Nothing Special   »   [go: up one dir, main page]

EP1565589B1 - Use of a steel alloy as a material for producing pipes for motor vehicles - Google Patents

Use of a steel alloy as a material for producing pipes for motor vehicles Download PDF

Info

Publication number
EP1565589B1
EP1565589B1 EP03782109A EP03782109A EP1565589B1 EP 1565589 B1 EP1565589 B1 EP 1565589B1 EP 03782109 A EP03782109 A EP 03782109A EP 03782109 A EP03782109 A EP 03782109A EP 1565589 B1 EP1565589 B1 EP 1565589B1
Authority
EP
European Patent Office
Prior art keywords
steel alloy
motor vehicles
max
pipes
pipelines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03782109A
Other languages
German (de)
French (fr)
Other versions
EP1565589A1 (en
Inventor
Michael Gramlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Stahl Rohr GmbH
Original Assignee
Benteler Stahl Rohr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Stahl Rohr GmbH filed Critical Benteler Stahl Rohr GmbH
Publication of EP1565589A1 publication Critical patent/EP1565589A1/en
Application granted granted Critical
Publication of EP1565589B1 publication Critical patent/EP1565589B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Definitions

  • the soldering is done with the addition of pure copper solder usually in a continuous soldering furnace at a temperature of 1083 ° C.
  • the high heating during soldering can be at the known material RSt-34.2 lead to coarse grain formation and the decline in fatigue strength, which adversely affects the mechanical properties of the material used. Damage has already occurred to such pipelines in the area of the solder joints in the past. Of course, such defects are in no way acceptable in pipelines. Therefore, the reduced by soldering strength of the material was compensated by the use of pipes of greater wall thickness.
  • EP 0 753 597 A2 relates to the use of a steel alloy, expressed as a percentage by weight, of carbon (C) 0.12% - 0.25%, silicon (Si) 0.10% - 0.40%, manganese (Mn) 1, 30% - 2.00%, phosphorus (P) max. 0.025%, sulfur (S) max. 0.025%, chromium (Cr) 1.60% - 2.50%, molybdenum (Mo) 0.40% - 1.00%, aluminum (Al) 0.010% - 0.050%, remainder iron including fouling-related impurities.
  • This material is characterized by a good deformability and its toughness behavior. An additional fee is not required.
  • the material Since the material is weldable, it can be used in addition to the use of seamless tubes for the production of longitudinally welded pipes, which are better suited for the intended use as a starting material for stabilizers.
  • very high demands are placed on the forming capacity of the material, for example for attaching compression flanging.
  • the formability of said alloy is not always sufficient for these applications.
  • the present invention seeks to show a steel alloy as a material for the production of pipelines for motor vehicles, which, while meeting the safety requirements and ferügungsischen conditions allows for less material use.
  • the main advantage of this steel alloy is that the material undergoes a significant increase in strength in the downstream soldering process, so that the wall thickness of the pipelines can be lowered considerably with regard to the internal pressure loads. This advantage is due to the temperature level of the soldering process. The high soldering temperature has no adverse effect on the steel alloy used.
  • the tubes may be subjected to a suitable heat treatment instead of the brazing process.
  • the pipes can be annealed at temperatures above the transformation point Ac3 and subsequently tempered with a low cooling rate comparable to an air cooling.
  • the assembly of the individual pipeline sections may in this case be e.g. done by screwing.
  • this air-hardening steel alloy also allows the use of manufacturing technology favorable welding methods, such as MAG or laser beam welding.
  • MAG or laser beam welding When using a suitable filler material by the air hardening, the weld seams have a favorable hardened structure, with only slight or no solidification fluctuations, in particular no strength drops, occurring in the transition region to the base material.
  • the favorable increase in hardness in the heat affected zone is due to the precipitation hardening occurring therein. Due to the precipitation hardening, the pipes in the base material would break and not in the area of the weld seam. However, unlike the connection area of a holder, no crack-inducing voltage peaks occur in the base material, so the risk of damage when using the claimed steel alloy is considerably reduced.
  • the air hardening is preferably carried out in a continuous furnace under protective gas at a temperature of 950 ° C ⁇ 15 ° C.
  • the steel alloy used can in principle contain small proportions of nickel up to a maximum of 0.20%. This proportion results from the use of steel scrap in the melting of the steel alloy. The same applies to copper, which occurs as a result of the scrap insert.
  • the proportion by weight of copper is limited to a maximum of 0.20% by weight.
  • vanadium (-carbo) nitrides which have pronounced positive properties on the steel alloy used and for the inventive use of the steel alloy.
  • the vanadium (-carbo) nitrides formed by the targeted addition of nitrogen contribute to precipitation strengthening and grain refining. It has been found that when mass fractions of nitrogen in a range of 0.005% and 0.05% on the one hand sufficient carbonitrides are formed and on the other hand, the nitrogen is sufficiently bound by vanadium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Im Serienfahrzeugbau bestehen einbaufertige metallische Rohrleitungen für Fluide, wie Kühlwasser, Kraftstoff, Hydraulikflüssigkeiten, in der Regel aus einem korrosionsgeschützten Stahlrohr. Die Rohrleitungen sind entweder über separate Halterungen fixiert im Kraftfahrzeug, teilweise sind aber auch Halterungen und Anschlussstutzen unmittelbar an die metallischen Rohrleitungen angelötet.In series vehicle construction, ready-to-install metallic pipelines for fluids, such as cooling water, fuel, hydraulic fluids, usually consist of a corrosion-protected steel pipe. The pipes are either via separate brackets fixed in the vehicle, but some brackets and nozzles are soldered directly to the metallic pipes.

Gegenwärtig werden Rohrleitungen für Kühlwasser und Hydraulikflüssigkeiten in der Automobiltechnik zumeist aus Rohren aus dem Material RSt-34.2 (Streckgrenze RP0.2 = 235 N/mm2) mit Wanddicken von ca. 0,7 mm bis 1,0 mm hergestellt. Nach dem Biegen der zunächst geraden Rohre in den gewünschten Leitungsverlauf werden Halterungen angelötet. Die Lötung erfolgt unter Zugabe von Reinkupferlot üblicherweise in einem Durchlauflötofen bei einer Temperatur von 1083 °C. Die hohe Erwärmung beim Löten kann bei dem bekannten Werkstoff RSt-34.2 zur Grobkornbildung und zum Rückgang der Dauerschwingfestigkeit führen, was sich nachteilig auf die mechanischen Eigenschaften des eingesetzten Werkstoffs auswirkt. In der Vergangenheit sind bereits Schadensfälle an derartigen Rohrleitungen im Bereich der Lötstellen aufgetreten. Derartige Mängel sind bei Rohrleitungen natürlich in keiner Weise akzeptabel. Daher wurde die durch Lötung verringerte Festigkeit des Werkstoffs durch die Verwendung von Rohrleitungen größerer Wanddicke kompensiert.At present, pipelines for cooling water and hydraulic fluids in the automotive industry are usually made of pipes made of the material RSt-34.2 (yield strength R P0.2 = 235 N / mm 2 ) with wall thicknesses of about 0.7 mm to 1.0 mm. After bending the initially straight pipes in the desired line course brackets are soldered. The soldering is done with the addition of pure copper solder usually in a continuous soldering furnace at a temperature of 1083 ° C. The high heating during soldering can be at the known material RSt-34.2 lead to coarse grain formation and the decline in fatigue strength, which adversely affects the mechanical properties of the material used. Damage has already occurred to such pipelines in the area of the solder joints in the past. Of course, such defects are in no way acceptable in pipelines. Therefore, the reduced by soldering strength of the material was compensated by the use of pipes of greater wall thickness.

In der Automobiltechnik besteht jedoch nicht zuletzt aus Gründen der Kraftstoffersparnis die stete Notwendigkeit, die Gesamtmasse des Kraftfahrzeugs zu reduzieren. Aus den voran genannten Gründen war dies aus sicherheitstechnischen Gründen bei gelöteten fluidleitenden Rohrleitungen aus RSt-34.2 bislang nicht möglich.In automotive engineering, however, not least for reasons of fuel economy, there is a constant need to reduce the total mass of the motor vehicle. For safety reasons, this was previously not possible with brazed fluid-conducting pipes made from RSt-34.2.

Die EP 0 753 597 A2 betrifft die Verwendung einer Stahllegierung, die in Gewichtsprozent ausgedrückt besteht aus Kohlenstoff (C) 0,12% - 0,25%, Silizium (Si) 0.10% - 0,40%, Mangan (Mn) 1,30% - 2,00%, Phosphor (P) max. 0.025%, Schwefel (S) max. 0,025%, Chrom (Cr) 1,60% - 2,50%, Molybdän (Mo) 0,40% - 1,00%, Aluminium (Al) 0,010% - 0,050%, Rest Eisen einschließlich erschrnelzungsbedingter Verunreinigungen. Dieser Werkstoff zeichnet sich durch eine gute Verformbarkeit und sein Zähigkeitsverhalten aus. Eine zusätzliche Vergütung ist nicht erforderlich. Da der Werkstoff schweißbar ist, kann er neben der Verwendung für nahtlose Rohre auch zur Herstellung von Längsnahtgeschweißten Rohren eingesetzt werden, die für den vorgesehenen Verwendungszweck als Ausgangsprodukt für Stabilisatoren besser geeignet sind. Insbesondere bei der Herstellung von dünnwandigen fluidleitenden Rohrleitungen, z.B. für Hydraulikflüssigkeiten, Kraftstoff und Kühlwasser werden jedoch sehr hohe Ansprüche an das Umformvermögen des Werkstoffs gestellt, beispielsweise für das Anbringen von Stauchbördeln. Das Umformvermögen der genannten Legierung ist für diese Anwendungsfälle nicht in jedem Fall ausreichend.EP 0 753 597 A2 relates to the use of a steel alloy, expressed as a percentage by weight, of carbon (C) 0.12% - 0.25%, silicon (Si) 0.10% - 0.40%, manganese (Mn) 1, 30% - 2.00%, phosphorus (P) max. 0.025%, sulfur (S) max. 0.025%, chromium (Cr) 1.60% - 2.50%, molybdenum (Mo) 0.40% - 1.00%, aluminum (Al) 0.010% - 0.050%, remainder iron including fouling-related impurities. This material is characterized by a good deformability and its toughness behavior. An additional fee is not required. Since the material is weldable, it can be used in addition to the use of seamless tubes for the production of longitudinally welded pipes, which are better suited for the intended use as a starting material for stabilizers. However, in particular in the production of thin-walled fluid-conducting pipelines, eg for hydraulic fluids, fuel and cooling water, very high demands are placed on the forming capacity of the material, for example for attaching compression flanging. The formability of said alloy is not always sufficient for these applications.

Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine Stahllegierung als Werkstoff zur Herstellung von Rohrleitungen für Kraftfahrzeuge aufzuzeigen, welche , unter Erfüllung der sicherheitstechnischen Voraussetzungen und ferügungstechnischen Bedingungen einen geringeren Materialeinsatz zulässt.Proceeding from this, the present invention seeks to show a steel alloy as a material for the production of pipelines for motor vehicles, which, while meeting the safety requirements and ferügungstechnischen conditions allows for less material use.

Die Aufgabe wird durch die Verwendung einer Stahllegierung mit den Merkmalen des Patentanspruchs 1 gelöst.The object is achieved by the use of a steel alloy having the features of patent claim 1.

Der wesentliche Vorteil dieser Stahllegierung ist, dass der Werkstoff im nachgeschalteten Lötprozess eine deutliche Festigkeitssteigerung erfährt, so dass die Wanddicke der Rohrleitungen im Hinblick auf die Innendruckbelastungen erheblich abgesenkt werden kann. Dieser Vorteil ist auf das Temperaturniveau des Lötprozesses zurückzuführen. Die hohe Löttemperatur hat auf die verwendete Stahllegierung keine nachteiligen Auswirkungen.The main advantage of this steel alloy is that the material undergoes a significant increase in strength in the downstream soldering process, so that the wall thickness of the pipelines can be lowered considerably with regard to the internal pressure loads. This advantage is due to the temperature level of the soldering process. The high soldering temperature has no adverse effect on the steel alloy used.

Alternativ können die Rohrleitungen nach der Umformung anstelle des Lötprozesses einer geeigneten Wärmebehandlung unterzogen werden. Hierzu können die Rohrleitungen bei Temperaturen oberhalb des Umwandlungspunkts Ac3 geglüht und nachfolgend mit geringer Abkühlgeschwindigkeit vergleichbar einer Luftabkühlung vergütet werden. Der Zusammenbau der einzelnen Rohrleitungsabschnitte kann in diesem Fall z.B. durch Verschraubungen erfolgen.Alternatively, after forming, the tubes may be subjected to a suitable heat treatment instead of the brazing process. For this purpose, the pipes can be annealed at temperatures above the transformation point Ac3 and subsequently tempered with a low cooling rate comparable to an air cooling. The assembly of the individual pipeline sections may in this case be e.g. done by screwing.

Die Verwendung dieser lufthärtenden Stahllegierung ermöglicht auch den Einsatz von fertigungstechnisch günstigen Schweißverfahren, wie dem MAG- oder Laserstrahlschweißen. Die Schweißnähte besitzen bei Verwendung eines geeigneten Schweißzusatzwerkstoffs durch die Lufthärtung ein günstiges Härtegefüge, wobei im Übergangsbereich zum Grundmaterial nur geringe bzw. keine Festigungsschwankungen, insbesondere keine Festigkeitssenken, auftreten. Die günstige Härtesteigerung in der Wärmeeinflusszone ist auf die hierin stattfindende Ausscheidungshärtung zurückzuführen. Bedingt durch die Ausscheidungshärtung würden die Rohrleitungen im Grundwerkstoff reißen und nicht im Bereich der Schweißnaht. Da im Grundwerkstoff im Unterschied zum Anbindungsbereich einer Halterung jedoch keine rissinduzierenden Spannungsspitzen auftreten, ist das Schadensrisiko bei Verwendung der beanspruchten Stahllegierung erheblich herabgesetzt.The use of this air-hardening steel alloy also allows the use of manufacturing technology favorable welding methods, such as MAG or laser beam welding. When using a suitable filler material by the air hardening, the weld seams have a favorable hardened structure, with only slight or no solidification fluctuations, in particular no strength drops, occurring in the transition region to the base material. The favorable increase in hardness in the heat affected zone is due to the precipitation hardening occurring therein. Due to the precipitation hardening, the pipes in the base material would break and not in the area of the weld seam. However, unlike the connection area of a holder, no crack-inducing voltage peaks occur in the base material, so the risk of damage when using the claimed steel alloy is considerably reduced.

Grundsätzlich ist nach dem Schweißen keine weitere Wärmebehandlung erforderlich. Bei erhöhten Anforderungen an die Dauerschwingfestigkeit der Rohrleitungen kann eine Steigerung durch eine nachfolgende Anlasswärmebehandlung bei 600 °C bis 660 °C zur Vergütung des Werkstoffs erreicht werden.Basically, no further heat treatment is required after welding. Increased demands on the fatigue strength of the pipelines may result in an increase by a subsequent tempering heat treatment at 600 ° C to 660 ° C to compensate for the material.

Fertigungstechnisch ist es von Vorteil, wenn die verwendete Stahllegierung für die Umformvorgänge, insbesondere für das Biegen, Bördeln, Aufweiten und Stauchen, weichgeglüht ist, um auf diese Weise auch enge Biegeradien zu realisieren. Im Anschluss erfolgt dann das Anlöten von Halterungen und Anschlussstutzen im Durchlauflötofen mit dem sich daran anschließenden Abkühlprozess an Luft oder unter Schutzgas zur Festigkeitserhöhung (Lufthär tung).Manufacturing technology, it is advantageous if the steel alloy used for the forming operations, especially for bending, flanging, widening and upsetting, is annealed to realize in this way, even tight bending radii. Subsequently, the brazing of brackets and connecting pieces in the continuous soldering furnace with the subsequent cooling process takes place in air or under protective gas to increase the strength (air hardening).

Die Verwendung der Stahllegierung zur Herstellung von Rohrleitungen von Kraftfahrzeugen ermöglicht es, Rohrleitungen mit geringeren Wanddicken vorzusehen, die aufgrund einer durch Luftaushärtung erlangten höheren Festigkeit bei einer Streckgrenze Rp 0,2 > 700N/mm2 insbesondere eine erheblich höhere Schwell- und Schwingfestigkeit besitzen.The use of the steel alloy for the production of motor vehicle pipelines makes it possible to provide pipelines with smaller wall thicknesses which, in particular, have considerably higher resistance to swelling and vibration due to a higher strength obtained by air hardening at a yield strength Rp 0.2> 700N / mm 2 .

Die Lufthärtung erfolgt vorzugsweise im Durchlaufofen unter Schutzgas bei einer Temperatur von 950 °C ± 15 °C. Die verwendete Stahllegierung kann grundsätzlich geringe Nickel-Anteile bis maximal 0,20 % enthalten. Dieser Anteil resultiert aus dem Einsatz von Stahlschrott bei der Erschmelzung der Stahllegierung. Gleiches gilt für Kupfer, welches infolge des Schrotteinsatzes auftritt. Auch der Gewichtsanteil von Kupfer ist auf maximal 0,20 Gew.% begrenzt.The air hardening is preferably carried out in a continuous furnace under protective gas at a temperature of 950 ° C ± 15 ° C. The steel alloy used can in principle contain small proportions of nickel up to a maximum of 0.20%. This proportion results from the use of steel scrap in the melting of the steel alloy. The same applies to copper, which occurs as a result of the scrap insert. The proportion by weight of copper is limited to a maximum of 0.20% by weight.

Es ist bekannt, dass geringste Stickstoffgehalte nachhaltig die mechanischen Eigenschaften eines Stahls schädigen, Streckgrenze und Festigkeit erhöhen, das Verformungsvermögen und die Kerbschlagzähigkeit stark herabsetzen sowie gleichzeitig eine alternde Wirkung auf den Stahl besitzen. Im Rahmen der Erfindung hat sich herausgestellt, dass die gezielte Zugabe von Stickstoff zur Bildung von Vanadium(-carbo)-Nitriden führt, die ausgesprochen positive Eigenschaften auf die verwendete Stahllegierung und für die erfindungsgemäße Verwendung der Stahllegierung haben. Die durch gezielte Zugabe von Stickstoff gebildeten Vanadium(-carbo)-Nitride leisten einen Beitrag zur Ausscheidungsverfestigung und Kornfeinung. Dabei hat sich gezeigt, dass bei Massenanteilen des Stickstoffs in einem Bereich von 0,005 % und 0,05 % einerseits genügend Carbonitride gebildet werden und andererseits der Stickstoff hinreichend durch Vanadium gebunden wird.It is known that the lowest nitrogen contents sustainably damage the mechanical properties of a steel, increase yield strength and strength, greatly reduce the deformability and the notched impact strength and at the same time have an aging effect on the steel. In the context of the invention it has been found that the targeted addition of nitrogen leads to the formation of vanadium (-carbo) nitrides, which have pronounced positive properties on the steel alloy used and for the inventive use of the steel alloy. The vanadium (-carbo) nitrides formed by the targeted addition of nitrogen contribute to precipitation strengthening and grain refining. It has been found that when mass fractions of nitrogen in a range of 0.005% and 0.05% on the one hand sufficient carbonitrides are formed and on the other hand, the nitrogen is sufficiently bound by vanadium.

Claims (1)

  1. Use of a steel alloy which consists of, by mass,
    0.09 - 0.12% of carbon (C),
    0.15 - 0.30% of silicon (Si),
    1.45 - 1.60% of manganese (Mn),
    max. 0.015% of phosphorus (P),
    max. 0.011% of sulphur (S),
    1.25 - 1.50% of chromium (Cr),
    0.40 - 0.60% of molybdenum (Mo),
    0.020 - 0.060% of aluminium (Al),
    0.12 - 0.20% of vanadium (V),
    0.005 - 0.05% of nitrogen (N),
    max. 0.20% of copper (Cu),
    max. 0.20% of nickel (Ni)
    remainder iron and standard impurities, as a material for producing air-hardened, fluid-carrying pipelines for motor vehicles.
EP03782109A 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing pipes for motor vehicles Expired - Lifetime EP1565589B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2002155260 DE10255260A1 (en) 2002-11-27 2002-11-27 Use of a steel alloy as a material for the production of pipelines for motor vehicles
DE10255260 2002-11-27
PCT/DE2003/003927 WO2004048629A1 (en) 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing pipes for motor vehicles

Publications (2)

Publication Number Publication Date
EP1565589A1 EP1565589A1 (en) 2005-08-24
EP1565589B1 true EP1565589B1 (en) 2006-03-15

Family

ID=32308739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03782109A Expired - Lifetime EP1565589B1 (en) 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing pipes for motor vehicles

Country Status (4)

Country Link
EP (1) EP1565589B1 (en)
AU (1) AU2003289810A1 (en)
DE (2) DE10255260A1 (en)
WO (1) WO2004048629A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053620A1 (en) * 2004-11-03 2006-05-04 Salzgitter Flachstahl Gmbh High-strength, air-hardening steel with excellent forming properties
DE102007058222A1 (en) * 2007-12-03 2009-06-04 Salzgitter Flachstahl Gmbh Steel for high-strength components made of tapes, sheets or tubes with excellent formability and special suitability for high-temperature coating processes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2750867C2 (en) * 1977-11-14 1983-10-20 Benteler-Werke Ag Werk Neuhaus, 4790 Paderborn Use of a steel alloy for pipes for door reinforcement
DE3415526C2 (en) * 1984-04-26 1987-02-26 Benteler-Werke AG, Werk Neuhaus, 4790 Paderborn Use of a steel alloy for bicycle frame tubes
DE9013148U1 (en) * 1990-09-15 1990-11-22 Benteler AG, 4790 Paderborn Steel wall tube of a pressure cylinder
JPH05302119A (en) * 1992-03-27 1993-11-16 Sumitomo Metal Ind Ltd Production of high strength automotive parts
EP0753597A3 (en) * 1995-07-06 1998-09-02 Benteler Ag Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
JP2006503175A (en) * 2002-02-15 2006-01-26 ベンテラー アウトモビールテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of steel alloys as a material for pipes for producing pressure gas containers or as a material for producing shaped parts in lightweight steel structures

Also Published As

Publication number Publication date
DE50302680D1 (en) 2006-05-11
WO2004048629A1 (en) 2004-06-10
EP1565589A1 (en) 2005-08-24
AU2003289810A1 (en) 2004-06-18
DE10255260A1 (en) 2004-06-09

Similar Documents

Publication Publication Date Title
US6532995B1 (en) Super-high-strength line pipe excellent in low temperature toughness and production method thereof
DE69805896T2 (en) Welded high-strength steel structures and processes for their production
JP4564245B2 (en) Super high strength welded joint with excellent low temperature cracking property of weld metal and method for producing high strength welded steel pipe
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
DE69916717T2 (en) PROCESS FOR THE PRODUCTION OF WELDED CONTAINERS, INTENDED FOR USE IN THE PRESENCE OF SULFUR HYDROGEN
DE102015117956A1 (en) Composite tube consisting of a support tube and at least one protective tube and method for producing this
EP3083239A1 (en) Sheet steel product, a steel component produced from such a sheet steel product, and body for a motor vehicle
KR101643271B1 (en) Abrasion resistant welded steel pipe and method of producing the same
KR101531361B1 (en) High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
JP5842314B2 (en) High heat input welding steel
EP3512967A1 (en) Method for producing a re-shaped component from a manganese-containing flat steel product and such a component
EP1881083B1 (en) Workpiece made of a high-strength steel alloy and its use
DE3407305C2 (en)
EP1565589B1 (en) Use of a steel alloy as a material for producing pipes for motor vehicles
DE2331134B2 (en) Roll-clad materials made from a base material made from steel and from cladding layers made from corrosion-resistant, austenitic steels
EP1474538B1 (en) Use of a steel alloy as a material for pipes for producing gas cylinders, or as a material for producing moulded elements in light-gauge steel construction
WO2021009078A1 (en) Method for producing a coated tailored welded blank by means of laser-beam welding or hybrid laser/gas-metal-arc welding and filler wire and use thereof for this purpose
DE102019103502A1 (en) Method of manufacturing seamless steel pipe, seamless steel pipe, and pipe product
CN1312006C (en) High-impact electric welding steel pipe
JP4523908B2 (en) Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP5205815B2 (en) Steel for rebar and method for manufacturing the same
JP4734812B2 (en) High-strength and ductile ERW steel pipe and manufacturing method thereof
JP5512231B2 (en) ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same
EP4190935A1 (en) Perforation gun tube and perforation gun
JP3235168B2 (en) Manufacturing method of high strength electric resistance welded steel pipe for automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

REF Corresponds to:

Ref document number: 50302680

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101019

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302680

Country of ref document: DE

Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE

Effective date: 20110621

Ref country code: DE

Ref legal event code: R081

Ref document number: 50302680

Country of ref document: DE

Owner name: BENTELER DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: BENTELER STAHL/ROHR GMBH, 33104 PADERBORN, DE

Effective date: 20110621

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302680

Country of ref document: DE

Representative=s name: BOCKERMANN, KSOLL, GRIEPENSTROH, DE

Effective date: 20110621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50302680

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601