EP0953109B1 - Igniting system with a device for measuring the ion current - Google Patents
Igniting system with a device for measuring the ion current Download PDFInfo
- Publication number
- EP0953109B1 EP0953109B1 EP97910226A EP97910226A EP0953109B1 EP 0953109 B1 EP0953109 B1 EP 0953109B1 EP 97910226 A EP97910226 A EP 97910226A EP 97910226 A EP97910226 A EP 97910226A EP 0953109 B1 EP0953109 B1 EP 0953109B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ion current
- ignition
- switch
- winding
- primary winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
- F02P2017/125—Measuring ionisation of combustion gas, e.g. by using ignition circuits
Definitions
- the invention relates to an inductive ignition device for an internal combustion engine with a measuring device to determine the ion current at the Spark plug of each cylinder and with one the high voltage forming, according to the transformer principle working, a primary and a secondary winding having ignition coil device per Spark plug, through whose secondary winding the ion current flows.
- the on-board diagnosis will be accurate Diagnostic systems needed to make statements about the Allow combustion process. These diagnostic systems should also preferably be inexpensive his. It is known about important information the course of the combustion directly from the combustion chamber an internal combustion engine (internal combustion engine) see .. For this, the so-called Ion current measurement used in which the spark plug during a combustion cycle, their actual Performs the task, namely the combustion mixture to ignite and then it will used for another function by acting as Sensor is used by means of which the ion current is measured. This is an advantage because there is no space needed for additional sensors in the combustion chamber becomes. The ion current measurement is based on the principle that during the combustion of the fuel-air mixture Ions are created.
- the ignition device in Features mentioned main claim has the advantage that by a the primary winding of the ignition coil device during the duration of the ion current measurement short-circuit switches the residual energy in the magnetic Circle of the ignition coil on the primary side dissipates, that is, converted into thermal energy and does not continue to operate the ignition spark, so that this is very fast and reproducible at the desired time goes out.
- the primary side of the ignition coil device also becomes the cutoff frequency of the secondary side the ignition coil pushed up significantly, so that possible knocking vibrations occur of the internal combustion engine as an undesirable operating state can be observed undamped because the knocking vibrations have significant ion current curves entail.
- the switch can be used as a field effect transistor (FET) should be designed with a low impedance Has switching path at low flow voltages.
- FET field effect transistor
- the measuring device has a control device which Switches preferably periodically to the desired one Spark end, at least for the duration of the entire Ion current measurement closes. This happens in case of a field effect transistor by its corresponding one Control.
- FIG. 1 shows an inductive ignition device for an internal combustion engine, not shown.
- the ignition device has an ignition coil device 1, which comprises a primary winding L1 and a secondary winding L2, which are magnetically coupled to one another.
- One winding end 2 of the primary winding L1 is connected to the operating voltage, that is, the battery voltage U b of a motor vehicle, not shown, in which the internal combustion engine is installed.
- the other winding end 3 of the primary winding L1 leads to the switching path of a transistor T1, which is controlled by a control unit (not shown) in accordance with the desired ignition timing.
- the winding end 3 can thus be connected to ground M in the conductive state of the transistor T1 (negative pole of the battery emitting the voltage U b ).
- a spark plug ZK which belongs to the internal combustion engine (not shown), is connected to ground M with one of its electrodes 4.
- the other electrode 5 of the spark plug ZK is connected to a winding end 6 of the secondary winding L2 of the ignition coil device 1.
- the other winding end 7 of the ignition coil device 1 leads to a measuring device 8, which is used to measure an ion current I. Furthermore, the measuring device 8 is connected to ground M.
- One winding end 2 of the primary winding L1 of the ignition coil device 1 is connected to a pole of a switch S1.
- the other pole of the switch S1 leads to the other winding end 3 of the primary winding L1.
- the switch S1 is preferably designed as a field effect transistor (FET), the gate 9 of which can be controlled by means of a control device (not shown), which is only indicated by an arrow 10, in order to be able to short-circuit the primary winding L1 during desired time intervals.
- FET field effect transistor
- the ignition coil device clearly upwards shifted so that the measurement is very accurate in that relevant range of knock vibrations performed can be, that is, it is a special one critical, undesirable operating state of the internal combustion engine by measuring the ion current be sensed. Because of the procedure according to the invention, namely the short-circuiting of the primary winding during the entire duration of the ion current measurement such a precise and short spark duration the spark plug realizes so that spark effects under no circumstances the following measurement evaluation hinder or the measurement period "Cover".
- Figure 2 shows a further embodiment an inductive ignition device with a measuring device to determine an ion current, wherein same parts with the same reference numerals as in figure 1 have been provided. It applies to the embodiment 2 the same statements as in the embodiment of Figure 1, so that only the differences between these two exemplary embodiments shall be.
- the evaluation device 8 for measuring the ion current in the exemplary embodiment in FIG. 1 is arranged in the secondary circuit of the ignition coil device 1, in the exemplary embodiment in FIG. 2 it is located in the primary circuit, namely the positive pole of the battery voltage U b is connected to the measuring device 8 and leads from there to the one winding end 2 of the primary winding L1.
- the other winding end 3 of the primary winding L1 is connected to the collector of the transistor T1, the emitter of which leads to ground M (negative pole of the battery voltage U b ).
- the electrode 4 of the spark plug ZK is connected to ground M.
- the other electrode 5 of the spark plug ZK is connected to the winding end 7 of the secondary winding L2 of the ignition coil device 1 and the other winding end 6 of the secondary winding L2 is connected to the winding end 2 of the primary winding L1.
- the switch S1 which is also preferably in the form of a field effect transistor (FET), is connected in parallel with the primary winding L1, that is to say that one pole of the switching path of the switch S1 is connected to the winding end 2 and the other pole of the switch S1 is connected to the winding end 3 of the primary winding L1 Ignition coil device 1 connected.
- FET field effect transistor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Description
Die Erfindung betrifft eine induktive Zündvorrichtung für einen Verbrennungsmotor mit einer Meßeinrichtung zur Ermittlung des Ionenstroms an der Zündkerze jedes Zylinders und mit einer die Zündhochspannung bildenden, nach dem Transformatorprinzip arbeitenden, eine Primär- und eine Sekundärwicklung aufweisenden Zündspuleneinrichtung pro Zündkerze, durch deren Sekundärwicklung der Ionenstrom fließt.The invention relates to an inductive ignition device for an internal combustion engine with a measuring device to determine the ion current at the Spark plug of each cylinder and with one the high voltage forming, according to the transformer principle working, a primary and a secondary winding having ignition coil device per Spark plug, through whose secondary winding the ion current flows.
Um Verbrennungsmotoren bei hohem Wirkungsgrad zu betreiben und um die hohen Anforderungen im Bereich der on-Board-Diagnose zu erfüllen, werden genaue Diagnosesysteme benötigt, die Aussagen über den Verbrennungsvorgang ermöglichen. Diese Diagnosesysteme sollen ferner vorzugsweise kostengunstig sein. Es ist bekannt, wichtige Informationen über den Verlauf der Verbrennung direkt aus dem Verbrennungsraum eines Verbrennungsmotors (Brennkraftmaschine) zu entnehmen.. Hierzu wird die sogenannte Ionenstrommessung eingesetzt, bei dem die Zündkerze während eines Verbrennungszyklus' zunächst ihre eigentliche Aufgabe wahrnimmt, nämlich das Verbrennungsgemisch zu zünden und anschließend wird sie für eine weitere Funktion eingesetzt, indem sie als Sensor verwendet wird, mittels dem der Ionenstrom gemessen wird. Dies ist ein Vorteil, da kein Platz im Brennraum für zusätzliche Sensoren benötigt wird. Die Ionenstrommessung beruht auf dem Prinzip, daß während der Verbrennung des Kraftstoff-Luft-Gemisches Ionen entstehen. Ein Ionenstrommess verfahren ist bereits aus der EP 674 103 bekannt. Dieser Ionisierung liegen unterschiedliche Mechanismen zugrunde, die den typischen Verlauf des Ionenstroms prägen und daher eine Aussage über bestimmte Parameter der Verbrennung usw. gestatten. Wird zur Ionenstrommessung eine Spannung an die Elektroden der Zündkerze gelegt, so werden die im Brennraum vorhandenen Elektronen und Ionen in die entsprechende Richtung des elektrischen Feldes bewegt, so daß sich ein Strom ausbildet, der durch diese Ladungsträger getragen wird. Dieser Strom stellt den vorstehend erwähnten Ionenstrom dar. Wird das an sich bekannte Ionenstrom-Meßverfahren bei einer induktiven Zündvorrichtung eingesetzt, die eine nach dem Transformatorprinzip arbeitende, eine Primärwicklung und eine Sekundärwicklung aufweisende Zündspuleneinrichtung aufweist, so besteht aufgrund der relativ großen Sekundärinduktivität der Nachteil einer schlecht steuerbaren Funkendauer der Zündkerze, die zur Behinderung der Messung führen kann. Außerdem können durch die relativ große Sekundärinduktivität im lonenstromsignalweg nur relativ niedere Frequenzen übertragen werden, welche z.B. für eine sichere Klopferkennung nicht ausreichen.To internal combustion engines with high efficiency operate and meet the high demands in the area The on-board diagnosis will be accurate Diagnostic systems needed to make statements about the Allow combustion process. These diagnostic systems should also preferably be inexpensive his. It is known about important information the course of the combustion directly from the combustion chamber an internal combustion engine (internal combustion engine) see .. For this, the so-called Ion current measurement used in which the spark plug during a combustion cycle, their actual Performs the task, namely the combustion mixture to ignite and then it will used for another function by acting as Sensor is used by means of which the ion current is measured. This is an advantage because there is no space needed for additional sensors in the combustion chamber becomes. The ion current measurement is based on the principle that during the combustion of the fuel-air mixture Ions are created. An ion current measurement procedure is already in place known from EP 674 103. This ionization lie different mechanisms underlying the typical Characterize the course of the ion current and therefore a statement about certain parameters of the combustion etc. allow. Becomes ion current measurement a voltage is applied to the electrodes of the spark plug, this is how the electrons in the combustion chamber become and ions in the corresponding direction of the electric field so that there is a current trains who is carried by these charge carriers becomes. This stream represents the one mentioned above Ion current. Is the known ion current measuring method with an inductive ignition device used one based on the transformer principle working, a primary winding and an ignition coil device having a secondary winding has, because of the relative large secondary inductance the disadvantage of one badly controllable spark duration of the spark plug, the can hinder the measurement. Moreover can due to the relatively large secondary inductance Only relatively low frequencies in the ion current signal path which are e.g. for a safe Knock detection is insufficient.
Die erfindungsgemäße Zündvorrichtung mit den im Hauptanspruch genannten Merkmalen hat den Vorteil, daß durch einen die Primärwicklung der Zündspuleneinrichtung während der Dauer der Ionenstrommessung kurzschließenden Schalter die Restenergie im magnetischen Kreis der Zündspule auf der Primärseite dissipiert, das heißt, in Wärmeenergie umgewandelt wird und insofern den Zündfunken nicht weiter betreibt, so daß dieser sehr schnell und reproduzierbar zum gewünschten Zeitpunkt erlischt. Durch das Kurzschließen der Primärseite der Zündspuleneinrichtung wird ferner die Grenzfrequenz der Sekundärseite der Zündspule deutlich nach oben geschoben, so daß möglicherweise auftretende Klopfschwingungen des Verbrennungsmotors als unerwünschter Betriebszustand ungedämpft beobachtet werden können, da die Klopfschwingungen signifikante Ionenstromverläufe mit sich bringen.The ignition device according to the invention in Features mentioned main claim has the advantage that by a the primary winding of the ignition coil device during the duration of the ion current measurement short-circuit switches the residual energy in the magnetic Circle of the ignition coil on the primary side dissipates, that is, converted into thermal energy and does not continue to operate the ignition spark, so that this is very fast and reproducible at the desired time goes out. By the Short circuit the primary side of the ignition coil device also becomes the cutoff frequency of the secondary side the ignition coil pushed up significantly, so that possible knocking vibrations occur of the internal combustion engine as an undesirable operating state can be observed undamped because the knocking vibrations have significant ion current curves entail.
Besonders vorteilhaft ist es, wenn der Schaltweg des Schalters im geschlossenen Zustand sehr niederohmig ist. Damit ist der Primärkreis der Zündspuleneinrichtung deutlich niederohmiger als der Sekundärkreis, so daß der Zündfunke schnell erlischt. It is particularly advantageous if the switching path the switch in the closed state very low resistance is. This is the primary circuit of the ignition coil device significantly lower resistance than that Secondary circuit so that the spark quickly goes out.
Insbesondere kann der Schalter als Feldeffekttransistor (FET) ausgebildet sein, der einen niederohmigen Schaltweg bei kleinen Flußspannungen besitzt.In particular, the switch can be used as a field effect transistor (FET) should be designed with a low impedance Has switching path at low flow voltages.
Schließlich ist es vorteilhaft, wenn die Meßeinrichtung eine Steuereinrichtung aufweist, die den Schalter vorzugsweise periodisch zum gewünschten Funkenende, zumindest für die Dauer der gesamten Ionenstrommessung schließt. Dies erfolgt in Falle eines Feldeffekttransistors durch dessen entsprechende Ansteuerung.Finally, it is advantageous if the measuring device has a control device which Switches preferably periodically to the desired one Spark end, at least for the duration of the entire Ion current measurement closes. This happens in case of a field effect transistor by its corresponding one Control.
Die Erfindung wird in folgenden anhand der Figuren näher erläutert. Es zeigen:
Figur 1- ein Schaltbild einer induktiven Zündvorrichtung mit Ionenstrom-Meßeinrichtung nach einem ersten Ausführungsbeispiel und
Figur 2- ein zweites Ausführungsbeispiel einer induktiven Zündvorrichtung mit Meßeinrichtung zur Ermittlung des Ionenstroms.
- Figure 1
- a circuit diagram of an inductive ignition device with ion current measuring device according to a first embodiment and
- Figure 2
- a second embodiment of an inductive ignition device with a measuring device for determining the ion current.
Die Figur 1 zeigt eine induktive Zündvorrichtung
für einen nicht dargestellten Verbrennungsmotor.
Die Zündvorrichtung weist eine Zündspuleneinrichtung
1 auf, die eine Primärwicklung L1 und eine Sekundärwicklung
L2 umfaßt, die magnetisch miteinander
gekoppelt sind. Das eine Wicklungsende 2 der
Primärwicklung L1 ist an die Betriebsspannung, das
heißt, die Batteriespannung Ub eines nicht dargestellten
Kraftfahrzeugs angeschlossen, in das der
Verbrennungsmotor eingebaut ist. Das andere Wicklungsende
3 der Primärwicklung L1 führt zu der
Schaltstrecke eines Transistors T1, der -entsprechend
dem gewünschten Zündzeitpunkt- von einem
nicht dargestellten Steuergerät angesteuert wird.
Über die Kollektor-Emitter-Strecke des Transistors
T1 kann somit das Wicklungsende 3 im leitenden Zustand
des Transistors T1 an Masse M angelegt werden
(Minuspol der die Spannung Ub abgebenden Batterie).
Eine Zündkerze ZK, die dem nicht dargestellten Verbrennungsmotor
angehort, ist mit einer ihrer Elektroden
4 an Masse M angeschlossen. Die andere Elektrode
5 der Zündkerze ZK ist an ein Wicklungsende 6
der Sekundärwicklung L2 der Zündspuleneinrichtung 1
angeschlossen. Das andere Wicklungsende 7 der Zündspuleneinrichtung
1 führt zu einer Meßeinrichtung
8, die der Messung eines Ionenstroms I dient. Ferner
ist die Meßeinrichtung 8 mit Masse M verbunden.
Das eine Wicklungsende 2 der Primärwicklung L1 der
Zündspuleneinrichtung 1 ist mit einem Pol eines
Schalters S1 verbunden. Der andere Pol des Schalters
S1 führt zum anderen Wicklungsende 3 der Primärwicklung
L1. Insofern ist es möglich, bei geschlossenem
Schalter S1 die Primärwicklung L1 der
Zündspuleneinrichtung 1 kurzzuschließen. Der Schalter
S1 ist vorzugsweise als Feldeffekttransistor
(FET) ausgebildet, dessen Gate 9 mittels einer
nicht dargestellten, nur mittels eines Pfeiles 10
angedeuteten Steuereinrichtung ansteuerbar ist, um
das erwähnte Kurzschließen der Primärwicklung L1
während gewünschter Zeitintervalle vornehmen zu
können. Durch entsprechende Ansteuerung des Schalters
S1 ist es somit möglich, die Primärwicklung L1
des Übertrags kurzzuschließen.FIG. 1 shows an inductive ignition device for an internal combustion engine, not shown. The ignition device has an
Es ergibt sich folgende Funktionsweise: Durch gewählte Ansteuerung der Basis des Transistors T1 wird ein Stromfluß in der Primärwicklung L1 der Zündspuleneinrichtung ausgelöst, der auf der Sekundärseite, also in der Sekundärwicklung L2 zur Ausbildung einer Hochspannung führt, die die Auslosung eines Zündfunkens an der Zundkerze ZK bewirkt. Ist der Verbrennungsvorgang eingeleitet, so soll nachfolgend mittels der als Sensor wirkenden Zündkerze ZK der Ionenstrom im Verbrennungsraum des Verbrennungsmotors ermittelt werden, um Rückschlusse auf gewünschte Parameter ziehen zu können. Hierzu wird der Schalter S1 geschlossen, wodurch die Primärwicklung der Zundspuleneinrichtung elektrisch kurzgeschlossen wird. Die Folge ist, daß die sich im magnetischen Kreis befindliche Restenergie dissipiert, also in Wärmeenergie umgesetzt wird. Hierdurch erlischt der Zündfunke definiert und sehr schnell. Gleichzeitig wird durch das Kurzschließen der Primärwicklung die Grenzfrequenz der Sekundärseite der Zundspuleneinrichtung deutlich nach oben verschoben, so daß die Messung sehr genau in dem relevanten Bereich von Klopfschwingungen durchgeführt werden kann, das heißt, es ist ein besonders kritischer, unerwünschter Betriebszustand des Verbrennungsmotors durch die Messung des Ionenstroms sensierbar. Aufgrund des erfindungsgemäßen Vorgehens, nämlich des Kurzschließens der Primärwicklung während der gesamten Dauer der Ionenstrommessung wird eine derart präzise und kurze Funkendauer an der Zündkerze realisiert, so daß Zündfunkenauswirkungen unter keinen Umständen die nachfolgende Meßauswertung behindern beziehungsweise die Meßperiode "überdecken". Durch das erfindungsgemäße Kurzschließen ist auch ein Ausschwingen des Zundsystems verhindert, das heißt, die Messung des Ionenstroms kann nicht durch Ausschwinger beeinflußt werden, was zu Fehlinterpretationen führen kann. Wie bereits erwähnt, wird durch Anheben der Grenzfrequenz aufgrund des Kurzschließens der Primärwicklung die bei herkömmlichen Systemen vorliegende deutliche Bandbegrenzung uberwunden, die bisher bei der Erkennung von unerwünschten Betriebszuständen, beispielsweise Klopfschwingungen (3 bis 20 kHz) empfindlich gestört haben. Durch die Erfindung werden somit die bisher schlechten Signalübertragungseigenschaften der Sekundärwicklung, durch die der Ionenstrom hindurchfließt, verbessert.This results in the following functionality: By selected Driving the base of transistor T1 becomes a current flow in the primary winding L1 Ignition coil device triggered on the secondary side, So in the secondary winding L2 for training a high voltage that leads to the draw an ignition spark on the spark plug ZK causes. is the combustion process is initiated, so should follow by means of the spark plug acting as a sensor ZK is the ion current in the combustion chamber of the internal combustion engine can be determined to draw conclusions to be able to drag desired parameters. This will the switch S1 closed, causing the primary winding the ignition coil device is electrically short-circuited becomes. The result is that the residual energy in the magnetic circuit dissipates, is converted into heat energy. hereby the spark goes out in a defined manner and very much fast. At the same time, by short-circuiting the cut-off frequency of the secondary winding the ignition coil device clearly upwards shifted so that the measurement is very accurate in that relevant range of knock vibrations performed can be, that is, it is a special one critical, undesirable operating state of the internal combustion engine by measuring the ion current be sensed. Because of the procedure according to the invention, namely the short-circuiting of the primary winding during the entire duration of the ion current measurement such a precise and short spark duration the spark plug realizes so that spark effects under no circumstances the following measurement evaluation hinder or the measurement period "Cover". Through the short-circuiting according to the invention is also a decay of the ignition system prevents, that is, measuring the ion current cannot be influenced by swing-out, which can lead to misinterpretation. As before is mentioned by raising the cutoff frequency due to the short-circuiting of the primary winding existing in conventional systems Band limit overcome, so far in the detection of undesirable operating conditions, for example Knock vibrations (3 to 20 kHz) sensitive have disturbed. Through the invention thus the previously poor signal transmission properties the secondary winding through which the ion current flows through, improves.
Die Figur 2 zeigt ein weiteres Ausführungsbeispiel
einer induktiven Zündvorrichtung mit einer Meßeinrichtung
zur Ermittlung eines Ionenstroms, wobei
gleiche Teile mit gleichen Bezugszeichen wie in Figur
1 versehen worden sind. Es gelten beim Ausführungsbeispiel
der Figur 2 die gleichen Aussagen wie
bei dem Ausführungsbeispiel der Figur 1, so daß
nachstehend nur noch auf die Unterschiede zwischen
diesen beiden Ausführungsbeispielen eingegangen
werden soll.Figure 2 shows a further embodiment
an inductive ignition device with a measuring device
to determine an ion current, wherein
same parts with the same reference numerals as in figure
1 have been provided. It applies to the
Mährend die Auswerteeinrichtung 8 zur Messung des
Ionenstroms im Ausführungsbeispiel der Figur 1 im
Sekundärkreis der Zündspuleneinrichtung 1 angeordnet
ist, befindet sie sich im Ausführungsbeispiel
der Figur 2 im Primärkreis, und zwar ist der positive
Pol der Batteriespahnung Ub an die Meßeinrichtung
8 angeschlossen und führt von dort zu dem
einen Wicklungsende 2 der Primärwicklung L1. Das
andere Wicklungsende 3 der Primärwicklung L1 ist an
den Kollektor des Transistors T1 angeschlossen,
dessen Emitter zur Masse M (Minuspol der Batteriespannung
Ub) führt. Ferner ist die Elektrode 4 der
Zündkerze ZK mit Masse M verbunden. Die andere
Elektrode 5 der Zündkerze ZK ist mit dem Wicklungsende
7 der Sekundärwicklung L2 der Zundspuleneinrichtung
1 verbunden und das andere Wicklungsende 6
der Sekundärwicklung L2 ist an das Wicklungsende 2
der Primärwicklung L1 angeschlossen. Insofern liegt
hier eine Spartransformatorausbildung bei der Zündspuleneinrichtung
1 vor. Der ebenfalls vorzugsweise
als Feldeffekttransistor (FET) ausgebildete Schalter
S1 ist parallel zur Primärwicklung L1 geschaltet,
das heißt, der eine Pol des Schaltweges des
Schalters S1 ist mit dem Wicklungsende 2 und der
andere Pol des Schalters S1 ist mit dem Wicklungsende
3 der Primärwicklung L1 der Zündspuleneinrichtung
1 verbunden.While the
Es ergibt sich folgende Funktionsweise: Durch Ansteuerung
des Transistors T1 in seinen leitenden
Zustand fließt durch die Primärwicklung L1 der
Zündspuleneinrichtung 1 ein Strom, der auf der Sekundärseite,
also in der Sekundärwicklung L2 eine
Hochspannung erzeugt, die einen Zündfunken in der
Zündkerze ZK auslöst. Nach erfolgter Zündung des
Brennstoff-Luft-Gemisches im Brennraum des nicht
dargestellten Verbrennungsmotors wird von der
Steuereinrichtung (Pfeil 10) der Schalter S1 geschlossen,
das heißt, es wird die Primärwicklung L1
der Zündspuleneinrichtung 1 kurzgeschlossen. Hierdurch
treten die bereits zum Ausführungsbeispiel
der Figur 1 genannten Vorteile auf, so daß eine optimale
Ionenstrommessung mittels der Meßeinrichtung
8 durchgeführt werden kann.The following mode of operation results: By activation
of transistor T1 in its conductive
State flows through the primary winding L1
Ignition coil device 1 a current on the secondary side,
So in the secondary winding L2 one
High voltage generates a spark in the
ZK spark plug triggers. After the ignition of the
Fuel-air mixture in the combustion chamber of the not
illustrated internal combustion engine is from the
Control device (arrow 10) of switch S1 closed,
that is, it becomes the primary winding L1
the
Claims (4)
- Inductive ignition device for an internal combustion engine, having a measuring device for determining the ion current at the spark plug (ZK) of each cylinder, and having one ignition coil device per spark plug (ZK), said ignition coil device forming the ignition voltage, working according to the transformer principle and having a primary winding (L1) and a secondary winding (L2) and the ion current flowing through its secondary winding (L2), characterized by a switch (S1) which short circuits the primary winding (L1) for the duration of the measurements of the ion current.
- Ignition device according to Claim 1, characterized in that the switching path of the switch (S1) has very low impedance in the closed state and low forward voltage.
- Ignition device according to one of the preceding claims, characterized in that the switch (S1) is a field-effect transistor (FET).
- Ignition device according to one of the preceding claims, characterized in that the measuring device (8) has a control device (arrow 10) which closes the switch (S1), preferably periodically, at least for the duration of the measurement of the ion current.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19649278 | 1996-11-28 | ||
DE19649278A DE19649278A1 (en) | 1996-11-28 | 1996-11-28 | Ignition device with ion current measuring device |
PCT/DE1997/002198 WO1998023859A1 (en) | 1996-11-28 | 1997-09-26 | Igniting system with a device for measuring the ion current |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0953109A1 EP0953109A1 (en) | 1999-11-03 |
EP0953109B1 true EP0953109B1 (en) | 2003-03-19 |
Family
ID=7812996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97910226A Expired - Lifetime EP0953109B1 (en) | 1996-11-28 | 1997-09-26 | Igniting system with a device for measuring the ion current |
Country Status (6)
Country | Link |
---|---|
US (1) | US6424155B1 (en) |
EP (1) | EP0953109B1 (en) |
JP (1) | JP2001506721A (en) |
KR (1) | KR100498797B1 (en) |
DE (2) | DE19649278A1 (en) |
WO (1) | WO1998023859A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19839868C1 (en) * | 1998-09-02 | 2000-02-10 | Stiebel Eltron Gmbh & Co Kg | Air/fuel ratio detection method for automobile, i.c. engine combustion phase uses ionisation signal obtained from igition electrode upon application of measuring voltage below ignition voltage with suppression of residual ignition voltage |
DE19845400A1 (en) * | 1998-10-02 | 1999-12-16 | Daimler Chrysler Ag | High voltage transistor coil ignition for IC engine |
DE19849258A1 (en) * | 1998-10-26 | 2000-04-27 | Bosch Gmbh Robert | Energy regulation of internal combustion engine ignition system with primary side short circuit switch involves controlling closure time/angle depending on shorting phase primary current |
DE60039325D1 (en) | 1999-06-25 | 2008-08-14 | Ngk Spark Plug Co | Ignition unit for internal combustion engine |
DE19953710B4 (en) | 1999-11-08 | 2010-06-17 | Robert Bosch Gmbh | Method and device for measurement window positioning for ion current measurement |
JP3869275B2 (en) * | 2001-04-05 | 2007-01-17 | 株式会社日本自動車部品総合研究所 | Ion current detection device for internal combustion engine |
DE10234252B4 (en) * | 2002-07-27 | 2008-09-25 | Robert Bosch Gmbh | Method for detecting misfiring |
DE102005044030B4 (en) * | 2005-09-14 | 2011-02-17 | Stiebel Eltron Gmbh & Co. Kg | Method and device for ionization measurement in internal combustion engines with suppression of Zündrestspannung |
DE102005041823B3 (en) * | 2005-09-02 | 2007-02-01 | Siemens Ag | Controller for internal combustion engine, has circuit sections running proximate to magnetic flux part so that magnetic flux portions are compensated, and coil assembly detecting failures based on evaluation of voltage induced at assembly |
DE102006010807B4 (en) * | 2006-03-07 | 2015-06-25 | Volkswagen Aktiengesellschaft | Circuit for detecting combustion-relevant variables |
EP3022437A4 (en) * | 2013-07-17 | 2018-03-14 | Delphi Technologies, Inc. | Ignition system for spark ignition engines and method of operating same |
US20150340846A1 (en) * | 2014-05-21 | 2015-11-26 | Caterpillar Inc. | Detection system for determining spark voltage |
US10400739B2 (en) * | 2015-05-14 | 2019-09-03 | Eldor Corporation S.P.A. | Electronic ignition system for an internal combustion engine |
MY199152A (en) * | 2015-08-14 | 2023-10-18 | Univ Michigan State | Ionization detector of a coil of a spark plug by shorting the primary inductance |
US9739252B1 (en) | 2016-02-19 | 2017-08-22 | Ford Global Technologies, Llc | System and method for detecting engine knock and misfire |
JP6342026B1 (en) | 2017-02-14 | 2018-06-13 | 三菱電機株式会社 | Combustion state detection device for internal combustion engine |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5494257U (en) * | 1977-12-15 | 1979-07-04 | ||
US4738239A (en) * | 1987-07-31 | 1988-04-19 | Delco Electronics Corporation | Ignition system |
EP0387768B1 (en) * | 1989-03-14 | 1998-01-07 | Denso Corporation | Ignition system of multispark type |
JPH04134181A (en) * | 1990-09-27 | 1992-05-08 | Mitsubishi Electric Corp | Ion current detecting device |
DE4409749A1 (en) * | 1994-03-22 | 1995-09-28 | Bayerische Motoren Werke Ag | Method for detecting knocking combustion in an internal combustion engine with a high-voltage transistor coil ignition device |
SE507263C2 (en) * | 1995-04-05 | 1998-05-04 | Sem Ab | Ways to perform ion current measurement in an internal combustion engine where lean fuel mixture is used |
DE19524499B4 (en) * | 1995-07-05 | 2008-11-13 | Robert Bosch Gmbh | Ignition system for an internal combustion engine |
-
1996
- 1996-11-28 DE DE19649278A patent/DE19649278A1/en not_active Withdrawn
-
1997
- 1997-09-26 EP EP97910226A patent/EP0953109B1/en not_active Expired - Lifetime
- 1997-09-26 WO PCT/DE1997/002198 patent/WO1998023859A1/en active IP Right Grant
- 1997-09-26 JP JP52411598A patent/JP2001506721A/en not_active Ceased
- 1997-09-26 KR KR10-1999-7004011A patent/KR100498797B1/en not_active IP Right Cessation
- 1997-09-26 DE DE59709590T patent/DE59709590D1/en not_active Expired - Lifetime
- 1997-09-26 US US09/319,060 patent/US6424155B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100498797B1 (en) | 2005-07-01 |
EP0953109A1 (en) | 1999-11-03 |
DE59709590D1 (en) | 2003-04-24 |
DE19649278A1 (en) | 1998-06-04 |
KR20000053088A (en) | 2000-08-25 |
US6424155B1 (en) | 2002-07-23 |
JP2001506721A (en) | 2001-05-22 |
US20020050823A1 (en) | 2002-05-02 |
WO1998023859A1 (en) | 1998-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0953109B1 (en) | Igniting system with a device for measuring the ion current | |
DE3208587C2 (en) | Device for detecting misfires | |
EP0790408B1 (en) | Measuring circuit for an ionic current in ignition devices for internal combustion engines | |
DE3872112T2 (en) | METHOD AND DEVICE FOR DETECTING THE IONIZATION CURRENT IN AN INTERNAL COMBUSTION ENGINE IGNITION SYSTEM. | |
DE69424369T2 (en) | Engine ignition and control system | |
DE69417843T2 (en) | Method of detecting autoignition | |
DE4241471C2 (en) | Combustion determination device for an internal combustion engine | |
DE19514633C2 (en) | Device for detecting misfires in an internal combustion engine | |
DE2507286A1 (en) | METHOD OF DETERMINING COMBUSTION FAULTS IN AN COMBUSTION ENGINE AND PROTECTIVE ARRANGEMENT FOR THE EXHAUST GAS CLEANING DEVICES OF SUCH ENGINE | |
DE69211616T2 (en) | Misfire detector for an internal combustion engine | |
DE19953710B4 (en) | Method and device for measurement window positioning for ion current measurement | |
DE69936426T2 (en) | Sensor for determining the ignition current and the ion current in the ignition secondary circuit | |
DE3100404C2 (en) | Magnetic ignition system for internal combustion engines | |
EP0848161B1 (en) | Inductive ignition coils system for motor | |
DE2753255C2 (en) | Ignition system for internal combustion engines | |
DE19818470C2 (en) | Knock detection device for an internal combustion engine | |
DE69511664T2 (en) | Device for misfire detection of an internal combustion engine | |
DE69417841T2 (en) | Misfire Detection Method | |
DE2823391A1 (en) | DISTRIBUTOR | |
DE19610862A1 (en) | Inductive ignition device | |
DE69320850T2 (en) | Misfire detector for an internal combustion engine | |
DE2736576C2 (en) | Ignition system with a mechanically non-moving high-voltage distribution for internal combustion engines | |
DE10028105B4 (en) | Misfire detection system using ion measurement with a closing bias | |
DE3908696C2 (en) | ||
DE3417676C2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990628 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20010827 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59709590 Country of ref document: DE Date of ref document: 20030424 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: CONTI TEMIC MICROELECTRONIC GMBH Effective date: 20031223 |
|
PLBG | Opposition deemed not to have been filed |
Free format text: ORIGINAL CODE: 0009274 |
|
26D | Opposition deemed not to have been filed |
Opponent name: CONTI TEMIC MICROELECTRONIC GMBH Effective date: 20040205 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
26N | No opposition filed |
Effective date: 20031219 |
|
PLAQ | Examination of admissibility of opposition: information related to despatch of communication + time limit deleted |
Free format text: ORIGINAL CODE: EPIDOSDOPE2 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAA | Information modified related to event that no opposition was filed |
Free format text: ORIGINAL CODE: 0009299DELT |
|
PLBG | Opposition deemed not to have been filed |
Free format text: ORIGINAL CODE: 0009274 |
|
26D | Opposition deemed not to have been filed |
Opponent name: CONTI TEMIC MICROELECTRONIC GMBH Effective date: 20040205 |
|
D26N | No opposition filed (deleted) | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050913 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050920 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20050923 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060927 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060930 Year of fee payment: 10 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060926 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070926 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091120 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59709590 Country of ref document: DE Effective date: 20110401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110401 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ROBERT BOSCH GMBH |