Nothing Special   »   [go: up one dir, main page]

EP1062053B1 - Verfahren zur pulverlackierung - Google Patents

Verfahren zur pulverlackierung Download PDF

Info

Publication number
EP1062053B1
EP1062053B1 EP99911798A EP99911798A EP1062053B1 EP 1062053 B1 EP1062053 B1 EP 1062053B1 EP 99911798 A EP99911798 A EP 99911798A EP 99911798 A EP99911798 A EP 99911798A EP 1062053 B1 EP1062053 B1 EP 1062053B1
Authority
EP
European Patent Office
Prior art keywords
powder
substrate
radiation
temperature
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP99911798A
Other languages
English (en)
French (fr)
Other versions
EP1062053A1 (de
Inventor
Martin Sedlmeyr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Photonics Technologies AG
Original Assignee
Advanced Photonics Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26044646&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1062053(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE1998131781 external-priority patent/DE19831781A1/de
Application filed by Advanced Photonics Technologies AG filed Critical Advanced Photonics Technologies AG
Publication of EP1062053A1 publication Critical patent/EP1062053A1/de
Application granted granted Critical
Publication of EP1062053B1 publication Critical patent/EP1062053B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • B05D3/0263After-treatment with IR heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/30Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant
    • B05D2401/32Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant applied as powders

Definitions

  • the invention relates to a method for powder coating a substrate, especially a temperature sensitive one Substrates such as wood, wood fiber material, plastic, rubber, Fabric, paper or cardboard according to the preamble of claim 1.
  • the invention further relates to the use of a halogen lamp for powder painting.
  • a method of this type is, for example, from W0-A-92 / 0.1517 or from GB-A-2 056 885.
  • thermoreactive powder at which the necessary curing temperature over multi-stage Energy transfers is achieved.
  • First is infrared (IR) radiation or convective the surface of the powder coating heated.
  • the warming takes place in the powder layer via heat conduction processes up to Substrate interface.
  • Only at approximately complete warming of the substrate reaches the boundary layer the necessary cross-linking temperature.
  • this well-known Process provides for heating the coating only the temperature gradient between the coating surface and substrate is the driving process variable. Um homogeneous networking and perfect adhesion on the To ensure substrate, heating times are several minutes necessary.
  • the crosslinking and curing temperatures are often below Powder coatings between 120 ° C and 300 ° C. Because of this high Temperatures can be temperature sensitive substrates after the known methods not powder-coated or only with restrictions become.
  • thermoreactive powder on a substrate a primer before applying the thermoreactive powder is applied to the surface of the substrate.
  • the primer consists, for example, of water-based paint.
  • the Priming is particularly useful for substrates made of wood or Wood fiber materials, inhomogeneities on the surface to compensate for the substrate, a moisture barrier form and allow adhesion of thermoreactive powder.
  • the powder can then be irradiated with electromagnetic radiation, especially with medium wave Infrared radiation can be networked and cured.
  • the primer also forms a heat conduction barrier that prevents heat transfer during the crosslinking reaction in the powder layer on the substrate with special needs. Especially with temperature sensitive substrates was able to apply a powder coating at all be made possible.
  • this is known method limited to the use of thermoreactive powders, their cross-linking temperature is only slightly higher than the damage temperature of the substrate.
  • a primer layer does not help here as it does not form a permanently effective heat conduction barrier and there the evaporation temperatures are usually much lower than the crosslinking and curing temperatures of the thermoreactive Are powder.
  • a primer made of water-based paint only until the Be primed until the primer is a Powder coating layer can be applied.
  • GB-A-2 056 885 describes a process for powder coating of substrates made of wood, cellulose, paper, cardboard or similar known in which a thermoreactive powder on the applied uncoated surface of the substrate and by means of infrared radiation, preferably in the wavelength range between 1 ⁇ m and 5 ⁇ m, is cured.
  • the in the Irradiation times specified in the publication are in the range between 20 s and 2 min.
  • WO 92/01517 A describes a method for coating a heat-sensitive material described with powder coating, which a two-stage procedure for infrared treatment of the applied paint. In a first, short step becomes a physical one at high temperature State change, while in a second, much longer step at reduced temperature Paint is cured.
  • the invention has for its object a method for Powder coating of a substrate, especially a temperature sensitive one Substrates such as wood, wood fiber material, Plastic, rubber, fabric, paper or cardboard to indicate that a powder coating of the uncoated surface of the substrate allowed without damaging it, and that to one uniform, completely cross-linked and well adhering lacquer layer leads.
  • a temperature sensitive one Substrates such as wood, wood fiber material, Plastic, rubber, fabric, paper or cardboard to indicate that a powder coating of the uncoated surface of the substrate allowed without damaging it, and that to one uniform, completely cross-linked and well adhering lacquer layer leads.
  • the task is accomplished through a process with the characteristics of Claim 1 and by the use of a halogen lamp for Fuherlackier according to one of claims 1 to 9 according to solved the claim 10.
  • An essential idea in the method according to the invention for powder coating is that for crosslinking necessary and targeted energy throughout the entire Powder layer thickness in the as the base layer on the uncoated Amount of powder applied to the surface of the substrate is introduced.
  • the gelation or crosslinking energy is at least in the form of radiation energy Base layer introduced and absorbed there.
  • the one used Radiation has at least radiation components in the near and / or short-wave infrared.
  • NIR radiation near infrared radiation
  • the Powder layer and the substrate surface through near infrared radiation (NIR radiation) homogeneous and in a matter of seconds the required gelling or crosslinking temperature is heated. Under near infrared, the wavelength range becomes more electromagnetic Radiation between the visible range and about 2 ⁇ m Understood wavelength.
  • the infrared radiation makes the thermoreactive Powder either warmed to cross-linking temperature and cured, or warmed to gel temperature and only crosslinked in a later process step and cured.
  • gelling results a composite of the powder material without a complete Crosslinking or curing to form a layer of lacquer.
  • the powdery base layer and 99fs. line second layer no longer than 12 s, in particular irradiated for no longer than 8 s until hardening. After applying a second layer, however due to radiation penetrating into the base layer Irradiation of the base layer continued, so that the total irradiation time the base layer is longer than 12 or 8 s can.
  • the targeted, preferably homogeneous across the thickness of the base layer distributed introduction of energy using infrared radiation, especially NIR radiation, speeds up the process the connection or crosslinking of the powder particles considerably compared to the known method in which the energy input due to the depth of the base layer essentially of heat conduction takes place.
  • This is also an excellent one Controllability of the connection or networking process given, especially because of a control of the Radiation flux density, the spectral distribution of radiation energy and / or the duration of radiation exactly the desired Process progress can be controlled. Is cheap it if the aforementioned process parameters depend on the absorption properties of the thermoreactive powder, on the reflective properties the substrate surface and the thermal conductivity of the substrate can be adjusted.
  • the rapid continuous heating of the Base layer ensures good adhesion to the substrate surface.
  • the cured or pre-gelled Base layer a second layer of a thermoreactive powder is applied and the whole is not yet fully cross-linked Coated by means of infrared radiation and cured.
  • the base layer has hardened or gelled Gel temperature or curing temperature cooled, preferably by compressed air that flows towards the surface this flows along.
  • the second layer immediately after curing or Pre-gelling applied.
  • the second layer With its application and curing the painting process is terminated, in particular uniform paint surface are generated, the highest quality requirements equivalent.
  • the second layer compensated for irregularities in the base layer, which, for example, ensures a consistently uniform can achieve glossy or matt lacquer surface.
  • the Difference to known powder coatings with UV powder coatings can be used with both the first and the second also achieve matt powder coating surfaces.
  • Powder coating made of different materials can exist, especially when using similar Powder for the base layer and the second layer a particularly homogeneous and across the depth of the overall finish form a uniformly crosslinked lacquer layer.
  • Advantages of this Powder coating systems are therefore particularly included robustness, abrasion resistance and chemical resistance the paint job.
  • the two-layer variant of the method according to the invention can especially substrates such as wood and wood fiber Materials (in short: wood fiber materials) with high coating quality be powder coated.
  • substrates such as wood and wood fiber Materials (in short: wood fiber materials) with high coating quality be powder coated.
  • wood fiber Materials in short: wood fiber materials
  • the targeted control of networking and Curing process can be prevented that moisture bubbles Generate irregularities in the paint layer.
  • an adhesive layer is formed, which may still has an irregular surface or even from individual, not connected island-like Paint stains exist.
  • After curing or pre-gelling the The base layer then has a lot for the second layer better starting conditions. Liability is improved and it is therefore usually when the powder is applied second layer applied more material.
  • the coating material runs to a uniform Paint layer.
  • controllability of the process progress is to be further increased if the process is further developed the surface temperature of the thermoreactive powder a pyrometer is measured and controlled by the radiation flux density regulated the infrared radiation.
  • defined temporal temperature profiles of the powder coating run be, e.g. B. with steep temperature rise and subsequent Phase of constant temperature over time Crosslinking process just above the minimum crosslinking temperature continue until fully cured.
  • sources of radiation generate very high electromagnetic radiation Radiation flux densities, which in particular allow the crosslinking temperature can be reached within a few seconds.
  • Preferably are incandescent in the halogen lamp, in particular Heating coils, used with low mass, so that the radiation flux density is responsive controllable.
  • the surface temperature of the filament can be set up to 3500 K. preferred dimensions line-like halogen lamps in combination with channel-like ellipsoidal or parabolic reflectors used.
  • the uncoated surface of the substrate especially made of plastic, a pretreatment for Improve conductivity for an electrostatic Application of the thermoreactive powder subjected. In particular Design is done on the surface of the substrate an electrically conductive liquid is applied.
  • thermoreactive powder melts immediately and is continued if necessary Radiation cross-linked.
  • the substrate shown in Fig. 1 consists of a medium density Fiberboard (MDF) 1 with a base layer of thermoreactive Powder and also from a second layer was coated from thermoreactive powder. This was the MDF 1 grounded on the side not to be coated and it the thermoreactive powder of first lacquer layer 2 on the uncoated surface of the MDF 1 applied. Then the base layer was coated with Infrared radiation from a radiation source whose Radiation flux density maximum is about 1 ⁇ m wavelength, Irradiated for 5 s until the temperature of the powder rises Setting temperature has increased. This, about the thickness of the first Lacquer layer 2 approximately homogeneous temperature was maintained for approximately 1 s. The irradiation process was then stopped.
  • MDF medium density Fiberboard
  • the substrate was only on during the gelling process its surface and only slightly warmed, so that in the MDF 1 bound water did not leak on the surface is and the uniformity of the paint coating is not was disturbed.
  • the MDF 1 was on the uncoated Grounded side and it was thermoreactive via the tribo process Powder for the second lacquer layer 3 on the surface the first lacquer layer 2 applied. Then were for about 6 s the first 2 and the second 3 layers of paint with the Infrared radiation at a radiation flux density maximum with irradiated at a wavelength of about 1 ⁇ m until the crosslinking temperature was reached. Through continued radiation with lower radiation flux density over about 3 s was the crosslinking reaction until complete curing both layers of paint continued. After that, the radiation canceled and waited a few seconds until the layers of paint cooled significantly below the crosslinking temperature had. Also through the second irradiation process No vapor or gas bubbles are formed, leading to an irregularity of the paint coating could have resulted.
  • MDF (not shown) was also used Surface contours immediately after pre-drying coated by NIR radiation. Here too even with single-layer powder coatings achieved with uniform thickness and smooth surface.
  • the hollow cylinder 5 consists for example of acrylonitrile-butadiene-styrene (ABS), made of polypropylene (PP) or polyetylene (PE).
  • ABS acrylonitrile-butadiene-styrene
  • PP polypropylene
  • PE polyetylene
  • MDF polyester resin powder, Epoxy or an epoxy / polyester powder used.
  • the halogen tube emitters 7 and a reflector 8 combined with them can be seen.
  • the reflector geometry is one over the length of the hollow cylinder 5 ensures uniform radiation.
  • the hollow cylinder 5 has a lacquer layer 6 made of thermoreactive Powder on.
  • the surface of the hollow cylinder 5 is first sprayed with isopropanol.
  • the isopropanol layer was then grounded and applied the thermoreactive powder.
  • the hollow cylinder 5 with a rotation frequency of about one revolution in six seconds was rotated.
  • the Hollow cylinder five with a higher rotation frequency, in particular with a rotation frequency of five revolutions per Second rotates.
  • the radiation was on after about six Seconds canceled.
  • the paint layer 6 was complete cross-linked and cured. Applying a second Paint layer on the hollow cylinder 5 was not necessary because even the first coat of paint is an even and homogeneous one Appearance.
  • the halogen tube emitters 7 in Fig. 2 have a filament 10 low mass in a quartz glass tube 11.
  • the two Ends of the filament 10 are each flowing through Compressed air cooled to the life of the halogen tube lamp 7 increase.
  • the reflector 8 is by means of Compressed air or liquid cooled to constant conditions for the reflection of the halogen tube spotlights 7 to create emitted radiation.

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Paints Or Removers (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Pulverlackierung eines Substrats (5), insbesondere eines temperaturempfindlichen Substrates wie Holz, Holzfaserwerkstoff, Kunststoff, Gummi, Stoff, Papier oder Karton, wobei ein thermoreaktives Pulver als Grundschicht (6) auf die unbeschichtete Oberfläche des Substrats (5) aufgebracht wird und wobei das Pulver mittels Infrarotstrahlung, zumindest mit Strahlungsanteilen im nahen und/oder kurzwelligen Infrarot, durchgehend auf Vernetzungstemperatur erwärmt und zum Aushärten gebracht wird oder durchgehend auf Geliertemperatur erwärmt wird und in einem späteren Verfahrensschritt fertig vernetzt und ausgehärtet wird. Zur Erzeugung der Infrarotstrahlung werden insbesondere Halogenlampen (7) in Kombination mit einem Reflektor (8) zur Reflexion der emittierten Strahlung in Richtung des Substrats kombiniert. Die Halogenlampen (7) werden derart betrieben, daß ein Strahlungsflußdichte-Maximum der emittierten Strahlung im nahen Infrarot liegt.

Description

Die Erfindung betrifft ein Verfahren zur Pulverlackierung eines Substrats, insbesondere eines temperaturempfindlichen Substrats wie Holz, Holzfaserwerkstoff, Kunststoff, Gummi, Stoff, Papier oder Karton gemäß dem Oberbegriff des Patentanspruchs 1. Die Erfindung betrifft weiterhin die Verwendung einer Halogenlampe zur Pulverlackierung. Ein Verfahren dïeser Art ist beïspïelsweise aus der W0-A-92/0.1517 oder aus der GB-A-2 056 885 zu entnehmen. Bei der Vernetzung und Aushärtung von Pulverlack kommt es entscheidend auf eine möglichst homogene und rasche Erwärmung auf Aushärtetemperatur an. Nur so kann die Pulverlackschmelze das Viskositätsminimum erreichen, ohne bereits erheblich durch Vernetzungsreaktionen am Verlaufen behindert zu werden, was eine Unebenheit der Oberfläche durch einen nicht optimalen Verlauf des Pulvers zur Folge hat.
Bekannt ist ein Verfahren zur Vernetzung thermoreaktiven Pulvers, bei dem die notwendige Aushärtetemperatur über mehrstufige Energieübertragungen erreicht wird. Zuerst wird über Infrarot (IR)-Strahlung oder konvektiv die Oberfläche der Pulverbeschichtung erwärmt. Dann erst erfolgt die Durchwärmung in der Pulverschicht über Wärmeleitungsprozesse bis hin zur Substratgrenzschicht. Dort wird die Energie, insbesondere bei metallischen Untergründen, über die höhere Wärmeleitung sehr viel schneller in das Substrat abgeführt. Erst bei annähernd vollständiger Durchwärmung des Substrates erreicht die Grenzschicht die notwendige Vernetzungstemperatur. Bei diesem bekannten Verfahren stellt für die Durchwärmung der Beschichtung allein der Temperaturgradient zwischen Beschichtungsoberflache und Substrat die treibende Prozeßgröße dar. Um eine homogene Vernetzung und einwandfreie Haftung auf dem Substrat sicherzustellen, sind Heizzeiten von mehreren Minuten notwendig.
Häufig liegen die Vernetzungs- und Aushärtetemperaturen von Pulverlacken zwischen 120°C und 300°C. Aufgrund dieser hohen Temperaturen können temperaturempfindliche Substrate nach dem bekannten Verfahren nicht oder nur unter Einschränkungen pulverbeschichtet werden.
Bekannt ist auch ein Verfahren zum Vernetzen und Aushärten einer Schicht thermoreaktives Pulver auf einem Substrat, bei dem vor dem Aufbringen des thermoreaktiven Pulvers eine Grundierung auf die Oberfläche des Substrats aufgebracht wird. Die Grundierung besteht beispielsweise aus Wasserlack. Die Grundierung dient insbesondere bei Substraten aus Holz oder Holzfasermaterialien dazu, Inhomogenitäten an der Oberfläche des Substrats auszugleichen, eine Feuchtigkeitsbarriere zu bilden und eine Haftung von thermoreaktivem Pulver zu ermöglichen. Anschließend kann das Pulver dann durch Bestrahlung mit elektromagnetischer Strahlung, insbesondere mit mittelwelliger Infrarotstrahlung vernetzt und ausgehärtet werden. Bei diesem bekannten Verfahren bildet die Grundierung auch eine Wärmeleitungsbarriere, die einen Wärmeübergang während der Vernetzungsreaktion in der Pulverschicht auf das Substrat behindert. Insbesondere bei temperaturempfindlichen Substraten konnte so das Aufbringen einer Pulverlackierung überhaupt erst möglich gemacht werden. Jedoch ist dieses bekannte Verfahren auf die Verwendung von thermoreaktiven Pulvern beschränkt, deren Vernetzungstemperatur nur geringfügig höher als die Schädigungstemperatur des Substrats ist.
Bei Feuchtigkeit enthaltenden oder aufnehmenden Substraten, insbesondere bei Holz oder Holzfaserwerkstoff, besteht bei den bekannten Verfahren außerdem das Problem, daß ein Mindest-Feuchtegehalt des Substrats einerseits erwünscht ist, andererseits das Aufbringen einer gleichmäßigen Pulveriackierung jedoch verhindert. Feuchtigkeit in dem Substrat ermöglicht einerseits, durch elektrostatische Aufladung thermoreaktives Pulver an der geladenen Oberfläche abzulagern. Andererseits verdampft die Feuchtigkeit bei der anschließenden Vernetzungs- und Aushärtungsreaktion in dem Substrat, da wegen der langen Reaktionszeit bei Temperaturen über der Verdampfungstemperatur das Substrat zumindest an seiner Oberfläche auf Verdampfungstemperatur erwärmt wird. Es bilden sich daher an der Oberfläche, unter dem bereits vernetzten Pulver Blasen, die zu einer unregelmäßigen Lackschicht führen. Auch eine Grundierungsschicht hilft hier nicht weiter, da sie keine auf Dauer wirksame Wärmeleitungsbarriere bildet und da die Verdampfungstemperaturen meist wesentlich niedriger als die Vernetzungs- und Aushärtetemperaturen des thermoreaktiven Pulvers sind. Außerdem muß, beispielsweise bei einer Grundierung aus Wasserlack, erst bis zur vollständigen Trocknung der Grundierung gewartet werden, bis auf die Grundierung eine Pulverlackschicht aufgebracht werden kann.
Bei den oben genannten bekannten Verfahren besteht weiterhin die Schwierigkeit, daß wegen der geringen Tiefenwirkung der Pulverschichtbeheizung erst nach längerer Beheizungsdauer eine Schmelzverbindung zwischen der Pulverschicht und der Substratoberfläche bzw. der Grundierung hergestellt werden kann.
Aus der GB-A-2 056 885 ist ein Verfahren zur Pulverlackierung von Substraten aus Holz, Zellulose, Papier, Pappe o.ä. bekannt, bei dem ein thermoreaktives Pulver auf die unbeschichtete Oberfläche des Substrates aufgebracht und mittels Infrarotstrahlung, bevorzugt im Wellenlängenbereich zwischen 1 µm und 5 µm, ausgehärtet wird. Die in der Druckschrift angegebenen Bestrahlungszeiten liegen im Bereich zwischen 20 s und 2 min.
Aus der Veröffentlichung "Infrarot (IR) und ihre industrielle Anwendung" KAUTSCHUK UND GUMMI - KUNSTSTOFFE., Bd. 36, Nr. 10, Oktober 1983 (1983-10), Seiten 899-901, XP002110442 DR. ALFRED HUTHIG VERLAG GMBH. HEIDELBERG., DE ISSN: 0948-3276 ist es bekannt, sogenannte Hellstrahler, d. h. mit einem Reflektor versehene, im Bereich des nahen oder kurzwelligen Infrarot strahlende Quarz-Halogenlampen, bei industriellen thermischen Prozessen einzusetzen. Die Druckschrift beschreibt Vorteile dieser Wärmequellen und bestimmte Einsatzfelder.
Aus der WO 92/01517 A ist ein Verfahren zum Beschichten eines wärmeempfindlichen Materials mit Pulverlack beschrieben, welches eine zweistufige Verfahrensführung bei der Infrarotbehandlung des aufgebrachten Lackes umfaßt. In einem ersten, kurzen Schritt wird bei hoher Temperatur zunächst eine physikalische Zustandsänderung bewirkt, während in einem zweiten, wesentlich längeren Schritt bei verringerter Temperatur der Lack ausgehärtet wird.
Der Patent Abstracts of Japan vol. 095, no. 007, 31. August 1995 (1995-08-31) & JP 07 092831 A (KIYOTSUKOU SEIKO KK), 7. April 1995 (1995-04-07) beschreibt die gleichzeitige Bestrahlung eines Körpers mit Strahlung aus dem Bereich des fernen und des nahen Infrarot im Zusammenhang mit der Tonerfixierung in einem elektrofotografischen Drucker.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Pulverlackierung eines Substrats, insbesondere eines temperaturempfindlichen Substrats wie Holz, Holzfaserwerkstoff, Kunststoff, Gummi, Stoff, Papier oder Karton anzugeben, das eine Pulverlackierung der unbeschichteten Oberfläche des Substrats erlaubt, ohne dieses zu schädigen, und das zu einer gleichmäßigen, vollständig vernetzten und gut haftenden Lackschicht führt.
Die Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch die Verwendung einer Halogenlampe zur fuherlackier nach einem der Ansprüche 1 bis 9 gemäß dem Anspruch 10 gelöst.
Weiterbildungen sind Gegenstand der abhängigen Ansprüche.
Ein wesentlicher Gedanke bei dem erfindungsgemäßen Verfahren zur Pulverlackierung besteht darin, daß die für die Vernetzung notwendige Energie gezielt und durchgehend über die gesamte Pulverschichtdicke in die als Grundschicht auf die unbeschichtete Oberfläche des Substrats aufgebrachte Pulvermenge eingebracht wird. Die Gelierungs- bzw. Vernetzungsenergie wird in Form von Strahlungsenergie zumindest in die Grundschicht eingebracht und dort absorbiert. Die dabei verwendete Strahlung weist zumindest Strahlungsanteile im nahen und/oder kurzwelligen Infrarot auf. Vorzugsweise werden die Pulverschicht und die Substratoberfläche durch nahe Infrarotstrahlung (NIR-Strahlung) homogen und in Sekundenschnelle auf die erforderliche Gelier- bzw. Vernetzungstemperatur erwärmt. Unter nahem Infrarot wird der Wellenlängenbereich elektromagnetischer Strahlung zwischen dem sichtbaren Bereich und etwa 2 µm Wellenlänge verstanden.
Erfindungsgemäß wird durch die Infrarotstrahlung das thermoreaktive Pulver entweder auf Vernetzungstemperatur erwärmt und zum Aushärten gebracht, oder auf Geliertemperatur erwärmt und erst in einem späteren Verfahrensschritt fertig vernetzt und ausgehärtet. In letzterem Fall entsteht durch das Gelieren ein Verbund des Pulvermaterials, ohne eine vollständige Vernetzung oder Aushärtung zu einer Lackschicht. Hierbei wird die pulverförmige Grundschicht und 99fs. line zweite Schicht jeweils nicht länger als 12 s, insbesondere nicht länger als 8 s, bis zum Aushärten bestrahlt. Nach dem Aufbringen einer zweiten Schicht wird jedoch durch bis in die Grundschicht eindringende Strahlung die Bestrahlung der Grundschicht fortgesetzt, so daß die Gesamtbestrahlungsdauer der Grundschicht länger als 12 bzw. 8 s betragen kann.
Das gezielte, vorzugsweise homogen über die Dicke der Grundschicht verteilte Einbringen von Energie mittels Infrarotstrahlung, insbesondere NIR-Strahlung, beschleunigt den Vorgang der Verbindung bzw. Vernetzung der Pulverteilchen erheblich gegenüber dem bekannten Verfahren, bei dem der Energieeintrag in die Tiefe der Grundschicht im wesentlichen aufgrund von Wärmeleitung stattfindet. Damit ist auch eine hervorragende Steuerbarkeit des Verbindungs- bzw. Vernetzungsprozesses gegeben, insbesondere da über eine Steuerung der Strahlungsflußdichte, der spektralen Verteilung der Strahlungsenergie und/oder der Strahlungsdauer genau der gewünschte Prozeßfortschritt gesteuert werden kann. Günstig ist es, wenn die zuvor genannten Prozeßparameter auf die Absorptionseigenschaften des thermoreaktiven Pulvers, auf die Reflexionseigenschaften der Substratoberfläche und auf die Wärmeleitfähigkeit des Substrates eingestellt werden.
Weiterhin wird durch die schnelle durchgehende Erwärmung der Grundschicht eine gute Haftung an der Substratoberfläche gewährleistet.
Vorzugsweise wird auf die ausgehärtete oder vorgelierte Grundschicht eine zweite Schicht eines thermoreaktiven Pulvers aufgebracht und wird die gesamte noch nicht fertig vernetzte Beschichtung mittels der Infrarotstrahlung vernetzt und ausgehärtet. Bei einer Weiterbildung des Verfahrens wird nach dem Aushärten oder Gelieren der Grundschicht diese unter Geliertemperatur bzw. Aushärtetemperatur abgekühlt, vorzugweise durch Druckluft, die die Oberfläche anströmt bzw. an dieser entlangströmt. Bei einer alternativen Ausgestaltung wird die zweite Schicht unmittelbar nach dem Aushärten oder Vorgelieren aufgebracht.
Durch die zweite Schicht, mit deren Aufbringen und Aushärten der Lackiervorgang insbesondere beendet wird, kann eine gleichmäßige Lackoberfläche erzeugt werden, die höchsten Qualitätsanforderungen entspricht. Insbesondere werden durch die zweite Schicht Unregelmäßigkeiten in der Grundschicht ausgeglichen, wodurch sich beispielsweise eine durchgehend gleichmäßig glänzende oder matte Lackoberfläche erzielen läßt. Im Unterschied zu bekannten Pulverlackierungen mit UV-Pulverlacken lassen sich sowohl mit der ersten als auch mit der zweiten auch matte Pulverlackoberflächen erzielen. Gegenüber Verfahren, bei denen eine Grundierschicht und eine zweite, aus Pulver gebildete Lackschicht aus unterschiedlichem Material bestehen, kann sich insbesondere bei Verwendung gleichartigen Pulvers für die Grundschicht und die zweite Schicht eine besonders homogene und über die Tiefe der Gesamtlackierung gleichmäßig vernetzte Lackschicht bilden. Vorteile dieses Pulver-Beschichtungssystems liegen daher insbesondere bei der Robustheit, der Abriebsfestigkeit und der Chemikalienbeständigkeit der Lackierung.
Mit der Zweischicht-Variante des erfindungsgemäßen Verfahrens können insbesondere Substrate wie Holz und holzfaserhaltige Materialien (kurz: Holzfaserwerkstoffe) bei hoher Beschichtungsqualität pulverlackiert werden. Einerseits kann durch die oben beschriebene gezielte Steuerung des Vernetzungs- und Aushärtungsprozesses verhindert werden, daß Feuchtigkeitsbla-sen Unregelmäßigkeiten in der Lackschicht erzeugen. Andererseits wird das Problem der ungleichmäßigen Haftung von Pulverteilchen an einer unbeschichteten, zumindest teilweise durch Holzfasern gebildeten Oberfläche überwunden. Durch die Grundschicht wird eine Haftschicht gebildet, die unter Um-ständen noch eine unregelmäßige Oberfläche aufweist oder gar aus einzelnen, nicht miteinander verbundenen inselartigen Lackflecken besteht. Nach dem Aushärten oder Vorgelieren der Grundschicht bestehen dann für die zweite Schicht aber viel bessere Ausgangsbedingungen. Die Haftung ist verbessert und es wird daher in der Regel bei dem Aufbringen des Pulvers der zweiten Schicht mehr Material aufgetragen. Bei der anschließenden Vernetzung und Aushärtung des gesamten noch nicht vernetzten oder nur teilweise vernetzten Beschichtungsmaterials verläuft dann das Beschichtungsmaterial zu einer gleichmäßi-gen Lackschicht.
Insbesondere um die Kontrollierbarkeit des Prozeßfortschritts noch zu steigern, wird bei einer Weiterbildung des Verfahrens die Oberflächentemperatur des thermoreaktiven Pulvers durch ein Pyrometer gemessen und durch Steuerung der Strahlungsflußdichte der Infrarotstrahlung geregelt. Somit können definierte zeitliche Temperaturprofile der Pulverbeschichtung gefahren werden, z. B. mit steilem Temperaturanstieg und anschließender Phase zeitlich konstanter Temperatur, um den Vernetzungsprozeß knapp über der minimalen Vernetzungstemperatur bis zum vollständigen Aushärten fortzusetzen.
Bevorzugtermaßen wird zur Erzeugung der Infrarotstrahlung eine Hochleistungs-Halogenlampe mit einer Strahltemperatur von mehr als 2500 K eingesetzt. Derartige Strahlungsquellen erzeugen eine elektromagnetische Strahlung mit sehr hohen Strahlungsflußdichten, die es insbesondere erlauben, die Vernetzungstemperatur binnen weniger Sekunden zu erreichen. Vorzugsweise werden in der Halogenlampe Glühkörper, insbesondere Heizwendeln, mit geringer Masse verwendet, so daß die Strahlungsflußdichte reaktionsschnell steuerbar ist. In besonders bevorzugter Ausgestaltung ist die Halogenlampe mit einem Reflektor zur Reflexion der emittierten Strahlung in Richtung des Substrats kombiniert und wird die Halogenlampe derart betrieben, daß ein Strahlungsflußdichte-Maximum der emittierten Strahlung im nahen Infrarot liegt. Die Oberflächentemperatur des Glühkörpers ist bis zu Werten von 3500 K einstellbar. Bevorzugtermaßen werden linienartige Halogenlampen in Kombination mit rinnenartigen ellipsoidischen oder parabolischen Reflektoren eingesetzt.
Zweckmäßigerweise wird die unbeschichtete Oberfläche des Substrats, insbesondere aus Kunststoff, einer Vorbehandlung zur Verbesserung der Leitfähigkeit für eine elektrostatische Applikation des thermoreaktiven Pulvers unterzogen. In besonderer Ausgestaltung wird dabei auf die Oberfläche des Substrats eine elektrisch leitende Flüssigkeit aufgebracht.
Insbesondere zur Pulverlackierung eines Feuchtigkeit enthaltenden oder aufnehmenden Substrats wird durch Trocknen und/oder Befeuchten des Substrats vor dem Aufbringen der Grundschicht ein definierter Feuchtegehalt erzeugt. Somit können besonders gleichmäßige Pulverlackbeschichtungen erreicht werden und können die Prozeßparameter in gewissen Grenzen variieren, ohne die Beschichtungsqualität zu verringern.
Vorzugsweise wird als, insbesondere ausschließliche, Vorbehandlung vor der Pulverapplikation zur Trocknung feuchter Substrate, wie zum Beispiel Holz oder Holzverbundwerkstoffe, die Substratoberfläche mit gleichem oder höherem als für den eigentlichen Vernetzungsprozeß notwendigen Energieeintrag bestrahlt, insbesondere durch NIR-Strahlung. Durch diesen Energieeintrag wird eine Oberflächentemperatur erreicht, die über dem Schmelzpunkt des Pulversystems liegt. Anschließend wird dann das thermoreaktive Pulver als Grundschicht auf die Substratoberfläche aufgebracht. Das thermoreaktive Pulver schmilzt sofort an und wird gegebenenfalls durch fortgesetzte Bestrahlung fertig vernetzt. Durch die Vorbehandlung der Substratoberfläche wird der Auftragswirkungsgrad während der Pulverapplikation um ein Vielfaches erhöht. Zugleich wird verhindert, daß während des eigentlichen Vernetzungsprozesses an der Substratoberfläche angelagerte Feuchtigkeit ausgetrieben wird, die eine homogene Filmbildung stören könnte.
Anhand der beigefügten Zeichnung werden nun Ausführungsbeispiele der Erfindung beschrieben. Die Erfindung ist jedoch nicht auf diese Ausführungsbeispiele beschränkt. Die einzelnen Figuren der Zeichnungen zeigen:
Fig. 1
eine mitteldichte Faserplatte (MDF) mit zwei Pulverlackschichten und
Fig. 2
eine Anordnung zur Vernetzung von Pulverlack auf in sich geschlossen umlaufenden Oberflächen eines Kunststoffsubstrats.
Das in Fig. 1 gezeigte Substrat besteht aus einer mitteldichten Faserplatte (MDF) 1, die mit einer Grundschicht aus thermoreaktivem Pulver und aus einer zweiten Schicht ebenfalls aus thermoreaktivem Pulver beschichtet wurde. Dazu wurde die MDF 1 auf der nicht zu beschichtenden Seite geerdet und es wurde über das Tribo-Verfahren das thermoreaktive Pulver der ersten Lackschicht 2 auf die unbeschichtete Oberfläche der MDF 1 aufgebracht. Anschließend wurde die Grundschicht mittels Infrarotstrahlung aus einer Strahlungsquelle, deren Strahlungsflußdichte-Maximum bei etwa 1 µm Wellenlänge liegt, 5 s lang bestrahlt, bis sich die Temperatur des Pulvers auf Geliertemperatur erhöht hat. Diese, über die Dicke der ersten Lackschicht 2 etwa homogene Temperatur wurde etwa 1 s gehalten. Anschließend wurde der Bestrahlungsvorgang abgebrochen.
Während des Geliervorganges hatte sich das Substrat nur an seiner Oberfläche und nur geringfügig erwärmt, so daß das in der MDF 1 gebundene Wasser an der Oberfläche nicht ausgetreten ist und die Gleichmäßigkeit der Lackbeschichtung nicht gestört wurde.
Nach dem Abkühlen wurde die MDF 1 auf der unbeschichteten Seite geerdet und es wurde über das Tribo-Verfahren thermoreaktives Pulver für die zweite Lackschicht 3 auf die Oberfläche der ersten Lackschicht 2 aufgebracht. Anschließend wurden für etwa 6 s die erste 2 und die zweite 3 Lackschicht mit der Infrarotstrahlung bei einem Strahlungsflußdichte-Maximum mit einer Wellenlänge von etwa 1 µm bestrahlt, bis die Vernetzungstemperatur erreicht war. Durch fortgesetzte Bestrahlung mit geringerer Strahlungsflußdichte über etwa 3 s hinweg wurde die Vernetzungsreaktion bis zur vollständigen Aushärtung beider Lackschichten fortgesetzt. Danach wurde die Bestrahlung abgebrochen und einige Sekunden gewartet bis sich die Lackschichten deutlich unter Vernetzungstemperatur abgekühlt hatten. Auch durch den zweiten Bestrahlungsvorgang wurden keine Dampf- oder Gasblasen gebildet, die zu einer Unregelmäßigkeit der Lackbeschichtung hätten führen können.
In weiteren Versuchen wurden auch nicht gezeigte MDF mit Oberflächenkonturen unmittelbar nach einer Trocknungsvorbehandlung durch NIR-Bestrahlung beschichtet. Auch hierbei wurden selbst bei einschichtigen Pulveraufträgen Lackbeschichtungen mit gleichmäßiger Dicke und glatter Oberfläche erzielt.
In Fig. 2 ist ein Hohlzylinder 5 aus Kunststoff dargestellt, der von insgesamt 3 Halogen-Röhrenstrahlern 7 bestrahlt wird. Der Hohlzylinder 5 besteht beispielsweise aus Acrylnitril-Butadien-Styrol (ABS), aus Polypropylen (PP) oder Polyetylen (PE). Für die Pulverlackbeschichtung seiner äußeren Zylinderoberfläche wird beispielsweise, wie auch für MDF, Polyesterharz-Pulver, Epoxid- oder ein Epoxid/Polyester-Pulver verwendet.
In der Darstellung von Fig. 2 sind die Halogen-Röhrenstrahler 7 und ein mit ihnen kombinierter Reflektor 8 erkennbar. Durch die Reflektorgeometrie ist eine über die Länge des Hohlzylinders 5 gleichmäßige Bestrahlung gewährleistet. Bei einer Variante der Reflektoranordnung von Fig. 2 erstrecken sich die Halogen-Röhrenstrahler und die Rinnenprofile des Reflektors etwa parallel zu der Rotationsachse des Hohlzylinders.
Der Hohlzylinder 5 weist eine Lackschicht 6 aus thermoreaktivem Pulver auf. Zum Aufbringen der Lackschicht 6 wurde die Oberfläche des Hohlzylinders 5 zunächst mit Iso-Propanol besprüht. Anschließend wurde die Iso-Propanol-Schicht geerdet und das thermoreaktive Pulver aufgebracht. Anschließend begann die Bestrahlung mit Infrarotstrahlung aus den Halogen-Röhrenstrahlern 7, wobei der Hohlzylinder 5 mit einer Rotationsfrequenz von etwa einer Umdrehung in sechs Sekunden rotiert wurde. Bei einer Variante des Verfahrens wird der Hohlzylinder fünf mit einer höheren Rotationsfrequenz, insbesondere mit einer Rotationsfrequenz von fünf Umdrehungen pro Sekunde, rotiert. Die Bestrahlung wurde nach etwa sechs Sekunden abgebrochen. Dabei war die Lackschicht 6 vollständig vernetzt und ausgehärtet worden. Das Aufbringen einer zweiten Lackschicht auf den Hohlzylinder 5 war nicht erforderlich, da bereits die erste Lackschicht ein gleichmäßiges und homogenes Aussehen zeigte.
Die Halogen-Röhrenstrahler 7 in Fig. 2 weisen eine Glühwendel 10 geringer Masse in einer Quarzglasröhre 11 auf. Die beiden Enden der Glühwendel 10 werden jeweils durch anströmende Druckluft gekühlt, um die Lebensdauer der Halogen-Röhrenstrahler 7 zu erhöhen. Ebenso wird der Reflektor 8 mittels Druckluft oder Flüssigkeit gekühlt, um gleichbleibende Verhältnisse für die Reflexion der von den Halogen-Röhrenstrahlern 7 emittierten Strahlung zu schaffen.
Mit diesem ist Verfahren zur Pulverlackierung eines Substrats sind im Vergleich zu bekannten Verfahren deutlich kürzere Taktzeiten bei der Vernetzung und Aushärtung der Pulverbeschichtung erreichbar. Zudem ist es möglich, Pulverlackbeschichtungen auf wärmeempfindlichen Substraten zu vernetzen. Fokussierende Anordnungen unter Verwendung von Reflektoren erlauben eine gezielte, der Geometrie des Substrats angepaßte Bestrahlung. So kann ein sowohl über die Erstreckung der Oberfläche des Substrats bzw. der Beschichtung als auch über die Tiefe bzw. Dicke der Beschichtung homogener Energieeintrag bewirkt werden. Bei Verwendung von Halogenlampen mit geringer Glühkörperträgheit ist der Vernetzungsprozeß außerdem zeitgenau steuerbar, so daß selbst Pulverlacke eingebrannt werden können, deren Vernetzungstemperaturen höher als die Schädigungstemperatur des wärmeempfindlichen Substrats sind.
Bezugszeichenliste
1
MDF
2
erste Lackschicht
3
zweite Lackschicht
5
Hohlzylinder
6
Lackschicht
7
Halogen-Röhrenstrahler
8
Reflektor
9
Rotationsachse
10
Glühwendel
11
Quarzglasröhre

Claims (10)

  1. Verfahren zur Pulverlackierung eines Substrats (1, 5), insbesondere eines temperaturempfindlichen Substrats (1, 5) wie Holz, Holzfaserwerkstoff, Kunststoff, Gummi, Stoff, Papier oder Karton, wobei ein thermoreaktives Pulver als Grundschicht (2, 6) auf die unbeschichtete Oberfläche des Substrats (1, 5) aufgebracht wird und das Pulver mittels Infrarotstrahlung, zumindest mit Strahlungsanteilen im nahen Infrarot, durchgehend auf Vernetzungstemperatur erwärmt und hiermit zum Aushärten gebracht oder durchgehend auf Geliertemperatur erwärmt wird und erst in einem späteren Verfahrensschritt fertig vernetzt und ausgehärtet wird, dadurch gekennzeichnet, daß die Pulverschicht (2, 6 3) nicht länger als insgesamt 12 Sekunden, insbesondere nicht länger als 8 sekunden, bis zum fertigen Aushärten bestrahlt wird.
  2. Verfahren nach Anspruch 1,
    wobei auf die ausgehärtete oder vorgelierte Grundschicht (2) eine zweite Schicht (3) thermoreaktives Pulver aufgebracht wird und die gesamte noch nicht fertig vernetzte Beschichtung mittels der Infrarotstrahlung vernetzt und ausgehärtet wird.
  3. Verfahren nach Anspruch 2,
    wobei nach dem Aushärten oder Gelieren der Grundschicht (2) diese unter Aushärtetemperatur bzw. Geliertemperatur abgekühlt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    wobei die Oberflächentemperatur des thermoreaktiven Pulvers mittels eines Pyrometers gemessen und durch Steuerung der Strahlungsflußdichte der Infrarotstrahlung geregelt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    wobei zur Erzeugung der Infrarotstrahlung zumindest eine Hochleistungs-Halogenlampe (7) mit einer Strahlertemperatur von mehr als 2500 K eingesetzt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    wobei die unbeschichtete Oberfläche des Substrats (5) einer Vorbehandlung zur Verbesserung der Haftfähigkeit für das thermoreaktive Pulver unterzogen wird, insbesondere durch Aufbringen einer elektrisch leitenden Flüssigkeit.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    zur Pulverlackierung eines Feuchtigkeit enthaltenden oder aufnehmenden Substrats (1), wobei durch Trocknen und/oder Befeuchten des Substrats vor dem Aufbringen der Grundschicht ein definierter Feuchtegehalt erzeugt wird.
  8. Verfahren nach Anspruch 7,
    wobei zum Trocknen des Feuchtigkeit enthaltenden Substrats (1) die Substratoberfläche mit gleichem oder höherem als für die Vernetzung notwendigen Energieeintrag bestrahlt wird.
  9. Verfahren nach Anspruch 8,
    wobei die Substratoberfläche durch die Bestrahlung auf eine Temperatur erwärmt wird, die über der Schmelztemperatur des thermoreaktiven Pulvers liegt, so daß zumindest ein Teil des thermoreaktiven Pulvers nach dem Aufbringen auf die Substratoberfläche sofort schmilzt.
  10. Verwendung einer Halogenlampe (7) zur Pulverlackierung nach einem der Ansprüche 1 bis 9,
    wobei die Halogenlampe (7) mit einem Reflektor (8) zur Reflexion der emittierten Strahlung in Richtung des Substrats (1, 5) kombiniert ist und
    derart betrieben wird, daß das Strahlungsflußdichte-Maximum der emittierten Strahlung im nahen Infrarot liegt.
EP99911798A 1998-03-16 1999-03-16 Verfahren zur pulverlackierung Revoked EP1062053B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19811319 1998-03-16
DE19811319 1998-03-16
DE1998131781 DE19831781A1 (de) 1998-07-15 1998-07-15 Verfahren zur Pulverlackierung
DE19831781 1998-07-15
PCT/EP1999/001720 WO1999047276A1 (de) 1998-03-16 1999-03-16 Verfahren zur pulverlackierung

Publications (2)

Publication Number Publication Date
EP1062053A1 EP1062053A1 (de) 2000-12-27
EP1062053B1 true EP1062053B1 (de) 2002-08-14

Family

ID=26044646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99911798A Revoked EP1062053B1 (de) 1998-03-16 1999-03-16 Verfahren zur pulverlackierung

Country Status (11)

Country Link
US (1) US6436485B1 (de)
EP (1) EP1062053B1 (de)
JP (1) JP2002506725A (de)
KR (1) KR100685477B1 (de)
CN (1) CN1203924C (de)
AU (1) AU3035299A (de)
BR (1) BR9908843A (de)
CA (1) CA2324097A1 (de)
DE (1) DE59902341D1 (de)
ES (1) ES2182500T3 (de)
WO (1) WO1999047276A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031671A1 (de) 2002-09-26 2004-04-15 Advanced Photonics Technologies Ag Verfahren und anordnung zur thermischen behandlung eines werkstücks
DE102007015261A1 (de) 2007-03-27 2008-10-02 Aacure Aadhesives Gmbh Reaktivmasse und Verfahren zur Aufbringung hierfür
US7442409B2 (en) 2001-04-18 2008-10-28 Rohm And Haas Company Differential processing of powder coated substrates

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834184A1 (de) * 1998-07-29 2000-02-03 Basf Ag Verfahren und Vorrichtung zur Optimierung von Lacken
DE19857045C2 (de) * 1998-12-10 2001-02-01 Industrieservis Ges Fuer Innov Beschichtung von Gegenständen
DE19913446C2 (de) * 1999-03-25 2002-10-31 Herberts Gmbh & Co Kg Verfahren zur Mehrschichtlackierung
DE19947350C1 (de) * 1999-10-01 2001-01-25 Industrieservis Ges Fuer Innov Herstellung von oberflächenstrukturierten Formteilen
CA2321514A1 (en) * 1999-10-15 2001-04-15 Gerald K. White Multiple layered coating on heat-sensitive substrates
DE10009822C1 (de) * 2000-03-01 2001-12-06 Basf Coatings Ag Verfahren zur Herstellung von Beschichtungen, Klebschichten oder Dichtungen für grundierte oder ungrundierte Substrate und Substrate
DE10024731A1 (de) * 2000-05-08 2001-11-22 Advanced Photonics Tech Ag Verfahren und Anordnung zur Herstellung eines dünnen Schichtaufbaus
EP1186952A1 (de) * 2000-09-06 2002-03-13 Fuji Photo Film B.V. Verfahren zur Beschichtung einer laufenden Bahn
AU2001293853A1 (en) * 2000-09-29 2002-04-08 Advanced Photonics Technologies Ag Method and arrangement for producing a coated thermosensitive article or container with thermosensitive contents
DE10048361C1 (de) * 2000-09-29 2002-06-06 Advanced Photonics Tech Ag Verfahren zur Herstellung eines beschichteten wärmeempfindlichen Artikels oder Behälters mit wärmeempfindlichem Inhalt
AU2002223671A1 (en) * 2000-11-08 2002-05-21 Adphos Advanced Photonics Technologies Ag Method for generating a coating on a substrate
US6821575B2 (en) 2000-12-21 2004-11-23 Advanced Photonics Technologies Ag Electrode treatment
DE10125888C2 (de) * 2001-04-18 2003-03-13 Advanced Photonics Tech Ag Strahlermodul und Hochleistungs-Bestrahlungsanlage
ES2182715B1 (es) * 2001-07-24 2004-08-16 Jesus Francisco Barberan Latorre Maquina automatica para el barnizado de piezas planas de madera, mdf, o aglomerado, con polvo ultravioleta.
US20040219385A1 (en) * 2002-08-23 2004-11-04 Rene Mattern Process for curing powder coatings
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US20040265504A1 (en) * 2003-06-27 2004-12-30 Christophe Magnin Non-metalic substrate having an electostatically applied activatable powder adhesive
US20070224352A1 (en) * 2003-10-21 2007-09-27 Stewart Jeffrey W Powder Coating Procedures
US20050095353A1 (en) * 2003-10-31 2005-05-05 Franziska Isele Method of curing powder coatings
JP4786550B2 (ja) 2004-01-12 2011-10-05 ジェイムズ ハーディー テクノロジー リミテッド 放射線硬化性成分を有する複合繊維セメント物品
US20050255238A1 (en) * 2004-05-12 2005-11-17 Myer Charles N Pulsed heating process for curing substrates with near infrared radiation
US20050276917A1 (en) * 2004-06-15 2005-12-15 Helene Bolm Process for the preparation of powder coatings
US7998571B2 (en) * 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
EP1781750A4 (de) * 2004-07-27 2012-08-08 Duluxgroup Australia Pty Ltd System zur bereitstellung eines pulverlackierten holzwerkstoffs
GB2428395B (en) * 2005-07-19 2007-09-05 Ian Webb A process of powder coating and a powder coating apparatus
US20070077435A1 (en) * 2005-10-05 2007-04-05 Schachter Deborah M Process for coating a medical device
US20070111007A1 (en) * 2005-11-14 2007-05-17 Uwe Wilkenhoener Process for the preparation of coatings with specific surface properties
US20090017223A1 (en) * 2005-12-07 2009-01-15 Depco-Trh Pty Ltd. Pre-preg and laminate manufacture
EP1810755B1 (de) * 2006-01-21 2009-03-25 Rich Cup Bio-Chemical Technology Co., Ltd. Verfahren zur Herstellung eines Behälters mit einer Deckschicht zur Wärmedämmung
WO2007115379A1 (en) 2006-04-12 2007-10-18 James Hardie International Finance B.V. A surface sealed reinforced building element
DE102006032111A1 (de) * 2006-07-11 2008-01-24 Tgc Technologie-Beteiligungsgesellschaft Mbh Strahlungsgerät, Verfahren und Anordnung zur Pulverbeschichtung von Holzwerkstoffen
DE102006044959B4 (de) * 2006-09-22 2012-04-12 Wd Beteiligungs Gmbh Verfahren und Vorrichtung zum Pulverbeschichten von Holzsubstraten
GB2452545A (en) * 2007-09-07 2009-03-11 Fira Internat Ltd Lignocellulose coated with laser fused powder
SG195146A1 (en) * 2011-05-25 2013-12-30 Superl Technology Ltd Methods of powder coating and items to be powder coated
CN103917345A (zh) * 2011-05-25 2014-07-09 励泰科技有限公司 粉末涂覆方法以及被涂覆粉末的工件
US20160296971A1 (en) * 2013-11-28 2016-10-13 Superl Technology Limited Methods of powder coating and items to be powder coated
KR101675997B1 (ko) * 2015-07-16 2016-11-14 주식회사 대마 비전도체 분체도장 판넬 및 그 판넬 제조방법
WO2018132109A1 (en) 2017-01-15 2018-07-19 Hewlett-Packard Development Company, L.P. Reflector assembly with partial elliptical cavities
US20210197466A1 (en) * 2017-04-13 2021-07-01 Hewlett-Packard Development Company, L.P. Reflective barriers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2024658A (en) * 1978-07-07 1980-01-16 Shaw J G Coating of compressed board materials
GB2056885A (en) 1979-08-08 1981-03-25 Blundell Permoglaze Ltd Powder coating cellulose fibre substrates
SE442832B (sv) * 1980-05-23 1986-02-03 Bjorn Von Tell Sett att fylla ut ytojemnheter i treprodukter med ridabeleggning
NL8501182A (nl) * 1985-04-24 1986-11-17 Jacobus Gerardus Bruynen Werkwijze en inrichting voor het aanbrengen van een kunststoflaag op een drager, meer in het bijzonder voor het aanbrengen van een deklaag van polyurethaanhars op een transportband van geweven polyestervezels.
DE3805961C2 (de) * 1988-02-25 1994-09-08 Hoermann Kg Verfahren zur Kunststoffbeschichtung eines Tür- oder Torblattes oder eines Torblattpaneeles
US5021297A (en) * 1988-12-02 1991-06-04 Ppg Industries, Inc. Process for coating plastic substrates with powder coating compositions
IT1243350B (it) * 1990-07-18 1994-06-10 Hoechst Italia Procedimento per il rivestimento di materiali termosensibili con vernice in polvere
JPH05323810A (ja) * 1992-05-25 1993-12-07 Toray Ind Inc 定着器
US5338578A (en) * 1993-01-21 1994-08-16 Gencorp Inc. Method for achieving a smooth powder coated finish on a low density compression-molded plastic article
JPH0777894A (ja) * 1993-08-11 1995-03-20 Kiyotsukou Seiko Kk 電子写真方式印刷装置における熱放射定着部の退避方法
JPH0792831A (ja) * 1993-08-11 1995-04-07 Kiyotsukou Seiko Kk ハロゲンランプにおける赤外線照射方法
AU1263695A (en) * 1993-12-13 1995-07-03 Electrostatic Technology, Inc. Powder coating method for producing a composite web
DE19533858B4 (de) * 1995-09-13 2005-09-22 IHD Institut für Holztechnologie Dresden gGmbH Verfahren zum elektrostatischen Beschichten von Holz und Holzwerkstoffen
JPH09201517A (ja) * 1996-01-30 1997-08-05 Inax Corp 膜ユニット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7442409B2 (en) 2001-04-18 2008-10-28 Rohm And Haas Company Differential processing of powder coated substrates
WO2004031671A1 (de) 2002-09-26 2004-04-15 Advanced Photonics Technologies Ag Verfahren und anordnung zur thermischen behandlung eines werkstücks
DE20221980U1 (de) 2002-09-26 2009-12-17 Advanced Photonics Technologies Ag Anordnung zur thermischen Behandlung eines Werkstücks
DE102007015261A1 (de) 2007-03-27 2008-10-02 Aacure Aadhesives Gmbh Reaktivmasse und Verfahren zur Aufbringung hierfür

Also Published As

Publication number Publication date
JP2002506725A (ja) 2002-03-05
AU3035299A (en) 1999-10-11
CN1293598A (zh) 2001-05-02
KR100685477B1 (ko) 2007-02-23
KR20010041912A (ko) 2001-05-25
CN1203924C (zh) 2005-06-01
CA2324097A1 (en) 1999-09-23
US6436485B1 (en) 2002-08-20
ES2182500T3 (es) 2003-03-01
BR9908843A (pt) 2000-11-21
DE59902341D1 (de) 2002-09-19
EP1062053A1 (de) 2000-12-27
WO1999047276A1 (de) 1999-09-23

Similar Documents

Publication Publication Date Title
EP1062053B1 (de) Verfahren zur pulverlackierung
RU2271875C2 (ru) Способ нанесения порошковых покрытий на неметаллические основы
DE69625077T2 (de) Vorrichtung für einen pulverüberzug
DE19533858B4 (de) Verfahren zum elektrostatischen Beschichten von Holz und Holzwerkstoffen
EP0806459A3 (de) Epoxidpulverbeschichtungsmasse für Textureffekt-Lackierung und ein Verfahren zur Beschichtung von Holz mit dieser Masse
WO2006061391A2 (de) Strahlungsgerät sowie pulverauftragsstation und anordnung zur beschichtung von temperatursensiblen materialien und verfahren hierzu
US4483893A (en) Fused flock system
DE19831781A1 (de) Verfahren zur Pulverlackierung
EP1960598B1 (de) Pre-preg und laminatherstellung
DE102006032111A1 (de) Strahlungsgerät, Verfahren und Anordnung zur Pulverbeschichtung von Holzwerkstoffen
US20070224352A1 (en) Powder Coating Procedures
DE10048355B4 (de) Verfahren und Vorrichtung zur Pulverbeschichtung
DE10106890A1 (de) Verfahren und Anordnung zur Herstellung eines quasi-endlosen beschichteten, wickelfähigen Bleches
US20060045980A1 (en) Method and apparatus for application of a finish to a lineal product
DE2257135A1 (de) Verfahren zum herstellen eines metall/ kunststoff-verbundrohres
DE4220912C1 (en) Prodn. of light impervious layer around edges of lens - by coating with blackening agent and microwave heat-treating to remove any air pockets
DE4443129C2 (de) Verfahren zum Beschichten eines Trägermaterials
MXPA00008694A (en) Method for powder-coating
WO2002026897A2 (de) Verfahren und anordnung zur herstellung eines beschichteten wärmeempfindlichen artikels oder behälters mit wärmeempfindlichem inhalt
DE3004497A1 (de) Verfahren und vorrichtung zur kontinuierlichen herstellung einer porenfreien korrosionsfesten beschichtung aus kunstharz auf einen metallgegenstand
DE20020603U1 (de) Vorrichtung zur Pulverbeschichtung
AU2004203662A1 (en) Powder Coating Procedures
DE10302486A1 (de) Verfahren zur Herstellung einer Lackierung auf einem Substrat
DE102008042635A1 (de) Verfahren zur beschleunigten Trocknung von Polymeren sowie Vorrichtung
DE8003229U1 (de) Vorrichtung zur kontinuierlichen herstellung einer porenfreien korrosionsfesten beschichtung aus kunstharz auf einen metallgegenstand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20010208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59902341

Country of ref document: DE

Date of ref document: 20020919

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020919

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2182500

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HERAEUS NOBLELIGHT GMBH

Effective date: 20030509

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050318

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050413

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050530

Year of fee payment: 7

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

R26 Opposition filed (corrected)

Opponent name: HERAEUS NOBLELIGHT GMBH

Effective date: 20030509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 8

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20060224

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20060224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060323

Year of fee payment: 8