Nothing Special   »   [go: up one dir, main page]

EP1008723B1 - Plattformkühlung in Turbomaschinen - Google Patents

Plattformkühlung in Turbomaschinen Download PDF

Info

Publication number
EP1008723B1
EP1008723B1 EP98811219A EP98811219A EP1008723B1 EP 1008723 B1 EP1008723 B1 EP 1008723B1 EP 98811219 A EP98811219 A EP 98811219A EP 98811219 A EP98811219 A EP 98811219A EP 1008723 B1 EP1008723 B1 EP 1008723B1
Authority
EP
European Patent Office
Prior art keywords
platforms
cooling
fluid
platform
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811219A
Other languages
English (en)
French (fr)
Other versions
EP1008723A1 (de
Inventor
Hartmut Hähnle
Kenneth Hall
Sriwickrama Prithiviraj Dr. Harasgama
Konrad Dr. Vogeler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59810806T priority Critical patent/DE59810806D1/de
Priority to EP98811219A priority patent/EP1008723B1/de
Priority to US09/456,332 priority patent/US6309175B1/en
Publication of EP1008723A1 publication Critical patent/EP1008723A1/de
Application granted granted Critical
Publication of EP1008723B1 publication Critical patent/EP1008723B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • F01D11/008Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/80Platforms for stationary or moving blades
    • F05B2240/801Platforms for stationary or moving blades cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Definitions

  • the invention relates to a device for cooling of platforms in Turbomachinery, in particular in gas turbines.
  • the efficiency of turbomachines can be increased by increasing the cycle process parameters of the turbomachine.
  • the relevant cycle process parameters are the pressure and the temperature of the fluid.
  • the fluid temperatures which usually occur during the operation of turbomachines today are already well above the permissible material temperatures of the components, in particular in the turbine inlet region.
  • the components forming the flow channel or projecting into the flow channel are directly exposed to the hot fluid flow.
  • the conditional by the heat conduction of the material heat dissipation of the components is generally not sufficient here to avoid over-temperature of the components. Too high material temperatures initially lead to a decrease in the strength values of the material. This often leads to cracking in components.
  • the flow channel of a turbomachine is often constructed of annularly lined-up platforms.
  • the blades of the turbomachine are often arranged on such platforms. In most cases, one bucket is made in one piece with one platform each. In particular, in stators such platforms are also often arranged in the form of a shroud of the blading at the blade tips of the blades. These platforms are thus exposed directly to the hot fluid flow.
  • a temperature profile of the fluid emerging from the combustion chamber, usually air, in the turbine inlet region has traditionally been desired above the channel height.
  • This temperature profile could be achieved via an admixture of cooling fluid in the edge regions of the hot fluid flow in the outlet region of the combustion chamber.
  • the fluid immediately adjacent to the side walls and thus to the platforms therefore had a significantly reduced temperature compared to the temperature of the core flow.
  • an over-temperature of the platforms could be avoided.
  • the invention is based on the object, platforms efficient and reliable to cool.
  • This object is achieved in that at least in one Section along the running between adjacent platforms Parting line a cooling channel is arranged, which as a slot-shaped depression in both adjacent to the parting line side walls of the platforms is executed, and the one along the parting line changing depth of penetration in the respective platform.
  • the cooling fluid guided in the cooling channel has a lower one Temperature on than the adjacent platforms. This is what happens a convective heat transfer between the to the cooling channel adjacent platforms and the cooling fluid and consequently to one Cooling the platforms. It turned out that in this way realized cooling almost independent of fluctuations of the Operating state of the turbomachine is. Furthermore, compared to the other cooling method described above a much smaller Coolant fluid mass flow required to cool the platforms.
  • the cooling channel extends at least in sections approximately parallel to the platform surface. This ensures that a large area of the platform is cooled evenly. It was found that thus a largely uniform Setting temperature distribution in the refrigerated areas of the platform. So-called 'hot spots' in the form of local overheating of the platforms become thereby avoided.
  • the platforms are one-piece or multi-piece with on the platforms arranged blades executed.
  • the platforms can be on the blade foot or be arranged on the blade head of the blades. Form strung together the platforms one or both side walls of the flow channel.
  • the cooling channel approximately centrally between the blades to arrange.
  • Particularly advantageous is the cooling channel with a Shovel profile course executed approximately similar course. It presented It turns out that an over-temperature is common in the peripheral areas and the free areas of the platforms occurs.
  • the free areas of a platform are the areas that in the top view or the bottom view are not one on the Platform arranged shovel to be covered.
  • the cooling channel course has at least one S-beat in such a way, in that at least a part of the cooling fluid guided in the cooling channel is the one Dividing line overflowed.
  • the Cooling channel as a slot-shaped depression in the at the parting line adjacent side walls of the platform and thus not as closed Cooling channel, but is open towards the parting line, the Cooling fluid accordingly also flow into the parting line.
  • the Cooling fluid supplied to the cooling channel in a simple manner via the parting line become.
  • cooling channel is open towards the parting line, it is expedient to use the Cooling channel arranged by means of at least one in the cooling channel Sealing element, preferably a sealing strip inserted in the cooling channel, opposite to a fluid applied to the top of the platforms, in the Usually the hot fluid, seal. As a result, an outflow of the Cooling fluid prevented from the cooling channel.
  • Sealing element preferably a sealing strip inserted in the cooling channel, opposite to a fluid applied to the top of the platforms, in the Usually the hot fluid, seal.
  • an open to the parting line cooling channel is advantageous at least in a section along the parting line in a sealing chamber and a Cooling chamber divided. This subdivision of the cooling channel preferably takes place via a gradation of the channel height.
  • the sealing chamber is to arrange a Sealing element expediently designed with a larger channel height.
  • the Cooling chamber advantageously has a smaller channel height at the same time greater penetration depth.
  • FIG. 1 shows a platform 110 for use in a turbomachine typical embodiment shown in a side view.
  • the hatching was not used here, as usual, for marking cut surfaces, but merely serves to illustrate the presentation.
  • the Platform 110 in one piece with one on the platform arranged blade 120 executed.
  • the platform 110 is in one Arrangement shown with a rotor disc 121 of the turbomachine. This Arrangement corresponds to the typical structure of a bladed Turbine rotor of a turbomachine. Shown is only one of the am Scope of the rotor disc lined up, each with platforms running Blades. Form the platforms strung together on the circumference of the runner in this case, the hub-side side wall of the flow channel of the turbomachine.
  • the hot fluid flow 125 as the main flow of Turbomachine flows in the representation from right to left along the Top of the platform 110. This results in an immediate Heat transfer between the hot fluid 125 and the platform 110.
  • the Temperature of the hot fluid 125 is in this case at least in the full load range of Turbomachine above the maximum permissible material temperature of the platform.
  • a cooling channel 130 arranged.
  • the cooling channel 130 is approximately parallel to that of the hot Fluid flow facing top of the platform 110. According to the Representation is the cooling channel 130 as a slot-shaped depression in the Side wall of the platform 110 executed.
  • Cooling channel 130 is fed here from two reservoirs with cooling fluid.
  • Cooling fluid 126 flows from between the platform and the rotor disk arranged cooling fluid reservoir 155 via an opening 150 in the cooling channel 130.
  • Another way of supplying cooling fluid to the cooling channel 130 results here via the lateral opening 151 of the cooling channel.
  • the feed the cooling channel 130 with cooling fluid 126 is thus here in relation to the Main flow 125 upstream.
  • the outflow is related to the Main flow at the downstream end of the cooling channel instead.
  • the in Figure 1 illustrated cooling channel 130 ends without specially shaped outlet in the Platform 110. The cooling fluid 126 escapes via the parting line.
  • FIG. 2 shows two juxtaposed platforms 210, 210 'in plan view.
  • a blade 220, 220 ' is arranged in each case.
  • a cooling channel 230 is arranged in the side walls of the platforms 210, 210' adjoining the parting line 211 along the parting line 211.
  • the cooling channel 230 consists of slot-shaped recesses in the side walls of both platforms 210, 210 '.
  • the arrangement of the cooling channel 230 was chosen in the illustrated embodiment so that the cooling channel 230 approximately centrally between the blades 220, 220 'extends and in this case has a profile similar to the blade profile.
  • This profile of the cooling channel 230 which is similar to the blade profile, is achieved in that the course of the cooling channel 230 along the parting line 211 has two S-strikes.
  • the sealing chamber 235 here consists of slit-shaped depressions which are arranged in both adjacent to the parting line 211 side walls with approximately the same and along the parting line 211 constant penetration depth. Furthermore, the sealing chamber 235 has a greater channel height compared to the cooling chamber 236. This feature is not apparent due to the representation perspective of Figure 2.
  • the sealing element which is expediently to be arranged in the sealing chamber is not shown. This sealing element seals the cooling channel against the hot fluid flow on the top of the platforms.
  • the cooling chamber 236 is designed in the same way as the sealing chamber 235 as a slot-shaped depression but with a smaller channel height. In contrast to the sealing chamber, the cooling chamber 236, however, as shown in Figure 2, a greater penetration depth in the platforms 210, 210 'a.
  • the feeding of the cooling channel 230 with cooling fluid 226 takes place in relation to the hot fluid flow 225 at the upstream end of the cooling passage 230 via a longitudinal slot 250 from a lower side reservoir.
  • Cooling channel 230 flows from the cooling fluid 226 the cooling channel 230 via a Outlet opening 252 in a downstream, not shown in Figure 2 Component gap.
  • a seal of the cooling channel 330 is shown in FIG. 3 as a section through two Side-by-side platforms 310, 310 'shown.
  • the cooling channel 330 is here from slot-shaped depressions in both to the parting line formed adjacent side walls of the platforms 310, 310 '.
  • the first Platform 310 is again in one piece with one located on the platform Shovel 320 executed.
  • the cooling channel 330 is over a gradation of Channel height in a sealing chamber 335 and a cooling chamber 336 divided.
  • a sealing strip 340 inserted so that he in the Cooling passage 330 flowing cooling fluid to one on the tops of the Platforms adjacent fluid seals.
  • the sealing strip 340 has at its at the rear end, a flange 341 on. This flange 341 serves here Guide the sealing fluid in the overflow of the parting line 311st

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine Vorrichtung zur Kühlung von Plattformen in Turbomaschinen, insbesondere in Gasturbinen.
Stand der Technik
Der Wirkungsgrad von Turbomaschinen, insbesondere von Gasturbinen, kann über eine Erhöhung der Kreisprozeßparameter der Turbomaschine erhöht werden. Die relevanten Kreisprozeßparameter sind hierbei der Druck und die Temperatur des Fluids.
Die im Betrieb von Turbomaschinen heutzutage üblicherweise auftretenden Fluidtemperaturen liegen insbesondere im Turbineneintrittsbereich bereits deutlich über den zulässigen Materialtemperaturen der Bauteile. Speziell die den Strömungskanal bildenden oder in den Strömungskanal ragenden Bauteile sind hierbei unmittelbar der heißen Fluidströmung ausgesetzt. Die durch die Wärmeleitung des Werkstoffs bedingte Wärmeabfuhr der Bauteile ist hier in der Regel nicht ausreichend, um eine Übertemperatur der Bauteile zu vermeiden. Zu hohe Materialtemperaturen führen zunächst zu einem Rückgang der Festigkeitswerte des Werkstoffs. Hierbei kommt es oftmals zur Rißbildung in Bauteilen. Im Falles des Überschreitens der Schmelztemperatur des Werkstoffs kommt es darüber hinaus zu einer lokalen oder auch vollständigen Zerstörung des Bauteils. Um diese fatalen Folgen zu vermeiden, ist dafür Sorge zu tragen, daß die Bauteiltemperaturen die maximal zulässigen Materialtemperaturen nicht überschreiten.
Der Strömungskanal einer Turbomaschine ist oftmals aus ringförmig aneinandergereihten Plattformen aufgebaut. Die Schaufeln der Turbomaschine sind häufig auf derartigen Plattformen angeordnet. Zumeist ist je eine Schaufel einteilig mit je einer Plattform ausgeführt. Insbesondere bei Statoren sind derartige Plattformen aber auch oftmals in Form eines Deckbandes der Beschaufelung an den Schaufelspitzen der Schaufeln angeordnet. Diese Plattformen sind somit unmittelbar der heißen Fluidströmung ausgesetzt.
Um die maximal zulässige Materialtemperatur der Plattformen nicht zu überschreiten, wurde bisher üblicherweise über der Kanalhöhe ein Temperaturprofil des aus der Brennkammer austretenden Fluids, meist Luft, im Turbineneintrittsbereich angestrebt. Dieses Temperaturprofil ließ sich über eine Beimischung von Kühlfluid in die Randbereiche der heißen Fluidströmung im Austrittsbereich der Brennkammer erzielen. Das unmittelbar an die Seitenwände und somit an die Plattformen angrenzende Fluid wies daher eine im Vergleich zur Temperatur der Kernströmung deutlich verminderte Temperatur auf. Somit konnte eine Übertemperatur der Plattformen vermieden werden. Als Nachteile dieses Verfahrens ergeben sich hieraus einerseits ein über die Kanalhöhe variierender Energiegehalt der Fluidströmung. Dieser über die Kanalhöhe variierende Energiegehalt der Fluidströmung führt wiederum zu einer uneinheitlichen Energieumsetzung in einem nachfolgenden Rotor und somit zu einer uneinheitlichen Belastung der Beschaufelung über der Kanalhöhe. Als ein weiterer Nachteil dieser Zumischung von Kühlfluid zur Hauptströmung resultiert hieraus eine Verminderung des erzielbaren Wirkungsgrades und somit auch der Leistungsdichte der Turbomaschine. Aus diesen Gründen wird heutzutage ein gleichmäßiges Temperaturprofil über der Kanalhöhe angestrebt. Darüber hinaus werden moderne Brennkammern heutzutage unter dem Aspekt der NOx-Reduktion so ausgelegt, daß keine oder nur eine geringe Beimischung von Sekundärverbrennungsluft mehr erfolgt. Hieraus resultiert ein sehr gleichmäßiges Temperaturprofil über der Kanalhöhe. Dies wiederum führt zu einer Erhöhung der thermischen Belastung der Bauteile, die der Brennkammer nachgeordnet sind, insbesondere der Seitenwände und somit der Plattformen.
Hier wurde bisher versucht, die Plattformen durch Ausblasung eines Kühlfluides zumeist unmittelbar stromauf der Plattformen zu kühlen. Das Kühlfluid soll hierbei einen Kühlfilm auf der Oberseite der Plattformen ausbilden, wodurch es zu einer fluidmechanischen Trennung zwischen dem heißen Fluid und der jeweiligen Plattform kommt. Bei der Lösung gemäss EP 0367984 sind zu diesem Zweck in einer Trennfuge zwischen benachbarten Plattformen schlitzförmige Kanäle zur Verteilung des Kühlfluids angeordnet, welches über Spaltöffnungen in der Streifendichtung zwischen den Plattformen austritt und auf der äusseren Plattformoberfläche einen Kühlfilm bildet. Die Wirkung derartiger Kühlfilme ist aber aufgrund der Durchmischung mit dem Heißgas oftmals räumlich eng begrenzt. Sich ändernde Druckverhältnisse der Heißgasströmung oder auch des Kühlfluids über den Lastbereich einer Turbomaschine führen ebenso zu einem veränderten Kühlfilm. Um eine ausreichende Kühlung zu gewährleisten, ist darüber hinaus ein relativ großer Kühlfluidmassenstrom erforderlich. Dies wiederum führt zu einer Verminderung des Wirkungsgrades der Turbomaschine. Zur Erhöhung der Kühlwirkung wird gemäss US 5281097 angeregt, die von einer Fluidquelle zur Trennfuge führenden Kühlkanäle gekurvt auszubilden, um damit die Wirkung der konvektiven Kühlung auf einen grösseren Flächenbereich auszudehnen und somit eine intensivere und gleichmässigere Kühlung der Plattformen zu erreichen. Nach EP 0866214 verlaufen die vom Kühlfluid beaufschlagten Kühlkanäle vollständig innerhalb der Plattformen und im wesentlichen parallel zu deren Rändern. Diese auf Dampf als Kühlfluid ausgelegte Lösung soll insbesondere die Kühlung der peripheren, thermisch besonders beanspruchten Bereiche der Plattformen verbessern.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, Plattformen effizient und zuverlässig zu kühlen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß zumindest in einem Abschnitt längs der zwischen benachbarten Plattformen verlaufenden Trennfuge ein Kühlkanal angeordnet ist, welcher als schlitzförmige Vertiefung in beiden an die Trennfuge angrenzenden Seitenwänden der Plattformen ausgeführt ist, und der eine sich längs der Trennfuge verändernde Eindringtiefe in der jeweiligen Plattform aufweist.
Zweckmäßig weist das in dem Kühlkanal geführte Kühlfluid eine niedrigere Temperatur auf als die angrenzenden Plattformen. Hierdurch kommt es zu einem konvektiv bedingten Wärmeübergang zwischen den an den Kühlkanal angrenzenden Plattformen und dem Kühlfluid und infolgedessen zu einer Kühlung der Plattformen. Es stellte sich heraus, daß die in dieser Weise realisierte Kühlung nahezu unabhängig von Schwankungen des Betriebszustandes der Turbomaschine ist. Ferner ist im Vergleich zu den anderen, oben beschriebenen Kühlverfahren ein wesentlich kleinerer Kühlfluidmassenstrom zur Kühlung der Plattformen erforderlich.
Zweckmäßig verläuft der Kühlkanal zumindest in Teilabschnitten näherungsweise parallel zur Plattformoberfläche. Hierdurch ist sichergestellt, daß ein großer Bereich der Plattform gleichmäßig gekühlt wird. Es wurde gefunden, daß sich somit eine weitestgehend gleichmäßige Temperaturverteilung in den gekühlten Bereichen der Plattform einstellt. Sogenannte 'Hot-Spots' in Form lokaler Überhitzungen der Plattformen werden hierdurch vermieden.
Oftmals sind die Plattformen einteilig oder mehrteilig mit auf den Plattformen angeordneten Schaufeln ausgeführt. Die Plattformen können am Schaufelfuß oder am Schaufelkopf der Schaufeln angeordnet sein. Aneinandergereiht bilden die Plattformen eine oder beide Seitenwände des Strömungskanals. Hierbei ist es vorteilhaft, den Kühlkanal näherungsweise mittig zwischen den Schaufeln anzuordnen. Besonders vorteilhaft ist der Kühlkanal mit einem dem Schaufelprofilverlauf näherungsweise ähnlichen Verlauf ausgeführt. Es stellte sich heraus, daß eine Übertemperatur häufig in den Randbereichen und den freien Bereichen der Plattformen auftritt. Die freien Bereiche einer Plattform sind die Bereiche, die in der Draufsicht oder der Untersicht nicht von einer auf der Plattform angeordneten Schaufel überdeckt werden. Diese besondere Gefährdung der Randbereiche und freien Bereiche hinsichtlich Übertemperatur ist darauf zurückzuführen, daß hier aufgrund geringer Wanddicken der Plattformen eine nur geringe Wärmeabfuhr durch Wärmeleitung in der Plattform selbst stattfindet. Darüber hinaus verlaufen Kühlfluidzuleitungen zur Schaufelkühlung, sofern es sich um eine fluidgekühlte Schaufel handelt, oftmals nur in der Mitte der Plattformen durch die Plattformen in die Schaufeln. Diese Kühlfluidzuleitungen in die Schaufeln führen aber nur in ihrer unmittelbaren Umgebung zu einer Kühlung der jeweiligen Plattform. Die Randbereiche der Plattform verbleiben somit ungekühlt. Es wurde gefunden, daß ein bevorzugt näherungsweise mittig zwischen den Schaufeln angeordneter Kühlkanal hier zu einer optimalen Kühlung insbesondere der Randbereiche der Plattformen führt. Infolge des gekrümmten Profilverlaufs der Schaufeln, ist es darüber hinaus zweckmäßig, den Kühlkanal mit einem näherungsweise dem Schaufelprofilverlauf ähnlichen Verlauf in den Plattformen anzuordnen.
Vorteilhaft weist der Kühlkanalverlauf zumindest einen S-Schlag dergestalt auf, daß zumindest ein Teil des in dem Kühlkanal geführten Kühlfluids die Trennfuge überströmt. Hierdurch ist es möglich, zumindest Teilbereiche beider Plattformen mit nur einem Kühlkanal zu kühlen. Insbesondere im Falle der Anordnung von Schaufeln auf den Plattformen, ist somit lediglich ein Kühlkanal zur Kühlung der Bereiche zwischen jeweils zwei Schaufeln erforderlich.
Indem der Kühlkanal als schlitzförmige Vertiefung in den an die Trennfuge angrenzenden Seitenwänden der Plattform und somit nicht als geschlossener Kühlkanal, sondern gegenüber der Trennfuge hin offen ausgeführt ist, kann das Kühlfluid demgemäß auch in die Trennfuge einströmen. Dies führt vorteilhaft auch zu einer Kühlung der Seitenwände der Trennfuge. Ferner kann das Kühlfluid dem Kühlkanal in einfacher Weise über die Trennfuge zugeführt werden.
Verläuft der Kühlkanal zur Trennfuge hin offen, so ist es zweckmäßig, den Kühlkanal mittels zumindest eines in dem Kühlkanal angeordneten Dichtelements, bevorzugt eines in den Kühlkanal eingelegten Dichtstreifens, gegenüber einem auf der Oberseite der Plattformen anliegenden Fluides, in der Regel dem heißen Fluid, abzudichten. Hierdurch wird ein Ausströmen des Kühlfluides aus dem Kühlkanal verhindert.
Ferner ist ein zur Trennfuge hin offener Kühlkanal vorteilhaft zumindest in einem Abschnitt längs der Trennfuge in eine Dichtkammer und eine Kühlkammer unterteilt. Bevorzugt erfolgt diese Unterteilung des Kühlkanals über eine Stufung der Kanalhöhe. Die Dichtkammer ist zur Anordnung eines Dichtelements zweckmäßig mit einer größeren Kanalhöhe ausgeführt. Die Kühlkammer weist hingegen vorteilhaft eine kleinere Kanalhöhe bei gleichzeitig größerer Eindringtiefe auf.
Zweckmäßig erfolgt die Zuführung des Kühlfluides zum Kühlkanal in Bezug zu einer die Plattformen überströmenden Hauptströmung stromauf, wohingegen der Auslaß zweckmäßig stromab erfolgt. Hierbei kann das Kühlfluid in die Hauptströmung oder aber auch in einen nachgeordneten Spalt entweichen. In einigen Fällen wird es darüber hinaus sinnvoll sein, das Kühlfluid weiterhin zur Kühlung in einem Kühlkanal einzusetzen.
Kurze Beschreibung der Zeichnungen
In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt. Die Erfindung ist hierbei aber nicht nur auf diese Ausführungsbeispiele beschränkt, sondern kann auch von diesen Ausführungsbeispielen abweichend realisiert werden.
Es zeigen:
Fig. 1
eine Plattform mit einem in der Plattform angeordneten Kühlkanal in der Seitenansicht
Fig. 2
zwei aneinandergereihte Plattformen mit auf den Plattformen angeordneten Schaufeln und einem längs der Trennfuge zwischen den Plattformen angeordneten Kühlkanal in der Draufsicht
Fig. 3
einen Schnitt durch zwei nebeneinander angeordnete Plattformen mit einem in den Plattformen angeordneten Kühlkanal
Wege zur Ausführung der Erfindung
In Figur 1 ist eine Plattform 110 in einer für den Einsatz in einer Turbomaschine typischen Ausführung in einer Seitenansicht dargestellt. Die Schraffur wurde hier nicht, wie üblicherweise, zur Kennzeichnung von Schnittflächen verwendet, sondern dient lediglich der Veranschaulichung der Darstellung. Gemäß der Darstellung ist die Plattform 110 hier einteilig mit einer auf der Plattform angeordneten Schaufel 120 ausgeführt. Ferner ist die Plattform 110 in einer Anordnung mit einer Läuferscheibe 121 der Turbomaschine dargestellt. Diese Anordnung entspricht dem typischen Aufbau eines beschaufelten Turbinenrotors einer Turbomaschine. Dargestellt ist jedoch nur eine der am Umfang der Läuferscheibe aufgereihten, jeweils mit Plattformen ausgeführten Schaufeln. Die am Umfang des Läufers aneinandergereihten Plattformen bilden hierbei die nabenseitige Seitenwand des Strömungskanals der Turbomaschine. Zwischen der dargestellten Plattform 110 und der nächsten, unmittelbar angrenzend angeordneten Plattform verläuft eine Trennfuge zwischen den Plattformen. Die heiße Fluidströmung 125 als die Hauptströmung der Turbomaschine strömt in der Darstellung von rechts nach links entlang der Oberseite der Plattform 110. Hierdurch kommt es zu einer unmittelbaren Wärmeübertragung zwischen dem heißen Fluid 125 und der Plattform 110. Die Temperatur des heißen Fluids 125 liegt hierbei zumindest im Volllastbereich der Turbomaschine über der maximal zulässigen Materialtemperatur der Plattform. Um eine Übertemperatur der Plattform 110 zu verhindern, ist in der dargestellten Plattform 110 erfindungsgemäß ein Kühlkanal 130 angeordnet. Der Kühlkanal 130 verläuft näherungsweise parallel zu der der heißen Fluidströmung zugewandten Oberseite der Plattform 110. Gemäß der Darstellung ist der Kühlkanal 130 als schlitzförmige Vertiefung in der Seitenwand der Plattform 110 ausgeführt. Zu berücksichtigen ist hierbei, daß in Figur 1 nur eine der beiden an den Trennspalt angrenzenden Plattformen dargestellt ist. Der vollständige Kühlkanal erstreckt sich jedoch anteilig auf beide Plattformen. Im Folgenden wird zur Vereinfachung der Beschreibung davon ausgegangen, daß sich der Kühlkanal nur in die dargestellte Plattform erstreckt. Über eine Stufung der Kanalhöhe ist der hier dargestellte Kühlkanal 130 in zwei zur Trennfuge hin offene Kammern unterteilt. Die vordere Kammer ist als Dichtkammer 135 mit einer großen Kanalhöhe ausgeführt. Mit einer tieferen Eindringtiefe in die Plattform als die Dichtkammer ist hinter der Dichtkammer ferner eine Kühlkammer 136 angeordnet. Diese Kühlkammer 136 weist eine geringere Kanalhöhe auf als die Dichtkammer 135 und erstreckt sich auch in ihrer Länge auch nur über einen Abschnitt der Dichtkammer 135. Der Kühlkanal 130 wird hier aus zwei Reservoirs mit Kühlfluid gespeist. Einerseits strömt Kühlfluid 126 aus einem zwischen der Plattform und der Läuferscheibe angeordneten Kühlfluidreservoir 155 über eine Öffnung 150 in den Kühlkanal 130. Eine weitere Möglichkeit der Zuführung von Kühlfluid zu dem Kühlkanal 130 ergibt sich hier über die seitliche Öffnung 151 des Kühlkanals. In der zusammengebauten Anordnung der Turbomaschine mündet die seitliche Öffnung 151 des Kühlkanals in den Bauteilspalt zwischen dem Rotor und dem in Bezug zur Hauptströmung 125 stromauf angeordneten Bauteil. Die Speisung des Kühlkanals 130 mit Kühlfluid 126 erfolgt hier somit in Bezug zu der Hauptströmung 125 stromauf. Die Abströmung findet hingegen in Bezug zu der Hauptströmung am stromabwärtigen Ende des Kühlkanals statt. Der in Figur 1 dargestellte Kühlkanal 130 endet ohne speziell ausgeformten Auslaß in der Plattform 110. Das Kühlfluid 126 entweicht über die Trennfuge.
Figur 2 zeigt zwei nebeneinander angeordnete Plattformen 210, 210' in der Draufsicht. Auf jeder Plattform ist jeweils eine Schaufel 220, 220' angeordnet. Die Plattformen 210, 210' sind ist hierbei jeweils einteilig mit den Schaufeln 220, 220' ausgeführt. Die dreidimensional geformten Schaufeln 220, 220' sind über Schnitte am Schaufelfuß sowie in der Mitteischnittsebene des Strömungskanals als auch in der Draufsicht dargestellt. Ferner sind die Schaufeln 220, 220' hier als gekühlte Turbinenschaufeln ausgeführt. Zwischen den Plattformen 210, 210' verläuft eine Trennfuge 211. Erfindungsgemäß ist in den an die Trennfuge 211 angrenzenden Seitenwänden der Plattformen 210, 210' längs der Trennfuge 211 ein Kühlkanal 230 angeordnet. Der Kühlkanal 230 besteht aus schlitzförmigen Vertiefungen in den Seitenwänden beider Plattformen 210, 210'. Die Anordnung des Kühlkanals 230 wurde in der dargestellten Ausführung so gewählt, daß der Kühlkanal 230 näherungsweise mittig zwischen den Schaufeln 220, 220' verläuft und hierbei einen dem Schaufelprofil ähnlichen Verlauf aufweist. Dieser dem Schaufelprofil ähnliche Verlauf des Kühlkanals 230 wird dadurch erzielt, daß der Verlauf des Kühlkanals 230 längs der Trennfuge 211 zwei S-Schläge aufweist. Diese S-Schläge sind so angeordnet, daß jeweils zumindest ein Teil des in dem Kühlkanal 230 geführten Kühlfluids 226 die Trennfuge 211 überströmt. Infolge des Verlaufs des Kühlkanals 230 entsprechend Figur 2 wird eine optimale Kühlung der Randbereiche und der freien Bereiche der Plattformen 210, 210' erzielt. Die freien Bereiche einer Plattform sind hierbei diejenigen Bereiche, die in der Draufsicht nicht von einer auf der Plattform angeordneten Schaufel überdeckt werden. Der Kühlkanal 230 weist hierzu entsprechend dem zu kühlenden Bereich eine sich längs der Trennfuge 211 verändernde Eindringtiefe in der jeweiligen Plattform 210, 210' auf.
Der in Figur 2 dargestellte Kühlkanal 230 weist zusätzlich eine Unterteilung des Kühlkanals 230 in eine Dichtkammer 235 und eine Kühlkammer 236 auf. Die Dichtkammer 235 besteht hierbei aus schlitzförmigen Vertiefungen, die in beiden an die Trennfuge 211 angrenzenden Seitenwänden mit annähernd gleicher und längs der Trennfuge 211 konstanter Eindringtiefe angeordnet sind. Ferner weist die Dichtkammer 235 im Vergleich zu der Kühlkammer 236 eine größere Kanalhöhe auf. Dieses Merkmal ist aufgrund der Darstellungsperspektive der Figur 2 nicht zu entnehmen. Ebenso ist in Figur 2 das in der Dichtkammer zweckmäßig anzuordnende Dichtelement nicht abgebildet. Dieses Dichtelement dichtet den Kühlkanal gegenüber der heißen Fluidströmung auf der Oberseite der Plattformen ab. Die Kühlkammer 236 ist in gleicher Weise wie die Dichtkammer 235 als schlitzförmige Vertiefung mit jedoch einer kleineren Kanalhöhe ausgeführt. Im Vergleich zur Dichtkammer weist die Kühlkammer 236 hingegen, wie in Figur 2 dargestellt, eine größere Eindringtiefe in die Plattformen 210, 210' ein.
Die Speisung des Kühlkanals 230 mit Kühlfluid 226 erfolgt in Bezug zu der heißen Fluidströmung 225 an dem stromaufwärtigen Ende des Kühlkanals 230 über einen Längsschlitz 250 aus einem unterseitigen Reservoir. Am Ende des Kühlkanals 230 entströmt das Kühlfluid 226 dem Kühlkanal 230 über eine Austrittsöffnung 252 in einen nachgeordneten, in Figur 2 nicht dargestellten Bauteilspalt.
Eine Abdichtung des Kühlkanals 330 ist in Figur 3 als Schnitt durch zwei nebeneinander angeordnete Plattformen 310, 310' dargestellt. Der Kühlkanal 330 wird hier aus schlitzförmigen Vertiefungen in beiden an die Trennfuge angrenzenden Seitenwänden der Plattformen 310, 310' gebildet. Die erste Plattform 310 ist wiederum einteilig mit einer auf der Plattform angeordneten Schaufel 320 ausgeführt. Der Kühlkanal 330 ist über eine Stufung der Kanalhöhe in eine Dichtkammer 335 und eine Kühlkammer 336 unterteilt. In die Dichtkammer 335 ist hier ein Dichtstreifen 340 so eingelegt, daß er das in dem Kühlkanal 330 strömende Kühlfluid gegenüber einem auf den Oberseiten der Plattformen anliegenden Fluid abdichtet. Der Dichtstreifen 340 weist an seinem hinteren Ende eine Bördelung 341 auf. Diese Bördelung 341 dient hier der Führung des Dichtfluids bei dem Überströmen der Trennfuge 311.
Bezugszeichenliste
110,210,310
(erste) Plattform
210',310'
(zweite) Plattform
211,311
Trennfuge
120,220,220',320
Schaufel
121
Läuferscheibe
125,225
Strömung des heißen Fluides (Hauptströmung durch die Turbomaschine)
126,226
Kühlfluid
130,230,330
Kühlkanal
135,235,335
Dichtkammer
136,236,336
Kühlkammer
340
Dichtstreifen
341
Bördelung
150,151,250
Zuströmöffnung
252
Austrittsöffnung
155
Kühlfluidreservoir

Claims (5)

  1. Plattformen einer Turbomaschine, insbesondere einer Gasturbine, wobei zumindest zwei Plattformen (_10; _10') nebeneinander angeordnet sind, zwischen den Plattformen (_10; 10') eine Trennfuge (_11) verläuft und zur Kühlung der Plattformen (_10; 10') mittels eines Kühlfluids (226) zumindest in einem Abschnitt längs der Trennfuge (_11) ein Kühlkanal (_30) angeordnet ist, welcher als schlitzförmige Vertiefung in beiden an die Trennfuge (_11) angrenzenden Seitenwänden der Plattformen (_10; _10') ausgeführt ist, dadurch gekennzeichnet, dass der Kühlkanal (_30) eine sich längs der Trennfuge (_11) verändernde Eindringtiefe in der jeweiligen Plattform (_10; _10') aufweist.
  2. Plattformen einer Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass auf den Plattformen (_10; 10') Schaufeln (_20; _20') angeordnet sind, und der Kühlkanal L30) näherungsweise mittig zwischen den Schaufeln (_20; _20') mit einem dem Schaufelprofil ähnlichen Verlauf angeordnet ist.
  3. Plattformen einer Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass der Kühlkanal (_30) in seinem Verlauf zumindest einen S-Schlag dergestalt aufweist, so dass zumindest ein Teil des in dem Kühlkanal (_30) geführten Kühlfluids (226) die Trennfuge (_11) überströmt.
  4. Plattformen einer Turbomaschine nach Anspruch 1, dadurch gekennzeichnet, dass der Kühlkanal (_30) mittels zumindest eines in dem Kühlkanal (_30) angeordneten Dichtstreifens (340) gegenüber einem auf der Oberseite der Plattformen (_10; _10') anliegenden Fluids abgedichtet ist.
  5. Plattformen einer Turbomaschine nach Anspruch 4, dadurch gekennzeichnet, dass der Kühlkanal (_30) zumindest in einem Abschnitt längs der Trennfuge (_11) über eine Stufung der Kanalhöhe in eine Dichtkammer (_35) und eine Kühlkammer (_36) unterteilt ist.
EP98811219A 1998-12-10 1998-12-10 Plattformkühlung in Turbomaschinen Expired - Lifetime EP1008723B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59810806T DE59810806D1 (de) 1998-12-10 1998-12-10 Plattformkühlung in Turbomaschinen
EP98811219A EP1008723B1 (de) 1998-12-10 1998-12-10 Plattformkühlung in Turbomaschinen
US09/456,332 US6309175B1 (en) 1998-12-10 1999-12-08 Platform cooling in turbomachines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98811219A EP1008723B1 (de) 1998-12-10 1998-12-10 Plattformkühlung in Turbomaschinen

Publications (2)

Publication Number Publication Date
EP1008723A1 EP1008723A1 (de) 2000-06-14
EP1008723B1 true EP1008723B1 (de) 2004-02-18

Family

ID=8236479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811219A Expired - Lifetime EP1008723B1 (de) 1998-12-10 1998-12-10 Plattformkühlung in Turbomaschinen

Country Status (3)

Country Link
US (1) US6309175B1 (de)
EP (1) EP1008723B1 (de)
DE (1) DE59810806D1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508482B2 (ja) * 2001-07-11 2010-07-21 三菱重工業株式会社 ガスタービン静翼
US6945749B2 (en) * 2003-09-12 2005-09-20 Siemens Westinghouse Power Corporation Turbine blade platform cooling system
GB0328952D0 (en) * 2003-12-12 2004-01-14 Rolls Royce Plc Nozzle guide vanes
US7097417B2 (en) * 2004-02-09 2006-08-29 Siemens Westinghouse Power Corporation Cooling system for an airfoil vane
US7309212B2 (en) * 2005-11-21 2007-12-18 General Electric Company Gas turbine bucket with cooled platform leading edge and method of cooling platform leading edge
US7416391B2 (en) * 2006-02-24 2008-08-26 General Electric Company Bucket platform cooling circuit and method
US7604456B2 (en) * 2006-04-11 2009-10-20 Siemens Energy, Inc. Vane shroud through-flow platform cover
EP1892383A1 (de) * 2006-08-24 2008-02-27 Siemens Aktiengesellschaft Gasturbinenschaufel mit gekühlter Plattform
US8152436B2 (en) 2008-01-08 2012-04-10 Pratt & Whitney Canada Corp. Blade under platform pocket cooling
US8727726B2 (en) * 2009-08-11 2014-05-20 General Electric Company Turbine endwall cooling arrangement
US8647064B2 (en) 2010-08-09 2014-02-11 General Electric Company Bucket assembly cooling apparatus and method for forming the bucket assembly
US9416666B2 (en) 2010-09-09 2016-08-16 General Electric Company Turbine blade platform cooling systems
US9366142B2 (en) 2011-10-28 2016-06-14 General Electric Company Thermal plug for turbine bucket shank cavity and related method
US8845289B2 (en) 2011-11-04 2014-09-30 General Electric Company Bucket assembly for turbine system
US8858160B2 (en) 2011-11-04 2014-10-14 General Electric Company Bucket assembly for turbine system
US8870525B2 (en) 2011-11-04 2014-10-28 General Electric Company Bucket assembly for turbine system
US8840370B2 (en) 2011-11-04 2014-09-23 General Electric Company Bucket assembly for turbine system
US9022735B2 (en) 2011-11-08 2015-05-05 General Electric Company Turbomachine component and method of connecting cooling circuits of a turbomachine component
EP2762679A1 (de) * 2013-02-01 2014-08-06 Siemens Aktiengesellschaft Gasturbinen-Rotorschaufel und Gasturbinenrotor
WO2015026430A1 (en) * 2013-08-20 2015-02-26 United Technologies Corporation Ducting platform cover plate
EP3090143B8 (de) * 2013-12-09 2021-04-21 Raytheon Technologies Corporation Anordnung von bauteilen in einem gasturbinentriebwerk
US20190085706A1 (en) * 2017-09-18 2019-03-21 General Electric Company Turbine engine airfoil assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902198A (en) * 1988-08-31 1990-02-20 Westinghouse Electric Corp. Apparatus for film cooling of turbine van shrouds
GB2251897B (en) * 1991-01-15 1994-11-30 Rolls Royce Plc A rotor
US5281097A (en) * 1992-11-20 1994-01-25 General Electric Company Thermal control damper for turbine rotors
US5382135A (en) * 1992-11-24 1995-01-17 United Technologies Corporation Rotor blade with cooled integral platform
US5634766A (en) * 1994-08-23 1997-06-03 General Electric Co. Turbine stator vane segments having combined air and steam cooling circuits
JP3457831B2 (ja) * 1997-03-17 2003-10-20 三菱重工業株式会社 ガスタービン動翼の冷却プラットフォーム

Also Published As

Publication number Publication date
DE59810806D1 (de) 2004-03-25
EP1008723A1 (de) 2000-06-14
US6309175B1 (en) 2001-10-30

Similar Documents

Publication Publication Date Title
EP1008723B1 (de) Plattformkühlung in Turbomaschinen
DE60128865T2 (de) Kühlung für einen Turbinenmantelring
DE2837123C2 (de) Turbomaschinenschaufel
DE2718661C2 (de) Leitschaufelgitter für eine axial durchströmte Gasturbine
DE602005000350T2 (de) Turbinenstatorschaufel mit verbesserter Kühlung
DE69915786T2 (de) Turbinenschaufel mit gekühlter Plattform
DE60016058T2 (de) Gekühlter Turbinen-Mantelring
DE69515442T2 (de) Kühlung von Turbinenschaufelspitzen
DE69910913T2 (de) Kühlbare Schaufel für Gasturbinen
DE69822100T2 (de) Turbinenschaufel
DE69922328T2 (de) Turbinenschaufel mit Doppel-Endrippe
EP1614859B1 (de) Filmgekühlte Turbinenschaufel
DE1946535C3 (de) Bauteil für ein Gasturbinentriebwerk
DE69502282T2 (de) Turbinengehäusesegment mit haarnadelförmigen kühlkanälen
DE69324506T2 (de) Gekühlte turbinenschaufel
DE60027967T2 (de) Turbinenschaufel mit thermisch isolierter Spitze
EP1907670B1 (de) Gekühlte turbinenschaufel für eine gasturbine und verwendung einer solchen turbinenschaufel
DE60021650T2 (de) Kühlkanäle mit Tublenzerzeugern für die Austrittskanten von Gasturbinenleitschaufeln
EP2828484B2 (de) Turbinenschaufel
EP1191189A1 (de) Gasturbinenschaufel
DE1476804A1 (de) Turbinenschaufel mit Tragflaechenprofil
DE60021658T2 (de) Hinterkantenkühlung einer Turbinenschaufel
WO2000012868A1 (de) Turbinenschaufel
DE3015653A1 (de) Luftgekuehltes schaufelversteifungsband eines turbinenrotors mit halterungsmitteln
DE2906365A1 (de) Turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001027

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM POWER (SCHWEIZ) AG

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20020716

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59810806

Country of ref document: DE

Date of ref document: 20040325

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040603

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810806

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810806

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810806

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810806

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810806

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810806

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810806

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810806

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 19

Ref country code: DE

Payment date: 20161213

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810806

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810806

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59810806

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210