EP1008723B1 - Plattformkühlung in Turbomaschinen - Google Patents
Plattformkühlung in Turbomaschinen Download PDFInfo
- Publication number
- EP1008723B1 EP1008723B1 EP98811219A EP98811219A EP1008723B1 EP 1008723 B1 EP1008723 B1 EP 1008723B1 EP 98811219 A EP98811219 A EP 98811219A EP 98811219 A EP98811219 A EP 98811219A EP 1008723 B1 EP1008723 B1 EP 1008723B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- platforms
- cooling
- fluid
- platform
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
- F01D11/006—Sealing the gap between rotor blades or blades and rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/005—Sealing means between non relatively rotating elements
- F01D11/006—Sealing the gap between rotor blades or blades and rotor
- F01D11/008—Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/80—Platforms for stationary or moving blades
- F05B2240/801—Platforms for stationary or moving blades cooled platforms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/80—Platforms for stationary or moving blades
- F05D2240/81—Cooled platforms
Definitions
- the invention relates to a device for cooling of platforms in Turbomachinery, in particular in gas turbines.
- the efficiency of turbomachines can be increased by increasing the cycle process parameters of the turbomachine.
- the relevant cycle process parameters are the pressure and the temperature of the fluid.
- the fluid temperatures which usually occur during the operation of turbomachines today are already well above the permissible material temperatures of the components, in particular in the turbine inlet region.
- the components forming the flow channel or projecting into the flow channel are directly exposed to the hot fluid flow.
- the conditional by the heat conduction of the material heat dissipation of the components is generally not sufficient here to avoid over-temperature of the components. Too high material temperatures initially lead to a decrease in the strength values of the material. This often leads to cracking in components.
- the flow channel of a turbomachine is often constructed of annularly lined-up platforms.
- the blades of the turbomachine are often arranged on such platforms. In most cases, one bucket is made in one piece with one platform each. In particular, in stators such platforms are also often arranged in the form of a shroud of the blading at the blade tips of the blades. These platforms are thus exposed directly to the hot fluid flow.
- a temperature profile of the fluid emerging from the combustion chamber, usually air, in the turbine inlet region has traditionally been desired above the channel height.
- This temperature profile could be achieved via an admixture of cooling fluid in the edge regions of the hot fluid flow in the outlet region of the combustion chamber.
- the fluid immediately adjacent to the side walls and thus to the platforms therefore had a significantly reduced temperature compared to the temperature of the core flow.
- an over-temperature of the platforms could be avoided.
- the invention is based on the object, platforms efficient and reliable to cool.
- This object is achieved in that at least in one Section along the running between adjacent platforms Parting line a cooling channel is arranged, which as a slot-shaped depression in both adjacent to the parting line side walls of the platforms is executed, and the one along the parting line changing depth of penetration in the respective platform.
- the cooling fluid guided in the cooling channel has a lower one Temperature on than the adjacent platforms. This is what happens a convective heat transfer between the to the cooling channel adjacent platforms and the cooling fluid and consequently to one Cooling the platforms. It turned out that in this way realized cooling almost independent of fluctuations of the Operating state of the turbomachine is. Furthermore, compared to the other cooling method described above a much smaller Coolant fluid mass flow required to cool the platforms.
- the cooling channel extends at least in sections approximately parallel to the platform surface. This ensures that a large area of the platform is cooled evenly. It was found that thus a largely uniform Setting temperature distribution in the refrigerated areas of the platform. So-called 'hot spots' in the form of local overheating of the platforms become thereby avoided.
- the platforms are one-piece or multi-piece with on the platforms arranged blades executed.
- the platforms can be on the blade foot or be arranged on the blade head of the blades. Form strung together the platforms one or both side walls of the flow channel.
- the cooling channel approximately centrally between the blades to arrange.
- Particularly advantageous is the cooling channel with a Shovel profile course executed approximately similar course. It presented It turns out that an over-temperature is common in the peripheral areas and the free areas of the platforms occurs.
- the free areas of a platform are the areas that in the top view or the bottom view are not one on the Platform arranged shovel to be covered.
- the cooling channel course has at least one S-beat in such a way, in that at least a part of the cooling fluid guided in the cooling channel is the one Dividing line overflowed.
- the Cooling channel as a slot-shaped depression in the at the parting line adjacent side walls of the platform and thus not as closed Cooling channel, but is open towards the parting line, the Cooling fluid accordingly also flow into the parting line.
- the Cooling fluid supplied to the cooling channel in a simple manner via the parting line become.
- cooling channel is open towards the parting line, it is expedient to use the Cooling channel arranged by means of at least one in the cooling channel Sealing element, preferably a sealing strip inserted in the cooling channel, opposite to a fluid applied to the top of the platforms, in the Usually the hot fluid, seal. As a result, an outflow of the Cooling fluid prevented from the cooling channel.
- Sealing element preferably a sealing strip inserted in the cooling channel, opposite to a fluid applied to the top of the platforms, in the Usually the hot fluid, seal.
- an open to the parting line cooling channel is advantageous at least in a section along the parting line in a sealing chamber and a Cooling chamber divided. This subdivision of the cooling channel preferably takes place via a gradation of the channel height.
- the sealing chamber is to arrange a Sealing element expediently designed with a larger channel height.
- the Cooling chamber advantageously has a smaller channel height at the same time greater penetration depth.
- FIG. 1 shows a platform 110 for use in a turbomachine typical embodiment shown in a side view.
- the hatching was not used here, as usual, for marking cut surfaces, but merely serves to illustrate the presentation.
- the Platform 110 in one piece with one on the platform arranged blade 120 executed.
- the platform 110 is in one Arrangement shown with a rotor disc 121 of the turbomachine. This Arrangement corresponds to the typical structure of a bladed Turbine rotor of a turbomachine. Shown is only one of the am Scope of the rotor disc lined up, each with platforms running Blades. Form the platforms strung together on the circumference of the runner in this case, the hub-side side wall of the flow channel of the turbomachine.
- the hot fluid flow 125 as the main flow of Turbomachine flows in the representation from right to left along the Top of the platform 110. This results in an immediate Heat transfer between the hot fluid 125 and the platform 110.
- the Temperature of the hot fluid 125 is in this case at least in the full load range of Turbomachine above the maximum permissible material temperature of the platform.
- a cooling channel 130 arranged.
- the cooling channel 130 is approximately parallel to that of the hot Fluid flow facing top of the platform 110. According to the Representation is the cooling channel 130 as a slot-shaped depression in the Side wall of the platform 110 executed.
- Cooling channel 130 is fed here from two reservoirs with cooling fluid.
- Cooling fluid 126 flows from between the platform and the rotor disk arranged cooling fluid reservoir 155 via an opening 150 in the cooling channel 130.
- Another way of supplying cooling fluid to the cooling channel 130 results here via the lateral opening 151 of the cooling channel.
- the feed the cooling channel 130 with cooling fluid 126 is thus here in relation to the Main flow 125 upstream.
- the outflow is related to the Main flow at the downstream end of the cooling channel instead.
- the in Figure 1 illustrated cooling channel 130 ends without specially shaped outlet in the Platform 110. The cooling fluid 126 escapes via the parting line.
- FIG. 2 shows two juxtaposed platforms 210, 210 'in plan view.
- a blade 220, 220 ' is arranged in each case.
- a cooling channel 230 is arranged in the side walls of the platforms 210, 210' adjoining the parting line 211 along the parting line 211.
- the cooling channel 230 consists of slot-shaped recesses in the side walls of both platforms 210, 210 '.
- the arrangement of the cooling channel 230 was chosen in the illustrated embodiment so that the cooling channel 230 approximately centrally between the blades 220, 220 'extends and in this case has a profile similar to the blade profile.
- This profile of the cooling channel 230 which is similar to the blade profile, is achieved in that the course of the cooling channel 230 along the parting line 211 has two S-strikes.
- the sealing chamber 235 here consists of slit-shaped depressions which are arranged in both adjacent to the parting line 211 side walls with approximately the same and along the parting line 211 constant penetration depth. Furthermore, the sealing chamber 235 has a greater channel height compared to the cooling chamber 236. This feature is not apparent due to the representation perspective of Figure 2.
- the sealing element which is expediently to be arranged in the sealing chamber is not shown. This sealing element seals the cooling channel against the hot fluid flow on the top of the platforms.
- the cooling chamber 236 is designed in the same way as the sealing chamber 235 as a slot-shaped depression but with a smaller channel height. In contrast to the sealing chamber, the cooling chamber 236, however, as shown in Figure 2, a greater penetration depth in the platforms 210, 210 'a.
- the feeding of the cooling channel 230 with cooling fluid 226 takes place in relation to the hot fluid flow 225 at the upstream end of the cooling passage 230 via a longitudinal slot 250 from a lower side reservoir.
- Cooling channel 230 flows from the cooling fluid 226 the cooling channel 230 via a Outlet opening 252 in a downstream, not shown in Figure 2 Component gap.
- a seal of the cooling channel 330 is shown in FIG. 3 as a section through two Side-by-side platforms 310, 310 'shown.
- the cooling channel 330 is here from slot-shaped depressions in both to the parting line formed adjacent side walls of the platforms 310, 310 '.
- the first Platform 310 is again in one piece with one located on the platform Shovel 320 executed.
- the cooling channel 330 is over a gradation of Channel height in a sealing chamber 335 and a cooling chamber 336 divided.
- a sealing strip 340 inserted so that he in the Cooling passage 330 flowing cooling fluid to one on the tops of the Platforms adjacent fluid seals.
- the sealing strip 340 has at its at the rear end, a flange 341 on. This flange 341 serves here Guide the sealing fluid in the overflow of the parting line 311st
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die im Betrieb von Turbomaschinen heutzutage üblicherweise auftretenden Fluidtemperaturen liegen insbesondere im Turbineneintrittsbereich bereits deutlich über den zulässigen Materialtemperaturen der Bauteile. Speziell die den Strömungskanal bildenden oder in den Strömungskanal ragenden Bauteile sind hierbei unmittelbar der heißen Fluidströmung ausgesetzt. Die durch die Wärmeleitung des Werkstoffs bedingte Wärmeabfuhr der Bauteile ist hier in der Regel nicht ausreichend, um eine Übertemperatur der Bauteile zu vermeiden. Zu hohe Materialtemperaturen führen zunächst zu einem Rückgang der Festigkeitswerte des Werkstoffs. Hierbei kommt es oftmals zur Rißbildung in Bauteilen. Im Falles des Überschreitens der Schmelztemperatur des Werkstoffs kommt es darüber hinaus zu einer lokalen oder auch vollständigen Zerstörung des Bauteils. Um diese fatalen Folgen zu vermeiden, ist dafür Sorge zu tragen, daß die Bauteiltemperaturen die maximal zulässigen Materialtemperaturen nicht überschreiten.
Der Strömungskanal einer Turbomaschine ist oftmals aus ringförmig aneinandergereihten Plattformen aufgebaut. Die Schaufeln der Turbomaschine sind häufig auf derartigen Plattformen angeordnet. Zumeist ist je eine Schaufel einteilig mit je einer Plattform ausgeführt. Insbesondere bei Statoren sind derartige Plattformen aber auch oftmals in Form eines Deckbandes der Beschaufelung an den Schaufelspitzen der Schaufeln angeordnet. Diese Plattformen sind somit unmittelbar der heißen Fluidströmung ausgesetzt.
Um die maximal zulässige Materialtemperatur der Plattformen nicht zu überschreiten, wurde bisher üblicherweise über der Kanalhöhe ein Temperaturprofil des aus der Brennkammer austretenden Fluids, meist Luft, im Turbineneintrittsbereich angestrebt. Dieses Temperaturprofil ließ sich über eine Beimischung von Kühlfluid in die Randbereiche der heißen Fluidströmung im Austrittsbereich der Brennkammer erzielen. Das unmittelbar an die Seitenwände und somit an die Plattformen angrenzende Fluid wies daher eine im Vergleich zur Temperatur der Kernströmung deutlich verminderte Temperatur auf. Somit konnte eine Übertemperatur der Plattformen vermieden werden. Als Nachteile dieses Verfahrens ergeben sich hieraus einerseits ein über die Kanalhöhe variierender Energiegehalt der Fluidströmung. Dieser über die Kanalhöhe variierende Energiegehalt der Fluidströmung führt wiederum zu einer uneinheitlichen Energieumsetzung in einem nachfolgenden Rotor und somit zu einer uneinheitlichen Belastung der Beschaufelung über der Kanalhöhe. Als ein weiterer Nachteil dieser Zumischung von Kühlfluid zur Hauptströmung resultiert hieraus eine Verminderung des erzielbaren Wirkungsgrades und somit auch der Leistungsdichte der Turbomaschine. Aus diesen Gründen wird heutzutage ein gleichmäßiges Temperaturprofil über der Kanalhöhe angestrebt. Darüber hinaus werden moderne Brennkammern heutzutage unter dem Aspekt der NOx-Reduktion so ausgelegt, daß keine oder nur eine geringe Beimischung von Sekundärverbrennungsluft mehr erfolgt. Hieraus resultiert ein sehr gleichmäßiges Temperaturprofil über der Kanalhöhe. Dies wiederum führt zu einer Erhöhung der thermischen Belastung der Bauteile, die der Brennkammer nachgeordnet sind, insbesondere der Seitenwände und somit der Plattformen.
Hier wurde bisher versucht, die Plattformen durch Ausblasung eines Kühlfluides zumeist unmittelbar stromauf der Plattformen zu kühlen. Das Kühlfluid soll hierbei einen Kühlfilm auf der Oberseite der Plattformen ausbilden, wodurch es zu einer fluidmechanischen Trennung zwischen dem heißen Fluid und der jeweiligen Plattform kommt. Bei der Lösung gemäss EP 0367984 sind zu diesem Zweck in einer Trennfuge zwischen benachbarten Plattformen schlitzförmige Kanäle zur Verteilung des Kühlfluids angeordnet, welches über Spaltöffnungen in der Streifendichtung zwischen den Plattformen austritt und auf der äusseren Plattformoberfläche einen Kühlfilm bildet. Die Wirkung derartiger Kühlfilme ist aber aufgrund der Durchmischung mit dem Heißgas oftmals räumlich eng begrenzt. Sich ändernde Druckverhältnisse der Heißgasströmung oder auch des Kühlfluids über den Lastbereich einer Turbomaschine führen ebenso zu einem veränderten Kühlfilm. Um eine ausreichende Kühlung zu gewährleisten, ist darüber hinaus ein relativ großer Kühlfluidmassenstrom erforderlich. Dies wiederum führt zu einer Verminderung des Wirkungsgrades der Turbomaschine. Zur Erhöhung der Kühlwirkung wird gemäss US 5281097 angeregt, die von einer Fluidquelle zur Trennfuge führenden Kühlkanäle gekurvt auszubilden, um damit die Wirkung der konvektiven Kühlung auf einen grösseren Flächenbereich auszudehnen und somit eine intensivere und gleichmässigere Kühlung der Plattformen zu erreichen. Nach EP 0866214 verlaufen die vom Kühlfluid beaufschlagten Kühlkanäle vollständig innerhalb der Plattformen und im wesentlichen parallel zu deren Rändern. Diese auf Dampf als Kühlfluid ausgelegte Lösung soll insbesondere die Kühlung der peripheren, thermisch besonders beanspruchten Bereiche der Plattformen verbessern.
- Fig. 1
- eine Plattform mit einem in der Plattform angeordneten Kühlkanal in der Seitenansicht
- Fig. 2
- zwei aneinandergereihte Plattformen mit auf den Plattformen angeordneten Schaufeln und einem längs der Trennfuge zwischen den Plattformen angeordneten Kühlkanal in der Draufsicht
- Fig. 3
- einen Schnitt durch zwei nebeneinander angeordnete Plattformen mit einem in den Plattformen angeordneten Kühlkanal
Der in Figur 2 dargestellte Kühlkanal 230 weist zusätzlich eine Unterteilung des Kühlkanals 230 in eine Dichtkammer 235 und eine Kühlkammer 236 auf. Die Dichtkammer 235 besteht hierbei aus schlitzförmigen Vertiefungen, die in beiden an die Trennfuge 211 angrenzenden Seitenwänden mit annähernd gleicher und längs der Trennfuge 211 konstanter Eindringtiefe angeordnet sind. Ferner weist die Dichtkammer 235 im Vergleich zu der Kühlkammer 236 eine größere Kanalhöhe auf. Dieses Merkmal ist aufgrund der Darstellungsperspektive der Figur 2 nicht zu entnehmen. Ebenso ist in Figur 2 das in der Dichtkammer zweckmäßig anzuordnende Dichtelement nicht abgebildet. Dieses Dichtelement dichtet den Kühlkanal gegenüber der heißen Fluidströmung auf der Oberseite der Plattformen ab. Die Kühlkammer 236 ist in gleicher Weise wie die Dichtkammer 235 als schlitzförmige Vertiefung mit jedoch einer kleineren Kanalhöhe ausgeführt. Im Vergleich zur Dichtkammer weist die Kühlkammer 236 hingegen, wie in Figur 2 dargestellt, eine größere Eindringtiefe in die Plattformen 210, 210' ein.
- 110,210,310
- (erste) Plattform
- 210',310'
- (zweite) Plattform
- 211,311
- Trennfuge
- 120,220,220',320
- Schaufel
- 121
- Läuferscheibe
- 125,225
- Strömung des heißen Fluides (Hauptströmung durch die Turbomaschine)
- 126,226
- Kühlfluid
- 130,230,330
- Kühlkanal
- 135,235,335
- Dichtkammer
- 136,236,336
- Kühlkammer
- 340
- Dichtstreifen
- 341
- Bördelung
- 150,151,250
- Zuströmöffnung
- 252
- Austrittsöffnung
- 155
- Kühlfluidreservoir
Claims (5)
- Plattformen einer Turbomaschine, insbesondere einer Gasturbine, wobei zumindest zwei Plattformen (_10; _10') nebeneinander angeordnet sind, zwischen den Plattformen (_10; 10') eine Trennfuge (_11) verläuft und zur Kühlung der Plattformen (_10; 10') mittels eines Kühlfluids (226) zumindest in einem Abschnitt längs der Trennfuge (_11) ein Kühlkanal (_30) angeordnet ist, welcher als schlitzförmige Vertiefung in beiden an die Trennfuge (_11) angrenzenden Seitenwänden der Plattformen (_10; _10') ausgeführt ist, dadurch gekennzeichnet, dass der Kühlkanal (_30) eine sich längs der Trennfuge (_11) verändernde Eindringtiefe in der jeweiligen Plattform (_10; _10') aufweist.
- Plattformen einer Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass auf den Plattformen (_10; 10') Schaufeln (_20; _20') angeordnet sind, und der Kühlkanal L30) näherungsweise mittig zwischen den Schaufeln (_20; _20') mit einem dem Schaufelprofil ähnlichen Verlauf angeordnet ist.
- Plattformen einer Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass der Kühlkanal (_30) in seinem Verlauf zumindest einen S-Schlag dergestalt aufweist, so dass zumindest ein Teil des in dem Kühlkanal (_30) geführten Kühlfluids (226) die Trennfuge (_11) überströmt.
- Plattformen einer Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass der Kühlkanal (_30) mittels zumindest eines in dem Kühlkanal (_30) angeordneten Dichtstreifens (340) gegenüber einem auf der Oberseite der Plattformen (_10; _10') anliegenden Fluids abgedichtet ist.
- Plattformen einer Turbomaschine nach Anspruch 4, dadurch gekennzeichnet, dass der Kühlkanal (_30) zumindest in einem Abschnitt längs der Trennfuge (_11) über eine Stufung der Kanalhöhe in eine Dichtkammer (_35) und eine Kühlkammer (_36) unterteilt ist.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59810806T DE59810806D1 (de) | 1998-12-10 | 1998-12-10 | Plattformkühlung in Turbomaschinen |
EP98811219A EP1008723B1 (de) | 1998-12-10 | 1998-12-10 | Plattformkühlung in Turbomaschinen |
US09/456,332 US6309175B1 (en) | 1998-12-10 | 1999-12-08 | Platform cooling in turbomachines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98811219A EP1008723B1 (de) | 1998-12-10 | 1998-12-10 | Plattformkühlung in Turbomaschinen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1008723A1 EP1008723A1 (de) | 2000-06-14 |
EP1008723B1 true EP1008723B1 (de) | 2004-02-18 |
Family
ID=8236479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98811219A Expired - Lifetime EP1008723B1 (de) | 1998-12-10 | 1998-12-10 | Plattformkühlung in Turbomaschinen |
Country Status (3)
Country | Link |
---|---|
US (1) | US6309175B1 (de) |
EP (1) | EP1008723B1 (de) |
DE (1) | DE59810806D1 (de) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4508482B2 (ja) * | 2001-07-11 | 2010-07-21 | 三菱重工業株式会社 | ガスタービン静翼 |
US6945749B2 (en) * | 2003-09-12 | 2005-09-20 | Siemens Westinghouse Power Corporation | Turbine blade platform cooling system |
GB0328952D0 (en) * | 2003-12-12 | 2004-01-14 | Rolls Royce Plc | Nozzle guide vanes |
US7097417B2 (en) * | 2004-02-09 | 2006-08-29 | Siemens Westinghouse Power Corporation | Cooling system for an airfoil vane |
US7309212B2 (en) * | 2005-11-21 | 2007-12-18 | General Electric Company | Gas turbine bucket with cooled platform leading edge and method of cooling platform leading edge |
US7416391B2 (en) * | 2006-02-24 | 2008-08-26 | General Electric Company | Bucket platform cooling circuit and method |
US7604456B2 (en) * | 2006-04-11 | 2009-10-20 | Siemens Energy, Inc. | Vane shroud through-flow platform cover |
EP1892383A1 (de) * | 2006-08-24 | 2008-02-27 | Siemens Aktiengesellschaft | Gasturbinenschaufel mit gekühlter Plattform |
US8152436B2 (en) | 2008-01-08 | 2012-04-10 | Pratt & Whitney Canada Corp. | Blade under platform pocket cooling |
US8727726B2 (en) * | 2009-08-11 | 2014-05-20 | General Electric Company | Turbine endwall cooling arrangement |
US8647064B2 (en) | 2010-08-09 | 2014-02-11 | General Electric Company | Bucket assembly cooling apparatus and method for forming the bucket assembly |
US9416666B2 (en) | 2010-09-09 | 2016-08-16 | General Electric Company | Turbine blade platform cooling systems |
US9366142B2 (en) | 2011-10-28 | 2016-06-14 | General Electric Company | Thermal plug for turbine bucket shank cavity and related method |
US8845289B2 (en) | 2011-11-04 | 2014-09-30 | General Electric Company | Bucket assembly for turbine system |
US8858160B2 (en) | 2011-11-04 | 2014-10-14 | General Electric Company | Bucket assembly for turbine system |
US8870525B2 (en) | 2011-11-04 | 2014-10-28 | General Electric Company | Bucket assembly for turbine system |
US8840370B2 (en) | 2011-11-04 | 2014-09-23 | General Electric Company | Bucket assembly for turbine system |
US9022735B2 (en) | 2011-11-08 | 2015-05-05 | General Electric Company | Turbomachine component and method of connecting cooling circuits of a turbomachine component |
EP2762679A1 (de) * | 2013-02-01 | 2014-08-06 | Siemens Aktiengesellschaft | Gasturbinen-Rotorschaufel und Gasturbinenrotor |
WO2015026430A1 (en) * | 2013-08-20 | 2015-02-26 | United Technologies Corporation | Ducting platform cover plate |
EP3090143B8 (de) * | 2013-12-09 | 2021-04-21 | Raytheon Technologies Corporation | Anordnung von bauteilen in einem gasturbinentriebwerk |
US20190085706A1 (en) * | 2017-09-18 | 2019-03-21 | General Electric Company | Turbine engine airfoil assembly |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4902198A (en) * | 1988-08-31 | 1990-02-20 | Westinghouse Electric Corp. | Apparatus for film cooling of turbine van shrouds |
GB2251897B (en) * | 1991-01-15 | 1994-11-30 | Rolls Royce Plc | A rotor |
US5281097A (en) * | 1992-11-20 | 1994-01-25 | General Electric Company | Thermal control damper for turbine rotors |
US5382135A (en) * | 1992-11-24 | 1995-01-17 | United Technologies Corporation | Rotor blade with cooled integral platform |
US5634766A (en) * | 1994-08-23 | 1997-06-03 | General Electric Co. | Turbine stator vane segments having combined air and steam cooling circuits |
JP3457831B2 (ja) * | 1997-03-17 | 2003-10-20 | 三菱重工業株式会社 | ガスタービン動翼の冷却プラットフォーム |
-
1998
- 1998-12-10 EP EP98811219A patent/EP1008723B1/de not_active Expired - Lifetime
- 1998-12-10 DE DE59810806T patent/DE59810806D1/de not_active Expired - Lifetime
-
1999
- 1999-12-08 US US09/456,332 patent/US6309175B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE59810806D1 (de) | 2004-03-25 |
EP1008723A1 (de) | 2000-06-14 |
US6309175B1 (en) | 2001-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1008723B1 (de) | Plattformkühlung in Turbomaschinen | |
DE60128865T2 (de) | Kühlung für einen Turbinenmantelring | |
DE2837123C2 (de) | Turbomaschinenschaufel | |
DE2718661C2 (de) | Leitschaufelgitter für eine axial durchströmte Gasturbine | |
DE602005000350T2 (de) | Turbinenstatorschaufel mit verbesserter Kühlung | |
DE69915786T2 (de) | Turbinenschaufel mit gekühlter Plattform | |
DE60016058T2 (de) | Gekühlter Turbinen-Mantelring | |
DE69515442T2 (de) | Kühlung von Turbinenschaufelspitzen | |
DE69910913T2 (de) | Kühlbare Schaufel für Gasturbinen | |
DE69822100T2 (de) | Turbinenschaufel | |
DE69922328T2 (de) | Turbinenschaufel mit Doppel-Endrippe | |
EP1614859B1 (de) | Filmgekühlte Turbinenschaufel | |
DE1946535C3 (de) | Bauteil für ein Gasturbinentriebwerk | |
DE69502282T2 (de) | Turbinengehäusesegment mit haarnadelförmigen kühlkanälen | |
DE69324506T2 (de) | Gekühlte turbinenschaufel | |
DE60027967T2 (de) | Turbinenschaufel mit thermisch isolierter Spitze | |
EP1907670B1 (de) | Gekühlte turbinenschaufel für eine gasturbine und verwendung einer solchen turbinenschaufel | |
DE60021650T2 (de) | Kühlkanäle mit Tublenzerzeugern für die Austrittskanten von Gasturbinenleitschaufeln | |
EP2828484B2 (de) | Turbinenschaufel | |
EP1191189A1 (de) | Gasturbinenschaufel | |
DE1476804A1 (de) | Turbinenschaufel mit Tragflaechenprofil | |
DE60021658T2 (de) | Hinterkantenkühlung einer Turbinenschaufel | |
WO2000012868A1 (de) | Turbinenschaufel | |
DE3015653A1 (de) | Luftgekuehltes schaufelversteifungsband eines turbinenrotors mit halterungsmitteln | |
DE2906365A1 (de) | Turbinenschaufel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20001027 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM POWER (SCHWEIZ) AG |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM |
|
17Q | First examination report despatched |
Effective date: 20020716 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM (SWITZERLAND) LTD |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59810806 Country of ref document: DE Date of ref document: 20040325 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040603 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20041119 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810806 Country of ref document: DE Representative=s name: UWE ROESLER, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810806 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: ALSTOM TECHNOLOGY LTD., CH Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH Effective date: 20120713 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810806 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20161222 Year of fee payment: 19 Ref country code: DE Payment date: 20161213 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59810806 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 59810806 Country of ref document: DE Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59810806 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171210 |