EP1055949B1 - Spiegel mit deformierbarer Membran - Google Patents
Spiegel mit deformierbarer Membran Download PDFInfo
- Publication number
- EP1055949B1 EP1055949B1 EP20000401459 EP00401459A EP1055949B1 EP 1055949 B1 EP1055949 B1 EP 1055949B1 EP 20000401459 EP20000401459 EP 20000401459 EP 00401459 A EP00401459 A EP 00401459A EP 1055949 B1 EP1055949 B1 EP 1055949B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- membrane
- silicon
- mirror
- electrodes
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
- G02B26/0825—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a flexible sheet or membrane, e.g. for varying the focus
Definitions
- the present invention relates to mirrors with deformable membrane.
- These mirrors by changing the geometry of their reflective surface under the action of a command outside, allow to transform some characteristics of the reflected beam to achieve, by example, a change of direction, a modification space of the wave surface, a phase shift, etc.
- Deformable membrane mirrors find applications in many fields (astronomy, optronic sights, ophthalmology, interferometry and holography, turbid imaging, etc.) where they can be used to perform various functions and in particular to achieve optical alignments (micro-positioning, harmonization of optical axes ...), micro-scans, beam stabilizations, micro focus / defocus, corrections of wave fronts (optical aberrations, turbulence, anamorphosis of beams %), phase shifts, etc ...
- the mirror represented in this FIG. a metallized membrane 1 carried by a substrate 2 which has a recess 2a.
- the membrane 1 closes said recess 2a and the bottom of said recess 2a carries, at right of the membrane 1, a network of electrodes of command 2b.
- the metallized side of the membrane 1 - which is the face of said membrane which is not facing the recess 2a - is maintained at a neutral potential, while control potentials Vi, Vj are applied to the different electrodes 2b, to generate on the membrane of the electrostatic forces which deforms it.
- Metallic membranes are usually silicon nitride and the mirror components to deformable membrane are usually made by the techniques conventionally known and used for manufacture of integrated circuits based on Si3 N4 and in particular by deposition of thin layers, photolithography, ionic or chemical machining, etc ...
- the invention aims to overcome these disadvantages.
- the invention proposes a method for producing a mirror of this type whose silicon membrane is maintained by two parts of silicon layer.
- the invention also proposes a method for realization of a mirror of the aforementioned type from a silicon wafer with integrated oxide layer.
- silicon and technologies silicon oxide make membranes of any shape (circular, square, hexagonal see more complex), with a very good accuracy, while allowing diameters of important mirror.
- a portion of the substrate is made by etching a wafer of silicon with buried oxide layer (SOI).
- SOI buried oxide layer
- the invention also proposes a mirror of the type supra.
- a control electrode carried by said portion is a transparent electrode.
- Such a structure has the advantage of allowing make any sign deformations and double the strain amplitude at control voltage constant, while presenting a very good quality of reflection.
- the membrane is a silicon membrane and more particularly a silicon membrane with a thickness of about 3 ⁇ m or lower.
- Such a silicon membrane has low mechanical tensions, which reduces the control voltages, for example at values from 100 to 150 V instead of voltages from 250 to 300 V for mirrors based on silicon nitride.
- a bottom portion of the opposite side to the metallized face of the membrane carries a monolithic stack that includes a transparent electrode and a layer of photoconductor, said stack being adapted to be optically controlled to generate on the membrane a electrostatic field of complex profile whereas the electrodes on both sides of the membrane are powered by a single power source.
- This component comprises a membrane 1 which extends between the recesses 2a, 3a of two glass plates 2 and 3 which are closed on one another.
- the blade 2 carries a single electrode 2b which extends in the bottom of its recess 2a, to the right of the membrane 1.
- the blade 3 carries, in the bottom of its recess 3a, to the right of the membrane 1, an electrode array 3b. On its face facing the electrode 2b, the membrane 1 carries a metallization 5.
- This membrane 1 has a thickness of 3 ⁇ m and is performed in the manner that will now be described with reference to Figures 3a to 3g.
- This tranche 6 presents, for example, dimensional characteristics: diameter of the order of 25 mm or more; total thickness of the order of 520 ⁇ m; buried oxide layer (referenced by 7 on the figures) with a thickness of 0.5 ⁇ m and is located at a depth of 20 ⁇ m.
- a first step we dope (p +) the face of the slice 6 located on the side of the buried layer 7, the doped layer 8 thus produced being intended to define the membrane 1 of 3 microns thick, in the following process.
- This same face is then metallized, for example by evaporation of a layer of aluminum or silver, so to get the mirror function.
- the preparation of the blade 2 is done the way next.
- the recess 2a is made by chemical etching. It is typically of a height of the order of 50 microns.
- the engraving of this recess is preferably carried out with a precision less than 1 ⁇ m.
- the blade 2 (as well as the blade 3) is advantageously a layered silicon blade buried oxide, which allows a high accuracy of engraving.
- the electrode 2b deposited at the bottom of this recess 2a is optically transparent and is, for example, in indium tin oxide (ITO). She is for example vacuum deposited by evaporation or spraying cathode.
- ITO indium tin oxide
- this counter electrode 2a is not subdivided and consists of a uniformly deposited layer on substantially the entire bottom of the recess 2a.
- This operation is performed, for example, by chemical attack, the buried oxidized layer 7 having for function to selectively stop this engraving.
- the layer of stop that constitutes this layer buried allows to achieve the etching of silicon with great precision that it would not be possible to reach for such a thickness with silicon pure.
- SOI oxide silicon wafers integrated
- the next step is ( Figure 3e) to open, by photolithography and etching, a window in the oxidized layer 7, to the right of the recess 2a and to etch the unoxidized silicon discovered, to a thickness of 20 microns. This thickness is very well controlled because the chemical attack is blocked by the previously obtained p + doping layer.
- the component obtained after these first steps has many advantages.
- the unembossed portions of the layer oxidized define a reference surface of a large precision, which, as will be seen later in a more detailed, is used for assembling a second electrode.
- membrane 1 is released by a last stage of engraving which only intervenes on a very small thickness, it is possible to consider for the membrane very forms varied, without being limited by the anisotropic effects of chemical attack in crystalline media.
- the membrane 1 obtained at the end of these first steps is not flat, but is sucked into the recess 2a because of the pressure difference between the two faces of this membrane 1.
- Atmospheric pressure is restored from on the other side of the membrane 1, small dimension (not shown) in the thickness of the glass slide 2 (Figure 3f). This opening is furthermore used to introduce an electrical contact on the ITO layer as a counter electrode.
- the preparation of the blade 3 is substantially in the same way as for the blade 2, realizing a chemical etching, on a thickness that is typically of the order of 50 ⁇ m, then depositing a network of electrodes 3b in the bottom of the recess 3a and form.
- Blade 3 does not need to be transparent and could be in any other material than glass and in particular any other material electrically insulating.
- a glass substrate offers the advantage proven ionic soldering assembly.
- the electrode array 3b is made by deposit under vacuum of a metal layer (Aluminum by example). This layer is then masked, then etched chemically by lithography.
- the electrodes 3b do not exhibit uniform dimensions and geometries but are optimized according to the basic deformities that the mirror must be able to undergo.
- an optimized electrode array is of the type of that shown in Figure 5: it has a central 9 electrode of square shape, surrounded by twelve peripheral electrodes 10, also of square shape, whose side length is equal to half the length of side of the central electrode 9.
- the control voltages applied between the electrode 2b and the electrode array 3b are very substantially less than those needed for Silicon nitride based components.
- Tensions 100 V are sufficient to obtain deformities of a few micrometers, compared to 250 V voltages for components based on silicon nitride.
- said electrode 2b is advantageously covered by an anti-reflection layer.
- this engraving of a bellows is for example carried out before the step of doping and deposition of metallization on the slice of SOI.
- the bellows is for example constituted by one or more circular grooves 11 etched on a silicon thickness of 20 ⁇ m.
- the electrodes of the network 3b can be replaced by a single electrode optically controlled.
- the unique electrode (ITO for example) - referenced by 3c - is filed in the bottom of the recess 3a of the blade 3, on a layer of material photo-conductor 12 to which it is thus coupled.
- a light source 13 for example a lamp incandescent, illuminates a mask 14 through a diffuser.
- This mask 14 is representative of the distribution and shape of the electrostatic field that one wants to create on the silicon membrane.
- the image of this mask is projected by a lens 15 on the blade 3 in glass supporting the electrode 3c.
- the photoconductor can be a mineral layer (for example a Bi12 SiO20 silicon bismuth oxide) or an organic layer (for example polyvinyl carbozole PVK).
- a mineral layer for example a Bi12 SiO20 silicon bismuth oxide
- an organic layer for example polyvinyl carbozole PVK
- ⁇ (x, y) conductivity of the photodetector under illumination at the ordinate (x, y)
- I (x, y) illumination at the point (x, y).
- the small thickness (1 ⁇ m to a few micrometers) of the photoconductive layer 12 makes it possible to preserve a excellent spatial resolution.
- the spatial distribution of the electrical voltage is reproduced faithfully to from the spatial distribution of intensity incidental light.
- this electrode can be ordered optically requires an optical addressing system additional, which may not be accepted for some applications, this approach can be optionally used for applications requiring generation of complex deformations that can not be obtained with a simple network of electrodes.
- This concept also allows the generation of a profile continuous field of electrostatic forces. For that, just choose a mask whose transparency is not not binary but at N gray levels. At the limit, the transparency of the mask can be analog with a continuous variation of its opacity. On the other hand, the mask can have a dynamic function of the transparency. Instead of using a mask where the spatial transparency is frozen once and for all, we may, for some applications, use a mask dynamics whose transfer function is changing temporally ..
- This specificity can be used to applications requiring the generation of deformed dynamics reproducing a sequence whose functions transfer, spatial and temporal, are recorded beforehand.
- Another variant of the electric control can be considered in case it is necessary to increase the number of electrodes of the network 3b. If this number of electrodes is high, for example of the order of 100 or higher, besides the complexity of the order the problem of access to different pads. This problem is well known in particular by LCD flat panel designers for the viewing.
- Matrix access to address each coordinate point X, Y can use lines and columns, each powered by voltages: + V / 2, -V / 2 or 0.
- this principle besides the fact that requires a threshold effect that does not exist in application to deformation membranes electrostatic, is not compatible with a large number of electrodes. Indeed, in the absence of an effect memory, the control voltage can not be applied only on one line at a time.
- an artifice consists of multiplexing temporally the electric control. this is not too embarrassing for the observer, who integrates temporally the images of each line through the retinal remanence.
- control matrices of the type of those used in the field of flat screens and in particular control matrices using TFT technology (Thin Film Transistor).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Claims (19)
- Verfahren zur Realisierung eines Spiegels mit deformierbarer Membran, dadurch gekennzeichnet, daß es die folgenden verschiedenen Schritte umfaßt:Dotierung der Fläche einer Siliziumscheibe mit integrierter oxidierter Schicht (SOi), die sich auf der Seite der vergrabenen Schicht der Scheibe befindet,
Metallisierung der Fläche,Montage, auf dem so erhaltenen Bauelement, eines transparenten ersten Substratteils, das eine Aushöhlung hat, auf deren Boden wenigstens eine erste Elektrode angeordnet ist,Gravur der Siliziumschicht, die am weitesten entfernt vom so aufgesetzten ersten Substratteil liegt, bis zur oxidierten Schicht,Fotolitographie und chemische Bearbeitung der oxidierten Schicht auf der Außenseite der Aushöhlung des ersten Substratteils, danach Gravur des Siliziums auf der Außenseite der so realisierten Öffnung,Montage, auf dem so erhaltenen Bauelement, eines zweiten Substratteils, das eine Aushöhlung hat, auf deren Boden wenigstens eine zweite Elektrode angeordnet ist. - Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das erste und zweite Substratteil mittels Gravur einer Siliziumscheibe mit vergrabener Oxydschicht realisiert sind.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß vor der Montage des zweiten Substratteils durch das erste Substratteil eine Öffnung gebohrt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Substratteil ein Glasplättchen ist und dadurch, daß seine Montage mittels anodischem Glas/Silizium-Bonden ausgeführt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dotierung vom P+ Typ ist.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Siliziumscheibe mit integrierter oxidierter Schicht folgendes aufweist: eine Dicke in der Größenordnung von 520 µm und eine vergrabene oxidierte Schicht mit einer Dicke von 0,5 µm, die sich in einer Tiefe von 20 µm befindet.
- Spiegel mit deformierbarer Membran, der eine Siliziummembran umfaßt, von der wenigstens eine Seite metallisiert ist, wobei das Substrat (2, 3) zwei Aushöhlungen (2a, 3a) hat, die sich aufeinander zu beiden Seiten der metallisierten Membran (1) schließen, wobei der Spiegel außerdem wenigstens zwei Elektroden (2b, 3b) zur Steuerung der Membrandeformation umfaßt, wobei diese beiden Elektroden auf beiden Seiten der Membran auf den Teilen, die die Böden der Aushöhlungen (2a, 3a) bilden, angeordnet sind, wobei dasjenige der Teile, das sich direkt gegenüber der metallisierten Fläche der Membran (1) befindet, transparent ist, dadurch gekennzeichnet, daß die Siliziummembran mittels zweier dickerer Siliziumschichtabschnitte eines Substrats aus Silizium mit integrierter oxidierter Schicht (SOi) gehalten wird.
- Spiegel nach Anspruch 7, dadurch gekennzeichnet, daß eine Steuerelektrode (2a), die von dem Teil getragen wird, eine transparente Elektrode ist.
- Spiegel nach Anspruch 8, dadurch gekennzeichnet, daß die Membran (1) eine Dicke in der Größenordnung von 3 µm oder weniger hat.
- Spiegel nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß ein Substratteil (2), das eine transparente Elektrode trägt, ein Glasplättchen ist.
- Spiegel nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß eine transparente Elektrode (2a) aus Indium-Zinn-Oxid (ITO) besteht.
- Spiegel nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß eine transparente Elektrode (2a) mit einer antireflektierenden Schicht abgedeckt ist.
- Spiegel nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß am Rand der Membran ein Faltenbalg (11) eingraviert ist.
- Spiegel nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß ein Bodenteil auf der Seite, die der metallisierten Fläche (5) der Membran (1) gegenüberliegt, einen monolithischen Stapel trägt, der eine transparente Elektrode (3b) und eine fotoleitfähige Schicht (12) umfaßt, wobei der Stapel dafür eingerichtet ist, optisch gesteuert zu werden, um auf der Membran ein elektrostatisches Feld mit komplexem Profil zu erzeugen, wohingegen die Elektroden auf beiden Seiten der Membran aus einer einzigen Versorgungsquelle versorgt werden.
- Spiegel nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, daß der einer metallisierten Fläche (5) der Membran (1) direkt gegenüberliegende Boden eine einzige Elektrode (2b) hat, die sich gleichförmig auf seiner Oberfläche erstreckt, während der Boden einer Aushöhlung, die auf der entgegengesetzten Seite einer metallisierten Fläche (5) der Membran (1) liegt, ein Elektrodengitter (2a) trägt.
- Spiegel nach Anspruch 15, dadurch gekennzeichnet, daß die Elektroden (2b) des Gitters nicht gleichförmig sind, wobei ihre Anzahl und Verteilung dafür optimiert ist, die Adressierung der Membran zu vereinfachen und es gleichzeitig zu gestatten, auf der Membran die geometrischen Hauptdeformationen zu erzeugen, die die folgenden sind: Kolben-, Tilt-, Kugel-, Astigmatismus-, Koma-Deformation.
- Spiegel nach Anspruch 16, dadurch gekennzeichnet, daß das Elektrodengitter eine quadratische Zentralelektrode (9) umfaßt, die von zwölf ebenfalls quadratischen Randelektroden (10) umgeben ist.
- Spiegel nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß er Mittel umfaßt, um die Steuerbefehle verschiedener Elektroden zeitlich zu multiplexen.
- Spiegel nach Anspruch 18, dadurch gekennzeichnet, daß die zeitlichen Multiplexmittel ein zweidimensionales Gitter aus Transistoren vom TFT-Typ umfassen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9906709A FR2794251B1 (fr) | 1999-05-27 | 1999-05-27 | Miroir a membrane deformable |
FR9906709 | 1999-05-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1055949A1 EP1055949A1 (de) | 2000-11-29 |
EP1055949B1 true EP1055949B1 (de) | 2005-11-09 |
Family
ID=9546068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20000401459 Expired - Lifetime EP1055949B1 (de) | 1999-05-27 | 2000-05-25 | Spiegel mit deformierbarer Membran |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1055949B1 (de) |
DE (1) | DE60023788T2 (de) |
FR (1) | FR2794251B1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2824643B1 (fr) * | 2001-05-10 | 2003-10-31 | Jean Pierre Lazzari | Dispositif de modulation de lumiere |
US6661830B1 (en) * | 2002-10-07 | 2003-12-09 | Coherent, Inc. | Tunable optically-pumped semiconductor laser including a polarizing resonator mirror |
WO2011051755A1 (en) * | 2009-10-30 | 2011-05-05 | Consiglio Nazionale Delle Ricerche | Optically controlled deformable reflective/refractive assembly with photoconductive substrate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0046873A1 (de) * | 1980-09-02 | 1982-03-10 | Texas Instruments Incorporated | Lichtmodulator mit verformbarem Spiegel |
US5022745A (en) * | 1989-09-07 | 1991-06-11 | Massachusetts Institute Of Technology | Electrostatically deformable single crystal dielectrically coated mirror |
US5774252A (en) * | 1994-01-07 | 1998-06-30 | Texas Instruments Incorporated | Membrane device with recessed electrodes and method of making |
RU2143127C1 (ru) * | 1994-09-02 | 1999-12-20 | Рэд Хассан Дэббедж | Модулятор светоклапанной системы отражательного типа |
-
1999
- 1999-05-27 FR FR9906709A patent/FR2794251B1/fr not_active Expired - Fee Related
-
2000
- 2000-05-25 DE DE2000623788 patent/DE60023788T2/de not_active Expired - Fee Related
- 2000-05-25 EP EP20000401459 patent/EP1055949B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1055949A1 (de) | 2000-11-29 |
FR2794251B1 (fr) | 2002-08-02 |
FR2794251A1 (fr) | 2000-12-01 |
DE60023788D1 (de) | 2005-12-15 |
DE60023788T2 (de) | 2006-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2548054B1 (de) | Brechungskombinierer für eine headup-farbanzeigevorrichtung | |
FR2664712A1 (fr) | Dispositif de modulation optique a cellules deformables. | |
EP2591324B1 (de) | Wellenfrontanalysator mit flüssigkristall-mikrolinsen | |
EP1390794A2 (de) | Herstellungsverfahren für einen optischen mikrospiegel und mikrospiegel oder matrixanordnung von mikrospiegeln | |
EP3239671B1 (de) | Vorrichtung zur erfassung von elektromagnetischer strahlung mit einer einkapselungsstruktur, die mindestens einen interferenzfilter umfasst | |
EP0136193A1 (de) | Optische Schaltvorrichtung mittels Flüssigkeitsverschiebung und Zusammensetzungsvorrichtung einer Punktlinie | |
FR2768812A1 (fr) | Interferometre fabry-perot accordable integre | |
FR3015699A1 (fr) | Dispositif optique pour stabilisation d'images | |
EP2320469A1 (de) | Verfahren zur Herstellung eines gekrümmten Schaltkreises | |
EP1055949B1 (de) | Spiegel mit deformierbarer Membran | |
WO2002065186A2 (fr) | Micro-miroir optique a pivot, matrice de tels micro-miroirs et procede de realisation dudit micro-miroir. | |
EP1008892A1 (de) | Halbleiterphasenmodulator | |
EP4111499A1 (de) | Bildschirm mit mehreren auflösungen und verfahren zu seiner herstellung | |
EP3123212B1 (de) | Optische vorrichtung mit einer deformierbaren membran | |
EP3514614A1 (de) | Optische vorrichtung | |
CA2584239C (fr) | Miroir deformable | |
EP3764148A1 (de) | Scanner mit optischer netzeinheit mit mobiler phasensteuerung | |
EP1042813B1 (de) | Halbleiterschaltung mit einem isolierenden und transparenten substrat | |
WO2005069057A1 (fr) | Composants optiques et leur procede de realisation | |
FR3107364A1 (fr) | Composant optique à métasurface encapsulée et procédé de fabrication d’un tel composant | |
FR2702851A1 (fr) | Modulateur de lumière à cristal liquide ferroélectrique et à adressage optique. | |
EP1275020A1 (de) | Optischer schalter mit bewegbaren teilen und verfahren zu seiner herstellung | |
FR3111234A1 (fr) | Dispositif optoélectronique pour affichage lumineux et procédé de fabrication | |
FR3110003A1 (fr) | Ecran pour l’affichage d’une image projetée comportant un revêtement structuré. | |
EP4070139A1 (de) | Adaptives optisches system mit verbesserter antwortzeit, zugehörige verwendung und verfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010514 |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20040422 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAGEM SA |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60023788 Country of ref document: DE Date of ref document: 20051215 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060227 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SAGEM DEFENSE SECURITE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060810 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090424 Year of fee payment: 10 Ref country code: DE Payment date: 20090603 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090427 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120625 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |