Nothing Special   »   [go: up one dir, main page]

EP0953109B1 - Igniting system with a device for measuring the ion current - Google Patents

Igniting system with a device for measuring the ion current Download PDF

Info

Publication number
EP0953109B1
EP0953109B1 EP97910226A EP97910226A EP0953109B1 EP 0953109 B1 EP0953109 B1 EP 0953109B1 EP 97910226 A EP97910226 A EP 97910226A EP 97910226 A EP97910226 A EP 97910226A EP 0953109 B1 EP0953109 B1 EP 0953109B1
Authority
EP
European Patent Office
Prior art keywords
ion current
ignition
switch
winding
primary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97910226A
Other languages
German (de)
French (fr)
Other versions
EP0953109A1 (en
Inventor
Lothar Puettmann
Walter Gollin
Bernhard Eisele
Markus Ketterer
Hubert Bischof
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7812996&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0953109(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0953109A1 publication Critical patent/EP0953109A1/en
Application granted granted Critical
Publication of EP0953109B1 publication Critical patent/EP0953109B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Definitions

  • the invention relates to an inductive ignition device for an internal combustion engine with a measuring device to determine the ion current at the Spark plug of each cylinder and with one the high voltage forming, according to the transformer principle working, a primary and a secondary winding having ignition coil device per Spark plug, through whose secondary winding the ion current flows.
  • the on-board diagnosis will be accurate Diagnostic systems needed to make statements about the Allow combustion process. These diagnostic systems should also preferably be inexpensive his. It is known about important information the course of the combustion directly from the combustion chamber an internal combustion engine (internal combustion engine) see .. For this, the so-called Ion current measurement used in which the spark plug during a combustion cycle, their actual Performs the task, namely the combustion mixture to ignite and then it will used for another function by acting as Sensor is used by means of which the ion current is measured. This is an advantage because there is no space needed for additional sensors in the combustion chamber becomes. The ion current measurement is based on the principle that during the combustion of the fuel-air mixture Ions are created.
  • the ignition device in Features mentioned main claim has the advantage that by a the primary winding of the ignition coil device during the duration of the ion current measurement short-circuit switches the residual energy in the magnetic Circle of the ignition coil on the primary side dissipates, that is, converted into thermal energy and does not continue to operate the ignition spark, so that this is very fast and reproducible at the desired time goes out.
  • the primary side of the ignition coil device also becomes the cutoff frequency of the secondary side the ignition coil pushed up significantly, so that possible knocking vibrations occur of the internal combustion engine as an undesirable operating state can be observed undamped because the knocking vibrations have significant ion current curves entail.
  • the switch can be used as a field effect transistor (FET) should be designed with a low impedance Has switching path at low flow voltages.
  • FET field effect transistor
  • the measuring device has a control device which Switches preferably periodically to the desired one Spark end, at least for the duration of the entire Ion current measurement closes. This happens in case of a field effect transistor by its corresponding one Control.
  • FIG. 1 shows an inductive ignition device for an internal combustion engine, not shown.
  • the ignition device has an ignition coil device 1, which comprises a primary winding L1 and a secondary winding L2, which are magnetically coupled to one another.
  • One winding end 2 of the primary winding L1 is connected to the operating voltage, that is, the battery voltage U b of a motor vehicle, not shown, in which the internal combustion engine is installed.
  • the other winding end 3 of the primary winding L1 leads to the switching path of a transistor T1, which is controlled by a control unit (not shown) in accordance with the desired ignition timing.
  • the winding end 3 can thus be connected to ground M in the conductive state of the transistor T1 (negative pole of the battery emitting the voltage U b ).
  • a spark plug ZK which belongs to the internal combustion engine (not shown), is connected to ground M with one of its electrodes 4.
  • the other electrode 5 of the spark plug ZK is connected to a winding end 6 of the secondary winding L2 of the ignition coil device 1.
  • the other winding end 7 of the ignition coil device 1 leads to a measuring device 8, which is used to measure an ion current I. Furthermore, the measuring device 8 is connected to ground M.
  • One winding end 2 of the primary winding L1 of the ignition coil device 1 is connected to a pole of a switch S1.
  • the other pole of the switch S1 leads to the other winding end 3 of the primary winding L1.
  • the switch S1 is preferably designed as a field effect transistor (FET), the gate 9 of which can be controlled by means of a control device (not shown), which is only indicated by an arrow 10, in order to be able to short-circuit the primary winding L1 during desired time intervals.
  • FET field effect transistor
  • the ignition coil device clearly upwards shifted so that the measurement is very accurate in that relevant range of knock vibrations performed can be, that is, it is a special one critical, undesirable operating state of the internal combustion engine by measuring the ion current be sensed. Because of the procedure according to the invention, namely the short-circuiting of the primary winding during the entire duration of the ion current measurement such a precise and short spark duration the spark plug realizes so that spark effects under no circumstances the following measurement evaluation hinder or the measurement period "Cover".
  • Figure 2 shows a further embodiment an inductive ignition device with a measuring device to determine an ion current, wherein same parts with the same reference numerals as in figure 1 have been provided. It applies to the embodiment 2 the same statements as in the embodiment of Figure 1, so that only the differences between these two exemplary embodiments shall be.
  • the evaluation device 8 for measuring the ion current in the exemplary embodiment in FIG. 1 is arranged in the secondary circuit of the ignition coil device 1, in the exemplary embodiment in FIG. 2 it is located in the primary circuit, namely the positive pole of the battery voltage U b is connected to the measuring device 8 and leads from there to the one winding end 2 of the primary winding L1.
  • the other winding end 3 of the primary winding L1 is connected to the collector of the transistor T1, the emitter of which leads to ground M (negative pole of the battery voltage U b ).
  • the electrode 4 of the spark plug ZK is connected to ground M.
  • the other electrode 5 of the spark plug ZK is connected to the winding end 7 of the secondary winding L2 of the ignition coil device 1 and the other winding end 6 of the secondary winding L2 is connected to the winding end 2 of the primary winding L1.
  • the switch S1 which is also preferably in the form of a field effect transistor (FET), is connected in parallel with the primary winding L1, that is to say that one pole of the switching path of the switch S1 is connected to the winding end 2 and the other pole of the switch S1 is connected to the winding end 3 of the primary winding L1 Ignition coil device 1 connected.
  • FET field effect transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine induktive Zündvorrichtung für einen Verbrennungsmotor mit einer Meßeinrichtung zur Ermittlung des Ionenstroms an der Zündkerze jedes Zylinders und mit einer die Zündhochspannung bildenden, nach dem Transformatorprinzip arbeitenden, eine Primär- und eine Sekundärwicklung aufweisenden Zündspuleneinrichtung pro Zündkerze, durch deren Sekundärwicklung der Ionenstrom fließt.The invention relates to an inductive ignition device for an internal combustion engine with a measuring device to determine the ion current at the Spark plug of each cylinder and with one the high voltage forming, according to the transformer principle working, a primary and a secondary winding having ignition coil device per Spark plug, through whose secondary winding the ion current flows.

Um Verbrennungsmotoren bei hohem Wirkungsgrad zu betreiben und um die hohen Anforderungen im Bereich der on-Board-Diagnose zu erfüllen, werden genaue Diagnosesysteme benötigt, die Aussagen über den Verbrennungsvorgang ermöglichen. Diese Diagnosesysteme sollen ferner vorzugsweise kostengunstig sein. Es ist bekannt, wichtige Informationen über den Verlauf der Verbrennung direkt aus dem Verbrennungsraum eines Verbrennungsmotors (Brennkraftmaschine) zu entnehmen.. Hierzu wird die sogenannte Ionenstrommessung eingesetzt, bei dem die Zündkerze während eines Verbrennungszyklus' zunächst ihre eigentliche Aufgabe wahrnimmt, nämlich das Verbrennungsgemisch zu zünden und anschließend wird sie für eine weitere Funktion eingesetzt, indem sie als Sensor verwendet wird, mittels dem der Ionenstrom gemessen wird. Dies ist ein Vorteil, da kein Platz im Brennraum für zusätzliche Sensoren benötigt wird. Die Ionenstrommessung beruht auf dem Prinzip, daß während der Verbrennung des Kraftstoff-Luft-Gemisches Ionen entstehen. Ein Ionenstrommess verfahren ist bereits aus der EP 674 103 bekannt. Dieser Ionisierung liegen unterschiedliche Mechanismen zugrunde, die den typischen Verlauf des Ionenstroms prägen und daher eine Aussage über bestimmte Parameter der Verbrennung usw. gestatten. Wird zur Ionenstrommessung eine Spannung an die Elektroden der Zündkerze gelegt, so werden die im Brennraum vorhandenen Elektronen und Ionen in die entsprechende Richtung des elektrischen Feldes bewegt, so daß sich ein Strom ausbildet, der durch diese Ladungsträger getragen wird. Dieser Strom stellt den vorstehend erwähnten Ionenstrom dar. Wird das an sich bekannte Ionenstrom-Meßverfahren bei einer induktiven Zündvorrichtung eingesetzt, die eine nach dem Transformatorprinzip arbeitende, eine Primärwicklung und eine Sekundärwicklung aufweisende Zündspuleneinrichtung aufweist, so besteht aufgrund der relativ großen Sekundärinduktivität der Nachteil einer schlecht steuerbaren Funkendauer der Zündkerze, die zur Behinderung der Messung führen kann. Außerdem können durch die relativ große Sekundärinduktivität im lonenstromsignalweg nur relativ niedere Frequenzen übertragen werden, welche z.B. für eine sichere Klopferkennung nicht ausreichen.To internal combustion engines with high efficiency operate and meet the high demands in the area The on-board diagnosis will be accurate Diagnostic systems needed to make statements about the Allow combustion process. These diagnostic systems should also preferably be inexpensive his. It is known about important information the course of the combustion directly from the combustion chamber an internal combustion engine (internal combustion engine) see .. For this, the so-called Ion current measurement used in which the spark plug during a combustion cycle, their actual Performs the task, namely the combustion mixture to ignite and then it will used for another function by acting as Sensor is used by means of which the ion current is measured. This is an advantage because there is no space needed for additional sensors in the combustion chamber becomes. The ion current measurement is based on the principle that during the combustion of the fuel-air mixture Ions are created. An ion current measurement procedure is already in place known from EP 674 103. This ionization lie different mechanisms underlying the typical Characterize the course of the ion current and therefore a statement about certain parameters of the combustion etc. allow. Becomes ion current measurement a voltage is applied to the electrodes of the spark plug, this is how the electrons in the combustion chamber become and ions in the corresponding direction of the electric field so that there is a current trains who is carried by these charge carriers becomes. This stream represents the one mentioned above Ion current. Is the known ion current measuring method with an inductive ignition device used one based on the transformer principle working, a primary winding and an ignition coil device having a secondary winding has, because of the relative large secondary inductance the disadvantage of one badly controllable spark duration of the spark plug, the can hinder the measurement. Moreover can due to the relatively large secondary inductance Only relatively low frequencies in the ion current signal path which are e.g. for a safe Knock detection is insufficient.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Zündvorrichtung mit den im Hauptanspruch genannten Merkmalen hat den Vorteil, daß durch einen die Primärwicklung der Zündspuleneinrichtung während der Dauer der Ionenstrommessung kurzschließenden Schalter die Restenergie im magnetischen Kreis der Zündspule auf der Primärseite dissipiert, das heißt, in Wärmeenergie umgewandelt wird und insofern den Zündfunken nicht weiter betreibt, so daß dieser sehr schnell und reproduzierbar zum gewünschten Zeitpunkt erlischt. Durch das Kurzschließen der Primärseite der Zündspuleneinrichtung wird ferner die Grenzfrequenz der Sekundärseite der Zündspule deutlich nach oben geschoben, so daß möglicherweise auftretende Klopfschwingungen des Verbrennungsmotors als unerwünschter Betriebszustand ungedämpft beobachtet werden können, da die Klopfschwingungen signifikante Ionenstromverläufe mit sich bringen.The ignition device according to the invention in Features mentioned main claim has the advantage that by a the primary winding of the ignition coil device during the duration of the ion current measurement short-circuit switches the residual energy in the magnetic Circle of the ignition coil on the primary side dissipates, that is, converted into thermal energy and does not continue to operate the ignition spark, so that this is very fast and reproducible at the desired time goes out. By the Short circuit the primary side of the ignition coil device also becomes the cutoff frequency of the secondary side the ignition coil pushed up significantly, so that possible knocking vibrations occur of the internal combustion engine as an undesirable operating state can be observed undamped because the knocking vibrations have significant ion current curves entail.

Besonders vorteilhaft ist es, wenn der Schaltweg des Schalters im geschlossenen Zustand sehr niederohmig ist. Damit ist der Primärkreis der Zündspuleneinrichtung deutlich niederohmiger als der Sekundärkreis, so daß der Zündfunke schnell erlischt. It is particularly advantageous if the switching path the switch in the closed state very low resistance is. This is the primary circuit of the ignition coil device significantly lower resistance than that Secondary circuit so that the spark quickly goes out.

Insbesondere kann der Schalter als Feldeffekttransistor (FET) ausgebildet sein, der einen niederohmigen Schaltweg bei kleinen Flußspannungen besitzt.In particular, the switch can be used as a field effect transistor (FET) should be designed with a low impedance Has switching path at low flow voltages.

Schließlich ist es vorteilhaft, wenn die Meßeinrichtung eine Steuereinrichtung aufweist, die den Schalter vorzugsweise periodisch zum gewünschten Funkenende, zumindest für die Dauer der gesamten Ionenstrommessung schließt. Dies erfolgt in Falle eines Feldeffekttransistors durch dessen entsprechende Ansteuerung.Finally, it is advantageous if the measuring device has a control device which Switches preferably periodically to the desired one Spark end, at least for the duration of the entire Ion current measurement closes. This happens in case of a field effect transistor by its corresponding one Control.

Zeichnungdrawing

Die Erfindung wird in folgenden anhand der Figuren näher erläutert. Es zeigen:

Figur 1
ein Schaltbild einer induktiven Zündvorrichtung mit Ionenstrom-Meßeinrichtung nach einem ersten Ausführungsbeispiel und
Figur 2
ein zweites Ausführungsbeispiel einer induktiven Zündvorrichtung mit Meßeinrichtung zur Ermittlung des Ionenstroms.
The invention is explained in more detail below with reference to the figures. Show it:
Figure 1
a circuit diagram of an inductive ignition device with ion current measuring device according to a first embodiment and
Figure 2
a second embodiment of an inductive ignition device with a measuring device for determining the ion current.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Die Figur 1 zeigt eine induktive Zündvorrichtung für einen nicht dargestellten Verbrennungsmotor. Die Zündvorrichtung weist eine Zündspuleneinrichtung 1 auf, die eine Primärwicklung L1 und eine Sekundärwicklung L2 umfaßt, die magnetisch miteinander gekoppelt sind. Das eine Wicklungsende 2 der Primärwicklung L1 ist an die Betriebsspannung, das heißt, die Batteriespannung Ub eines nicht dargestellten Kraftfahrzeugs angeschlossen, in das der Verbrennungsmotor eingebaut ist. Das andere Wicklungsende 3 der Primärwicklung L1 führt zu der Schaltstrecke eines Transistors T1, der -entsprechend dem gewünschten Zündzeitpunkt- von einem nicht dargestellten Steuergerät angesteuert wird. Über die Kollektor-Emitter-Strecke des Transistors T1 kann somit das Wicklungsende 3 im leitenden Zustand des Transistors T1 an Masse M angelegt werden (Minuspol der die Spannung Ub abgebenden Batterie). Eine Zündkerze ZK, die dem nicht dargestellten Verbrennungsmotor angehort, ist mit einer ihrer Elektroden 4 an Masse M angeschlossen. Die andere Elektrode 5 der Zündkerze ZK ist an ein Wicklungsende 6 der Sekundärwicklung L2 der Zündspuleneinrichtung 1 angeschlossen. Das andere Wicklungsende 7 der Zündspuleneinrichtung 1 führt zu einer Meßeinrichtung 8, die der Messung eines Ionenstroms I dient. Ferner ist die Meßeinrichtung 8 mit Masse M verbunden. Das eine Wicklungsende 2 der Primärwicklung L1 der Zündspuleneinrichtung 1 ist mit einem Pol eines Schalters S1 verbunden. Der andere Pol des Schalters S1 führt zum anderen Wicklungsende 3 der Primärwicklung L1. Insofern ist es möglich, bei geschlossenem Schalter S1 die Primärwicklung L1 der Zündspuleneinrichtung 1 kurzzuschließen. Der Schalter S1 ist vorzugsweise als Feldeffekttransistor (FET) ausgebildet, dessen Gate 9 mittels einer nicht dargestellten, nur mittels eines Pfeiles 10 angedeuteten Steuereinrichtung ansteuerbar ist, um das erwähnte Kurzschließen der Primärwicklung L1 während gewünschter Zeitintervalle vornehmen zu können. Durch entsprechende Ansteuerung des Schalters S1 ist es somit möglich, die Primärwicklung L1 des Übertrags kurzzuschließen.FIG. 1 shows an inductive ignition device for an internal combustion engine, not shown. The ignition device has an ignition coil device 1, which comprises a primary winding L1 and a secondary winding L2, which are magnetically coupled to one another. One winding end 2 of the primary winding L1 is connected to the operating voltage, that is, the battery voltage U b of a motor vehicle, not shown, in which the internal combustion engine is installed. The other winding end 3 of the primary winding L1 leads to the switching path of a transistor T1, which is controlled by a control unit (not shown) in accordance with the desired ignition timing. Via the collector-emitter path of the transistor T1, the winding end 3 can thus be connected to ground M in the conductive state of the transistor T1 (negative pole of the battery emitting the voltage U b ). A spark plug ZK, which belongs to the internal combustion engine (not shown), is connected to ground M with one of its electrodes 4. The other electrode 5 of the spark plug ZK is connected to a winding end 6 of the secondary winding L2 of the ignition coil device 1. The other winding end 7 of the ignition coil device 1 leads to a measuring device 8, which is used to measure an ion current I. Furthermore, the measuring device 8 is connected to ground M. One winding end 2 of the primary winding L1 of the ignition coil device 1 is connected to a pole of a switch S1. The other pole of the switch S1 leads to the other winding end 3 of the primary winding L1. In this respect, it is possible to short-circuit the primary winding L1 of the ignition coil device 1 when the switch S1 is closed. The switch S1 is preferably designed as a field effect transistor (FET), the gate 9 of which can be controlled by means of a control device (not shown), which is only indicated by an arrow 10, in order to be able to short-circuit the primary winding L1 during desired time intervals. By appropriate activation of the switch S1, it is thus possible to short-circuit the primary winding L1 of the carry.

Es ergibt sich folgende Funktionsweise: Durch gewählte Ansteuerung der Basis des Transistors T1 wird ein Stromfluß in der Primärwicklung L1 der Zündspuleneinrichtung ausgelöst, der auf der Sekundärseite, also in der Sekundärwicklung L2 zur Ausbildung einer Hochspannung führt, die die Auslosung eines Zündfunkens an der Zundkerze ZK bewirkt. Ist der Verbrennungsvorgang eingeleitet, so soll nachfolgend mittels der als Sensor wirkenden Zündkerze ZK der Ionenstrom im Verbrennungsraum des Verbrennungsmotors ermittelt werden, um Rückschlusse auf gewünschte Parameter ziehen zu können. Hierzu wird der Schalter S1 geschlossen, wodurch die Primärwicklung der Zundspuleneinrichtung elektrisch kurzgeschlossen wird. Die Folge ist, daß die sich im magnetischen Kreis befindliche Restenergie dissipiert, also in Wärmeenergie umgesetzt wird. Hierdurch erlischt der Zündfunke definiert und sehr schnell. Gleichzeitig wird durch das Kurzschließen der Primärwicklung die Grenzfrequenz der Sekundärseite der Zundspuleneinrichtung deutlich nach oben verschoben, so daß die Messung sehr genau in dem relevanten Bereich von Klopfschwingungen durchgeführt werden kann, das heißt, es ist ein besonders kritischer, unerwünschter Betriebszustand des Verbrennungsmotors durch die Messung des Ionenstroms sensierbar. Aufgrund des erfindungsgemäßen Vorgehens, nämlich des Kurzschließens der Primärwicklung während der gesamten Dauer der Ionenstrommessung wird eine derart präzise und kurze Funkendauer an der Zündkerze realisiert, so daß Zündfunkenauswirkungen unter keinen Umständen die nachfolgende Meßauswertung behindern beziehungsweise die Meßperiode "überdecken". Durch das erfindungsgemäße Kurzschließen ist auch ein Ausschwingen des Zundsystems verhindert, das heißt, die Messung des Ionenstroms kann nicht durch Ausschwinger beeinflußt werden, was zu Fehlinterpretationen führen kann. Wie bereits erwähnt, wird durch Anheben der Grenzfrequenz aufgrund des Kurzschließens der Primärwicklung die bei herkömmlichen Systemen vorliegende deutliche Bandbegrenzung uberwunden, die bisher bei der Erkennung von unerwünschten Betriebszuständen, beispielsweise Klopfschwingungen (3 bis 20 kHz) empfindlich gestört haben. Durch die Erfindung werden somit die bisher schlechten Signalübertragungseigenschaften der Sekundärwicklung, durch die der Ionenstrom hindurchfließt, verbessert.This results in the following functionality: By selected Driving the base of transistor T1 becomes a current flow in the primary winding L1 Ignition coil device triggered on the secondary side, So in the secondary winding L2 for training a high voltage that leads to the draw an ignition spark on the spark plug ZK causes. is the combustion process is initiated, so should follow by means of the spark plug acting as a sensor ZK is the ion current in the combustion chamber of the internal combustion engine can be determined to draw conclusions to be able to drag desired parameters. This will the switch S1 closed, causing the primary winding the ignition coil device is electrically short-circuited becomes. The result is that the residual energy in the magnetic circuit dissipates, is converted into heat energy. hereby the spark goes out in a defined manner and very much fast. At the same time, by short-circuiting the cut-off frequency of the secondary winding the ignition coil device clearly upwards shifted so that the measurement is very accurate in that relevant range of knock vibrations performed can be, that is, it is a special one critical, undesirable operating state of the internal combustion engine by measuring the ion current be sensed. Because of the procedure according to the invention, namely the short-circuiting of the primary winding during the entire duration of the ion current measurement such a precise and short spark duration the spark plug realizes so that spark effects under no circumstances the following measurement evaluation hinder or the measurement period "Cover". Through the short-circuiting according to the invention is also a decay of the ignition system prevents, that is, measuring the ion current cannot be influenced by swing-out, which can lead to misinterpretation. As before is mentioned by raising the cutoff frequency due to the short-circuiting of the primary winding existing in conventional systems Band limit overcome, so far in the detection of undesirable operating conditions, for example Knock vibrations (3 to 20 kHz) sensitive have disturbed. Through the invention thus the previously poor signal transmission properties the secondary winding through which the ion current flows through, improves.

Die Figur 2 zeigt ein weiteres Ausführungsbeispiel einer induktiven Zündvorrichtung mit einer Meßeinrichtung zur Ermittlung eines Ionenstroms, wobei gleiche Teile mit gleichen Bezugszeichen wie in Figur 1 versehen worden sind. Es gelten beim Ausführungsbeispiel der Figur 2 die gleichen Aussagen wie bei dem Ausführungsbeispiel der Figur 1, so daß nachstehend nur noch auf die Unterschiede zwischen diesen beiden Ausführungsbeispielen eingegangen werden soll.Figure 2 shows a further embodiment an inductive ignition device with a measuring device to determine an ion current, wherein same parts with the same reference numerals as in figure 1 have been provided. It applies to the embodiment 2 the same statements as in the embodiment of Figure 1, so that only the differences between these two exemplary embodiments shall be.

Mährend die Auswerteeinrichtung 8 zur Messung des Ionenstroms im Ausführungsbeispiel der Figur 1 im Sekundärkreis der Zündspuleneinrichtung 1 angeordnet ist, befindet sie sich im Ausführungsbeispiel der Figur 2 im Primärkreis, und zwar ist der positive Pol der Batteriespahnung Ub an die Meßeinrichtung 8 angeschlossen und führt von dort zu dem einen Wicklungsende 2 der Primärwicklung L1. Das andere Wicklungsende 3 der Primärwicklung L1 ist an den Kollektor des Transistors T1 angeschlossen, dessen Emitter zur Masse M (Minuspol der Batteriespannung Ub) führt. Ferner ist die Elektrode 4 der Zündkerze ZK mit Masse M verbunden. Die andere Elektrode 5 der Zündkerze ZK ist mit dem Wicklungsende 7 der Sekundärwicklung L2 der Zundspuleneinrichtung 1 verbunden und das andere Wicklungsende 6 der Sekundärwicklung L2 ist an das Wicklungsende 2 der Primärwicklung L1 angeschlossen. Insofern liegt hier eine Spartransformatorausbildung bei der Zündspuleneinrichtung 1 vor. Der ebenfalls vorzugsweise als Feldeffekttransistor (FET) ausgebildete Schalter S1 ist parallel zur Primärwicklung L1 geschaltet, das heißt, der eine Pol des Schaltweges des Schalters S1 ist mit dem Wicklungsende 2 und der andere Pol des Schalters S1 ist mit dem Wicklungsende 3 der Primärwicklung L1 der Zündspuleneinrichtung 1 verbunden.While the evaluation device 8 for measuring the ion current in the exemplary embodiment in FIG. 1 is arranged in the secondary circuit of the ignition coil device 1, in the exemplary embodiment in FIG. 2 it is located in the primary circuit, namely the positive pole of the battery voltage U b is connected to the measuring device 8 and leads from there to the one winding end 2 of the primary winding L1. The other winding end 3 of the primary winding L1 is connected to the collector of the transistor T1, the emitter of which leads to ground M (negative pole of the battery voltage U b ). Furthermore, the electrode 4 of the spark plug ZK is connected to ground M. The other electrode 5 of the spark plug ZK is connected to the winding end 7 of the secondary winding L2 of the ignition coil device 1 and the other winding end 6 of the secondary winding L2 is connected to the winding end 2 of the primary winding L1. In this respect, there is an autotransformer design for the ignition coil device 1. The switch S1, which is also preferably in the form of a field effect transistor (FET), is connected in parallel with the primary winding L1, that is to say that one pole of the switching path of the switch S1 is connected to the winding end 2 and the other pole of the switch S1 is connected to the winding end 3 of the primary winding L1 Ignition coil device 1 connected.

Es ergibt sich folgende Funktionsweise: Durch Ansteuerung des Transistors T1 in seinen leitenden Zustand fließt durch die Primärwicklung L1 der Zündspuleneinrichtung 1 ein Strom, der auf der Sekundärseite, also in der Sekundärwicklung L2 eine Hochspannung erzeugt, die einen Zündfunken in der Zündkerze ZK auslöst. Nach erfolgter Zündung des Brennstoff-Luft-Gemisches im Brennraum des nicht dargestellten Verbrennungsmotors wird von der Steuereinrichtung (Pfeil 10) der Schalter S1 geschlossen, das heißt, es wird die Primärwicklung L1 der Zündspuleneinrichtung 1 kurzgeschlossen. Hierdurch treten die bereits zum Ausführungsbeispiel der Figur 1 genannten Vorteile auf, so daß eine optimale Ionenstrommessung mittels der Meßeinrichtung 8 durchgeführt werden kann.The following mode of operation results: By activation of transistor T1 in its conductive State flows through the primary winding L1 Ignition coil device 1 a current on the secondary side, So in the secondary winding L2 one High voltage generates a spark in the ZK spark plug triggers. After the ignition of the Fuel-air mixture in the combustion chamber of the not illustrated internal combustion engine is from the Control device (arrow 10) of switch S1 closed, that is, it becomes the primary winding L1 the ignition coil device 1 short-circuited. hereby they already come to the embodiment the advantages mentioned in Figure 1, so that an optimal Ion current measurement using the measuring device 8 can be performed.

Claims (4)

  1. Inductive ignition device for an internal combustion engine, having a measuring device for determining the ion current at the spark plug (ZK) of each cylinder, and having one ignition coil device per spark plug (ZK), said ignition coil device forming the ignition voltage, working according to the transformer principle and having a primary winding (L1) and a secondary winding (L2) and the ion current flowing through its secondary winding (L2), characterized by a switch (S1) which short circuits the primary winding (L1) for the duration of the measurements of the ion current.
  2. Ignition device according to Claim 1, characterized in that the switching path of the switch (S1) has very low impedance in the closed state and low forward voltage.
  3. Ignition device according to one of the preceding claims, characterized in that the switch (S1) is a field-effect transistor (FET).
  4. Ignition device according to one of the preceding claims, characterized in that the measuring device (8) has a control device (arrow 10) which closes the switch (S1), preferably periodically, at least for the duration of the measurement of the ion current.
EP97910226A 1996-11-28 1997-09-26 Igniting system with a device for measuring the ion current Expired - Lifetime EP0953109B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19649278 1996-11-28
DE19649278A DE19649278A1 (en) 1996-11-28 1996-11-28 Ignition device with ion current measuring device
PCT/DE1997/002198 WO1998023859A1 (en) 1996-11-28 1997-09-26 Igniting system with a device for measuring the ion current

Publications (2)

Publication Number Publication Date
EP0953109A1 EP0953109A1 (en) 1999-11-03
EP0953109B1 true EP0953109B1 (en) 2003-03-19

Family

ID=7812996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97910226A Expired - Lifetime EP0953109B1 (en) 1996-11-28 1997-09-26 Igniting system with a device for measuring the ion current

Country Status (6)

Country Link
US (1) US6424155B1 (en)
EP (1) EP0953109B1 (en)
JP (1) JP2001506721A (en)
KR (1) KR100498797B1 (en)
DE (2) DE19649278A1 (en)
WO (1) WO1998023859A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839868C1 (en) * 1998-09-02 2000-02-10 Stiebel Eltron Gmbh & Co Kg Air/fuel ratio detection method for automobile, i.c. engine combustion phase uses ionisation signal obtained from igition electrode upon application of measuring voltage below ignition voltage with suppression of residual ignition voltage
DE19845400A1 (en) * 1998-10-02 1999-12-16 Daimler Chrysler Ag High voltage transistor coil ignition for IC engine
DE19849258A1 (en) * 1998-10-26 2000-04-27 Bosch Gmbh Robert Energy regulation of internal combustion engine ignition system with primary side short circuit switch involves controlling closure time/angle depending on shorting phase primary current
DE60039325D1 (en) 1999-06-25 2008-08-14 Ngk Spark Plug Co Ignition unit for internal combustion engine
DE19953710B4 (en) 1999-11-08 2010-06-17 Robert Bosch Gmbh Method and device for measurement window positioning for ion current measurement
JP3869275B2 (en) * 2001-04-05 2007-01-17 株式会社日本自動車部品総合研究所 Ion current detection device for internal combustion engine
DE10234252B4 (en) * 2002-07-27 2008-09-25 Robert Bosch Gmbh Method for detecting misfiring
DE102005044030B4 (en) * 2005-09-14 2011-02-17 Stiebel Eltron Gmbh & Co. Kg Method and device for ionization measurement in internal combustion engines with suppression of Zündrestspannung
DE102005041823B3 (en) * 2005-09-02 2007-02-01 Siemens Ag Controller for internal combustion engine, has circuit sections running proximate to magnetic flux part so that magnetic flux portions are compensated, and coil assembly detecting failures based on evaluation of voltage induced at assembly
DE102006010807B4 (en) * 2006-03-07 2015-06-25 Volkswagen Aktiengesellschaft Circuit for detecting combustion-relevant variables
EP3022437A4 (en) * 2013-07-17 2018-03-14 Delphi Technologies, Inc. Ignition system for spark ignition engines and method of operating same
US20150340846A1 (en) * 2014-05-21 2015-11-26 Caterpillar Inc. Detection system for determining spark voltage
US10400739B2 (en) * 2015-05-14 2019-09-03 Eldor Corporation S.P.A. Electronic ignition system for an internal combustion engine
MY199152A (en) * 2015-08-14 2023-10-18 Univ Michigan State Ionization detector of a coil of a spark plug by shorting the primary inductance
US9739252B1 (en) 2016-02-19 2017-08-22 Ford Global Technologies, Llc System and method for detecting engine knock and misfire
JP6342026B1 (en) 2017-02-14 2018-06-13 三菱電機株式会社 Combustion state detection device for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494257U (en) * 1977-12-15 1979-07-04
US4738239A (en) * 1987-07-31 1988-04-19 Delco Electronics Corporation Ignition system
EP0387768B1 (en) * 1989-03-14 1998-01-07 Denso Corporation Ignition system of multispark type
JPH04134181A (en) * 1990-09-27 1992-05-08 Mitsubishi Electric Corp Ion current detecting device
DE4409749A1 (en) * 1994-03-22 1995-09-28 Bayerische Motoren Werke Ag Method for detecting knocking combustion in an internal combustion engine with a high-voltage transistor coil ignition device
SE507263C2 (en) * 1995-04-05 1998-05-04 Sem Ab Ways to perform ion current measurement in an internal combustion engine where lean fuel mixture is used
DE19524499B4 (en) * 1995-07-05 2008-11-13 Robert Bosch Gmbh Ignition system for an internal combustion engine

Also Published As

Publication number Publication date
KR100498797B1 (en) 2005-07-01
EP0953109A1 (en) 1999-11-03
DE59709590D1 (en) 2003-04-24
DE19649278A1 (en) 1998-06-04
KR20000053088A (en) 2000-08-25
US6424155B1 (en) 2002-07-23
JP2001506721A (en) 2001-05-22
US20020050823A1 (en) 2002-05-02
WO1998023859A1 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
EP0953109B1 (en) Igniting system with a device for measuring the ion current
DE3208587C2 (en) Device for detecting misfires
EP0790408B1 (en) Measuring circuit for an ionic current in ignition devices for internal combustion engines
DE3872112T2 (en) METHOD AND DEVICE FOR DETECTING THE IONIZATION CURRENT IN AN INTERNAL COMBUSTION ENGINE IGNITION SYSTEM.
DE69424369T2 (en) Engine ignition and control system
DE69417843T2 (en) Method of detecting autoignition
DE4241471C2 (en) Combustion determination device for an internal combustion engine
DE19514633C2 (en) Device for detecting misfires in an internal combustion engine
DE2507286A1 (en) METHOD OF DETERMINING COMBUSTION FAULTS IN AN COMBUSTION ENGINE AND PROTECTIVE ARRANGEMENT FOR THE EXHAUST GAS CLEANING DEVICES OF SUCH ENGINE
DE69211616T2 (en) Misfire detector for an internal combustion engine
DE19953710B4 (en) Method and device for measurement window positioning for ion current measurement
DE69936426T2 (en) Sensor for determining the ignition current and the ion current in the ignition secondary circuit
DE3100404C2 (en) Magnetic ignition system for internal combustion engines
EP0848161B1 (en) Inductive ignition coils system for motor
DE2753255C2 (en) Ignition system for internal combustion engines
DE19818470C2 (en) Knock detection device for an internal combustion engine
DE69511664T2 (en) Device for misfire detection of an internal combustion engine
DE69417841T2 (en) Misfire Detection Method
DE2823391A1 (en) DISTRIBUTOR
DE19610862A1 (en) Inductive ignition device
DE69320850T2 (en) Misfire detector for an internal combustion engine
DE2736576C2 (en) Ignition system with a mechanically non-moving high-voltage distribution for internal combustion engines
DE10028105B4 (en) Misfire detection system using ion measurement with a closing bias
DE3908696C2 (en)
DE3417676C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20010827

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709590

Country of ref document: DE

Date of ref document: 20030424

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: CONTI TEMIC MICROELECTRONIC GMBH

Effective date: 20031223

PLBG Opposition deemed not to have been filed

Free format text: ORIGINAL CODE: 0009274

26D Opposition deemed not to have been filed

Opponent name: CONTI TEMIC MICROELECTRONIC GMBH

Effective date: 20040205

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

26N No opposition filed

Effective date: 20031219

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAA Information modified related to event that no opposition was filed

Free format text: ORIGINAL CODE: 0009299DELT

PLBG Opposition deemed not to have been filed

Free format text: ORIGINAL CODE: 0009274

26D Opposition deemed not to have been filed

Opponent name: CONTI TEMIC MICROELECTRONIC GMBH

Effective date: 20040205

D26N No opposition filed (deleted)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050913

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050923

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 10

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060926

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091120

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59709590

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH