Nothing Special   »   [go: up one dir, main page]

EP1565589A1 - Use of a steel alloy as a material for producing pipes for motor vehicles - Google Patents

Use of a steel alloy as a material for producing pipes for motor vehicles

Info

Publication number
EP1565589A1
EP1565589A1 EP03782109A EP03782109A EP1565589A1 EP 1565589 A1 EP1565589 A1 EP 1565589A1 EP 03782109 A EP03782109 A EP 03782109A EP 03782109 A EP03782109 A EP 03782109A EP 1565589 A1 EP1565589 A1 EP 1565589A1
Authority
EP
European Patent Office
Prior art keywords
steel alloy
motor vehicles
pipelines
air
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03782109A
Other languages
German (de)
French (fr)
Other versions
EP1565589B1 (en
Inventor
Michael Gramlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Stahl Rohr GmbH
Original Assignee
Benteler Stahl Rohr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benteler Stahl Rohr GmbH filed Critical Benteler Stahl Rohr GmbH
Publication of EP1565589A1 publication Critical patent/EP1565589A1/en
Application granted granted Critical
Publication of EP1565589B1 publication Critical patent/EP1565589B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching

Definitions

  • the object of the invention is to demonstrate a steel alloy as a material for the production of pipelines for motor vehicles, which allows less material to be used while fulfilling the safety-related requirements and the production-related conditions.
  • the main advantage of this steel alloy is that the material undergoes a significant increase in strength in the subsequent soldering process, so that the wall thickness of the pipelines can be significantly reduced with regard to the internal pressure loads.
  • This advantage is due to the temperature level of the soldering process.
  • the high soldering temperature has no adverse effects on the steel alloy used.
  • the pipes can be subjected to a suitable heat treatment instead of the soldering process after the forming.
  • the pipelines can be annealed at temperatures above the conversion point Ac3 and subsequently tempered at a slow cooling rate comparable to air cooling.
  • the individual pipeline sections can be assembled, for example, by screw connections.
  • this air-hardening steel alloy also enables the use of welding techniques that are favorable in terms of production technology, such as MAG or laser beam welding.
  • the weld seams have a favorable hardness structure due to air hardening, with little or no strength fluctuations, in particular no lowering of strength, occurring in the transition area to the base material.
  • the favorable increase in hardness in the heat affected zone is due to the precipitation hardening taking place here. Due to the precipitation hardening, the pipes would tear in the base material and not in the area of the weld seam. However, since there are no crack-inducing stress peaks in the base material in contrast to the connection area of a holder, the risk of damage when using the stressed steel alloy is considerably reduced.
  • the steel alloy used for the forming processes in particular for bending, flanging, expanding and compressing, is soft-annealed in order to achieve tight bending radii in this way.
  • the brackets and connecting pieces are then soldered in the continuous soldering furnace with the subsequent connection Cooling process in air or under protective gas to increase strength (air hardening).
  • Air hardening is preferably carried out in a continuous furnace under protective gas at a temperature of 950 ° C ⁇ 15 ° C.
  • the steel alloy used can generally contain small amounts of nickel up to a maximum of 0.20%. This share results from the use of steel scrap in the melting of the steel alloy. The same applies to copper, which occurs due to the use of scrap.
  • the proportion by weight of copper is also limited to a maximum of 0.20% by weight.
  • the targeted addition of nitrogen leads to the formation of vanadium (carbo) nitrides which have extremely positive properties on the steel alloy used and for the use of the steel alloy according to the invention.
  • the vanadium (carbo) nitrides formed by the targeted addition of nitrogen contribute to the strengthening of the precipitation and grain refinement. It has been shown that with mass fractions of nitrogen in a range of 0.005% and 0.05% on the one hand enough carbonitrides are formed and on the other hand the nitrogen is sufficiently bound by vanadium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The invention relates to the use of a steel alloy that, in percentages by mass, consists of: 0.09-0.12 % carbon (C); 0.15-0.30 % silicon (Si); 1.20-1.80 % manganese (Mn); a maximum of 0.015 % phosphorous (P); a maximum of 0.011 % sulfur (S); 1.00-2.00 % chromium (Cr); 0.20-0.60 % molybdenum (Mo); 0.020-0.060 % aluminum (AI); 0.10-0.25 % vanadium (V) and iron, and; usual impurities as the remainder, as a material for producing air-hardened pipes for motor vehicles. The air-hardening is carried out under a protective gas at a temperature of 950 DEG C +/- 15 DEG C.

Description

Verwendung einer Stahllegierung als Werkstoff zur Herstellung von Rohrleitungen für Kraftfahrzeuge Use of a steel alloy as a material for the production of pipelines for motor vehicles
Im Serienfahrzeugbau bestehen einbaufertige metallische Rohrleitungen für Fluide, wie Kühlwasser, Kraftstoff, Hydraulikflüssigkeiten, in der Regel aus einem korrosionsgeschützten Stahlrohr. Die Rohrleitungen sind entweder über separate Halterungen fixiert im Kraftfahrzeug, teilweise sind aber auch Halterungen und Anschlussstutzen unmittelbar an die metallischen Rohrleitungen angelötet.In series vehicle construction, ready-to-install metallic pipelines for fluids such as cooling water, fuel, hydraulic fluids usually consist of a corrosion-protected steel pipe. The pipes are either fixed in the motor vehicle via separate brackets, but in some cases brackets and connecting pieces are also soldered directly to the metal pipes.
Gegenwärtig werden Rohrleitungen für Kühlwasser und Hydraulikflüssigkeiten in der Automobiltechnik zumeist aus Rohren aus dem Material RSt-34.2 (Streckgrenze Rp0,2 = 235 N/mm2) mit Wanddicken von ca. 0,7 mm bis 1 ,0 mm hergestellt. Nach dem Biegen der zunächst geraden Rohre in den gewünschten Leitungsverlauf werden Halterungen angelötet. Die Lötung erfolgt unter Zugabe von Reinkupferlot üblicherweise in einem Durchlauflötofen bei einer Temperatur von 1083 °C. Die hohe Erwärmung beim Löten kann bei dem bekannten Werkstoff RSt-34.2 zur Grobkornbildung und zum Rückgang der Dauerschwingfestigkeit führen, was sich nachteilig auf die mechanischen Eigenschaften des eingesetzten Werkstoffs auswirkt. In der Vergangenheit sind bereits Schadensfälle an derartigen Rohrleitungen im Bereich der Lötstellen aufgetreten. Derartige Mängel sind bei Rohrleitungen natürlich in keiner Weise akzeptabel. Daher wurde die durch Lötung verringerte Festigkeit des Werkstoffs durch die Verwendung von Rohrleitungen größerer Wanddicke kompensiert.Currently, pipes for cooling water and hydraulic fluids in automotive engineering mostly of tubes from the material RST 34.2 (yield strength Rp 0, 2 = 235 N / mm 2) with wall thicknesses of about 0.7 mm to 1 manufactured mm 0th After the initially straight pipes have been bent into the desired pipe run, brackets are soldered on. The soldering is usually carried out with the addition of pure copper solder in a continuous soldering furnace at a temperature of 1083 ° C. The high temperature rise during soldering can known material RSt-34.2 lead to coarse grain formation and to a decrease in fatigue strength, which has an adverse effect on the mechanical properties of the material used. In the past, damage to such pipelines has already occurred in the area of the solder joints. Such shortcomings are of course in no way acceptable for pipelines. Therefore, the reduced strength of the material due to soldering was compensated for by the use of pipelines with a greater wall thickness.
In der Automobiltechnik besteht jedoch nicht zuletzt aus Gründen der Kraftstoffersparnis die stete Notwendigkeit, die Gesamtmasse des Kraftfahrzeugs zu reduzieren. Aus den voran genannten Gründen war dies aus sicherheitstechnischen Gründen bei gelöteten fluidleitenden Rohrleitungen aus RSt-34.2 bislang nicht möglich.In automotive engineering, however, there is a constant need to reduce the overall mass of the motor vehicle, not least because of fuel savings. For the reasons mentioned above, this has not been possible for reasons of safety in the case of soldered fluid-conducting pipelines from RSt-34.2.
Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, eine Stahllegierung als Werkstoff zur Herstellung von Rohrleitungen für Kraftfahrzeuge aufzuzeigen, welche unter Erfüllung der sicherheitstechnischen Voraussetzungen und fertigungstechnischen Bedingungen einen geringeren Materialeinsatz zu- lässt.Proceeding from this, the object of the invention is to demonstrate a steel alloy as a material for the production of pipelines for motor vehicles, which allows less material to be used while fulfilling the safety-related requirements and the production-related conditions.
Die Aufgabe wird durch die Verwendung einer Stahllegierung mit den Merkmalen der Patentansprüche 1 und 2 gelöst.The object is achieved by using a steel alloy with the features of claims 1 and 2.
Der wesentliche Vorteil dieser Stahllegierung ist, dass der Werkstoff im nachgeschalteten Lötprozess eine deutliche Festigkeitssteigerung erfährt, so dass die Wanddicke der Rohrleitungen im Hinblick auf die Innendruckbelastungen erheblich abgesenkt werden kann. Dieser Vorteil ist auf das Temperaturniveau des Lötprozesses zurückzuführen. Die hohe Löttemperatur hat auf die verwendete Stahllegierung keine nachteiligen Auswirkungen. Alternativ können die Rohrleitungen nach der Umformung anstelle des Lötprozesses einer geeigneten Wärmebehandlung unterzogen werden. Hierzu können die Rohrleitungen bei Temperaturen oberhalb des Umwandlungspunkts Ac3 geglüht und nachfolgend mit geringer Abkühlgeschwindigkeit vergleichbar einer Luftabkühlung vergütet werden. Der Zusammenbau der einzelnen Rohrleitungsabschnitte kann in diesem Fall z.B. durch Verschraubungen erfolgen.The main advantage of this steel alloy is that the material undergoes a significant increase in strength in the subsequent soldering process, so that the wall thickness of the pipelines can be significantly reduced with regard to the internal pressure loads. This advantage is due to the temperature level of the soldering process. The high soldering temperature has no adverse effects on the steel alloy used. Alternatively, the pipes can be subjected to a suitable heat treatment instead of the soldering process after the forming. For this purpose, the pipelines can be annealed at temperatures above the conversion point Ac3 and subsequently tempered at a slow cooling rate comparable to air cooling. In this case, the individual pipeline sections can be assembled, for example, by screw connections.
Die Verwendung dieser lufthärtenden Stahllegierung ermöglicht auch den Einsatz von fertigungstechnisch günstigen Schweißverfahren, wie dem MAG- oder Laserstrahlschweißen. Die Schweißnähte besitzen bei Verwendung eines geeigneten Schweißzusatzwerkstoffs durch die Lufthärtung ein günstiges Härte- gefüge, wobei im Übergangsbereich zum Grundmaterial nur geringe bzw. keine Festigungsschwankungen, insbesondere keine Festigkeitssenken, auftreten. Die günstige Härtesteigerung in der Wärmeeinflusszone ist auf die hierin stattfindende Ausscheidungshärtung zurückzuführen. Bedingt durch die Ausscheidungshärtung würden die Rohrleitungen im Grundwerkstoff reißen und nicht im Bereich der Schweißnaht. Da im Grundwerkstoff im Unterschied zum Anbin- dungsbereich einer Halterung jedoch keine rissinduzierenden Spannungsspitzen auftreten, ist das Schadensrisiko bei Verwendung der beanspruchten Stahllegierung erheblich herabgesetzt.The use of this air-hardening steel alloy also enables the use of welding techniques that are favorable in terms of production technology, such as MAG or laser beam welding. When using a suitable welding filler material, the weld seams have a favorable hardness structure due to air hardening, with little or no strength fluctuations, in particular no lowering of strength, occurring in the transition area to the base material. The favorable increase in hardness in the heat affected zone is due to the precipitation hardening taking place here. Due to the precipitation hardening, the pipes would tear in the base material and not in the area of the weld seam. However, since there are no crack-inducing stress peaks in the base material in contrast to the connection area of a holder, the risk of damage when using the stressed steel alloy is considerably reduced.
Grundsätzlich ist nach dem Schweißen keine weitere Wärmebehandlung erforderlich. Bei erhöhten Anforderungen an die Dauerschwingfestigkeit der Rohrleitungen kann eine Steigerung durch eine nachfolgende Anlasswärmebehandlung bei 600 °C bis 660 °C zur Vergütung des Werkstoffs erreicht werden.Basically, no further heat treatment is required after welding. If the demands on the fatigue strength of the pipelines are higher, an increase can be achieved by subsequent tempering heat treatment at 600 ° C to 660 ° C to temper the material.
Fertigungstechnisch ist es von Vorteil, wenn die verwendete Stahllegierung für die Umformvorgänge, insbesondere für das Biegen, Bördeln, Aufweiten und Stauchen, weichgeglüht ist, um auf diese Weise auch enge Biegeradien zu realisieren. Im Anschluss erfolgt dann das Anlöten von Halterungen und Anschlussstutzen im Durchlauflötofen mit dem sich daran anschließenden Ab- kühlprozess an Luft oder unter Schutzgas zur Festigkeitserhöhung (Lufthärtung).From a manufacturing point of view, it is advantageous if the steel alloy used for the forming processes, in particular for bending, flanging, expanding and compressing, is soft-annealed in order to achieve tight bending radii in this way. The brackets and connecting pieces are then soldered in the continuous soldering furnace with the subsequent connection Cooling process in air or under protective gas to increase strength (air hardening).
Die Verwendung der Stahllegierung zur Herstellung von Rohrleitungen von Kraftfahrzeugen ermöglicht es, Rohrleitungen mit geringeren Wanddicken vorzusehen, die aufgrund einer durch Luftaushärtung erlangten höheren Festigkeit bei einer Streckgrenze Rp 0,2 > 700N/mm2 insbesondere eine erheblich höhere Schwell- und Schwingfestigkeit besitzen.The use of the steel alloy for the production of pipelines in motor vehicles makes it possible to provide pipelines with smaller wall thicknesses which, due to the higher strength obtained by air hardening, have in particular a considerably higher swelling and vibration resistance at a yield strength Rp 0.2> 700N / mm 2 .
Die Lufthärtung erfolgt vorzugsweise im Durchlaufofen unter Schutzgas bei einer Temperatur von 950 °C ± 15 °C. Die verwendete Stahllegierung kann grundsätzlich geringe Nickel-Anteile bis maximal 0,20 % enthalten. Dieser Anteil resultiert aus dem Einsatz von Stahlschrott bei der Erschmelzung der Stahllegierung. Gleiches gilt für Kupfer, welches infolge des Schrotteinsatzes auftritt. Auch der Gewichtsanteil von Kupfer ist auf maximal 0,20 Gew.% begrenzt.Air hardening is preferably carried out in a continuous furnace under protective gas at a temperature of 950 ° C ± 15 ° C. The steel alloy used can generally contain small amounts of nickel up to a maximum of 0.20%. This share results from the use of steel scrap in the melting of the steel alloy. The same applies to copper, which occurs due to the use of scrap. The proportion by weight of copper is also limited to a maximum of 0.20% by weight.
Es ist bekannt, dass geringste Stickstoffgehalte nachhaltig die mechanischen Eigenschaften eines Stahls schädigen, Streckgrenze und Festigkeit erhöhen, das Verformungsvermögen und die Kerbschlagzähigkeit stark herabsetzen sowie gleichzeitig eine alternde Wirkung auf den Stahl besitzen. Im Rahmen der Erfindung hat sich herausgestellt, dass die gezielte Zugabe von Stickstoff zur Bildung von Vanadium(-carbo)-Nitriden führt, die ausgesprochen positive Eigenschaften auf die verwendete Stahllegierung und für die erfindungsgemäße Verwendung der Stahllegierung haben. Die durch gezielte Zugabe von Stickstoff gebildeten Vanadium(-carbo)-Nitride leisten einen Beitrag zur Ausscheidungsverfestigung und Kornfeinung. Dabei hat sich gezeigt, dass bei Massenanteilen des Stickstoffs in einem Bereich von 0,005 % und 0,05 % einerseits genügend Carbonitride gebildet werden und andererseits der Stickstoff hinreichend durch Vanadium gebunden wird. It is known that the lowest nitrogen content sustainably damages the mechanical properties of a steel, increases the yield strength and strength, greatly reduces the deformability and the impact strength and at the same time has an aging effect on the steel. It has been found in the context of the invention that the targeted addition of nitrogen leads to the formation of vanadium (carbo) nitrides which have extremely positive properties on the steel alloy used and for the use of the steel alloy according to the invention. The vanadium (carbo) nitrides formed by the targeted addition of nitrogen contribute to the strengthening of the precipitation and grain refinement. It has been shown that with mass fractions of nitrogen in a range of 0.005% and 0.05% on the one hand enough carbonitrides are formed and on the other hand the nitrogen is sufficiently bound by vanadium.

Claims

Patentansprüche claims
1. Verwendung einer Stahllegierung, die in Massenanteilen aus1. Use a steel alloy that is made in mass fractions
0,09 - 0,12 % Kohlenstoff (C),0.09 - 0.12% carbon (C),
0,15 - 0,30 % Silizium (Si),0.15 - 0.30% silicon (Si),
1 ,20 - 1,80 % Mangan (Mn), max. 0,015 % Phosphor (P), max. 0,011 % Schwefel (S),1, 20 - 1.80% manganese (Mn), max. 0.015% phosphorus (P), max. 0.011% sulfur (S),
1 ,00 - 2,00 % Chrom (Cr),1.00 - 2.00% chromium (Cr),
0,20 - 0,60 % Molybdän (Mo),0.20 - 0.60% molybdenum (Mo),
0,020 - 0,060 % Aluminium (AI),0.020 - 0.060% aluminum (AI),
0,10 - 0,25 % Vanadium (V)0.10 - 0.25% vanadium (V)
und Eisen sowie den üblichen Verunreinigungen als Rest besteht, als Werkstoff zur Herstellung von luftgehärteten Rohrleitungen für Kraftfahrzeuge.and iron and the usual impurities as the rest, as a material for the production of air-hardened pipelines for motor vehicles.
2. Verwendung einer Stahllegierung, die in Masseanteilen aus2. Use a steel alloy that is made in parts by mass
0,09 - 0,12 % Kohlenstoff (C),0.09 - 0.12% carbon (C),
0,15 - 0,30 % Silizium (Si),0.15 - 0.30% silicon (Si),
1 ,45 - 1 ,60 % Mangan (Mn), max. 0,015 % Phosphor (P), max. 0,011 % Schwefel (S),1, 45 - 1, 60% manganese (Mn), max. 0.015% phosphorus (P), max. 0.011% sulfur (S),
1 ,25 - 1 ,50 % Chrom (Cr),1, 25 - 1, 50% chromium (Cr),
0,40 - 0,60 % Molybdän (Mo),0.40 - 0.60% molybdenum (Mo),
0,020 - 0,060 % Aluminium (AI),0.020 - 0.060% aluminum (AI),
0,12 - 0,20 % Vanadium (V)0.12 - 0.20% vanadium (V)
und Eisen sowie den üblichen Verunreinigungen als Rest besteht, als Werkstoff zur Herstellung von luftgehärteten Rohrleitungen für Kraftfahrzeuge. and iron and the usual impurities as the rest, as a material for the production of air-hardened pipelines for motor vehicles.
3. Verwendung einer Stahllegierung nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass die Lufthärtung unter Schutzgas erfolgt.3. Use of a steel alloy according to claim 1 or 2, characterized in that the air hardening takes place under protective gas.
4. Verwendung einer Stahllegierung nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass in der Stahllegierung zusätzlich Stickstoff (N) in Massenanteilen von 0,005 % - 0,05 % enthalten ist. 4. Use of a steel alloy according to one of the claims 1 to 3, characterized in that nitrogen (N) is additionally contained in the steel alloy in mass fractions of 0.005% - 0.05%.
EP03782109A 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing pipes for motor vehicles Expired - Lifetime EP1565589B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2002155260 DE10255260A1 (en) 2002-11-27 2002-11-27 Use of a steel alloy as a material for the production of pipelines for motor vehicles
DE10255260 2002-11-27
PCT/DE2003/003927 WO2004048629A1 (en) 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing pipes for motor vehicles

Publications (2)

Publication Number Publication Date
EP1565589A1 true EP1565589A1 (en) 2005-08-24
EP1565589B1 EP1565589B1 (en) 2006-03-15

Family

ID=32308739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03782109A Expired - Lifetime EP1565589B1 (en) 2002-11-27 2003-11-26 Use of a steel alloy as a material for producing pipes for motor vehicles

Country Status (4)

Country Link
EP (1) EP1565589B1 (en)
AU (1) AU2003289810A1 (en)
DE (2) DE10255260A1 (en)
WO (1) WO2004048629A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053620A1 (en) * 2004-11-03 2006-05-04 Salzgitter Flachstahl Gmbh High-strength, air-hardening steel with excellent forming properties
DE102007058222A1 (en) * 2007-12-03 2009-06-04 Salzgitter Flachstahl Gmbh Steel for high-strength components made of tapes, sheets or tubes with excellent formability and special suitability for high-temperature coating processes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2750867C2 (en) * 1977-11-14 1983-10-20 Benteler-Werke Ag Werk Neuhaus, 4790 Paderborn Use of a steel alloy for pipes for door reinforcement
DE3415526C2 (en) * 1984-04-26 1987-02-26 Benteler-Werke AG, Werk Neuhaus, 4790 Paderborn Use of a steel alloy for bicycle frame tubes
DE9013148U1 (en) * 1990-09-15 1990-11-22 Benteler AG, 4790 Paderborn Steel wall tube of a pressure cylinder
JPH05302119A (en) * 1992-03-27 1993-11-16 Sumitomo Metal Ind Ltd Production of high strength automotive parts
EP0753597A3 (en) * 1995-07-06 1998-09-02 Benteler Ag Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
JP2006503175A (en) * 2002-02-15 2006-01-26 ベンテラー アウトモビールテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of steel alloys as a material for pipes for producing pressure gas containers or as a material for producing shaped parts in lightweight steel structures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004048629A1 *

Also Published As

Publication number Publication date
DE50302680D1 (en) 2006-05-11
EP1565589B1 (en) 2006-03-15
WO2004048629A1 (en) 2004-06-10
AU2003289810A1 (en) 2004-06-18
DE10255260A1 (en) 2004-06-09

Similar Documents

Publication Publication Date Title
KR100661789B1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
DE69916717T2 (en) PROCESS FOR THE PRODUCTION OF WELDED CONTAINERS, INTENDED FOR USE IN THE PRESENCE OF SULFUR HYDROGEN
DE102015117956A1 (en) Composite tube consisting of a support tube and at least one protective tube and method for producing this
CN107075638A (en) Air bag inflator high strength welded steelpipe and its manufacture method
WO2017208762A1 (en) High-strength steel sheet and method for producing same
WO2018050387A1 (en) Method for producing a re-shaped component from a manganese-containing flat steel product and such a component
EP1881083B1 (en) Workpiece made of a high-strength steel alloy and its use
DE102016117508B4 (en) Process for producing a flat steel product from a medium manganese steel and such a flat steel product
DE69527639T2 (en) FERRITIC HEAT-RESISTANT STEEL WITH EXCELLENT STRENGTH AT HIGH TEMPERATURES AND METHOD FOR THE PRODUCTION THEREOF
EP2414552B1 (en) Ball pins made of bainitic steels for passenger car and light commercial vehicle
EP0455625B1 (en) High strength corrosion-resistant duplex alloy
EP1565589A1 (en) Use of a steel alloy as a material for producing pipes for motor vehicles
WO2018050634A1 (en) Method for producing a shaped component from a medium-manganese flat steel product and such a component
CN108350547A (en) The purposes of method and the component for manufacturing austenitic steel component
EP1474538B1 (en) Use of a steel alloy as a material for pipes for producing gas cylinders, or as a material for producing moulded elements in light-gauge steel construction
DE102013108163B4 (en) Method for producing an armor component for a motor vehicle
DE102018122901A1 (en) Process for the production of ultra high-strength steel sheets and steel sheet therefor
WO2017208763A1 (en) High-strength steel sheet and method for producing same
EP4190935A1 (en) Perforation gun tube and perforation gun
JP5512231B2 (en) ERW steel pipe for drive shaft with excellent static torsional strength and method for manufacturing the same
WO2017157793A1 (en) Spring components made from a steel alloy and manufacturing method
JP2003096545A (en) Electric resistance welded tube having high strength and ductility, and production method therefor
DE10261210A1 (en) Use of an air-hardened steel alloy containing alloying additions of silicon, manganese, chromium, molybdenum, aluminum and vanadium in the production of a vehicle component in a hot working process
EP1857215B1 (en) Welding stud
AT392804B (en) WELDABLE COLD-FLESSABLE STEEL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

REF Corresponds to:

Ref document number: 50302680

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101019

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302680

Country of ref document: DE

Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE

Effective date: 20110621

Ref country code: DE

Ref legal event code: R081

Ref document number: 50302680

Country of ref document: DE

Owner name: BENTELER DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: BENTELER STAHL/ROHR GMBH, 33104 PADERBORN, DE

Effective date: 20110621

Ref country code: DE

Ref legal event code: R082

Ref document number: 50302680

Country of ref document: DE

Representative=s name: BOCKERMANN, KSOLL, GRIEPENSTROH, DE

Effective date: 20110621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50302680

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601