Nothing Special   »   [go: up one dir, main page]

EP1309781B1 - Verfahren und vorrichtung zur steuerung einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zur steuerung einer brennkraftmaschine Download PDF

Info

Publication number
EP1309781B1
EP1309781B1 EP01953133A EP01953133A EP1309781B1 EP 1309781 B1 EP1309781 B1 EP 1309781B1 EP 01953133 A EP01953133 A EP 01953133A EP 01953133 A EP01953133 A EP 01953133A EP 1309781 B1 EP1309781 B1 EP 1309781B1
Authority
EP
European Patent Office
Prior art keywords
variable
characterizes
injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01953133A
Other languages
English (en)
French (fr)
Other versions
EP1309781A1 (de
Inventor
Horst Wagner
Peter Schubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1309781A1 publication Critical patent/EP1309781A1/de
Application granted granted Critical
Publication of EP1309781B1 publication Critical patent/EP1309781B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine.
  • US-A-5,996,547 describes a control of an internal combustion engine in which, based on the combustion chamber pressure, the torque provided by the internal combustion engine is calculated. Furthermore, based on the driver's request, the desired moment is determined. Based on the comparison between the desired moment and the torque measured from the combustion chamber pressure, errors are detected.
  • a solenoid valve or a piezoactuator which characterizes the injection quantity
  • a second variable which characterizes the angular position at which the injection quantity is measured
  • a third variable which characterizes the torque provided by the internal combustion engine
  • a fifth variable which characterizes the moment desired by the driver, is determined.
  • the third size and the fifth size are evaluated for error monitoring.
  • the second variable which characterizes the angular position of the crankshaft or the camshaft during the injection, is taken into account. This makes it possible to take into account the influence of the injected fuel on the moment provided by the internal combustion engine.
  • the second variable used is preferably the desired value or actual value of the start of injection, the start of delivery, the start of activation or another corresponding variable.
  • the fourth size corresponds to the position of a control element. As a result, too Error in the processing of the output signals of the control recognizable.
  • FIG. 1 shows a block diagram of the device according to the invention
  • FIG. 2 shows a detailed representation of the device according to the invention
  • FIG. 3 shows a flow diagram for clarifying the method according to the invention.
  • the procedure according to the invention is described below using the example of the control of a diesel internal combustion engine.
  • the procedure according to the invention is however not limited to use with a diesel engine. It can also be used in other internal combustion engines in which there is a relationship between the injected fuel quantity and torque of the internal combustion engine, or in the systems where there is a defined relationship between the injection quantity and another size to be monitored.
  • FIG. 1 shows the essential elements of the device for controlling an internal combustion engine.
  • An actuator is designated 100.
  • This actuator 100 determines the amount of fuel to be injected into the internal combustion engine.
  • This is preferably a solenoid valve or a piezoelectric actuator.
  • the actuator of the internal combustion engine not shown, to a certain amount of fuel.
  • the actuator 100 is acted upon by a designated TPU unit 110 with drive signals.
  • the TPU provides signals that determine the start of injection, the end of injection.
  • An output stage, not shown, in the actuator converts these into control signals for controlling various switching means.
  • the TPU 110 is acted upon by a controller 120 with corresponding signals.
  • the controller 120 processes sensor signals from various sensors 130, which provide, for example, signals relating to the driver's request FP, the speed N of the internal combustion engine and other operating parameters or environmental variables.
  • a monitor 140 is provided to which the output signals of various sensors and the output signals of the TPU are fed.
  • the monitoring 140 acts on the controller 120 and in an advantageous Design a display 150 with corresponding signals.
  • the display 150 is controlled by the controller 120.
  • This facility works as follows. Based on various operating parameters, such as in particular the speed of the internal combustion engine and the driver's request, the controller 120 calculates the time at which the injection should take place, and the amount of fuel to be injected. The amount of fuel to be injected is then metered by the actuator 100 of the internal combustion engine and leads to a corresponding moment.
  • additional fuel quantities are metered at each or at individual Zumeßzyklen.
  • a pre-injection takes place in order to reduce the noise before the actual metering of the fuel.
  • a post-injection takes place after the actual injection.
  • the post-injection serves inter alia for the introduction of hydrocarbons into the exhaust gases, which in turn cause an increase in the temperature of the exhaust gases.
  • these hydrocarbons can cause in a catalytic converter downstream of the engine or particulate filter reactions that are required to keep the catalyst and / or the particulate filter functional.
  • the post-injections which are required for an exhaust aftertreatment system, do not contribute to the output torque of the internal combustion engine. Further partial injections contribute only to a lesser extent to the torque.
  • the monitor 140 processes the inputs to the controller 120.
  • the monitor 140 reads the values of the accelerator pedal position sensor. This is in particular the output signal of an AD converter of the accelerator pedal transmitter 130.
  • the monitoring 140 evaluates the last detectable value, for example the actuation duration, and preferably calculates whether these values are plausible, independently of the normal quantity control. If, for example, the accelerator pedal position assumes a large value and the actuation duration signal assumes a large value, this is recognized as a plausible value.
  • Such a procedure requires adapted to the injection system approach, since the monitoring 140 must take into account whether, for example, a post-injection takes place at the corresponding operating conditions. As a result, the monitoring 140 and there, in particular the plausibility check, must be adapted individually to the injection system.
  • the data of each injection over 720 degrees crankshaft rotation angle are provided independently of the injection system via a defined interface.
  • a quantity is stored, that of the injected quantity and another variable, which is the angular position at which the injection has taken place.
  • the monitoring is shown in more detail in FIG. Already described in Figure 1 elements are designated in Figure 2 with corresponding reference numerals.
  • the output signal of the TPU 110 reaches a table 200 and from there to a moment determination 210.
  • the output signal of the torque determination 210 passes via a torque summation 220 to a logic 230, which in turn delivers a corresponding output signal to the display 150 or to the controller 120.
  • the second input of the logic 230 is the output of a torque map 240, the output signals FP and N of the sensors 130 are fed as input.
  • the indication of the indicated torque is based on a quantity that characterizes the injection amount that has been metered and a quantity that characterizes the angular position at which the amount of fuel is metered.
  • the injection start and the duration of injection are preferably read from the corresponding registers of the TPU 110. Instead of the injection duration and the corresponding injection angle can be used.
  • the start of injection indicates the time or the angular position of the crankshaft at which the injection takes place.
  • the injection duration defines the duration of the injection or the angle that is swept during the injection.
  • the actual injection commencement and injection durations, or the times or the angular positions at which the actuation of the actuator takes place, can be read out of the TPU. Based on the duration of injection, an amount of fuel is determined. In determining the Quantity from the control period is taken into account, for example, that the control of the actuator is longer than the actual injection.
  • the fuel quantity determined for each injection is entered into the table 200 separately for each cylinder together with the drive start angle. This table contains all the injection events of a cylinder over 720 degrees crankshaft. As an identifier, the cylinder number is also stored in the table. To ensure data integrity, a counter is included, which is incremented each time the last event table is written.
  • a message is created with the table layout managed by the operating system. This prevents access conflicts through concurrent processing. Furthermore, an adjustment of the storage requirements to the required number of cylinders is easily possible.
  • the determination of the injection quantity and the associated start of injection takes place in the table, preferably in angular synchrony.
  • Table 200 forms the interface between the controller and the monitor.
  • the message is the same as the table layout for all injection systems.
  • an indexed moment is calculated from this data for each cylinder and forwarded to the momentum summation 220.
  • the momentum summation 220 calculates time-synchronized indexed moments summed over all cylinders.
  • a variable is determined which characterizes the driver's request.
  • Size and the size that characterizes the indexed moment are checked for plausibility by the logic 230 and, if there is a deviation, detected for errors and preferably a corresponding display 150 is activated.
  • FIG. 3 shows the procedure on the basis of a flowchart.
  • the desired torque MS is calculated on the basis of the rotational speed and the accelerator pedal position FP.
  • a subsequent query 310 checks whether there are operating states in which a plausiblization is possible. If this is not the case, step 300 is repeated.
  • step 320 the indicated torque is determined for each individual cylinder.
  • the control period is weighted with the crankshaft angle and thus the indicated torque per injection determined.
  • This determination preferably takes place for each partial injection, that is to say for the pre-injection, for the main injection and also for the post-injection.
  • Fuel amounts that are metered in the post-injection are preferably weighted with the value zero because they do not contribute anything to the moment.
  • Activation time, main injection and the pilot injection are determined according to a predetermined function, the indicated moment of the respective injection.
  • step 330 the individual indexed moments are integrated over a plurality of partial injections and preferably and / or over a plurality of cylinders, and the actual torque MI is determined therefrom.
  • step 340 the Amount of the difference between the target torque MS and the actual torque MI calculated.
  • the subsequent query 350 checks whether the amount of moment difference MD is greater than a threshold value SW. If this is not the case, step 300 is repeated.
  • step 360 If the magnitude MD of the torque difference is greater than a threshold, then an error is detected in step 360.
  • the threshold value SW is selected such that possible tolerances in the determination of the torque do not lead to an error triggering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Es werden eine Vorrichtung und ein Verfahren zur Steuerung einer Brennkraftmaschine beschrieben. Ausgehend von einer ersten Größe, die die Einspritzmenge charakterisiert, und einer zweiten Größe, die die Winkelstellung, bei der die Einspritzmenge zugemessen wird, charakterisiert, wird eine dritte Größe, die das von der Brennkraftmaschine bereitgestellte Moment charakterisiert, bestimmt. Ferner wird ausgehend von einer vierten Größe, die den Fahrerwunsch charakterisiert, eine fünfte Größe, die das vom Fahrer gewünschte Moment charakterisiert, bestimmt. Die dritte Größe und die fünfte Größe werden zur Fehlerüberwachung ausgewertet.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine.
  • Aus der DE 40 33 049 ist ein Verfahren und eine Vorrichtung zur Überprüfung eines Sensors zur Erfassung der Position eines Mengenstellwerks und des Mengenstellwerks bekannt. Bei dem dort beschriebenen Verfahren wird bei stromlos geschaltetem Mengenstellwerk überprüft, ob ein Nadelbewegungsfühler oder ein entsprechender Sensor ein Ausgangssignal liefert.
  • Die US-A-5,996,547 beschreibt eine Steuerung einer Brennkraftmaschine, bei der ausgehend von dem Brennraumdruck das von der Brennkraftmaschine bereitgestellte Moment berechnet wird. Ferner wird ausgehend von dem Fahrerwunsch das gewünschte Moment ermittelt. Ausgehend von dem Vergleich zwischen dem gewünschten Moment und dem ausgehend vom Brennraumdruck gemessene Moment wird auf Fehler erkannt.
  • Aus der US-A-5, 591,176 ist ein Verfahren bekannt, bei dem das Istmoment einer Dieselbrennkraftmaschine ausgehend von einer Regelstangenposition und dem Einspritzzeitpunkt berechnet wird. Diese Regelstangenposition wird üblicher Weise mittels eines Sensors erfasst. Bei dieser Einrichtung ist deshalb ein Sensor nötig, der die Regelstangenposition erfasst dieses
  • Dokument besagt jedoch und, dass die Regelstangenposition nur in übertragehen Sinne zu verstehen ist und allgemein einen Wert für don Kraftstoffluss darstellt (Sp. 3, 710 ff.).
  • Des weiteren sind Verfahren bekannt, bei dem verschiedene Signale miteinander plausibilisiert werden.
  • Insbesondere bei der Verwendung eines Einspritzmengensignals ist die Plausibilisierung mit anderen Signalen problematisch, da bei heutigen Systemen häufig Einspritzungen erfolgen, die keinen Beitrag zum Moment der Brennkraftmaschine beitragen. Hierbei handelt es sich beispielsweise um Voreinspritzungen, die vor der eigentlichen Einspritzung erfolgen und Nacheinspritzungen, die insbesondere zur Abgasbehandlung oder zur Regeneration von Filtern und/oder Katalysatoren verwendet werden.
  • Vorteile der Erfindung
  • Erfindungsgemäß wird ausgehend von einer Ansteuerdauer einer Endstufe, eines Magnetventils oder eines Piezoaktors, die die Einspritzmenge charakterisiert, und einer zweiten Größe, die die Winkelstellung, bei der die Einspritzmenge zugemessen wird, charakterisiert, eine dritte Größe, die das von der Brennkraftmaschine bereitgestellte Moment charakterisiert, bestimmt. Ausgehend von einer vierten Größe, die den Fahrerwunsch charakterisiert, wird eine fünfte Größe, die das vom Fahrer gewünschte Moment charakterisiert, bestimmt. Die dritte Größe und die fünfte Größe werden zur Fehlerüberwachung ausgewertet. Durch diese erfindungsgemäße Vorgehensweise ist eine sichere und genaue Fehlererkennung im Bereich der gesamten Steuereinheit möglich. Besonders vorteilhaft hierbei ist, das die zweite Größe, die die Winkelstellung der Kurbelwelle oder der Nockenwelle bei der Einspritzung charakterisiert, berücksichtigt wird. Dadurch lässt sich der Einfluss des eingespritzten Kraftstoffes auf das von der Brennkraftmaschine bereitgestellte Moment berücksichtigen. Als zweite Größe wird vorzugsweise der Sollwert oder Istwert des Einspritzbeginn, des Förderbeginns, des Ansteuerbeginns oder einer anderen entsprechenden Größe verwendet.
  • Besonders vorteilhaft ist es, wenn die vierte Größe der Position eines Bedienelements entspricht. Dadurch sind auch Fehler im Bereich der Verarbeitung des Ausgangssignale des Bedienelements erkennbar.
  • Vorteilhaft ist, wenn ein Fehler erkannt wird, wenn die dritte Größe und die fünfte Größe um mehr als ein Schwellenwert voneinander abweichen. Durch diese Vorgehensweise sind Fehler im gesamten Signalpfad der Steuerung erkennbar. Dies sind insbesondere Fehler im Bereich der Auswertung der Eingangsgrößen, der Berechnung und der Bestimmung der Ausgangsgrößen.
  • Dadurch dass die Fehlerüberwachung nur in bestimmten Betriebszuständen erfolgt kann zum einen der Aufwand reduziert werden. Ferner ist eine präzisiere Fehlererkennung möglich, da in Zuständen in denen keine eindeutigen Ergebnisse gewinnbar sind, keine Fehlererkennung erfolgt.
  • Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Zeichnung
  • Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen die Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung, Figur 2 eine detaillierte Darstellung der erfindungsgemäßen Vorrichtung und Figur 3 ein Flussdiagramm zur Verdeutlichung des erfindungsgemäßen Verfahrens.
  • Beschreibung der Ausführungsbeispiele
  • Im folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel der Steuerung einer Dieselbrennkraftmaschine beschrieben. Die erfindungsgemäße Vorgehensweise ist aber nicht auf die Verwendung bei einer Dieselbrennkraftmaschine beschränkt. Sie kann auch bei anderen Brennkraftmaschinen eingesetzt werden, bei denen ein Zusammenhang zwischen der eingespritzten Kraftstoffmenge und Moment der Brennkraftmaschine besteht, bzw. bei den Systemen, bei denen ein definierter Zusammenhang zwischen der Einspritzmenge und einer anderen zu überwachenden Größe besteht.
  • Die Figur 1 zeigt die wesentlichen Elemente der Vorrichtung zur Steuerung einer Brennkraftmaschine. Ein Stellglied ist mit 100 bezeichnet. Dieses Stellglied 100 bestimmt die in die Brennkraftmaschine einzuspritzende Kraftstoffmenge. Hierbei handelt es sich vorzugsweise um ein Magnetventil oder um einen Piezoaktor. Abhängig von der Dauer eines Ansteuersignals mißt das Stellglied der nicht dargestellten Brennkraftmaschine eine bestimmte Kraftstoffmenge zu.
  • Das Stellglied 100 wird von einer als TPU bezeichneten Einheit 110 mit Ansteuersignalen beaufschlagt. Hierbei liefert die TPU Signale, die den Einspritzbeginn, das Einspritzende festlegen. Eine nicht dargestellte Endstufe in dem Stellglied setzt diese in Ansteuersignale zur Ansteuerung verschiedener Schaltmittel um.
  • Hierzu wird die TPU 110 von einer Steuerung 120 mit entsprechenden Signalen beaufschlagt. Die Steuerung 120 verarbeitet Sensorsignale verschiedener Sensoren 130, die beispielsweise Signale bezüglich des Fahrerwunsches FP, der Drehzahl N der Brennkraftmaschine und andere Betriebskenngrößen oder Umweltgrößen liefern.
  • Desweiteren ist eine Überwachung 140 vorgesehen, der die Ausgangssignale verschiedener Sensoren sowie die Ausgangssignale der TPU zugeleitet werden. Die Überwachung 140 beaufschlagt die Steuerung 120 und bei einer vorteilhaften Ausgestaltung eine Anzeige 150 mit entsprechenden Signalen. Alternativ kann auch vorgesehen sein, dass die Anzeige 150 von der Steuerung 120 angesteuert wird.
  • Diese Einrichtung arbeitet wie folgt. Ausgehend von verschiedenen Betriebskenngrößen, wie insbesondere der Drehzahl der Brennkraftmaschine und dem Fahrerwunsch berechnet die Steuerung 120 den Zeitpunkt, bei dem die Einspritzung erfolgen soll, und die einzuspritzende Kraftstoffmenge. Die einzuspritzende Kraftstoffmenge wird dann von dem Stellglied 100 der Brennkraftmaschine zugemessen und führt zu einem entsprechenden Moment.
  • Neben der Kraftstoffmenge, die zur Erzeugung des Moments zugemessen wird, werden bei jedem oder bei einzelnen Zumeßzyklen zusätzliche Kraftstoffmengen zugemessen. So kann beispielsweise vorgesehen sein, dass zur Geräuschreduzierung vor der eigentlichen Kraftstoffzumessung eine Voreinspritzung erfolgt. Desweiteren kann vorgesehen sein, dass nach der eigentlichen Einspritzung eine Nacheinspritzung erfolgt. Die Nacheinspritzung dient unter anderem zur Einbringung von Kohlenwasserstoffen in die Abgase, die wiederum eine Temperaturerhöhung der Abgase bewirken. Desweiteren können diese Kohlenwasserstoffe in einem der Brennkraftmaschine nachgeschalteten Katalysator oder Partikelfilter Reaktionen hervorrufen, die erforderlich sind, um den Katalysator und/oder den Partikelfilter funktionsfähig zu halten.
  • Insbesondere die Nacheinspritzungen, die für ein Abgasnachbehandlungssystem erforderlich sind, tragen nicht zum abgegebenen Moment der Brennkraftmaschine bei. Weitere Teileinspritzungen tragen nur im verminderten Umfang zum Drehmoment bei.
  • Die Überwachung 140 verarbeitet die Eingangssignale der Steuerung 120. Insbesondere liest die Überwachung 140 die Werte des Fahrpedalstellungsgebers ein. Hierbei handelt es sich insbesondere um das Ausgangssignal eines AD-Wandlers des Fahrpedalgebers 130. Desweiteren wertet die Überwachung 140 den letzten erfaßbaren Wert, beispielsweise die Ansteuerdauer aus und berechnet vorzugsweise unabhängig von der normalen Mengensteuerung, ob diese Werte plausibel sind. Nimmt beispielsweise die Fahrpedalstellung einen großen Wert und das Ansteuerdauersignal einen großen Wert an, so wird dies als plausibler Wert erkannt.
  • Eine solche Vorgehensweise erfordert an die Einspritzanlage angepaßte Vorgehensweise, da die Überwachung 140 berücksichtigten muß, ob bei den entsprechenden Betriebszuständen, beispielsweise eine Nacheinspritzung erfolgt. Dies führt dazu, dass die Überwachung 140 und dort insbesondere die Plausibilisierung individuell auf das Einspritzsystem anzupassen ist.
  • Erfindungsgemäß ist vorgesehen, dass unabhängig vom Einspritzsystem über eine definierte Schnittstelle die Daten jeder Einspritzung über 720 Grad Kurbelwelledrehwinkel bereitgestellt werden. Hierzu wird für jeden Zylinder und für jede Einspritzung eine Größe abgespeichert, die der eingespritzten Menge und eine andere Größe, die die Winkelstellung, bei der die Einspritzung erfolgt ist. Mit dieser Information ist es möglich, die im Zylinder gebildeten Momente zu bestimmen und mit anderen Eingangsgrößen zu plausibilisieren.
  • Durch die Bereitstellung einer einheitlichen Schnittstelle muß nur die Ermittlung der Lage und der Menge an Kraftstoffmenge speziell an das Einspritzsystem angepaßt werden. Die Überwachung auf Plausibilität kann für alle Systeme gleichartig erfolgen. Desweiteren werden die erfaßten Daten zur Berechnung der aktuellen Motorleistung ausgehend von der Winkelstellung der Kurbelwelle, der Kraftstoffmenge bestimmt
  • Die Überwachung ist in Figur 2 detaillierter dargestellt. Bereits in Figur 1 beschriebene Elemente sind in Figur 2 mit entsprechenden Bezugszeichen bezeichnet. Däs Ausgangssignal der TPU 110 gelangt zu einer Tabelle 200 und von dort zu einer Momentenbestimmung 210. Das Ausgangssignal der Momentenbestimmung 210 gelangt über eine Momentensummation 220 zu einer Logik 230, die wiederum ein entsprechendes Ausgangssignal zur Anzeige 150 bzw. zur Steuerung 120 liefert. Am zweiten Eingang der Logik 230 liegt das Ausgangssignal eines Momentenkennfeldes 240, dem als Eingangsgröße die Ausgangssignale FP und N der Sensoren 130 zugeleitet werden.
  • Diese Vorrichtung arbeitet wie folgt. Die Schätzung des indizierten Moments basiert auf einer Größe, die die Einspritzmenge, die zugemessen wurde, charakterisiert und einer Größe, die die Winkelstellung, bei der die Kraftstoffmenge zugemessen wird, charakterisiert. Vorzugsweise werden hierzu aus den entsprechenden Registern der TPU 110 der Einspritzbeginn und die Einspritzdauer ausgelesen. Anstelle der Einspritzdauer kann auch der entsprechende Einspritzwinkel verwendet werden. Der Einspritzbeginn gibt den Zeitpunkt bzw. die Winkelstellung der Kurbelwelle an, bei dem die Einspritzung erfolgt. Die Einspritzdauer definiert die Dauer der Einspritzung bzw. der Winkel, der während der Einspritzung überstrichen wird.
  • Dabei können aus der TPU die tatsächlichen Einspritzbeginne und Einspritzdauern, oder die Zeitpunkte oder die Winkelstellungen, bei denen die Ansteuerung des Stellgliedes erfolgt, ausgelesen werden. Ausgehend von der Einspritzdauer wird eine Kraftstoffmenge bestimmt. Bei der Bestimmung der Menge aus der Ansteuerdauer wird beispielsweise berücksichtigt, dass die Ansteuerung des Stellgliedes länger ist als die tatsächliche Einspritzung. Die für jede Einspritzung ermittelte Kraftstoffmenge wird für jeden Zylinder getrennt zusammen mit dem Ansteuerbeginnwinkel in die Tabelle 200 eingetragen. Diese Tabelle enthält alle Einspritzereignisse eines Zylinders über 720 Grad Kurbelwelle. Als Identifizierungsmerkmal ist zusätzlich die Zylindernummer in der Tabelle abgelegt. Zur Sicherstellung der Datenintegrität wird ein Zähler mitgeführt, der jeweils beim Beschreiben der Tabelle mit dem letzten Ereignis erhöht wird. Für jeden Zylinder wird eine Botschaft mit dem Tabellenlayout angelegt, die durch das Betriebssystem verwaltet wird. Damit sind Zugriffskonflikte durch gleichzeitige Bearbeitung ausgeschlossen. Weiterhin ist eine Anpassung des Speicherbedarfs an die benötigte Zylinderzahl problemlos möglich. Die Ermittlung der Einspritzmenge sowie des zugeordneten Spritzbeginns erfolgt in der Tabelle vorzugsweise winkelsynchron.
  • Die Tabelle 200 bildet die Schnittstelle zwischen der Steuerung und der Überwachung. Dabei ist die Botschaft mit dem Tabellenlayout für alle Einspritzsysteme gleich.
  • In der Momentenbestimmung 210 wird aus diesen Daten für jeden Zylinder ein indiziertes Moment berechnet und der Momentensummation 220 weitergeleitet. Die Momentensummation 220 berechnet zeitsynchron über alle Zylinder aufsummierte indizierte Momente.
  • Am Ausgang der Momentensummation 220 steht dann über ein Abtastzeitraum ermitteltes indiziertes Moment zur Verfügung.
  • Parallel hierzu wird ausgehend von der Fahrpedalstellung FP und der Drehzahl N mittels eines Momentenkennfeldes 240 eine Größe bestimmt, die den Fahrerwunsch charakterisiert. Diese Größe und die Größe, die das indizierte Moment charakterisiert werden von der Logik 230 auf Plausibilität überprüft und bei Abweichung auf Fehler erkannt und vorzugsweise eine entsprechende Anzeige 150 angesteuert.
  • Anstelle des Momentenkennfeldes 240 kann auch eine Berechnung mittels einer Formel erfolgen. Desweiteren können auch andere Größen oder weitere Größen neben der Fahrpedalstellung und der Drehzahl verwendet werden.
  • In Figur 3 ist die Vorgehensweise anhand eines Flussdiagramms dargestellt. In einem ersten Schritt 300 wird das Sollmoment MS ausgehend von der Drehzahl und der Fahrpedalstellung FP berechnet. Eine sich anschließende Abfrage 310 überprüft, ob Betriebszustände vorliegen, in denen eine Plausiblisierung möglich ist. Ist dies nicht der Fall, so erfolgt erneut Schritt 300.
  • Liegt ein solcher Betriebszustand vor, so wird in Schritt 320 das indizierte Moment für jeden einzelnen Zylinder bestimmt. Hierzu wird die Ansteuerdauer mit dem Kurbelwellenwinkel gewichtet und so das indizierte Moment pro Einspritzung bestimmt. Diese Bestimmung erfolgt vorzugsweise für jede Teileinspritzung, also sowohl für die Vor-, für die Haupt- und auch die Nacheinspritzung. Kraftstoffmengen, die bei der Nacheinspritzung zugemessen werden, werden vorzugsweise mit dem Wert Null gewichtet, da sie keinerlei Beitrag zum Moment liefern. Ansteuerdauer, Haupteinspritzung und der Voreinspritzung werden gemäß einer vorgebbaren Funktion das indizierte Moment der jeweiligen Einspritzung bestimmt.
  • Im anschließenden Schritt 330 werden die einzelnen indizierten Momente über mehrere Teileinspritzungen und vorzugsweise und/oder über mehrere Zylinder aufintegriert und daraus das Istmoment MI ermittelt. Anschließend wird in Schritt 340 der Betrag der Differenz zwischen dem Sollmoment MS und dem Istmoment MI berechnet. Die sich anschließende Abfrage 350 überprüft, ob der Betrag der Momentendifferenz MD größer als ein Schwellenwert SW ist. Ist dies nicht der Fall, so erfolgt erneut Schritt 300.
  • Ist der Betrag MD der Momentendifferenz größer als ein Schwellenwert, wird in Schritt 360 auf Fehler erkannt. Der Schwellenwert SW ist so gewählt, dass mögliche Toleranzen bei der Bestimmung des Moments nicht zu einer Fehlerauslösung führen.

Claims (6)

  1. Verfahren zur Steuerung einer Brennkraftmaschine, bei der ausgehend von einer Ansteuerdauer einer Endstufe, eines Magnetventils oder eines Piezoaktors, die die Einspritzmenge charakterisiert, und einer zweiten Größe, die die Winkelstellung, bei der die Einspritzmenge zugemessen wird, charakterisiert, eine dritte Größe, die das von der Brennkraftmaschine bereitgestellte Moment charakterisiert, bestimmt wird, dass ausgehend von einer vierten Größe, die den Fahrerwunsch charakterisiert, eine fünfte Größe, die das vom Fahrer gewünschte Moment charakterisiert, bestimmt wird, dass die dritte Größe und die fünfte Größe zur Fehlerüberwachung ausgewertet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Größe der Winkelstellung der Kurbelwelle entspricht bei der die Einspritzung erfolgt.
  3. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, das die vierte Größe der Position eines Bedienelements entspricht.
  4. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein Fehler erkannt wird, wenn die dritte Größe und die fünfte Größe um mehr als ein Schwellenwert voneinander abweichen.
  5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Fehlerüberwachung nur in bestimmten Betriebszuständen erfolgt.
  6. Vorrichtung zur Steuerung einer Brennkraftmaschine, mit Mitteln, die ausgehend von einer Ansteuerdauer einer Endstufe, eines Magnetventils oder eines Piezoaktors, die die Einspritzmenge charakterisiert, und einer zweiten Größe, die die Winkelstellung, bei der die Einspritzmenge zugemessen wird, charakterisiert, eine dritte Größe, die das von der Brennkraftmaschine bereitgestellte Moment charakterisiert, bestimmen, und die ausgehend von einer vierten Größe, die den Fahrerwunsch charakterisiert, eine fünfte Größe, die das vom Fahrer gewünschte Moment charakterisiert, bestimmen, und die die dritte Größe und die fünfte Größe zur Fehlerüberwachung auswerten.
EP01953133A 2000-08-05 2001-07-03 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine Expired - Lifetime EP1309781B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10038340A DE10038340A1 (de) 2000-08-05 2000-08-05 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10038340 2000-08-05
PCT/DE2001/002449 WO2002012698A1 (de) 2000-08-05 2001-07-03 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1309781A1 EP1309781A1 (de) 2003-05-14
EP1309781B1 true EP1309781B1 (de) 2006-06-07

Family

ID=7651491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01953133A Expired - Lifetime EP1309781B1 (de) 2000-08-05 2001-07-03 Verfahren und vorrichtung zur steuerung einer brennkraftmaschine

Country Status (8)

Country Link
US (1) US6820473B2 (de)
EP (1) EP1309781B1 (de)
JP (1) JP2004506120A (de)
KR (1) KR20020035647A (de)
DE (2) DE10038340A1 (de)
PL (1) PL200606B1 (de)
RU (1) RU2264551C2 (de)
WO (1) WO2002012698A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129448A1 (de) * 2001-06-19 2003-01-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überwachung einer Antriebseinheit eines Fahrzeugs und/oder ihr zugeordneter Komponenten
WO2003085249A1 (de) * 2002-04-08 2003-10-16 Robert Bosch Gmbh Verfahren zum überwachen einer brennkraftmaschine
DE10252988B3 (de) * 2002-11-14 2004-06-09 Siemens Ag Verfahren zur Ermittlung der Einspritzmenge einer Brennkraftmaschine
DE102004025406B4 (de) * 2004-05-24 2015-11-12 Volkswagen Ag Verfahren zur Einspritzsteuerung eines Verbrennungsmotors und entsprechend ausgestaltete Motorsteuerung
WO2007030069A1 (en) * 2005-09-08 2007-03-15 Volvo Lastvagnar Ab A method for adapting an automated mechanical transmission based on a measured pto load
DE102006020065B3 (de) * 2006-04-29 2007-07-26 Dr.Ing.H.C. F. Porsche Ag Motorsteuerungseinrichtung
DE102007025076A1 (de) * 2007-05-30 2008-12-04 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE102007057311B3 (de) * 2007-11-28 2009-06-10 Continental Automotive Gmbh Verfahren und Vorrichtung zur Fehlererkennung bei emissionsrelevanten Steuereinrichtungen in einem Fahrzeug
FI122489B (fi) * 2008-05-26 2012-02-15 Waertsilae Finland Oy Menetelmä ja järjestelmä dieselmoottorin sylintereiden tasapainottamiseksi
DE102011004773A1 (de) * 2011-02-25 2012-08-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines Antriebs eines Antriebssystems eines Fahrzeugs
EP2607672B1 (de) * 2011-12-20 2016-08-17 Fiat Powertrain Technologies S.p.A. Vorrichtung und Verfahren zur Regeneration eines Partikelfilters einer Dieselbrennkraftmaschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910176A (en) * 1996-10-28 1999-06-08 Caterpillar Inc. Apparatus and method for calibrating a computer based model of an attribute of a mobile machine

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527856A1 (de) * 1984-08-03 1986-02-27 Nissan Motor Co., Ltd., Yokohama, Kanagawa Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
JPH063159B2 (ja) * 1986-04-30 1994-01-12 株式会社日本自動車部品総合研究所 内燃機関制御装置
JPH0759905B2 (ja) * 1987-07-10 1995-06-28 日産自動車株式会社 内燃機関の燃料噴射制御装置
JPH01144469U (de) * 1988-03-29 1989-10-04
US4922877A (en) * 1988-06-03 1990-05-08 Nissan Motor Company, Limited System and method for controlling fuel injection quantity for internal combustion engine
JP2510250B2 (ja) * 1988-08-30 1996-06-26 日産自動車株式会社 内燃機関の燃焼制御装置
JPH0814271B2 (ja) * 1988-09-12 1996-02-14 日産自動車株式会社 内燃機関の点火時期制御装置
GB2226080B (en) * 1988-11-22 1993-06-02 Nissan Motor Controlling engine operation according to detected engine revolution speed and identified cylinder
JPH02283860A (ja) * 1989-04-24 1990-11-21 Nissan Motor Co Ltd エンジンの点火時期制御装置
DE4033049A1 (de) 1990-10-18 1992-04-23 Bosch Gmbh Robert Verfahren und einrichtung zur ueberpruefung des mengenstellwerkpositionssensors und des mengenstellwerks
JP3479090B2 (ja) * 1992-06-03 2003-12-15 株式会社日立製作所 多気筒エンジンの燃焼状態診断装置
JP3323974B2 (ja) * 1995-02-24 2002-09-09 株式会社ユニシアジェックス 内燃機関の制御装置
JP3578597B2 (ja) 1997-06-30 2004-10-20 株式会社日立ユニシアオートモティブ 直噴火花点火式内燃機関の制御装置
DE19844746C1 (de) * 1998-09-29 2000-04-20 Siemens Ag Verfahren und Vorrichtung zum Detektieren einer Voreinspritzung bei einer Brennkraftmaschine
JP3769944B2 (ja) * 1998-10-06 2006-04-26 日産自動車株式会社 内燃機関の排気浄化装置
DE19900740A1 (de) * 1999-01-12 2000-07-13 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP3910759B2 (ja) * 1999-05-21 2007-04-25 株式会社日立製作所 エンジン制御装置
JP3966096B2 (ja) * 2002-06-20 2007-08-29 株式会社デンソー 内燃機関用噴射量制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910176A (en) * 1996-10-28 1999-06-08 Caterpillar Inc. Apparatus and method for calibrating a computer based model of an attribute of a mobile machine

Also Published As

Publication number Publication date
DE10038340A1 (de) 2002-02-14
WO2002012698A1 (de) 2002-02-14
PL200606B1 (pl) 2009-01-30
DE50110060D1 (de) 2006-07-20
PL353478A1 (en) 2003-11-17
JP2004506120A (ja) 2004-02-26
RU2264551C2 (ru) 2005-11-20
KR20020035647A (ko) 2002-05-13
EP1309781A1 (de) 2003-05-14
US6820473B2 (en) 2004-11-23
US20030037766A1 (en) 2003-02-27

Similar Documents

Publication Publication Date Title
EP0170018B1 (de) Verfahren und Vorrichtung zur Eigendiagnose von Stellgliedern
WO2009000647A2 (de) Verfahren und vorrichtung zur diagnose eines mit einer kraftstoffverteilerleiste in verbindung stehenden einspritzventils einer brennkraftmaschine
EP1309781B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
EP2071165B1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2017021183A1 (de) Verfahren zur erkennung fehlerhafter komponenten eines kraftstoffeinspritzsystems
DE102010017282A1 (de) Vorrichtung zur Erfassung von Moment-Unterbrechungen und Steuergerät für einen Verbrennungsmotor mit derselben
EP1843023A2 (de) Adaptionsverfahren einer Einspritzanlage einer Brennkraftmaschine
EP2076667B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffeinspritzsystems
WO2003085249A1 (de) Verfahren zum überwachen einer brennkraftmaschine
WO1991002147A1 (de) Verfahren und vorrichtung zur steuerung und/oder regelung der motorleistung einer brennkraftmaschine eines kraftfahrzeugs
EP1222378A1 (de) Vorrichtung und verfahren zur steuerung einer antriebseinheit
DE69705150T2 (de) Verfahren zur Diagnose des Wirkungsgrades eines stromabwärts von einem Katalysator angeordneten Stochiometrischen Abgassensors
EP1347165B1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
WO2000063546A1 (de) Verfahren und vorrichtung zur überwachung eines rechenelements in einem kraftfahrzeug
EP1420157B1 (de) Verfahren zur Ermittlung der Einspritzmenge einer Brennkraftmaschine
EP1180210B2 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine mit einem abgasnachbehandlungssystem
DE102004048008A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102007007815B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10310954A1 (de) Verfahren zur Diagnose eines NOx-Sensors
WO2007039391A1 (de) Diagnoseverfahren und vorrichtung für die steuerung einer brennkraftmaschine
EP1365234A2 (de) Verfahren zur Korrektur des NOx-Signals eines NOx-Sensors
EP2092181B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP0708233A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO2010081607A1 (de) Verfahren zum durchführen einer anzahl einspritzungen
WO2009013256A1 (de) Verfahren und vorrichtung zum betreiben einer antriebseinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030305

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20050617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110060

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060922

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140724

Year of fee payment: 14

Ref country code: GB

Payment date: 20140721

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140724

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150703

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160927

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110060

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201