, mittels Bewegungs- und/oder Navigationssensoren kontinuierlich erfaßt werden;
- (5) die erfaßten Daten aus (1) bis (4) an einen Feuerleitrechner mittels Datenschnittstellen übermittelt werden;
- (6) wenigstens ein Täuschkörperwerfer mittels des Feuerleitrechners angesteuert wird und der Verschuß von Täuschkörpermunitionen eingeleitet wird, wobei der Feuerleitrechner aufgrund der ausgewerteten Sensordaten das Ausbringen der Täuschkörper hinsichtlich:
- Art des Munitionstyps;
- Anzahl der unterschiedlichen Munitionstypen;
- des zeitlichen Verschußabstandes zwischen aufeinanderfolgenden Munitionen;
- der Abfeuerrichtung in Azimut und Elevation, einer jeden Munition, einschließlich des Ausgleichs von Roll- und Nickbewegungen des Schiffes;
- der Verzögerungszeit der Munitionen vom Abschuß bis zur Aktivierung der Wirkladung und somit die Entfernung der Täuschkörperwirkung;
- (7) der Feuerleitrechner einen optimalen Schiffskurs und eine optimale Schiffsfahrt zur Unterstützung der Trennung des Feuerleitrechner-gestützt ausgegebenen Täuschkörpergebildes vom zu schützenden Schiff berechnet; wobei
- (8) als Windmeßsensoren die schiffseigene Windmeßanlage verwendet wird; und wobei
- (9) die Schiffseigendaten durch die Navigationsanlage und die Kreiselstabilisierungsanlage des zu schützenden Schiffes oder mittels separater Beschleunigungssensoren, insbesondere Nick-, Roll- oder Gyrosensoren, erfaßt werden, wobei
- (10) in Abhängigkeit von dem erkannten Flugkörper und der Angriffsstruktur ein bestimmtes Täuschkörpermuster erzeugt wird, wobei das geeignete Täuschkörpermuster für die jeweilige Bedrohungsart, gekennzeichnet durch Flugkörpertyp und Anflugsverhalten in einer Datenbank abgelegt ist und vom Feuerleitrechner nach Erkennen des Flugkörpertyps und der Angriffsstruktur abgerufen wird, um ein entsprechendes Täuschkörpermuster aufzubauen.
- (1) the missile moving in the direction of the ship to be protected is detected by suitable sensors, localized and its expected trajectory is calculated by means of a computer;
- (2) detecting the type of target data analysis performed by the missile using appropriate sensors and algorithms and classifying the missile for its type of target data analysis;
- (3) the current wind speed and wind direction are detected continuously by means of wind measuring sensors;
- (4) the vessel data:
- Travel speed, direction of travel, roll and pitch movements are detected continuously by means of motion and / or navigation sensors;
- (5) the acquired data from (1) to (4) are transmitted to a fire control computer via data interfaces;
- (6) at least one decoy projector is controlled by means of the fire control computer and the firing of decoy ammunition is initiated, wherein the fire control computer based on the evaluated sensor data, the application of the decoy in terms of:
- Type of ammunition type;
- Number of different types of ammunition;
- the temporal firing distance between successive ammunition;
- the firing direction in azimuth and elevation, of each ammunition, including the compensation of roll and Pitching movements of the ship;
- the delay time of the ammunition from the launch to the activation of the active charge and thus the removal of the decoy effect;
- (7) the fire control calculator calculates an optimal ship's course and vessel's voyage to assist separation of the fire control computer-based decoy body from the ship to be protected; in which
- (8) the ship's wind measuring system is used as wind measuring sensors; and where
- (9) the vessel data are recorded by the navigation system and the gyrostabilizer of the ship to be protected or by separate acceleration sensors, in particular pitch, roll or gyro sensors, wherein
- (10) a specific decoy pattern is generated as a function of the detected missile and the attack structure, wherein the appropriate decoy pattern for the respective threat type, characterized by missile type and approach behavior is stored in a database and retrieved by the fire control computer after detecting the missile type and the attack structure, to build up a corresponding decoy pattern.
Es ist bevorzugt, dass zur Erfassung des anfliegenden Flugkörpers RF und/oder IR und/oder UV-Sensoren verwendet werden. Vorzugsweise werden die schiffseigenen Aufklärungsradare verwendet.It is preferred that RF and / or IR and / or UV sensors are used to detect the approaching missile. Preferably, the ship's reconnaissance radars are used.
Vorzugsweise werden zur Erfassung von Windrichtung und Windgeschwindigkeit die Windmesssensoren der schiffseigenen Windmessanlage verwendet.The wind measurement sensors of the ship's wind measurement system are preferably used to detect wind direction and wind speed.
Ferner werden die Schiffseigendaten durch die Navigationsanlage und die Kreiselstabilisierungsanlage an Bord des zu schützenden Schiffes oder mittels separater Beschleunigungssensoren, insbesondere Nick- und Rollbewegungen, erfasst.Furthermore, the vessel data is recorded by the navigation system and the gyrostabilization system on board the ship to be protected or by means of separate acceleration sensors, in particular pitching and rolling movements.
Als Datenschnittstellen werden beispielsweise standardisierte Schnittstellen, insbesondere NTDS, RS232, RS422, ETHERNET, IR, oder BLUETOOTH-Schnittstellen verwendet.For example, standardized interfaces, in particular NTDS, RS232, RS422, ETHERNET, IR, or BLUETOOTH interfaces are used as data interfaces.
Als Täuschkörpermunitionen werden solche mit RF-, IR-, und kombinierter RF/IR - Wirkmassen sowie an sich bekannte Radarreflektoren (Airborne Radar Reflectors), verwendet.As decoy ammunition such with RF, IR, and combined RF / IR - active masses and per se known radar reflectors (Airborne Radar Reflectors) are used.
Als Feuerleitrechner wird vorzugsweise ein Personal Computer, eine Microcontroller-Steuerung oder eine SPS-Steuerung verwendet, wobei der Feuerleitrechner die ermittelten Daten zum Ausbringen des Täuschkörpergebildes über eine standardisierte Datenschnittstelle, insbesondere über einen CAN-Bus (Controller Area Network Bus) an die Täuschkörperwerfer übermittelt.As Feuerleitrechner preferably a personal computer, a microcontroller control or PLC control is used, the fire control computer transmits the data determined for deploying the Täuschkörpergebildes via a standardized data interface, in particular via a CAN bus (Controller Area Network Bus) to the Täuschkörperwerfer ,
Hierbei ist es eine bevorzugte Ausführungsform der vorliegenden Erfindung, wenn als Täuschkörper ein Radiofrequenzreflektor, insbesondere ein Radarreflektor, bevorzugt ein Winkelreflektor, vorzugsweise ein Radarreflektor mit acht dreiflächigen Winkelreflektoren (tri-hedrals), besonders bevorzugt einen an sich bekannten Corner-Reflektor; vorzugsweise in Form von Netzen oder Folien, verwendet wird.Here, it is a preferred embodiment of the present invention, if as a decoy radio frequency reflector, in particular a radar reflector, preferably an angle reflector, preferably a Radar reflector with eight tri-angle reflectors (tri-hedrals), particularly preferably a known corner reflector; preferably in the form of nets or films.
Die erfindungsgemäße Schutzsystemvorrichtung, welche sich zur Durchführung des Verfahrens gemäß der vorliegenden Erfindung eignet, ist ausgestattet mit:
- wenigstens einem Computer;
- Sensoren zur Erfassung von sich einem zu schützenden Schiff nähernden endphasengelenkten Flugkörpern, die ein Zieldatenanalysesystem zur Unterscheidung von Echt- und Falschziel aufweisen;
- Sensoren zur Erfassung der Anflugsrichtung, Entfernung und Geschwindigkeit der Flugkörper;
- einer Windmeßeinrichtung für Windgeschwindigkeit und Windrichtung;
- Bewegungs- und/oder Navigationssensoren zur Erfassung der Schiffseigendaten: Fahrtgeschwindigkeit, Fahrtrichtung, Roll- und Nickbewegungen;
- wenigstens einem Feuerleitrechner, wobei insbesondere Feuerleitrechner und Computer eine Einheit bilden; und wobei der Feuerleitrechner mit den Sensoren über Datenschnittstellen kommuniziert;
- wenigstens einem auf dem Schiff angeordneten in Azimut und Elevation richtbaren Täuschkörpervverfer, der mit Täuschkörpermunitionen bestückt ist, wobei die Munitionstypen RF, IR, und kombinierte RF/IR-Munitionen sowie entfaltbare Cornerreflektoren umfassen; wobei
- der Computer eine Datenbank aufweist, in welcher geeignete Täuschkörpermuster für den jeweiligen Flugkörpertyp und die jeweilige Angriffsstruktur abgelegt sind, welche es ermöglichen, in Abhängigkeit von dem erkannten Flugkörper und der Angriffsstruktur ein bestimmtes Täuschkörpermuster zu erzeugen, um ein Schiff wirksam vor der erkannten Bedrohung zu schützen.
- at least one computer;
- Sensors for detecting end-phase guided missiles approaching a ship to be protected and having a target data analysis system for distinguishing real and false targets;
- Sensors for detecting the direction of approach, distance and speed of the missiles;
- a wind measuring device for wind speed and wind direction;
- Motion and / or navigation sensors for capturing vessel data: travel speed, direction of travel, roll and pitch movements;
- at least one Feuerleitrechner, in particular fire control computer and computer form a unit; and wherein the fire control computer communicates with the sensors via data interfaces;
- at least one decoy deflector directing on the ship in azimuth and elevation equipped with decoy ammunition, the ammunition types comprising RF, IR, and combined RF / IR ammunition and deployable corner reflectors; in which
- the computer has a database in which suitable decoy patterns for the respective type of missile and the respective attack structure are stored, which make it possible to generate a specific decoy pattern depending on the detected missile and the attack structure in order to effectively protect a ship from the detected threat ,
Ein geeigneter Täuschkörperwerfer kann beispielsweise folgende Komponenten aufweisen:
- eine Abfeuerplattform als Träger der einzelnen Täuschkörpermunitionen;
- eine elektrische Abfeuereinrichtung, welche die einzelnen Täuschkörpermunitionen in beliebig einstellbaren zeitlichen Abständen abfeuert,
- einen Elevationsantrieb zur Höhenbewegung der Abfeuerplattform,
- einen Azimutantrieb zur Seitenbewegung der Abfeuerplattform,
- eine Basisplattform zur Aufnahme der Antriebe,
- Schockdämpfer an der Basisplattform zur Dämpfung von rapiden Schiffsbewegungen, insbesondere aufgrund von Minensprengschocks;
- STEALTH-Verkleidungen zur Verminderung der Eigensignatur im RF- und IR-Bereich, vorzugsweise ausgebildet aus schräggestellten Metall- oder Kohlefaserflächen; sowie
- eine geeignete Schnittstelle, welche die Verzögerungszeit der Täuschkörpermunition(en) vom Abschuß bis zur Aktivierung der Wirkladung unmittelbar vor dem Abschuß vom Täuschkörperwerfer an die Täuschkörpermunition(en) überträgt, vorzugsweise ausgebildet als elektrische Steckverbindung oder als induktive Verbindung über zwei korrespondierende Spulen.
- a firing platform as a carrier of the individual decoy munitions;
- an electric firing device, which fires the individual decoy ammunitions in arbitrarily adjustable time intervals,
- an elevation drive for height movement of the launching platform,
- an azimuth drive for lateral movement of the firing platform,
- a base platform for receiving the drives,
- Shock absorbers on the base platform for damping rapid ship movements, in particular due to mine blast shocks;
- STEALTH panels for reducing self-signature in the RF and IR range, preferably formed from inclined metal or carbon fiber surfaces; such as
- a suitable interface, which transmits the delay time of the decoy ammunition (s) from firing to activation of the active charge immediately before firing from the decoy to the decoy ammunition (s), preferably formed as an electrical connector or as an inductive connection via two corresponding coils.
Weitere Vorteile und Merkmale ergeben sich aufgrund der Beschreibung eines Ausführungsbeispiels sowie anhand der Zeichnung.Further advantages and features will become apparent from the description of an embodiment and from the drawing.
Es zeigt:
- Fig. 1
- eine beispielhafte Schutzsystemvorrichtung in schematischer Ansicht;
- Fig. 2a
- ein beispielhaftes erfindungsgemäß ausgebrachtes Tauschkörpergebilde schematischer Draufsicht als Gegenmaßnahme zu einem angreifenden RF-gelenkten Flugkörper;
- Fig. 2b
- ein beispielhaftes erfindungsgemäß ausgebrachtes Tauschkörpergebilde in schematischer Seitenansicht als Gegenmaßnahme zu einem IR-gelenkten Flugkörper;
- Fig. 3-7
- unterschiedliche Täuschkörpermuster;
- Fig. 8
- ein schematisches Flussdiagramm des erfindungsgemäßen Täuschkörpersystems;
- Fig. 9
- die wesentlichen Elemente der erfindungsgemäßen Vorrichtung; und
- Fig. 10
- eine schematische Darstellung der Ausbildung eines Täuschkörpermusters an den Sollkoordinaten.
- Fig.1
- zeigt in schematischer Ansicht eine erfindungsgemäße Schutzsystemvorrichtung.
- Fig. 1
- an exemplary protection system device in a schematic view;
- Fig. 2a
- an exemplary exchange body formed according to the invention schematic plan view as a countermeasure to an attacking RF-guided missile;
- Fig. 2b
- an exemplary exchange body structure applied according to the invention in a schematic side view as a countermeasure to an IR-guided missile;
- Fig. 3-7
- different decoy patterns;
- Fig. 8
- a schematic flow diagram of the decoy system according to the invention;
- Fig. 9
- the essential elements of the device according to the invention; and
- Fig. 10
- a schematic representation of the formation of a decoy pattern at the desired coordinates.
- Fig.1
- shows a schematic view of a protective system device according to the invention.
Ein das zu schützende Schiff angreifender Flugkörper wird mittels geeigneter Sensoren detektiert, lokalisiert und identifiziert (
Mittels geeigneter Sensorik wird kontinuierlich die aktuelle Windgeschwindigkeit und Windrichtung erfasst (
Die Schiffseigendaten werden ebenfalls mittels geeigneter Sensorik erfasst. Im Beispielsfalle werden Fahrtgeschwindigkeit, Fahrtrichtung, Rollbewegungen und Nickbewegungen des zu schützenden Schiffes erfasst (
Die ermittelten Sensordaten werden mittels geeigneter Datenschnittstellen an einen Feuerleitrechner übertragen (
Andere mögliche standardisierte Schnittstellen umfassen z.B. NTDS, RS 422, ETHERNET, IR- oder BLUETOOTH-Schnittstellen.Other possible standardized interfaces include e.g. NTDS, RS 422, ETHERNET, IR or BLUETOOTH interfaces.
Im Falle eines detektierten anfliegenden Flugkörpers wird ein Täuschkörperwerfer in
Die Ansteuerung des Täuschkörperwerfers und der Verschuß der Täuschkörpermunitionen, welche in
- der Art der verschiedenen Täuschkörpermunitionen, (RF, IR, kombiniert RF/IR),
- der Anzahl der verschiedenen Täuschkörpermunitionstypen (RF, IR, RF/IR),
- des zeitlichen Verschußabstandes zwischen aufeinanderfolgenden Täuschkörpermunitionen,
- der Abfeuerrichtung in Azimut (einschließlich des Ausgleichs von Roll- und Nickbewegungen des Schiffes) einer jeden Täuschkörpermunition,
- der Abfeuerrichtung in Elevation (einschließlich des Ausgleichs von Roll- und Nickbewegungen des Schiffes) einer jeden Täuschkörpermunition,
- der Verzögerungszeit der Täuschkörpermunition(en) vom Abschuss bis zur Aktivierung der Wirkladung; sowie
- der Berechnung des optimalen Schiffskurses und Schiffsfahrt zur Unterstützung der Separationskinematik des Täuschkörpergebildes, wobei dieser Feuerleitrechner im Beispielsfalle durch einen Personal Computer realisiert wird. Alternativ kann auch eine Microcontroller-Steuerung oder eine SPS-Steuerung als Feuerleitrechner eingesetzt werden.
- the type of different decoy munitions, (RF, IR, RF / IR combined),
- the number of different decoy ammunition types (RF, IR, RF / IR),
- the temporal firing distance between successive decoy munitions,
- the azimuth firing direction (including the balance of roll and pitch movements of the ship) of each decoy ammunition,
- the firing direction in elevation (including the compensation of rolling and pitching movements of the ship) of each decoy ammunition,
- the delay time of the decoy ammunition (s) from launch to activation of the active charge; such as
- the calculation of the optimal ship course and boat trip to support the separation kinematics of the decoy formation, this Feuerleitrechner in the example case by a personal computer is realized. Alternatively, a microcontroller or a PLC controller can be used as fire control computer.
Im Beispielsfalle werden die berechneten Daten des Feuerleitrechners hinsichtlich optimalem Schiffskurs und Schiffsgeschwindigkeit mittels einer RS 232 Datenschnittstelle an den Kommandostand des Schiffes übertragen. (
Die Übertragung der Daten des Feuerleitrechners an einen oder mehrere Täuschkörperwerfer (
Der beispielhaft eingesetzte Täuschkörperwerfer ist mindestens in zwei Achsen (Azimut und Elevation) drehbar (
Die im Beispielsfalle verwendete Täuschkörperwurfanlage beinhaltet folgende Komponenten:
- eine Abfeuerplattform als Träger der einzelnen Täuschkörpermunitionen,
- eine elektrische Abfeuereinrichtung welche die einzelnen Täuschkörpermunitionen in beliebig einstellbaren zeitlichen Abständen abfeuert,
- einen als Elektroantrieb ausgeführten Elevationsantrieb zur Höhenbewegung der Abfeuerplattform, sowie einen als Elektroantrieb ausgeführten Azimutantrieb zur Seitenbewegung der Abfeuerplattform,
- eine Basisplattform zur Aufnahme der Antriebe,
- einen Schockdämpfer an der Basisplattform zur Dämpfung von rapiden Schiffsbewegungen, z.B. aufgrund von Minensprengschocks,
- STEALTH-Verkleidungen zur Verminderung der Eigensignatur im RF- und IR-Bereich, vorzugsweise ausgeführt aus schräggestellten Metall- und/oder Kohlefaserflächen,
- eine geeignete Schnittstelle, welche die Verzögerungszeit (der Täuschkörpermunition(en) vom Abschuss bis zur Aktivierung der Wirkladung) unmittelbar vor dem Abschuss vom Täuschkörperwerfer an die Täuschkörpermunition(en) überträgt, beispielhaft ausgeführt als elektrische Steckverbindung oder als induktive Verbindung über zwei korrespondierende Spulen;
- a firing platform as a carrier of the individual decoy munitions,
- an electric firing device which fires the individual decoy ammunitions in arbitrarily adjustable time intervals,
- an elevation drive designed as an electric drive for height movement of the launching platform, and an azimuth drive designed as an electric drive for lateral movement of the launching platform,
- a base platform for receiving the drives,
- a shock absorber on the base platform to dampen rapid ship movements, eg due to mine blast shocks,
- STEALTH linings for reducing self-signature in the RF and IR range, preferably made of inclined metal and / or carbon fiber surfaces,
- a suitable interface, which transmits the delay time (the decoy ammunition (s) from launch to activation of the active charge) immediately before the launch of the decoy to the decoy ammunition (s), exemplified as an electrical connector or as an inductive connection via two corresponding coils;
Die Täuschkörpermunitionen weisen integrierte, elektronisch frei programmierbare Verzögerungselemente auf, in welchen die vom Werfer bzw. vom Feuerleitrechner übermittelten Verzögerungszeiten abgespeichert werden, so dass die Aktivierung der Wirkmassen nach Ablauf der Verzögerungszeit initiiert wird (
Schlussendlich wird mittels der in der Entfernung variablen Täuschkörpermunitionen in Verbindung mit dem richtbaren Täuschkörperwerfer ein in allen räumlichen und zeitlichen Dimensionen frei wählbares Tauschkörpermuster erzeugt (
Die
In diesen Figuren ist ersichtlich, dass eine Vielzahl von unterschiedlichen Täuschkörpermunitionen (im Beispielsfalle 10 Stück) mittels des erfindungsgemäßen Verfahrens zeitlich, in der Entfernung, sowie in Höhe und Richtung flexibel gestaffelt werden können.In these figures it can be seen that a multiplicity of different decoy ammunitions (in the
Mit dem erfindungsgemäßen Verfahren ist es z.B. möglich, ein Tauschkörpergebilde zu generieren, welches in unmittelbarer Schiffsnähe beginnt (
Mittels einer gleichzeitigen Höhenstaffelung (
Flugkörper zur Bekämpfung von Seezielen verfügen zur Zieldetektion und Zielverfolgung über Sensoren, die in den elektromagnetischen Wellenlängenbereichen: Ultraviolett (UV), visueller/elektrooptischer Bereich (EO), LASER (z.B. 1,06 µm und 10,6 µm), Infrarot (IR) sowie RADAR (z.B. I/J-Band und mmW) arbeiten.Missile targets are equipped with sensors for target detection and tracking in the electromagnetic wavelength ranges: ultraviolet (UV), visual / electro-optical (EO), LASER (eg 1.06 μm and 10.6 μm), infrared (IR) as well as RADAR (eg I / J band and mmW).
Mit Hilfe elektronischer Verfahren (z.B. Filterverfahren) und mathematischer Algorithmen (z.B. Mustererkennung) sind diese modernen Flugkörper in der Lage, anhand von spektralen, zeitlichen, kinematischen und räumlichen Unterscheidungsmerkmalen echte Seeziele (z.B. Schiffe, Bohrtürme,...) von Falschzielen zu unterscheiden.Using electronic techniques (e.g., filtering techniques) and mathematical algorithms (e.g., pattern recognition), these modern missiles are capable of distinguishing real sea targets (e.g., ships, derricks, ...) from false targets based on spectral, temporal, kinematic, and spatial differentials.
Um mittels eines Täuschkörpersystems die Vielzahl unterschiedlicher Flugkörper in unterschiedlichen Bedrohungssituationen abwehren zu können ist es zwingend notwendig, auf jede Bedrohungssituation individuell angepasste, exakt platzierte Täuschkörpermuster erzeugen zu können. Die spezifische Bedrohungssituation ist hierbei durch folgende Parameter gegeben definiert:
- ■ Flugkörpertyp (u.a. Sensortyp, Zielverfolgungsalgorithmus, usw.)
- ■ Anflugrichtung des Flugkörper
- ■ Anfluggeschwindigkeit des Flugkörper
- ■ Entfernung des Flugkörpers
- ■ Fahrtgeschwindigkeit des Schiffes
- ■ Schiffstyp (Geometrie)
- ■ Schiffssignatur (Radar, Infrarot)
- ■ Schiffskurs
- ■ Windrichtung
- ■ Windgeschwindigkeit
- ■ Type of missile (including sensor type, target tracking algorithm, etc.)
- ■ approach direction of the missile
- ■ approach speed of the missile
- ■ Distance of the missile
- ■ Travel speed of the ship
- ■ Ship type (geometry)
- ■ Ship signature (radar, infrared)
- ■ Ship's course
- ■ Wind direction
- ■ Wind speed
Die
In
In
Erfindungsgemäß wird ein Täuschkörpersystem beschrieben, welches mittels eines Taktik-Einsatzrechners das für die spezifische Bedrohungssituation zur Flugkörperabwehr optimale Täuschkörpermuster bezüglich der benötigten Anzahl an Täuschkörper (n) und deren räumlichen und zeitlichen Sollkoordinaten (xn, yn, zn, tn) berechnet und anschließend mittels einer Täuschkörperwurfanlage die exakte räumliche (xn, yn, zn) und zeitliche (tn) Positionierung der Täuschkörper realisiert. Mit anderen Worten liegt der Kern der Erfindung darin begründet, dass fast beliebige Muster aus Täuschkörper-Wolken auch unter den Bedingungen einer rauhen See gebildet werden können.According to the invention, a decoy is described that the required number of decoy (s) and their spatial and temporal target coordinates (x n, y n, z n, t n) by means of a tactical mission computer the optimum for the specific security threat missile defense decoy calculated with respect to and then realized by means of a Täuschkörperwurfanlage the exact spatial (x n , y n , z n ) and temporal (t n ) positioning of the decoys. In other words, the essence of the invention lies in the fact that almost any pattern of decoy clouds can be formed even under the conditions of rough seas.
Im Flussdiagram der
Mittels geeigneter Sensorik werden die Winddaten (Windgeschwindigkeit und Windrichtung) sowie die Schiffseigendaten (Geschwindigkeit, Kurs, Nick- und Rollbewegung)) erfasst und an einen zentralen Computer (
Durch Warnsensoren werden anfliegende Flugkörper erfasst und der jeweilige Flugkörpertyp sowie dessen Anflugrichtung und -entfernung ermittelt. Diese Daten werden ebenfalls an den Zentralcomputer 2 weitergeleitet. In einer Korrelationsdatenbank (threat table) werden die spezifischen und zur Flugkörper-Abwehr relevanten Daten des erfassten Flugkörpertyps abgefragt. Dies sind insbesondere:
- Flugkörpersensorik (Radar, EO, Infrarot, LASER)
- Flugkörpergeschwindigkeit
- Flugkörpersuch- und Trackverfahren
- Flugkörperfilterverfahren
- Elektronische Gegenmaßnahmen (ECCM) des Flugkörpers
By warning sensors approaching missiles are detected and the respective type of missile and its approach direction and distance determined. This data is also forwarded to the
- Missile sensors (radar, EO, infrared, LASER)
- Missile velocity
- Missile search and track procedure
- Missile filtering methods
- Electronic countermeasures (ECCM) of the missile
In Abhängigkeit dieser Flugkörperdaten sowie der Schiffsdaten (Geschwindigkeit, Kurs, Radar-Signatur, Infrarotsignatur)) und Windparameter (Geschwindigkeit und Richtung) wird nun individuell das optimale Täuschkörpermuster hinsichtlich Anzahl der zur Flugktirperabwehr notwendigen Täuschkörper (n) sowie deren räumliche und zeitliche Sollkoordinaten (xn, yn, zn, tn) ermittelt (Beispiele siehe
Sollten in der Korrelationsdatenbank keine Daten über den Flugkörper zur Verfügung stehen, wird auf ein generisches Täuschkörpermuster, welches ebenfalls in einer Datenbank für bestimmte Bedrohungssituationen und Flugkörper abgelegt wird (beispielsweise eine "Tarnwand" gemäß
If no data about the missile are available in the correlation database, a generic decoy pattern is stored, which is also stored in a database for specific threat situations and missiles (for example, a "cloak wall")
Zur Realisierung des vorgegebenen Täuschkörpermusters (Sollwerte) wird erfindungsgemäß eine Vorrichtung verwendet, welche folgende Komponenten aufweist (s.
- a) Sensorik zur Erfassung der Roll- und Nickbewegung des Schiffes in Bezug auf einen künstlichen Horizont
- b) Computer zur Berechnung der Abschussdaten
- c) Eine 2-achsige, in Azimut und Elevation bewegliche Richteinheit
- d) Eine Abschussplattform mit einer Vielzahl von individuell ansteuerbaren Abschusselementen
- e) Täuschkörpermunitionen, die mit programmierbaren Verzögerungselementen ausgestattet sind, welche über eine Datenschnittstelle von der Abschussplattform aus so programmiert werden, daß die Wirkentfaltung bei Erreichung der Sollkoordinaten (xn, yn, zn) einsetzt.
- a) Sensors for detecting the roll and pitch of the vessel with respect to an artificial horizon
- b) computer for calculating the firing data
- c) A 2-axis, in azimuth and elevation movable straightening unit
- d) A launching platform with a large number of individually activatable launcher elements
- e) decoys ammunition equipped with programmable delay elements, which are programmed via a data interface from the launching platform so that the active deployment starts when the desired coordinates (x n , y n , z n ) are reached.
Zur weiteren Beschreibung wird, der Einfachheit halber das in
Zur Realisierung des vorgegebenen Täuschkörpermusters (Sollwerte) werden erfindungsgemäß mittels des Computers (
- ■ Die Berechnung der ballistischen Flugbahnen der Täuschkörpermunitionen (
Fig. 8 , Bezugszeichen 3) in Abhängigkeit ihres Luftwiderstandes, ihrer Masse (m) und der Abgangsgeschwindigkeit (v0). - ■ Die Berechnung der notwendigen Abgangswinkel der Täuschkörpermunitionen in Azimut (αn) und Elevation (εn), durch die gewährleistet wird, daß die zuvor berechneten ballistischen Flugbahnen die Sollkoordinaten (xn, yn, zn) kreuzen
- ■ Die Berechnung der benötigten Flugzeiten der Täuschkörpermunitionen bis zur Erreichung der Sollkoordinaten (xn, yn, zn)
- ■ Die Berechnung der notwendigen zeitliche Staffelung (Δt) des Verschusses der einzelnen Täuschkörpermunitionen zur Gewährleistung der richtigen zeitlichen Positionierung (tn) an den Sollkoordinaten (xn, yn, zn).
- ■ Die Berechnung der notwendigen Kompensationswinkel in Azimut (Δα) und Elevation (Δε) zur Kompensation der durch Nick- und Rollbewegung des Schiffes hervorgerufenen Fehler des Abgangswinkels.
- ■ Die Berechnung der notwendigen Kompensationswinkel in Azimut (Δα) und Elevation (Δε) zur Kompensation der durch Fahrt und Kurs des Schiffes hervorgerufenen zeitlichen Verschiebungen der Sollkoordinaten (xn, yn, zn, tn).
- ■ The calculation of the ballistic trajectories of the decoy ammunition (
Fig. 8 , Reference numeral 3) depending on their air resistance, their mass (m) and the outgoing speed (v 0 ). - ■ The calculation of the necessary departure angles of the decoy ammunition in azimuth (α n ) and elevation (ε n ), which ensures that the previously calculated ballistic trajectories cross the nominal coordinates (x n , y n , z n )
- ■ The calculation of the required flight times of the decoy ammunition until the target coordinates (x n , y n , z n ) are reached
- ■ The calculation of the necessary time staggering (Δt) of the firing of the individual decoy munitions to ensure the correct temporal positioning (t n ) at the nominal coordinates (x n , y n , z n ).
- ■ The calculation of the necessary compensation angles in azimuth (Δα) and elevation (Δε) to compensate for the departure angle error caused by pitch and roll motion of the ship.
- ■ The calculation of the necessary compensation angles in azimuth (Δα) and elevation (Δε) to compensate for the time shifts of the setpoint coordinates (x n , y n , z n , t n ) caused by travel and course of the ship.
Die so berechneten Werte werden nun in Maschinenbefehle umgesetzt und damit die in den
Im Folgenden soll ein konkretes Ausführungsbeispiel der Erfindung beschrieben werden.In the following, a concrete embodiment of the invention will be described.
Sensor zur Erfassung der Roll- und Nickbewegung (
Die Schiffseigenbewegungen, Rollen und Nicken, werden durch eine Kreiselstabiliserungsanlage, vorzugsweise durch ein Inklinometer erfasst.The ship's movements, roles and pitches are detected by a gyrostabilizer, preferably by an inclinometer.
Computer zur Berechnung der Abschussdaten (
Grundsätzlich sind alle gängigen Computer 2 geeignet, vorzugsweise wird jedoch ein mikroprozessorbasierter PC oder eine SPS-Steuerungen eingesetzt.Basically, all
Der Computer berechnet aus den Sollkoordinaten (xn, yn, zn, tn) der Täuschkörper die zeitliche Staffelung (Δt) und über die gegebene Ballistik (bei gleicher Abgangsgeschwindigkeit v0) mittels eines mathematischen Näherungsverfahren, z.B. 'Runge-Kutta-Verfahren', den Abschußazimut αn, die Abschußelevation εn und die benötigte Flugzeit und somit die Wirkentfernung dn der einzelnen Täuschkörpermunitionen.From the desired coordinates (x n , y n , z n , t n ) of the decoy, the computer calculates the time staggering (Δt) and the given ballistics (At the same outflow speed v 0 ) by means of a mathematical approximation method, eg 'Runge-Kutta method', the Abschußazimut α n , the Abschußelevation ε n and the required time of flight and thus the effective distance d n of the individual decoy munitions.
Die berechneten Daten werden von Steueranlagen, vorzugsweise Servocontrollern in Maschinenbefehle für die beschriebenen, 2-achsigen, in Azimut und Elevation beweglichen Werfer (
Der in zwei Achsen bewegliche Werfer ist mittels elektrischen, hydraulischen oder pneumatischen Richtantrieben realisiert. Vorzugsweise wird ein elektrischer Antrieb verwendet, der entweder direkt auf die Abschussplattform wirkt oder vorzugsweise indirekt über ein Getriebe die Bewegung auf die Abschussplattform überträgt. Die Stärke der Antriebe für die Azimutrichtbewegung und die Elevationsrichtbewegung ist an die zu bewegenden Gewichte und Momente angepasst. Um eine adäquate Reaktionsgeschwindigkeit erreichen zu können und um die Schiffseigenbewegungen ausgleichen zu können, sind die Antriebe so ausgelegt, dass sowohl für die Azimutrichtbewegung als auch für die Elevationsrichtbewegung eine Winkelgeschwindigkeit von mehr als 50°/s, bzw. eine Winkelbeschleunigung mehr als 50°/s2 (positive und negative Beschleunigung) erreicht wird.The launcher, which can move in two axes, is realized by means of electric, hydraulic or pneumatic directional drives. Preferably, an electric drive is used, which either acts directly on the launching platform or preferably indirectly transmits the movement to the launching platform via a gearbox. The strength of the drives for the Azimutrichtbewegung and the Elevationsrichtbewegung is adapted to the moving weights and moments. In order to be able to achieve an adequate reaction speed and in order to be able to compensate for the ship's own movements, the drives are designed so that an angular velocity of more than 50 ° / s, or an angular acceleration of more than 50 ° / s, both for the azimuth direction movement and for the elevation. s 2 (positive and negative acceleration) is reached.
Der Richtbereich ist derart ausgelegt, dass unter Einbeziehung der Gegebenheiten der Abschussplattform eine Schussrichtung in Azimut von 0° bis 360° und in Elevation eine Schussrichtung von 0° bis 90° erreicht wird. Programmierbare Abschussbegrenzungen sind realisiert, so dass ein Abfeuern der Täuschkörpermunition in Richtung der Aufbauten des Schiffes verhindert werden sollte. Aus Sicherheitsgründen werden vorzugsweise Programmspeicher auf EPROM-Basis eingesetzt.The straightening range is designed such that, taking into account the conditions of the launching platform, a weft direction in azimuth of 0 ° to 360 ° and in elevation a weft direction of 0 ° to 90 ° is achieved. Programmable launch limits are implemented so that firing of the decoy ammunition in the direction of the ship's superstructure should be prevented. For security reasons, program memories based on EPROM are preferably used.
Eine Abschussplattform mit einer Vielzahl von individuell ansteuerbaren Abschusselementen (
Die Abschussplattform ist derart ausgelegt, dass der Verschuss von mindestens 20 einzelnen Täuschkörpern möglich ist. Vorzugsweise ist jede Täuschkörpermunition einzeln verschiessbar. Zusätzlich ist realisiert, dass über die Abschussplattform die Programmierung der Flugzeit der Täuschkörpermunitionen bis zur gewünschten Wirkdistanz erfolgt. Die Schnittstelle zur Täuschkörpermunition kann über Kontakte ausgeführt sein, ist jedoch vorzugsweise durch eine induktive Schnittstelle realisiert, um Korrosionseinflüsse auf die Datenübertragung zu verhindern.The launching platform is designed so that it is possible to shoot at least 20 individual decoys. Preferably, each decoy ammunition is individually verschiessbar. In addition, it is realized that programming of the flying time of the decoy ammunition takes place via the launching platform up to the desired effective distance. The interface to the decoy ammunition can be implemented via contacts, but is preferably implemented by an inductive interface in order to prevent corrosion effects on the data transmission.
Täuschkörpermunitionen mit programmierbaren Ver-zögerungselementen welche über eine Datenschnittstelle von der Abschussplattform aus programmiert werden können (
Die Täuschkörpermunitionen sind derart ausgelegt, so dass alle dieselbe Abgangsgeschwindigkeit (v0) aufweisen. Dies ist notwendig, um die richtige und exakte Platzierung der Täuschkörper auf Basis der ballistischen Berechnungen des Computers zu gewährleisten. Die maximale Flugweite beträgt vorzugsweise mindestens 100 m. Die v0 ist entsprechend dem Munitionsgewicht, dem Luftwiderstandsbeiwert (cw) und der Stirnfläche (A) ausgelegt.The decoy ammunitions are designed so that they all have the same exit velocity (v 0 ). This is necessary to ensure the correct and accurate placement of the decoys based on the computer's ballistic calculations. The maximum flight distance is preferably at least 100 m. The v 0 is designed according to the ammunition weight, the drag coefficient (c w ) and the end face (A).
Die Täuschkörpermunitionen weisen jeweils ein programmierbares Verzögerungselement auf, so dass die Flugzeiten bis zur Wirkentfaltung an den Sollkoordinaten (xn, yn, zn) variabel sind und unmittelbar vor dem Abschuss über die Abschussplattform programmiert werden können. Die Schnittstellen zur Abschussplattform sind vorzugsweise induktiv, d.h. jeweils über ein Spulensystem ausgeführt.The decoy ammunition each have a programmable delay element, so that the flight times are variable up to the effective deployment at the desired coordinates (x n , y n , z n ) and can be programmed immediately before the launch of the launching platform. The interfaces to the launching platform are preferably inductive, ie in each case implemented via a coil system.
Claims (15)
- A method for protecting ships against terminal homing phase-guided missiles provided with a target data analysis system, wherein(1) the missile moving towards the ship to be protected is detected by suitable sensors, located, and its expected trajectory is calculated by means of a computer;(2) the type of target data analysis performed by the missile is detected by means of suitable sensors and algorithms, and the missile is classified with regard to the type of its target data analysis;(3) the current wind speed and direction of wind is detected continuously by means of wind measuring sensors;(4) the ship's own data:travelling speed, direction of travel, rolling and pitching motions, is continuously detected by means of motion and/or navigation sensors;(5) the detected data of (1) to (4) is transmitted to a fire control calculator by means of data interfaces;(6) at least one dirigible decoy launcher is controlled by means of the fire control calculator and the firing of decoy ammunitions is initiated, with the fire control calculator controlling the deployment of the decoys based on the evaluated sensor data with regard to:- kind of the ammunition type;- number of the different ammunition types;- temporal firing interval between successive ammunitions;- the firing direction of each ammunition in azimuth and elevation, including the compensation of rolling and pitching motions of the ship;- the delay time of the ammunitions from firing until activation of the effective charge, and thus the distance of the decoy effect;and(7) the fire control calculator calculates an optimal course of the ship and an optimal speed of the ship so as to support the separation of the decoy formation deployed from the ship to be protected in a control computer-supported manner; wherein(8) the ship's on-board wind measuring equipment is used as the wind measuring sensors; and wherein(9) the ship's own data is detected by the navigation equipment and the gyroscopic stabilization equipment of the ship to be protected or by means of separate acceleration sensors, in particular pitch, roll, or gyroscopic sensors,
characterized in that(10) a particular decoy pattern is generated in dependence on the identified missile and the attack structure, wherein the appropriate decoy pattern for the respective type of threat, characterized by missile type and homing behavior, is stored in a database and fetched by the fire control calculator following identification of the missile type and attack structure, in order to build up a corresponding decoy pattern,
wherein(11) during build-up of the decoy pattern a decoy pattern database is accessed wherein appropriate decoy patterns for the respective missile type and the respective type of threat are stored, which allow to generate, in dependence on the identified missile and the attack structure, a particular decoy pattern so as to effectively protect a ship against the identified threat. - The method in accordance with claim 1, characterized in that RF and/or IR and/or UV sensors are used for detection, preferably the ship's on-board reconnaissance radars, wherein standardized interfaces, in particular NTDS, RS232, RS422, ETHERNET, IR, BLUETOOTH interfaces, are used as data interfaces.
- The method in accordance with any one of claims 1 or 2, characterized in that decoy ammunitions with RF, IR, and combined RF/IR active compositions as well as unfolding, floating radio frequency reflectors, in particular radar reflectors (Airborne Radar Reflectors), are used as decoy ammunitions.
- The method in accordance with any one of claims 1 to 3, characterized in that a personal computer, a micro-controller control, or an SPS control is used as a fire control calculator, with the fire control calculator transmitting the determined data for deploying the decoy formation to the decoy launchers via a standardized data interface, in particular via a CAN bus (Controller Area Network bus).
- The method in accordance with any one of claims 1 to 4, characterized in that unfolding decoys are used, wherein the folded decoys are fired by the decoy launcher and unfolded during the launch by means of gases, in particular by means of pyrotechnical gases, in particular by means of pyrotechnical gas generators, preferably airbag gas generators, wherein a radio frequency reflector, in particular a radar reflector, preferably a corner reflector, preferably a radar reflector having eight tri-hedral corner reflectors (tri-hedrals), in a particularly preferred manner a corner reflector; preferably in the form of nettings or foils, is used as a decoy.
- The method in accordance with with any one of claims 1 to 5, characterized in that the decoy pattern is selected from the following geometrical configurations: sandwich; screen; tower; vertical camouflage screen (side-attack protection); horizontal camouflage screen (top-attack protection), and/or in that a decoy ammunition with programmable delay elements is used.
- The method in accordance with any one of claims 1 to 6, characterized in that all of the decoy ammunitions used for a particular decoy pattern are formed such as to have an identical velocity of departure (V0).
- A protective system apparatus for the protection of ships against terminal homing phase-guided missiles comprising a target data analysis system, comprising:at least one computer;sensors for detecting terminal homing phase-guided missiles having a target data analysis system for discriminating between genuine and spurious target, that approach a ship to be protected;sensors for detecting the direction of approach, distance, and velocity of the missiles;wind measuring means for wind speed and direction of wind;motion and/or navigation sensors for detecting the ship's own data:travelling speed, direction of travel, rolling and pitching motions;at least one fire control calculator, wherein in particular fire control calculator and computer form a unit; and wherein the fire control calculator communicates with the sensors via data interfaces;at least one decoy launcher arranged on the ship and dirigible in azimuth and elevation, which is equipped with decoy ammunitions, wherein the ammunition types comprise RF, IR, and combined RF/IR ammunitions as well as unfolding corner reflectors,characterized in thatthe computer includes a database in which appropriate decoy patterns for the respective missile type and the respective attack structure are stored, which allow to generate, in dependence on the identified missile and the attack structure, a particular decoy pattern so as to effectively protect a ship against the identified threat.
- The protective system apparatus in accordance with claim 8, characterized in that the decoy launcher includes the following components:- a launching platform as a carrier of the single decoy ammunitions;- electric launching means which fire the single decoy ammunitions in randomly adjustable temporal intervals,- an elevational drive for movement in height of the launching platform,- an azimuthal drive for sideways movement of the launching platform,- a base platform for receiving the drives,- shock absorbers at the base platform for attenuating rapid ship movements particularly brought about by mine detonation shocks;- STEALTH trimmings for reducing the ship's signature in the RF and IR ranges, preferably formed of obliquely inclined metallic or carbon fiber surfaces;- a suitable interface which transmits the delay time of the decoy ammunition(s) from launch to activation of the effective charge immediately prior to launch from the decoy launcher to the decoy ammunition(s), preferably having the form of an electric plug-in connection or of an inductive connection via two corresponding coils.
- The protective system apparatus in accordance with claim 8 or 9,
characterized in that the decoy ammunitions comprise integrated, electronic delay elements freely programmable by means of the fire control calculator and/or
the decoy launchers are provided with electric, hydraulic, or pneumatic directional drives, with the angular acceleration in the azimuthal direction and in the elevational direction being at least 50 DEG/s2 and/or RF and/or IR and/or UV sensors, preferably the ship's on-board reconnaissance radars, are provided for detection. - The protective system apparatus in accordance with any one of claims 8 to 10, characterized in that standardized interfaces, in particular NTDS, RS232, RS422, ETHERNET, IR, BLUETOOTH interfaces are provided as data interfaces.
- The protective system apparatus in accordance with any one of claims 8 to 11, characterized in that decoy ammunitions with RF, IR, and combined RF/IR active compositions as well as unfolding, floating radio frequency reflectors, in particular radar reflectors (Airborne Radar Reflectors) are provided as decoy ammunitions.
- The protective system apparatus in accordance with claim 12, characterized in that unfolding decoys are provided, wherein the folded decoys are fired by the decoy launcher and are adapted to be unfolded during the launch by means of gases, in particular by means of pyrotechnical gas generators, in particular airbag gas generators, wherein a radio frequency reflector, in particular a radar reflector, preferably a corner reflector, preferably a radar reflector having eight tri-hedral corner reflectors (tri-hedrals), in a particularly preferred manner a corner reflector; preferably in the form of nettings or foils, is provided as a decoy.
- The protective system apparatus in accordance with any one of claims 8 to 13, characterized in that a decoy ammunition with programmable delay elements is provided
and/or
all of the decoy ammunitions used for a particular decoy pattern are formed such as to have an identical velocity of departure (V0). - The protective system apparatus in accordance with any one of claims 8 to 14, characterized in that a personal computer, a micro-controller control or an SPS control is provided as a fire control calculator, with the fire control calculator transmitting the determined data for deploying the decoy formation to the decoy launchers via a standardized data interface, in particular via a CAN bus (Controller Area Network bus).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10346001A DE10346001B4 (en) | 2003-10-02 | 2003-10-02 | Device for protecting ships from end-phase guided missiles |
PCT/EP2004/009736 WO2005033616A1 (en) | 2003-10-02 | 2004-09-01 | Method and device for protecting ships against end-stage guided missiles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1668310A1 EP1668310A1 (en) | 2006-06-14 |
EP1668310B1 true EP1668310B1 (en) | 2011-05-11 |
Family
ID=34399213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04764698A Expired - Lifetime EP1668310B1 (en) | 2003-10-02 | 2004-09-01 | Method and device for protecting ships against end-stage guided missiles |
Country Status (6)
Country | Link |
---|---|
US (1) | US7886646B2 (en) |
EP (1) | EP1668310B1 (en) |
KR (1) | KR101182772B1 (en) |
DE (1) | DE10346001B4 (en) |
DK (1) | DK1668310T3 (en) |
WO (1) | WO2005033616A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015011058A1 (en) | 2015-08-27 | 2017-03-02 | Rheinmetall Waffe Munition Gmbh | Threat prevention system |
RU175624U1 (en) * | 2016-09-19 | 2017-12-12 | Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Академия Вооруженных Сил Российской Федерации" | A set of ammunition cartridges for controlled sudden sharp contrast crucifixion or aerosol formation in the area of the masked object |
WO2023274721A1 (en) * | 2021-07-02 | 2023-01-05 | Rheinmetall Waffe Munition Gmbh | Method for protecting an object from a radar-guided missile |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE525000C2 (en) * | 2003-03-04 | 2004-11-09 | Totalfoersvarets Forskningsins | Ways of bringing a projectile into the throwway to operate at a desired point at an estimated time |
US8130137B1 (en) | 2005-07-26 | 2012-03-06 | Lockheed Martin Corporation | Template updated boost algorithm |
US20090217811A1 (en) | 2006-01-17 | 2009-09-03 | David William Leeming | Textile armour |
DE102006004912A1 (en) | 2006-01-20 | 2007-07-26 | Rheinmetall Waffe Munition Gmbh | System for protection, especially of large flying platforms against infrared or radar guided missiles or other threats, has user unit with system operating elements |
DE102006017107A1 (en) | 2006-04-10 | 2007-10-11 | Oerlikon Contraves Ag | Protective device for a stationary and/or mobile radar to protect from anti-radiation missile attack comprises a decoy body or emitter formed as passive bodies radiated by a radar and reflecting the beams from the body |
DE102007007403A1 (en) * | 2007-02-12 | 2008-08-21 | Krauss-Maffei Wegmann Gmbh & Co. Kg | Method and device for protection against flying attack ammunition |
AU2008287308B2 (en) | 2007-05-14 | 2011-05-26 | Raytheon Company | Methods and apparatus for selecting a target from radar tracking data |
DE102008023520C5 (en) * | 2008-05-15 | 2016-12-29 | Airbus Defence and Space GmbH | Method for classifying RAM bullets |
DE102008046432A1 (en) * | 2008-09-09 | 2010-03-11 | Rheinmetall Waffe Munition Gmbh | Apparatus and method for repelling objects approaching a ship under or on the water |
EP2204632A1 (en) * | 2008-12-31 | 2010-07-07 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | A method of applying soft-kill deployment, a soft-kill deployment system and a computer program product |
US8106340B1 (en) * | 2009-03-02 | 2012-01-31 | Lockheed Martin Corporation | Generalized midcourse missile guidance |
DE102009011447B9 (en) * | 2009-03-03 | 2012-08-16 | Diehl Bgt Defence Gmbh & Co. Kg | Method for igniting a warhead of a grenade and vehicle |
US20120000349A1 (en) * | 2009-03-31 | 2012-01-05 | Bae Systems Plc | Assigning weapons to threats |
EP2348276A1 (en) * | 2010-01-20 | 2011-07-27 | Eurocopter Deutschland GmbH | System and method for situation specific generation and assessment of risk profiles and start of suitable action for protection of vehicles |
IL204620A0 (en) * | 2010-03-21 | 2010-12-30 | Israel Aerospace Ind Ltd | Defense system |
DE102010032458A1 (en) | 2010-06-11 | 2011-12-15 | Rheinmetall Waffe Munition Gmbh | Active decoys against radar sources and methods of protecting objects with the aid of such decoys |
DE102010036026A1 (en) | 2010-08-31 | 2012-03-01 | Rheinmetall Waffe Munition Gmbh | Smoke screen effectiveness determining device for protecting e.g. military platform, has measuring sensor system connected with data processing unit, and data processing algorithms provided for analysis of effectiveness of smoke screen |
EP2612101B1 (en) | 2010-08-31 | 2017-01-11 | Rheinmetall Waffe Munition GmbH | Device and method for producing an effective fog wall or fog cloud |
DE102011014599B4 (en) * | 2011-03-22 | 2016-12-08 | Diehl Bgt Defence Gmbh & Co. Kg | A method of protecting an object from attack by an approaching flying object |
DE102011052616A1 (en) * | 2011-03-28 | 2012-10-04 | Peter Huber | Apparatus and method for defending a target object against at least one attacking missile |
CN102261869A (en) * | 2011-06-15 | 2011-11-30 | 北京机械设备研究所 | Individual soldier digital fire control device for intercepting low altitude small target at slow speed |
US11313650B2 (en) | 2012-03-02 | 2022-04-26 | Northrop Grumman Systems Corporation | Methods and apparatuses for aerial interception of aerial threats |
US9551552B2 (en) | 2012-03-02 | 2017-01-24 | Orbital Atk, Inc. | Methods and apparatuses for aerial interception of aerial threats |
US11947349B2 (en) | 2012-03-02 | 2024-04-02 | Northrop Grumman Systems Corporation | Methods and apparatuses for engagement management of aerial threats |
US9501055B2 (en) | 2012-03-02 | 2016-11-22 | Orbital Atk, Inc. | Methods and apparatuses for engagement management of aerial threats |
US9170070B2 (en) | 2012-03-02 | 2015-10-27 | Orbital Atk, Inc. | Methods and apparatuses for active protection from aerial threats |
US9250043B1 (en) | 2012-08-13 | 2016-02-02 | Lockheed Martin Corporation | System and method for early intercept ballistic missile defense |
CN102998717B (en) * | 2012-11-26 | 2015-06-10 | 北京空间飞行器总体设计部 | Design method for repeatedly using floating detector system on Martian surface |
CN103575167B (en) * | 2013-11-07 | 2014-12-03 | 北京机械设备研究所 | Trajectory correction method for civil interceptor missiles |
DE102015002737B4 (en) | 2015-03-05 | 2023-05-25 | Rheinmetall Waffe Munition Gmbh | Method and device for providing a decoy to protect a vehicle and/or object from radar-guided seekers |
DE102015120030A1 (en) | 2015-09-17 | 2017-03-23 | Rheinmetall Defence Electronics Gmbh | Remote weapon station and method of operating a remote weapon station |
DE102016109727A1 (en) * | 2016-05-25 | 2017-11-30 | Rheinmetall Defence Electronics Gmbh | Carrier platform for carrying military payloads |
US10473761B2 (en) * | 2016-08-11 | 2019-11-12 | Rodradar Ltd. | Wire and pylon classification based on trajectory tracking |
RU183038U1 (en) * | 2018-04-11 | 2018-09-07 | Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Академия Вооруженных Сил Российской Федерации" | Generator of a controlled water-based foam-aerosol mask-interference to the WTO guidance means over a ground object |
DE102018110241A1 (en) | 2018-04-27 | 2019-10-31 | Rheinmetall Waffe Munition Gmbh | Method and device for protecting a vehicle from a threat |
US10778943B2 (en) * | 2018-07-17 | 2020-09-15 | C-Tonomy, LLC | Autonomous surveillance duo |
DE102018131524A1 (en) * | 2018-12-10 | 2020-06-10 | Rheinmetall Waffe Munition Gmbh | Process for protecting moving or immovable objects from approaching laser-guided threats |
US10970852B2 (en) | 2019-04-01 | 2021-04-06 | Alloy Surfaces Company, Inc. | Systems and methods for multi-signature countermeasure testing |
US12006067B2 (en) * | 2019-05-30 | 2024-06-11 | Launch On Demand Corporation | Launch on demand |
DE102019117801A1 (en) * | 2019-07-02 | 2021-01-07 | Rheinmetall Waffe Munition Gmbh | Decoy, system and method for protecting an object |
DE102020201732A1 (en) | 2020-02-12 | 2021-08-12 | Thyssenkrupp Ag | Method for minimizing detonation damage on a watercraft |
KR102134580B1 (en) * | 2020-04-16 | 2020-07-16 | 한화시스템 주식회사 | Target information database management system for each layer of the next generation naval combat system |
KR102551654B1 (en) * | 2021-03-03 | 2023-07-05 | 엘아이지넥스원 주식회사 | Method and Apparatus for Recognizing for High Threat Targets |
KR102494974B1 (en) * | 2021-04-16 | 2023-02-06 | 엘아이지넥스원 주식회사 | System for calculating shooting specification for improving the accuracy error of landing guns using weather information in ships and method thereof |
CN114353784B (en) * | 2022-03-17 | 2022-06-07 | 西北工业大学 | Guided projectile air attitude identification method based on motion vector |
Family Cites Families (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US422306A (en) | 1890-02-25 | Door-hanger | ||
FR2383419A1 (en) | 1977-03-07 | 1978-10-06 | Lacroix E | LURE LAUNCHER CASE FOR WEAPON GUIDANCE SYSTEMS ACCEPTANCE |
DE2847233C2 (en) | 1978-10-30 | 1983-12-01 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Method for finding and identifying modulated radiation sources close to the horizon |
DE3019743C2 (en) | 1980-05-23 | 1987-05-07 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln | Vehicle with a platform for target line stabilization in conjunction with an inertial system |
DE3229819C2 (en) | 1982-08-11 | 1985-02-14 | Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen | Integrated navigation and fire control system for battle tanks |
US4470199A (en) * | 1983-02-24 | 1984-09-11 | The Boeing Company | Method and apparatus for aligning aircraft instruments bearing platforms |
US4531299A (en) * | 1984-03-21 | 1985-07-30 | The United States Of America As Represented By The Secretary Of The Navy | Analog inclination data system |
DE3421692C2 (en) | 1984-06-12 | 1986-10-02 | Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen | Method and projectile for creating an IR decoy |
SE458151B (en) * | 1984-09-04 | 1989-02-27 | Bofors Ab | SETTING TO OPTIMIZE THE TARGET DRAWING FOR AN AUTOMATIC CANON AIRCRAFT |
US4673250A (en) * | 1985-08-09 | 1987-06-16 | The United States Of America As Represented By The Secretary Of The Army | CO2 laser weapon countermeasure |
DE3612183A1 (en) * | 1986-04-11 | 1987-10-22 | Wegmann & Co | METHOD FOR DEFLECTING FLIGHT BODIES STEERED BY RADAR AND / OR INFRARED RADIATION, ESPECIALLY FOR THE PROTECTION OF SEA SHIPS AND SHIPPING APPLICATIONS, AND DEVICE FOR IMPLEMENTING THE METHOD |
DE3733681C1 (en) | 1987-10-05 | 1994-07-28 | Buck Chem Tech Werke | Missile with IR-seeking head for use against hostile helicopters |
DE3733962A1 (en) | 1987-10-08 | 1989-04-27 | Wegmann & Co | METHOD FOR AUTOMATIC TARGET CLASSIFICATION BY AGRICULTURAL AND WATER COMBATING VEHICLES AND DEVICE FOR CARRYING OUT SAID METHOD |
GB8729382D0 (en) | 1987-12-16 | 1988-01-27 | Secr Defence | Electronic tilt measuring system |
DE3828766C2 (en) * | 1988-08-25 | 1997-04-10 | Daimler Benz Aerospace Ag | Electro-optical system for the detection of missiles |
DE3835887C2 (en) * | 1988-10-21 | 1997-10-02 | Rheinmetall Ind Ag | Cartridge for creating false targets |
US4852456A (en) * | 1988-10-26 | 1989-08-01 | Northrop Corporation | Decoy system |
US6231002B1 (en) * | 1990-03-12 | 2001-05-15 | The Boeing Company | System and method for defending a vehicle |
DE4014192A1 (en) | 1990-05-03 | 1991-11-07 | Messerschmitt Boelkow Blohm | Mobile missile launcher and guidance system - is capable of being transported by modified cross country vehicle for speedy deployment |
DE4014194A1 (en) | 1990-05-03 | 1991-11-07 | Messerschmitt Boelkow Blohm | Missile launching frame - is detachable from elevating support hinging on base and carrying launcher tubes |
US5061930A (en) * | 1990-06-12 | 1991-10-29 | Westinghouse Electric Corp. | Multi-mode missile seeker system |
DE4115384C2 (en) * | 1991-05-10 | 1994-07-07 | Buck Chem Tech Werke | Method for protecting objects emitting IR radiation |
JPH0772680B2 (en) | 1992-02-05 | 1995-08-02 | 防衛庁技術研究本部長 | Proximity protection device |
US5229540A (en) * | 1992-05-26 | 1993-07-20 | The United States Of America As Represented By The Secretary Of The Army | Tank alerting system |
DE4229509C2 (en) | 1992-09-04 | 1994-07-14 | Buck Chem Tech Werke | Method and device for protecting radar stations against anti-radar missiles |
DE4238038C1 (en) | 1992-11-11 | 1994-06-16 | Buck Chem Tech Werke | Method of providing a dummy target |
US5574458A (en) * | 1992-11-17 | 1996-11-12 | Honeywell Inc. | Automatic RF countermeasures dispensing module controller |
US5549477A (en) * | 1992-11-17 | 1996-08-27 | Honeywell Inc. | Integrated aircraft survivability equipment in-flight simulation |
DE9320382U1 (en) | 1993-07-07 | 1994-06-01 | BST Schutztechnik GmbH, 85521 Ottobrunn | Self-protection system for battlefield vehicles |
DE4327976C1 (en) * | 1993-08-19 | 1995-01-05 | Buck Chem Tech Werke | Flare charge for producing decoys |
DE4401587A1 (en) | 1994-01-20 | 1995-07-27 | Wegmann & Co Gmbh | Combat vehicle and transport system for loading it onto transport aircraft |
DE4423728A1 (en) | 1994-06-25 | 1996-01-04 | Inst Baustoff Und Umweltschutz | Process for the treatment and environmentally sound recovery of asbestos cement products |
DE4426014B4 (en) * | 1994-07-22 | 2004-09-30 | Diehl Stiftung & Co.Kg | System for protecting a target against missiles |
GB9506618D0 (en) * | 1994-10-07 | 1995-05-24 | Myers Lorraine P | Trolley handle |
DE4437729C1 (en) | 1994-10-21 | 1996-04-25 | Buck Chem Tech Werke | Method for protecting objects emitting IR radiation, in particular ships, against missiles |
DE4444635C2 (en) | 1994-12-15 | 1996-10-31 | Daimler Benz Aerospace Ag | Self-defense device against missiles |
DE19546873C1 (en) * | 1995-12-15 | 1997-05-15 | Daimler Benz Aerospace Ag | Determining distance of object flying through atmosphere and radiating energy |
GB2342983B (en) | 1996-01-15 | 2000-08-23 | Bodenseewerk Geraetetech | Counter measure system for an aircraft |
DE19601165A1 (en) | 1996-01-15 | 1997-07-17 | Bodenseewerk Geraetetech | Decoys for deflecting aiming guided missiles |
US5635662A (en) * | 1996-02-07 | 1997-06-03 | The United States Of America As Represented By The Secretary Of The Navy | Method and apparatus for avoiding detection by a threat projectile |
DE19604745C1 (en) | 1996-02-09 | 1999-11-18 | Rheinmetall Ind Ag | Steered munition deception method for protecting valid targets from laser-guided shells |
DE19617701C2 (en) | 1996-05-03 | 2000-01-13 | Buck Werke Gmbh & Co I K | Method of providing a dummy target |
DE19638968A1 (en) * | 1996-09-23 | 1998-03-26 | Reinhold Ficht | Fighting method for approaching flying object |
US5703314A (en) * | 1996-11-20 | 1997-12-30 | The United States Of America As Represented By The Secretary Of The Navy | Infrared projector countermeasure system |
US5814754A (en) * | 1997-01-09 | 1998-09-29 | Foster-Miller, Inc. | False target deployment system |
FR2780774B1 (en) | 1998-07-03 | 2001-03-09 | Alkan Sa | PASSIVE SELF-PROTECTION DEVICE FOR MOBILE MACHINE SUCH AS A HELICOPTER |
RU2151360C1 (en) | 1998-09-29 | 2000-06-20 | Государственное унитарное предприятие "Уральское конструкторское бюро транспортного машиностроения" | Mobile combat vehicle with complex of opposite action to guided, homing weapon and artillery weapon with laser range finders |
DE19936587C2 (en) | 1999-08-04 | 2003-08-21 | Buck Neue Technologien Gmbh | Ammunition or pyrotechnic device for deploying submunitions |
DE19949196A1 (en) | 1999-10-13 | 2001-04-19 | Pia Maria Martin | Self-defence protection device to deter attackers comprises arrangement activated when necessary to change external appearance of user |
DE19951767C2 (en) | 1999-10-27 | 2002-06-27 | Buck Neue Technologien Gmbh | Dual mode decoy |
AUPQ413299A0 (en) * | 1999-11-18 | 1999-12-09 | Metal Storm Limited | Forming temporary airborne images |
US6414622B1 (en) * | 1999-12-21 | 2002-07-02 | Lockheed Martin Corporation | Anti-radar missile (ARM) countermeasure method |
DE10024320C2 (en) | 2000-05-17 | 2002-09-05 | Diehl Munitionssysteme Gmbh | Radar device for object self-protection |
US6480140B1 (en) * | 2000-06-09 | 2002-11-12 | Jonathan B. Rosefsky | Apparatus and method for providing a deception response system |
DE10050479A1 (en) * | 2000-10-12 | 2002-04-18 | Bodenseewerk Geraetetech | System used for protecting objects, especially combat tanks, comprises an image-producing infra-red sensor attached to a missile launching device |
FR2821413A1 (en) | 2001-02-28 | 2002-08-30 | Alain Denes | FOLDABLE DEVICE AND ITS DEPLOYMENT METHOD |
DE10117007A1 (en) * | 2001-04-04 | 2002-10-17 | Buck Neue Technologien Gmbh | Method and device for protecting mobile military equipment |
US6497169B1 (en) * | 2001-04-13 | 2002-12-24 | Raytheon Company | Method for automatic weapon allocation and scheduling against attacking threats |
DE10119970B4 (en) * | 2001-04-24 | 2005-06-30 | Blohm + Voss Gmbh | Method for detecting a ship signature |
IL147984A (en) | 2002-02-04 | 2005-11-20 | Rafael Armament Dev Authority | System for operating a decoy against threats of anincoming airborne body |
US7086318B1 (en) * | 2002-03-13 | 2006-08-08 | Bae Systems Land & Armaments L.P. | Anti-tank guided missile weapon |
US7047861B2 (en) * | 2002-04-22 | 2006-05-23 | Neal Solomon | System, methods and apparatus for managing a weapon system |
DE10230939A1 (en) | 2002-07-09 | 2004-02-12 | Buck Neue Technologien Gmbh | Fighting vehicle has warning sensors to detect and analyze threats and select optimum countermeasures using bus connected detachable munition projectors |
US20040046688A1 (en) * | 2002-09-06 | 2004-03-11 | Bigge Mark W. | Mobile surveillance vehicle system |
DE10254786A1 (en) * | 2002-11-22 | 2004-06-03 | Rheinmetall W & M Gmbh | Integration of a large caliber gun on a ship |
US8544375B2 (en) * | 2004-06-10 | 2013-10-01 | Bae Systems Information And Electronic Systems Integration Inc. | System and method for providing a cooperative network for applying countermeasures to airborne threats |
-
2003
- 2003-10-02 DE DE10346001A patent/DE10346001B4/en not_active Expired - Lifetime
-
2004
- 2004-09-01 KR KR1020067008505A patent/KR101182772B1/en active IP Right Grant
- 2004-09-01 EP EP04764698A patent/EP1668310B1/en not_active Expired - Lifetime
- 2004-09-01 WO PCT/EP2004/009736 patent/WO2005033616A1/en active Application Filing
- 2004-09-01 DK DK04764698.9T patent/DK1668310T3/en active
- 2004-09-01 US US10/574,532 patent/US7886646B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015011058A1 (en) | 2015-08-27 | 2017-03-02 | Rheinmetall Waffe Munition Gmbh | Threat prevention system |
WO2017032782A1 (en) | 2015-08-27 | 2017-03-02 | Rheinmetall Waffe Munition Gmbh | System for defence against threats |
US10495420B2 (en) | 2015-08-27 | 2019-12-03 | Rheinmetall Waffe Munition Gmbh | System for defense against threats |
RU175624U1 (en) * | 2016-09-19 | 2017-12-12 | Федеральное Государственное Казенное Военное Образовательное Учреждение Высшего Образования Военный Учебно-Научный Центр Сухопутных Войск "Общевойсковая Академия Вооруженных Сил Российской Федерации" | A set of ammunition cartridges for controlled sudden sharp contrast crucifixion or aerosol formation in the area of the masked object |
WO2023274721A1 (en) * | 2021-07-02 | 2023-01-05 | Rheinmetall Waffe Munition Gmbh | Method for protecting an object from a radar-guided missile |
Also Published As
Publication number | Publication date |
---|---|
DE10346001B4 (en) | 2006-01-26 |
EP1668310A1 (en) | 2006-06-14 |
US7886646B2 (en) | 2011-02-15 |
DK1668310T3 (en) | 2011-08-29 |
WO2005033616A1 (en) | 2005-04-14 |
KR20060118454A (en) | 2006-11-23 |
KR101182772B1 (en) | 2012-09-13 |
US20070159379A1 (en) | 2007-07-12 |
DE10346001A1 (en) | 2005-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1668310B1 (en) | Method and device for protecting ships against end-stage guided missiles | |
EP3341674B1 (en) | System for defence against threats | |
DE102007007403A1 (en) | Method and device for protection against flying attack ammunition | |
DE4440120A1 (en) | Protective device with reactive armor | |
DE69628759T2 (en) | METHOD FOR INCREASING AIR DEFENSE MEETING PROBABILITY AND WEAPON DESIGNED AFTER THIS | |
EP0240819B1 (en) | Method of deceiving radar or infrared-guided missiles, particularly for boats and naval units, and apparatus therefor | |
EP1907784B1 (en) | Method and apparatus for distraction of infrared, radar and dual-mode guided missiles | |
DE10230939A1 (en) | Fighting vehicle has warning sensors to detect and analyze threats and select optimum countermeasures using bus connected detachable munition projectors | |
DE102015002737B4 (en) | Method and device for providing a decoy to protect a vehicle and/or object from radar-guided seekers | |
WO2009006981A1 (en) | Method and launching apparatus for protection of an object against a threat, in particular a missile, as well as munition | |
DE69006564T2 (en) | AUTOMATIC WEAPON DEFENSE SYSTEM. | |
EP0547391A1 (en) | Method for increasing the success probability for an anti-aircraft defence system using remote-controlled scattering projectiles | |
EP3376154B1 (en) | Method for protecting a cruise missile | |
DE3013405A1 (en) | METHOD FOR AVOIDING MESSAGE FROM LAUNCHERS FOR BALLISTIC missiles | |
DE2522927C2 (en) | SYSTEM FOR REPLACEMENT, DISTRACTION AND DESTRUCTION OF ARMS | |
DE3543769A1 (en) | Mine for defence against moving objects | |
DE2922592C2 (en) | Missile defense method | |
DE19747515C1 (en) | Device for protecting mobile objects, in particular armored vehicles, against the impact of a projectile | |
EP3894779A1 (en) | Method for protecting moving or stationary objects from approaching laser-guided threats | |
DE102011089584B4 (en) | Weapon system, in particular method for effective control of ship targets | |
DE102019109360A1 (en) | Invention system for defense against RAM targets and / or UAVs as well as methods for defense against RAM targets and / or UAVs | |
DE102020103249B4 (en) | Method for protecting a helicopter with smoke and helicopter with smoke protection system | |
DE3924416A1 (en) | Air-dropped sea bottom mine - for direction controlled launching of missile has firing mechanism transmitting azimuthal direction information about target to missile | |
DE102017002262B4 (en) | Method of defending a submarine against attack by a submerged explosive device | |
DE3438305A1 (en) | UNMANNED AIRCRAFT FOR COMBATING GROUND TARGETS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060323 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE DK FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RHEINMETALL WAFFE MUNITION GMBH |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE DK FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20070425 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE DK FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004012507 Country of ref document: DE Effective date: 20110622 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120214 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004012507 Country of ref document: DE Effective date: 20120214 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004012507 Country of ref document: DE Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004012507 Country of ref document: DE Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230920 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230928 Year of fee payment: 20 Ref country code: DK Payment date: 20230925 Year of fee payment: 20 Ref country code: DE Payment date: 20230920 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230927 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004012507 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Expiry date: 20240901 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240831 |