Nothing Special   »   [go: up one dir, main page]

EP0790408B1 - Measuring circuit for an ionic current in ignition devices for internal combustion engines - Google Patents

Measuring circuit for an ionic current in ignition devices for internal combustion engines Download PDF

Info

Publication number
EP0790408B1
EP0790408B1 EP97101842A EP97101842A EP0790408B1 EP 0790408 B1 EP0790408 B1 EP 0790408B1 EP 97101842 A EP97101842 A EP 97101842A EP 97101842 A EP97101842 A EP 97101842A EP 0790408 B1 EP0790408 B1 EP 0790408B1
Authority
EP
European Patent Office
Prior art keywords
ignition
circuit arrangement
accordance
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97101842A
Other languages
German (de)
French (fr)
Other versions
EP0790408A3 (en
EP0790408A2 (en
Inventor
Ulrich Dr. Bahr
Michael Daetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
DaimlerChrysler AG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, Volkswagen AG filed Critical DaimlerChrysler AG
Publication of EP0790408A2 publication Critical patent/EP0790408A2/en
Publication of EP0790408A3 publication Critical patent/EP0790408A3/en
Application granted granted Critical
Publication of EP0790408B1 publication Critical patent/EP0790408B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Definitions

  • the invention relates to a circuit arrangement for ion current measurement according to the preamble of claim 1.
  • Such an ion current measuring circuit is known from US 5483818, which a differential amplifier connected as an inverting amplifier has, for this is the low potential side of the secondary winding Ignition coil through a resistor with the inverting input of the Differential amplifier connected while at its non-inverting Input voltage of approx. 40 V is applied.
  • To achieve the inverting amplifier property is the output through a resistor fed back to the inverting input and at the same time the Output signal for evaluating the ion current of a threshold circuit fed.
  • the further inverting amplifier is corresponding how the amplifier connected directly to the secondary winding is constructed, its output via a resistor with the inverting Input of the further amplifier is connected and its non-inverting The same bias voltage is fed to the input.
  • the object of the present invention is therefore a circuit arrangement for ion current measurement of the type mentioned at the beginning specify that avoids this disadvantage.
  • Another advantage that can be achieved with the present invention lies in one Lowering the value of the measuring voltage below that in the prior art specified voltage value of 40 V.
  • an ignition current measuring resistor connected in series.
  • the at this ignition current measuring resistor The voltage drop that occurs during the burning period of the Spark plug in an advantageous manner as a measurement signal for the amount of ignition current serve.
  • This ignition current measurement signal can be used to to control the ignition sequence for a secondary ignition.
  • the second diverting circuit branch can be via a Output of the inverting amplifier controllable semiconductor switch, in particular a transistor with the ground potential of the circuit arrangement get connected. This allows the Increase the current carrying capacity of the differential amplifier.
  • a Switched differential amplifier provided as an inverting amplifier.
  • the one input of such a differential amplifier connected to the low potential side of the secondary winding of the ignition coil, while a reference voltage is supplied to the other input, whose value corresponds to the measuring voltage and at which the output over a measuring resistor is connected to the one input.
  • the ion current is thus converted into an as simple as possible Measuring signal serving voltage converted, which then a Evaluation is fed.
  • the reference voltage supplied to such a differential amplifier becomes generated in the simplest way with a constant voltage source.
  • the use of a multi-cylinder internal combustion engine Measuring paths of the spark plugs serving as ion current probes in parallel are switched, so that the advantage of low circuit complexity preserved.
  • the measuring sections should be used as an ion current probe serving spark plugs are measured completely independently, but the circuits can also be present several times, the Output signals are then time-multiplexed in a suitable form.
  • the Invention a parallel circuit from a dissipation resistor and at least one Zener diode connected in series to the secondary winding to the energy that is left after the spark has been torn off located in the ignition coil or the secondary capacitances quickly dissipate so that the ion current measurement can then be carried out without great delay is feasible.
  • a parallel circuit from a dissipation resistor and at least one Zener diode connected in series to the secondary winding to the energy that is left after the spark has been torn off located in the ignition coil or the secondary capacitances quickly dissipate so that the ion current measurement can then be carried out without great delay is feasible.
  • two antiserially connected zener diodes instead of just one Zener diode used to be compared to use only to achieve a decay behavior of a single Zener diode, the Duration is shorter and also symmetrical.
  • FIG. 1 shows a transistor ignition system of a 4-cylinder internal combustion engine, each with an ignition output stage assigned to a cylinder, each ignition output stage comprising an ignition coil Tr 1 ,..., Tr 4 , a primary winding P 1 ,..., P 4 and a secondary winding S 1 , ..., S 4 comprises, and an ignition transistor 1a, ..., 1d connected to the primary winding P 1 , ..., P 4 with associated spark plug Zk 1 , ..., Zk 4 is constructed.
  • the primary windings P 1 ,..., P 4 are connected with one connection to an on-board battery voltage U B of 12 V, for example, provided by an on-board battery, while the other connection is connected to the associated ignition transistor 1a,..., 1d.
  • the ignition transistors 1a, ..., 1d are controlled by their control electrodes controlled a circuit 2a for cylinder selection, which in turn with a Control circuit 2 is connected, the corresponding ignition trigger for the individual cylinders of this circuit 2a supplies.
  • control unit 4 the function of an engine management takes over and in turn controls the control circuit 2.
  • this control unit 4 receives motor parameters via an input E, such as load, speed and temperature.
  • Corresponding actuators are controlled via outputs A.
  • the secondary windings S 1 , ..., S 4 are each connected with their high voltage side to the associated spark plug Zk 1 , ..., Zk 4 , while their low potential side are combined in a circuit node S via a dissipation resistor R 3 .
  • This circuit node S is connected to the input of a differential amplifier 3 connected as a non-inverting amplifier, in that this circuit node S is connected to the inverting input of this differential amplifier 3.
  • a constant reference voltage U ref preferably 20 V
  • This constant reference voltage U ref is fed to the secondary windings S 1 , ..., S 4 via this differential amplifier 3 by means of a measuring resistor R1 fed back to the inverting input and thus reaches the spark plugs Zk 1 , ... working as ion measuring current paths as the test voltage U test . , Mark 4 .
  • the circuit according to the figure has a first and second diverting circuit branches A1 and A2.
  • the first discharge circuit branch A1 connects the circuit node S to the ground potential of the circuit via a semiconductor diode D 2
  • the second discharge circuit branch A2 consists of a series connection of an ignition current discharge resistor R 2 , a further semiconductor diode D 1 and a pnp transistor T
  • the ignition current measurement resistor R 2 is connected to the circuit node S and the collector electrode of the transistor T is at the ground potential of the circuit.
  • the base electrode of this transistor T is driven by the output of the differential amplifier 3.
  • the first diverting circuit branch A1 serves to derive negative voltage peaks occurring in one of the spark plugs Zk 1 ,... Zk 4 at the moment of a high voltage breakdown.
  • the actual ignition current is derived via the second derivation switching branch A 2 , which can also be constructed without the transistor T, which only serves to increase the current carrying capacity of the differential amplifier 3. If such a transistor T is dispensed with, the cathode of the semiconductor diode D 1 is connected directly to the output of the differential amplifier 3, so that the diverting branch A 2 is connected in parallel with the ion measuring resistor R 1 .
  • the generation of an ignition pulse by the control circuit 2 leads to the activation of the corresponding ignition transistor 1a, ..., 1d.
  • the ignition spark generated in this way on the associated spark plug Zk 1 ,..., Zk 4 leads to a certain burning duration, which is accompanied by an ignition current.
  • This ignition current flows through the low-resistance leakage circuit branch A 2 to a part via the differential amplifier 3 and to another part in accordance with the set operating point of the transistor T to ground potential.
  • This operating point of the transistor T is determined by the output signal U ion of the differential amplifier 3, which, by means of the feedback via the ion measuring resistor R 1, regulates its potential at the inverting input to the U ref potential, which represents the measuring voltage for the subsequent ion current measurement. An overload of the differential amplifier 3 by the ignition current is thus avoided by using such a transistor T.
  • the output signal U ion of the differential amplifier 3 indicates the level of the ignition current flowing through the ignition current measuring resistor R 2 and can therefore be used as a measurement signal of the ignition current after evaluation for charging and burning time control of the internal combustion engine.
  • the value of the ignition current measuring resistor R 2 is chosen so that its voltage drop U R2 with the value R 2 • I ignition is in the range of a few volts. Such a value for the resistor R 2 would be 15 ⁇ , for example.
  • the measuring voltage for the level of the ignition current could also be tapped at the emitter of the transistor T or with high resistance at the anode of the diode D 1 .
  • the tolerances of the base-emitter voltage of the transistor T or the diode forward voltage of the diode D 1 would then not be included in the measurement.
  • Another possibility for generating a measuring voltage for the ignition current is given in FIG. 2 explained below.
  • the residual energy still remaining in the corresponding secondary winding S 1 ,... S 4 or in the secondary capacitances must be rapidly dissipated.
  • the already mentioned dissipation resistor R 3 to which two antiserially connected Zener diodes Z 1 and Z 2 are connected in parallel.
  • the value of the dissipation resistance R 3 is preferably chosen so that it corresponds to the value (L sek / C sek ) 1/2 , the quantities L sek and C sek representing the coil inductance or coil and stray capacitances effective on the secondary side.
  • the value of this dissipation resistance R 2 will usually be in the range between 10 k ⁇ and 100 k ⁇ and thus causes the energy to dissipate rapidly.
  • the two Zener diodes Z 1 and Z 2 are necessary to limit the voltage drop occurring across the dissipation resistor R 3 , which would otherwise result in a considerable reduction in the ignition energy.
  • an ignition current of 100 mA at a resistor of 50 k ⁇ would cause a voltage drop of 5000 V.
  • the Zener voltages of the Zener diodes Z 1 and Z 2 are therefore chosen so that there is only a slight reduction in the ignition energy, for example in the amount of 50 V.
  • Zener diode Z 2 instead of using two Zener diodes Z 1 and Z 2 , it is also possible to provide only the Zener diode Z 2 and to dispense with the Zener diode Z 1 . However, this would cause the swing-out behavior to be asymmetrical and the swing-out duration to be extended somewhat. On the other hand, it would be advantageous that the voltage loss in ignition mode would be less than 1 V.
  • Zener diodes are in series with the secondary winding of the ignition coils Tr 1 ,... Tr 4 and the ion current measuring resistor R 1 , their leakage currents have no negative effect in the subsequent ion current measurement.
  • the reference voltage U ref serving as measurement voltage U test is applied by the inverting differential amplifier 3 to the secondary windings S 1 ,... S 4 , which then generates an ion current at the corresponding spark plug.
  • the inverting differential amplifier 3 converts this ion current into a voltage signal U ion , which is now fed to the evaluation unit 5 as a measurement signal of the ion current, the evaluation result of which is then forwarded to the control unit 4.
  • the measuring voltage U test supplied to the secondary windings S 1 , ..., S 4 of the ignition coils Tr 1 , ..., Tr 4 which can be between 5 and 30 V, preferably 20 V, is constant during the entire ion current measurement period. Since the ion current is in the ⁇ A range, a differential amplifier 3 with a low input current is used, which is available inexpensively today.
  • this measuring voltage U test means that there is no need to recharge stray capacitances, as can occur in other known systems when exposed to alternating current, such as, for example, with knocking combustion. This advantage is particularly noticeable when several ion measuring sections are operated in parallel, as shown in the figure, since effective stray capacities can then be multiplied.
  • another resistor in the supply line to its inverting input (not shown in the figure) can be provided.
  • FIG. 2 shows a detail of the circuit diagram of Figure 1 with the inverting amplifier connected as a differential amplifier 3 and the associated two Ableitscenszweigen A 1 and A2.
  • the difference from FIG. 1 lies in the wiring of the ignition current measuring resistor R 2 , which is now arranged on the ground side, namely between the collector of the transistor T and the ground potential.
  • the measurement voltage U Zünd which is proportional to the ignition current, is therefore ground-related, which is advantageous for the further use of this measurement signal.
  • the ion current signal can be used to knock the Detect internal combustion engine and control the ignition timing to set up a corresponding knock control.
  • Another application is to use the ion current signal both for Detection of ignition misfires as well as for the detection of Use camshaft position.
  • the circuit arrangement according to the invention for ion current measurement is not only in transistor ignition systems, as shown in the exemplary embodiment, usable, but also for alternating current ignitions or High voltage capacitor ignitions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zur Ionenstrommessung gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a circuit arrangement for ion current measurement according to the preamble of claim 1.

Eine solche lonenstrommeßschaltung ist aus der US 5483818 bekannt, die einen als invertierenden Verstärker geschalteten Differenzverstärker aufweist, hierzu ist die Niedrigpotentialseite der Sekundärwicklung der Zündspule über einen Widerstand mit dem invertierenden Eingang des Differenzverstärkers verbunden, während an dessen nichtinvertierenden Eingang eine Vorspannung von ca. 40 V angelegt wird. Zur Erzielung der invertierenden Verstärkereigenschaft wird der Ausgang über einen Widerstand auf den invertierenden Eingang rückgekoppelt und gleichzeitig das Ausgangssignal zur Auswertung des lonenstromes einer Schwellwertschaltung zugeführt. Ebenfalls an die Niedrigpotentialseite der Sekundärwicklung sind zwei in Reihe geschaltete Zenerdioden angeschlossen, deren Verbindungsknoten von einem weiteren invertierenden Verstärker derart angesteuert wird, daß die während einer lonenstrommessung auftretenden Leckströme vermieden werden, um damit unverfälschte lonenstromsignale zu erzeugen. Der weitere invertierende Verstärker ist entsprechender Weise wie der direkt an die Sekundärwicklung angeschlossene Verstärker aufgebaut, wobei dessen Ausgang über einen Widerstand mit dem invertierenden Eingang des weiteren Verstärkers verbunden ist und dessen nichtinvertierenden Eingang die gleiche Vorspannung zugeführt wird.Such an ion current measuring circuit is known from US 5483818, which a differential amplifier connected as an inverting amplifier has, for this is the low potential side of the secondary winding Ignition coil through a resistor with the inverting input of the Differential amplifier connected while at its non-inverting Input voltage of approx. 40 V is applied. To achieve the inverting amplifier property is the output through a resistor fed back to the inverting input and at the same time the Output signal for evaluating the ion current of a threshold circuit fed. Also on the low potential side of the secondary winding two Zener diodes are connected in series Connection node from another inverting amplifier in such a way is controlled that those occurring during an ion current measurement Leakage currents can be avoided in order to ensure undistorted ion current signals to create. The further inverting amplifier is corresponding how the amplifier connected directly to the secondary winding is constructed, its output via a resistor with the inverting Input of the further amplifier is connected and its non-inverting The same bias voltage is fed to the input.

zur Vermeidung der durch die verwendeten Zenerdioden erzeugten Leckströme bedarf es bei dieser bekannten lonenstrommeßschaltung in nachteiliger Weise eines hohen Schaltungsaufwandes. to avoid the leakage currents generated by the Zener diodes used this known ion current measuring circuit is disadvantageously required Way of a high circuit effort.

Die Aufgabe der vorliegenden Erfindung besteht daher darin, eine Schaltungsanordnung zur Ionenstrommessung der eingangs genannten Art anzugeben, die diesen Nachteil vermeidet.The object of the present invention is therefore a circuit arrangement for ion current measurement of the type mentioned at the beginning specify that avoids this disadvantage.

Die Lösung dieser Aufgabe ist durch das kennzeichnende Merkmal des Patentanspruches 1 gegeben. Hiernach sind zur Ableitung des während der Brenndauer der Zündkerze fließenden Zündstromes ein erster und zweiter Ableitschaltungszweig vorgesehen, die jeweils eine Halbleiterdiode aufweisen und der zweite Ableitschaltungszweig parallel zum invertierenden Verstärker angeordnet ist. Der wesentlichste Vorteil dieser erfindungsgemäßen Lösung liegt in der Verwendung von normalen Halbleiterdioden, so daß das Problem von hohen Leckströmen nicht auftritt und daher eine wie im Stand der Technik vorgeschlagene aufwendige Schaltung entfallen kann.The solution to this problem is due to the characteristic feature of Claim 1 given. According to this, the derivation of the during the Burning time of the spark plug flowing ignition current a first and second Discharge circuit branch provided, each a semiconductor diode have and the second derivative circuit branch parallel to the inverting Amplifier is arranged. The main advantage of this invention The solution lies in the use of normal semiconductor diodes, so that the problem of high leakage currents does not arise and therefore one as in the prior art proposed complex circuit are eliminated can.

Ein weiterer mit der vorliegenden Erfindung erzielbarer Vorteil liegt in einer Absenkung des Wertes der Meßspannung unter den im Stand der Technik angegebenen Spannungswert von 40 V.Another advantage that can be achieved with the present invention lies in one Lowering the value of the measuring voltage below that in the prior art specified voltage value of 40 V.

In einer vorteilhaften Weiterbildung der Erfindung ist zur weiteren Halbleiterdiode, die den zweiten Ableitschaltungszweig bildet, ein Zündstrommeßwiderstand in Reihe geschaltet. Der an diesem Zündstrommeßwiderstand auftretende Spannungsabfall kann während der Brenndauer der Zündkerze in vorteilhafter Weise als Meßsignal für die Höhe des Zündstromes dienen. Dieses Zündstrommeßsignal kann dazu verwendet werden, den Zündablauf bei einer Folgezündung zu steuern.In an advantageous development of the invention, for the further semiconductor diode, which forms the second discharge circuit branch, an ignition current measuring resistor connected in series. The at this ignition current measuring resistor The voltage drop that occurs during the burning period of the Spark plug in an advantageous manner as a measurement signal for the amount of ignition current serve. This ignition current measurement signal can be used to to control the ignition sequence for a secondary ignition.

Vorzugsweise kann der zweite Ableitschaltungszweig über einen vom Ausgang des invertierenden Verstärkers steuerbaren Halbleiterschalter, insbesondere eines Transistors mit dem Massepotential der Schaltungsanordnung verbunden werden. Damit läßt sich in vorteilhafter Weise die Strombelastbarkeit des Differenzverstärkers erhöhen.Preferably, the second diverting circuit branch can be via a Output of the inverting amplifier controllable semiconductor switch, in particular a transistor with the ground potential of the circuit arrangement get connected. This allows the Increase the current carrying capacity of the differential amplifier.

Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist ein als invertierender Verstärker geschalteter Differenzverstärker vorgesehen. According to a further advantageous embodiment of the invention, a Switched differential amplifier provided as an inverting amplifier.

Vorzugsweise ist dabei der eine Eingang eines solchen Differenzverstärkers mit der Niedrigpotentialseite der Sekundärwicklung der Zündspule verbunden, während am anderen Eingang eine Referenzspannung zugeführt wird, deren Wert der Meßspannung entspricht und bei dem der Ausgang über einen Meßwiderstand mit dem einen Eingang verbunden ist.Preferably, the one input of such a differential amplifier connected to the low potential side of the secondary winding of the ignition coil, while a reference voltage is supplied to the other input, whose value corresponds to the measuring voltage and at which the output over a measuring resistor is connected to the one input.

Damit wird der lonenstrom mit einfachsten Schaltungsmitteln in eine als Meßsignal dienende Spannung umgewandelt, die anschließend einer Auswertung zugeführt wird.The ion current is thus converted into an as simple as possible Measuring signal serving voltage converted, which then a Evaluation is fed.

Die einem solchen Differenzverstärker zugeführte Referenzspannung wird in einfachster Weise mit einer Konstantspannungsquelle erzeugt.The reference voltage supplied to such a differential amplifier becomes generated in the simplest way with a constant voltage source.

Weiterhin können bei Einsatz einer Mehrzylinderbrennkraftmaschine die Meßstrecken der als lonenstromsonde dienenden Zündkerzen parallel geschaltet werden, so daß der Vorteil eines geringen Schaltungsaufwandes erhalten bleibt. Sollen dagegen die Meßstrecken der als lonenstromsonde dienenden Zündkerzen völlig unabhängig voneinander gemessen werden, können aber auch die Schaltungen mehrfach vorhanden sein, deren Ausgangssignale dann in geeigneter Form zeitlich gemultiplext werden.Furthermore, the use of a multi-cylinder internal combustion engine Measuring paths of the spark plugs serving as ion current probes in parallel are switched, so that the advantage of low circuit complexity preserved. On the other hand, the measuring sections should be used as an ion current probe serving spark plugs are measured completely independently, but the circuits can also be present several times, the Output signals are then time-multiplexed in a suitable form.

Schließlich kann bei einer besonders bevorzugten Ausführungsform der Erfindung eine Parallelschaltung aus einem Dissipationswiderstand und wenigstens einer Zenerdiode in Reihe zur Sekundärwicklung geschaltet werden, um die Energie, die sich nach dem Abreißen des Zündfunkens noch in der Zündspule oder den Sekundärkapazitäten befindet, schnell zu dissipieren, damit ohne große Zeitverzögerung anschließend die lonenstrommessung durchführbar ist. In vorteilhafter Weise können vorzugsweise zwei antiseriell verbundene Zenerdioden anstelle nur einer einzigen Zenerdiode verwendet werden, um damit gegenüber der Verwendung nur einer einzigen Zenerdiode ein Ausschwingverhalten zu erzielen, dessen Dauer kürzer und außerdem symmetrisch ist. Finally, in a particularly preferred embodiment, the Invention a parallel circuit from a dissipation resistor and at least one Zener diode connected in series to the secondary winding to the energy that is left after the spark has been torn off located in the ignition coil or the secondary capacitances quickly dissipate so that the ion current measurement can then be carried out without great delay is feasible. Advantageously, preferably two antiserially connected zener diodes instead of just one Zener diode used to be compared to use only to achieve a decay behavior of a single Zener diode, the Duration is shorter and also symmetrical.

Im folgenden soll die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit der Figur dargestellt und erläutert werden. Es zeigen:

Figur 1
ein Schaltbild eines elektronischen Zündsystems gemäß der Erfindung und
Figur 2
einen Schaltungsausschnitt des Schaltbildes nach Figur 1 mit einem alternativen zweiten Ableitschaltungszweig A2.
In the following, the invention will be illustrated and explained using an exemplary embodiment in connection with the figure. Show it:
Figure 1
a circuit diagram of an electronic ignition system according to the invention and
Figure 2
a circuit section of the circuit diagram of Figure 1 with an alternative second diverting branch A2.

Die Figur 1 zeigt eine Transistorzündanlage einer 4-Zylinder-Brennkaftmaschine mit jeweils einem Zylinder zugeordneten Zündendstufe, wobei jede Zündendstufe aus einer Zündspule Tr1, ..., Tr4, die eine Primärwicklung P1, ..., P4 und eine Sekundärwicklung S1, ..., S4 umfaßt, und einem mit der Primärwicklung P1, ..., P4 verbundenen Zündtransistor 1a, ...., 1d mit zugehöriger Zündkerze Zk1, ..., Zk4 aufgebaut ist. Die Primärwicklungen P1, ..., P4 sind mit ihrem einen Anschluß an eine von einer Bordbatterie gelieferten Bordnetzspannung UB von beispielsweise 12 V angeschlossen, während der andere Anschluß mit dem zugehörigen Zündtransistor 1a, ..., 1d verbunden ist.FIG. 1 shows a transistor ignition system of a 4-cylinder internal combustion engine, each with an ignition output stage assigned to a cylinder, each ignition output stage comprising an ignition coil Tr 1 ,..., Tr 4 , a primary winding P 1 ,..., P 4 and a secondary winding S 1 , ..., S 4 comprises, and an ignition transistor 1a, ..., 1d connected to the primary winding P 1 , ..., P 4 with associated spark plug Zk 1 , ..., Zk 4 is constructed. The primary windings P 1 ,..., P 4 are connected with one connection to an on-board battery voltage U B of 12 V, for example, provided by an on-board battery, while the other connection is connected to the associated ignition transistor 1a,..., 1d.

Die Zündtransistoren 1a, ..., 1d werden über deren Steuerelektroden von einer Schaltung 2a zur Zylinderselektion angesteuert, die ihrerseits mit einer Regelschaltung 2 verbunden ist, die die entsprechenden Zündauslöseimpulse für die einzelnen Zylinder dieser Schaltung 2a zuführt.The ignition transistors 1a, ..., 1d are controlled by their control electrodes controlled a circuit 2a for cylinder selection, which in turn with a Control circuit 2 is connected, the corresponding ignition trigger for the individual cylinders of this circuit 2a supplies.

Die Figur zeigt ferner ein Steuergerät 4, das die Funktion eines Motormanagements übernimmt und seinerseits die Regelschaltung 2 ansteuert. Hierzu werden dieser Steuereinheit 4 über einen Eingang E Motorparameter, wie Last, Drehzahl und Temperatur zugeführt. Entsprechende Aktuatoren werden über Ausgänge A gesteuert.The figure also shows a control unit 4, the function of an engine management takes over and in turn controls the control circuit 2. For this purpose, this control unit 4 receives motor parameters via an input E, such as load, speed and temperature. Corresponding actuators are controlled via outputs A.

Die Sekundärwicklungen S1, ..., S4 sind jeweils mit ihrer Hochspannungsseite mit der zugehörigen Zündkerze Zk1, ..., Zk4 verbunden, während deren Niedrigpotentialseite über jeweils einen Dissipationswiderstand R3 in einem Schaltungsknoten S zusammengeführt sind. The secondary windings S 1 , ..., S 4 are each connected with their high voltage side to the associated spark plug Zk 1 , ..., Zk 4 , while their low potential side are combined in a circuit node S via a dissipation resistor R 3 .

Dieser Schaltungsknoten S ist auf den Eingang eines als nicht invertierenden Verstärkers geschalteten Differenzverstärkers 3 geführt, indem dieser Schaltungsknoten S an den invertierenden Eingang dieses Differenzverstärkers 3 angeschlossen ist. An den nichtinvertierenden Eingang dieses Differenzverstärkers 3 wird dagegen eine konstante Referenzspannung Uref, vorzugsweise 20 V angelegt, wobei diese konstante Referenzspannung von einer Konstantspannungsquelle 6 erzeugt wird. Diese konstante Referenzspannung Uref wird über diesen Differenzverstärker 3 mittels eines auf den invertierenden Eingang rückgekoppelten Meßwiderstandes R1 den Sekundärwicklungen S1, ..., S4 zugeführt und gelangt somit als Meßspannung Utest an die als lonenmeßstromstrecken arbeitenden Zündkerzen Zk1, ..., Zk4.This circuit node S is connected to the input of a differential amplifier 3 connected as a non-inverting amplifier, in that this circuit node S is connected to the inverting input of this differential amplifier 3. In contrast, a constant reference voltage U ref , preferably 20 V, is applied to the non-inverting input of this differential amplifier 3, this constant reference voltage being generated by a constant voltage source 6. This constant reference voltage U ref is fed to the secondary windings S 1 , ..., S 4 via this differential amplifier 3 by means of a measuring resistor R1 fed back to the inverting input and thus reaches the spark plugs Zk 1 , ... working as ion measuring current paths as the test voltage U test . , Mark 4 .

Um den während der Brenndauer aufgrund des Zündvorganges entstehenden Zündstrom abzuleiten, weist die Schaltung gemäß der Figur einen ersten und zweiten Ableitschaltungszweig A1 und A2 auf. Der erste Ableitschaltungszweig A1 verbindet den Schaltungsknoten S über eine Halbleiterdiode D2 mit dem Massepotential der Schaltung, während der zweite Ableitschaltungszweig A2 aus einer Serienschaltung eines Zündstromableitwiderstandes R2, einer weiteren Halbleiterdiode D1 und eines pnp-Transistors T besteht, wobei der Zündstrommeßwiderstand R2 mit dem Schaltungsknoten S verbunden ist und die Kollektorelektrode des Transistors T auf dem Massepotential der Schaltung liegt. Die Basiselektrode dieses Transistors T wird vom Ausgang des Differenzverstärkers 3 angesteuert.In order to derive the ignition current which arises during the burning time due to the ignition process, the circuit according to the figure has a first and second diverting circuit branches A1 and A2. The first discharge circuit branch A1 connects the circuit node S to the ground potential of the circuit via a semiconductor diode D 2 , while the second discharge circuit branch A2 consists of a series connection of an ignition current discharge resistor R 2 , a further semiconductor diode D 1 and a pnp transistor T, the ignition current measurement resistor R 2 is connected to the circuit node S and the collector electrode of the transistor T is at the ground potential of the circuit. The base electrode of this transistor T is driven by the output of the differential amplifier 3.

Der erste Ableitschaltungszweig A1 dient dazu, im Augenblick eines Hochspannungsdurchbruches in einer der Zündkerzen Zk1,..., Zk4 entstehende negative Spannungsspitzen abzuleiten.The first diverting circuit branch A1 serves to derive negative voltage peaks occurring in one of the spark plugs Zk 1 ,... Zk 4 at the moment of a high voltage breakdown.

Der eigentliche Zündstrom wird über den zweiten Ableitungsschaltzweig A2 abgeleitet, der auch ohne den Transistor T aufgebaut werden kann, der lediglich zur Erhöhung der Strombelastbarkeit des Differenzverstärkers 3 dient. Wird auf einen solchen Transistor T verzichtet, ist die Kathode der Halbleiterdiode D1 direkt mit dem Ausgang des Differenzverstärkers 3 verbunden, so daß der Ableitschaltungszweig A2 parallel zum lonenmeßwiderstand R1 geschaltet ist.The actual ignition current is derived via the second derivation switching branch A 2 , which can also be constructed without the transistor T, which only serves to increase the current carrying capacity of the differential amplifier 3. If such a transistor T is dispensed with, the cathode of the semiconductor diode D 1 is connected directly to the output of the differential amplifier 3, so that the diverting branch A 2 is connected in parallel with the ion measuring resistor R 1 .

Im folgenden soll die Funktion der Schaltung gemäß der Figur 1 erläutert werden:The function of the circuit according to FIG. 1 is explained below become:

Die Generierung eines Zündimpulses durch die Regelschaltung 2 führt zur Ansteuerung des entsprechenden Zündtransistors 1a, ..., 1d. Der hierdurch erzeugte Zündfunken an der zugehörigen Zündkerze Zk1, ..., Zk4 führt zu einer bestimmten Brenndauer, die von einem Zündstrom begleitet wird. Dieser Zündstrom fließt über den niederohmigen Ableitschaltungszweig A2 zu einem Teil über den Differenzverstärker 3 und zu einem anderen Teil entsprechend dem eingestellten Arbeitspunkt des Transistors T auf Massepotential ab. Dieser Arbeitspunkt des Transistors T wird durch das Ausgangssignal Uion des Differenzverstärkers 3 bestimmt, das durch die Rückkopplung über den lonenmeßwiderstand R1 auf den invertierenden Eingang dessen Potential auf das Uref-Potential einregelt, das die Meßspannung für die nachfolgende lonenstrommessung darstellt. Damit wird durch den Einsatz eines solchen Transistors T eine überbelastung des Differenzverstärkers 3 durch den Zündstrom vermieden.The generation of an ignition pulse by the control circuit 2 leads to the activation of the corresponding ignition transistor 1a, ..., 1d. The ignition spark generated in this way on the associated spark plug Zk 1 ,..., Zk 4 leads to a certain burning duration, which is accompanied by an ignition current. This ignition current flows through the low-resistance leakage circuit branch A 2 to a part via the differential amplifier 3 and to another part in accordance with the set operating point of the transistor T to ground potential. This operating point of the transistor T is determined by the output signal U ion of the differential amplifier 3, which, by means of the feedback via the ion measuring resistor R 1, regulates its potential at the inverting input to the U ref potential, which represents the measuring voltage for the subsequent ion current measurement. An overload of the differential amplifier 3 by the ignition current is thus avoided by using such a transistor T.

Während der Brenndauer zeigt das Ausgangssignal Uion des Differenzverstärkers 3 die Höhe des durch den Zündstrommeßwiderstand R2 fließenden Zündstromes an und kann daher als Meßsignal des Zündstromes nach Auswertung zur Lade- und Brenndauerregelung der Brennkraftmaschine herangezogen werden. Der Wert des Zündstrommeßwiderstandes R2 wird so gewählt, daß dessen Spannungsabfall UR2 mit dem Wert R2 • Izünd im Bereich einiger Volt liegt. Ein solcher Wert für den Widerstand R2 wäre beispielweise 15 Ω. Am Ausgang des Differenzverstärkers 3 liegt dann eine Spannung Uion mit einem Wert von Uref - Izünd • R2 -UD1 -UBE an, wobei UD1 bzw. UBE die Diodenflußspannung bzw. die Basis-Emitterspannung darstellt.During the burning time, the output signal U ion of the differential amplifier 3 indicates the level of the ignition current flowing through the ignition current measuring resistor R 2 and can therefore be used as a measurement signal of the ignition current after evaluation for charging and burning time control of the internal combustion engine. The value of the ignition current measuring resistor R 2 is chosen so that its voltage drop U R2 with the value R 2 • I ignition is in the range of a few volts. Such a value for the resistor R 2 would be 15 Ω, for example. At the output of the differential amplifier 3 there is then a voltage U ion with a value of U ref - I ignite • R 2 -U D1 -U BE , U D1 and U BE representing the diode forward voltage and the base-emitter voltage.

Die Meßspannung für die Höhe des Zündstromes könnte auch am Emitter des Transistors T oder hochohmig an der Anode der Diode D1 abgegriffen werden. Die Toleranzen der Basis-Emitterspannung des Transistors T bzw. die Diodenflußspannung der Diode D1 würden dann nicht in die Messung eingehen. Eine weitere Möglichkeit zur Erzeugung einer Meßspannung für den Zündstrom ist mit der weiter unten erläuterten Figur 2 gegeben.The measuring voltage for the level of the ignition current could also be tapped at the emitter of the transistor T or with high resistance at the anode of the diode D 1 . The tolerances of the base-emitter voltage of the transistor T or the diode forward voltage of the diode D 1 would then not be included in the measurement. Another possibility for generating a measuring voltage for the ignition current is given in FIG. 2 explained below.

Nach dem Abreißen des Zündfunkes, also am Ende der Brenndauer, muß die noch in der entsprechenden Sekundärwicklung S1, ..., S4 oder in den Sekundärkapazitäten verbleibende Restenergie schnell abgebaut werden. Hierzu dient der schon erwähnte Dissipationswiderstand R3, dem zwei antiseriell verbundene Zenerdioden Z1 und Z2 parallel geschaltet sind.After the ignition radio has been torn off, that is to say at the end of the burning time, the residual energy still remaining in the corresponding secondary winding S 1 ,... S 4 or in the secondary capacitances must be rapidly dissipated. For this purpose, the already mentioned dissipation resistor R 3 , to which two antiserially connected Zener diodes Z 1 and Z 2 are connected in parallel.

Durch eine solche Parallelschaltung wird die Dauer des Ausschwingens nach dem Abreißen des Zündfunkens wesentlich verkürzt, so daß unmittelbar danach eine durch das Ausschwingverhalten nicht beeinträchtigte lonenstrommessung durchführbar ist.Such a parallel connection reduces the duration of the decay the tearing off of the spark significantly shortened, so that immediately then an ion current measurement not affected by the decay behavior is feasible.

Eine solche beschleunigte Energiedissipation ist besonders bei hohen Motordrehzahlen wichtig. Der Wert des Dissipationswiderstandes R3 wird vorzugsweise so gewählt, daß er dem Wert (Lsek/Csek)1/2 entspricht, wobei die Größen Lsek und Csek, die sekundärseitig wirksame Spuleninduktivität bzw. Spulen- und Streukapazitäten darstellen. Der Wert dieses Dissipationswiderstandes R2 wird üblicherweise im Bereich zwischen 10 kΩ und 100 kΩ liegen und bewirkt damit ein schnelles Dissipieren der Energie.Such accelerated energy dissipation is particularly important at high engine speeds. The value of the dissipation resistance R 3 is preferably chosen so that it corresponds to the value (L sek / C sek ) 1/2 , the quantities L sek and C sek representing the coil inductance or coil and stray capacitances effective on the secondary side. The value of this dissipation resistance R 2 will usually be in the range between 10 kΩ and 100 kΩ and thus causes the energy to dissipate rapidly.

Die beiden Zenerdioden Z1 und Z2 sind zur Begrenzung des über dem Dissipationswiderstand R3 entstehenden Spannungsabfalles notwendig, was ansonsten eine erhebliche Verminderung der Zündenergie zur Folge hätte. So würde ein Zündstrom von beispielsweise 100 mA an einem Widerstand von beispielsweise 50 kΩ einen Spannungsabfall von 5000 V bewirken. Die Zenerspannungen der Zenerdioden Z1 und Z2 werden daher so gewählt, daß nur eine geringe Verminderung der Zündenergie eintritt, beispielsweise in Höhe von 50 V.The two Zener diodes Z 1 and Z 2 are necessary to limit the voltage drop occurring across the dissipation resistor R 3 , which would otherwise result in a considerable reduction in the ignition energy. For example, an ignition current of 100 mA at a resistor of 50 kΩ, for example, would cause a voltage drop of 5000 V. The Zener voltages of the Zener diodes Z 1 and Z 2 are therefore chosen so that there is only a slight reduction in the ignition energy, for example in the amount of 50 V.

Anstelle der Verwendung von zwei Zenerdioden Z1 und Z2 ist es auch möglich, lediglich die Zenerdiode Z2 vorzusehen und auf die Zenerdiode Z1 zu verzichten. Damit würde allerdings das Ausschwingverhalten unsymmetrisch und die Ausschwingdauer etwas verlängert werden. Vorteilhaft wäre dagegen, daß der Spannungsverlust im Zündbetrieb kleiner als 1 V wäre.Instead of using two Zener diodes Z 1 and Z 2 , it is also possible to provide only the Zener diode Z 2 and to dispense with the Zener diode Z 1 . However, this would cause the swing-out behavior to be asymmetrical and the swing-out duration to be extended somewhat. On the other hand, it would be advantageous that the voltage loss in ignition mode would be less than 1 V.

Da in beidgenannten Fällen die Zenerdioden in Reihe zur Sekundärwicklung der Zündspulen Tr1,...Tr4 und zum lonenstrommeßwiderstand R1 liegen, haben deren Leckströme bei der nachfolgenden Ionenstrommessung keine negative Auswirkung.Since in both cases the Zener diodes are in series with the secondary winding of the ignition coils Tr 1 ,... Tr 4 and the ion current measuring resistor R 1 , their leakage currents have no negative effect in the subsequent ion current measurement.

Nach dem Abklingen des Zündstromes wird die als Meßspannung Utest dienende Referenzspannung Uref von dem invertierenden Differenzverstärker 3 an die Sekundärwicklungen S1, ..., S4 angelegt, die dann an der entsprechenden Zündkerze einen lonenstrom erzeugt.After the ignition current has decayed, the reference voltage U ref serving as measurement voltage U test is applied by the inverting differential amplifier 3 to the secondary windings S 1 ,... S 4 , which then generates an ion current at the corresponding spark plug.

Der invertierende Differenzverstärker 3 wandelt diesen lonenstrom in ein Spannungssignal Uion um, das nun als Meßsignal des lonenstroms der Auswerteeinheit 5 zugeführt wird, deren Auswerteergebnis anschließend an das Steuergerät 4 weitergeleitet wird. Die den Sekundärwicklungen S1, ..., S4 der Zündspulen Tr1, ..., Tr4 zugeführte Meßspannung Utest, die zwischen 5 und 30 V, vorzugsweise 20 V liegen kann, ist während der gesamten Ionenstrommeßdauer konstant. Da der lonenstrom im µA-Bereich liegt, wird ein Differenzverstärker 3 mit einem niedrigen Eingangsstrom verwendet, der heutzutage kostengünstig verfügbar ist. Durch die niederohmige Bereitstellung dieser Meßspannung Utest entfallen Umladungen von Streukapazitäten, wie sie in anderen bekannten Systemen bei Wechselstrombelastung, wie zum Beispiel bei klopfender Verbrennung, auftreten können. Dieser Vorteil macht sich besonders dann bemerkbar, wenn mehrere lonenmeßstrecken parallel betrieben werden, wie dies in der Figur dargestellt ist, da sich dann wirksame Streukapazitäten vervielfachen können.The inverting differential amplifier 3 converts this ion current into a voltage signal U ion , which is now fed to the evaluation unit 5 as a measurement signal of the ion current, the evaluation result of which is then forwarded to the control unit 4. The measuring voltage U test supplied to the secondary windings S 1 , ..., S 4 of the ignition coils Tr 1 , ..., Tr 4 , which can be between 5 and 30 V, preferably 20 V, is constant during the entire ion current measurement period. Since the ion current is in the µ A range, a differential amplifier 3 with a low input current is used, which is available inexpensively today. The low-impedance provision of this measuring voltage U test means that there is no need to recharge stray capacitances, as can occur in other known systems when exposed to alternating current, such as, for example, with knocking combustion. This advantage is particularly noticeable when several ion measuring sections are operated in parallel, as shown in the figure, since effective stray capacities can then be multiplied.

Um den in den Differenzverstärker 3 fließenden Strom zu begrenzen, kann in der Zuleitung zu dessen invertierenden Eingang ein weiterer Widerstand (in der Figur nicht dargestellt) vorgesehen werden. In order to limit the current flowing into the differential amplifier 3, another resistor in the supply line to its inverting input (not shown in the figure) can be provided.

Die Figur 2 zeigt einen Ausschnitt des Schaltbildes nach Figur 1 mit dem als invertierenden Verstärker geschalteten Differenzverstärker 3 und den zugehörigen beiden Ableitschaltungszweigen A1 und A2.2 shows a detail of the circuit diagram of Figure 1 with the inverting amplifier connected as a differential amplifier 3 and the associated two Ableitschaltungszweigen A 1 and A2.

Der Unterschied zu Figur 1 liegt in der Beschaltung des Zündstrommeßwiderstandes R2, der nun masseseitig, nämlich zwischen dem Kollektor des Transistors T und Massepotential angeordnet ist. Die zum Zündstrom proportionale Meßspannung UZünd liegt daher massebezogen vor, was für die Weiterverwendung dieses Meßsignals vorteilhaft ist.The difference from FIG. 1 lies in the wiring of the ignition current measuring resistor R 2 , which is now arranged on the ground side, namely between the collector of the transistor T and the ground potential. The measurement voltage U Zünd , which is proportional to the ignition current, is therefore ground-related, which is advantageous for the further use of this measurement signal.

Die zusätzliche Verwendung eines zwischen dem Ausgang des Differenzverstärkers 3 und der Basis des Transistors T geschalteten Widerstandes R4 begrenzt den durch einen Basisstrom entstehenden Meßfehler auf kleine Werte.The additional use of a resistor R 4 connected between the output of the differential amplifier 3 and the base of the transistor T limits the measurement error resulting from a base current to small values.

Das lonenstromsignal kann dazu verwendet werden, um das Klopfen der Brennkraftmaschine zu detektieren und über eine Steuerung des Zündzeitpunktes eine entsprechende Klopfregelung aufzubauen.The ion current signal can be used to knock the Detect internal combustion engine and control the ignition timing to set up a corresponding knock control.

Eine weitere Anwendung besteht darin, das lonenstromsignal sowohl zur Erkennung von Entflammungsaussetzern als auch zur Erkennung der Nockenwellenstellung zu verwenden.Another application is to use the ion current signal both for Detection of ignition misfires as well as for the detection of Use camshaft position.

Die erfindungsgemäße Schaltungsanordnung zur lonenstrommessung ist nicht nur bei Transistorzündanlagen, wie in dem Ausführungsbeispiel dargestellt, einsetzbar, sondern gleichfalls bei Wechselstromzündungen oder Hochspannungskondensatorzündungen.The circuit arrangement according to the invention for ion current measurement is not only in transistor ignition systems, as shown in the exemplary embodiment, usable, but also for alternating current ignitions or High voltage capacitor ignitions.

Claims (10)

  1. A circuit arrangement for measuring ion currents in the combustion chamber of an internal combustion engine consisting of:
    a) an ignition coil (Tr1, ..., Tr4) having a primary and a secondary winding (P1, ..., P4, S1, ..., S4),
    b) a spark plug (Zk1, ..., Zk4) that simultaneously serves as an ion current probe connected to the secondary winding (S1, ..., S4),
    c) an inverting amplifier (3, R1) for producing a constant test voltage (UM) for the ion current measurement process connected to the low potential side of the secondary winding (S1, ..., S4) of the ignition coil (Tr1, ..., Tr4),
    characterised by the following features:
    d) for the purposes of draining-off the ignition current, which flows during the firing of the spark plug, to the earth potential of the circuit arrangement, there is provided
    d1) a first by-pass branch circuit (A1) provided with a semiconductor diode (D2) and
    d2) a second by-pass branch circuit (A2) which incorporates a further semiconductor diode (D1) and is connected in parallel with the inverting amplifier (3, R1).
  2. A circuit arrangement in accordance with Claim 2 [sic], characterised in that the second by-pass branch circuit (A2) comprises an ignition current measuring resistance (R2) which is connected in series with the further semiconductor diode (D1).
  3. A circuit arrangement in accordance with Claim 1 or 2, characterised in that the second by-pass branch circuit in [sic] (A2) is connected to the earth potential via a semiconductor switch (T), in particular, a transistor, which is controllable by the output of the inverting amplifier (3, R1).
  4. A circuit arrangement in accordance with Claim 3, characterised in that the ignition current measuring resistance (R2) is disposed in the emitter path of the transistor (T).
  5. A circuit arrangement in accordance with Claim 3, characterised in that the ignition current measuring resistance (R2) is disposed in the collector path of the transistor (T).
  6. A circuit arrangement in accordance with any of the preceding Claims, characterised in that the inverting amplifier is in the form of a differential amplifier (3).
  7. A circuit arrangement in accordance with Claim 6, characterised in that the one input of the differential amplifier (3) is connected to the low potential side of the secondary winding (S1, ..., S4) of the ignition coil (Tr1, ..., Tr4) and a reference voltage (Uref) whose value corresponds to the test voltage (Utest) is supplied to the other input, and the output of the differential amplifier (3) is connected to the one input via an ion current measuring resistance (R1).
  8. A circuit arrangement in accordance with any of the preceding Claims, characterised in that a parallel circuit consisting of a dissipating resistance (R3) and at least one Zener diode (Z1, Z2) is connected in series with the secondary winding (S1, ..., S4).
  9. A circuit arrangement in accordance with Claim 8, characterised in that two back-to-back connected Zener diodes (Z1, Z2) are located in parallel with the dissipating resistance (R2) [sic].
  10. The use of the circuit arrangement in accordance with any of the Claims 2 to 9 for measuring an ignition current in that the voltage drop occurring across the ignition current measuring resistance (R2) serves as a test signal indicative of the magnitude of the ignition current.
EP97101842A 1996-02-16 1997-02-06 Measuring circuit for an ionic current in ignition devices for internal combustion engines Expired - Lifetime EP0790408B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19605803A DE19605803A1 (en) 1996-02-16 1996-02-16 Circuit arrangement for ion current measurement
DE19605803 1996-02-16

Publications (3)

Publication Number Publication Date
EP0790408A2 EP0790408A2 (en) 1997-08-20
EP0790408A3 EP0790408A3 (en) 1999-01-20
EP0790408B1 true EP0790408B1 (en) 2001-11-14

Family

ID=7785611

Family Applications (3)

Application Number Title Priority Date Filing Date
EP97101844A Expired - Lifetime EP0790406B1 (en) 1996-02-16 1997-02-06 Electronic ignition system for internal combustion engines
EP97101842A Expired - Lifetime EP0790408B1 (en) 1996-02-16 1997-02-06 Measuring circuit for an ionic current in ignition devices for internal combustion engines
EP97101843A Expired - Lifetime EP0790409B1 (en) 1996-02-16 1997-02-06 Measuring circuit for an ionic current in ignition devices for internal combustion engines

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP97101844A Expired - Lifetime EP0790406B1 (en) 1996-02-16 1997-02-06 Electronic ignition system for internal combustion engines

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP97101843A Expired - Lifetime EP0790409B1 (en) 1996-02-16 1997-02-06 Measuring circuit for an ionic current in ignition devices for internal combustion engines

Country Status (4)

Country Link
US (3) US6043660A (en)
EP (3) EP0790406B1 (en)
DE (4) DE19605803A1 (en)
ES (1) ES2166479T3 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19605803A1 (en) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Circuit arrangement for ion current measurement
JP3129403B2 (en) * 1997-05-15 2001-01-29 トヨタ自動車株式会社 Ion current detector
DE19720535C2 (en) * 1997-05-16 2002-11-21 Conti Temic Microelectronic Method for detecting knocking combustion in an internal combustion engine with an AC ignition system
DE19829583C1 (en) * 1998-07-02 1999-10-07 Daimler Chrysler Ag Breakthrough voltage determining method for AC ignition system diagnosis in IC engine
US6357427B1 (en) 1999-03-15 2002-03-19 Aerosance, Inc. System and method for ignition spark energy optimization
DE19917261C5 (en) * 1999-04-16 2010-09-09 Siemens Flow Instruments A/S Electromagnetic flowmeter arrangement
DE19917268B4 (en) 1999-04-16 2005-07-14 Siemens Flow Instruments A/S Method for checking an electromagnetic flowmeter and electromagnetic flowmeter arrangement
US6378513B1 (en) * 1999-07-22 2002-04-30 Delphi Technologies, Inc. Multicharge ignition system having secondary current feedback to trigger start of recharge event
US6186130B1 (en) * 1999-07-22 2001-02-13 Delphi Technologies, Inc. Multicharge implementation to maximize rate of energy delivery to a spark plug gap
DE19956032A1 (en) * 1999-11-22 2001-05-23 Volkswagen Ag Misfire detection circuit in an internal combustion engine
DE10031553A1 (en) * 2000-06-28 2002-01-10 Bosch Gmbh Robert Inductive ignition device with ion current measuring device
US6360587B1 (en) * 2000-08-10 2002-03-26 Delphi Technologies, Inc. Pre-ignition detector
AT409406B (en) * 2000-10-16 2002-08-26 Jenbacher Ag IGNITION SYSTEM WITH AN IGNITION COIL
DE10104753B4 (en) * 2001-02-02 2014-07-03 Volkswagen Ag Method and device for detecting the combustion process in a combustion chamber of an internal combustion engine
DE10125574A1 (en) * 2001-05-25 2002-11-28 Siemens Building Tech Ag Flame monitoring device with which an asymmetrical voltage is applied across burner and ionization electrode to detect presence of flame
US6781384B2 (en) * 2001-07-24 2004-08-24 Agilent Technologies, Inc. Enhancing the stability of electrical discharges
DE10152171B4 (en) * 2001-10-23 2004-05-06 Robert Bosch Gmbh Device for igniting an internal combustion engine
US6954074B2 (en) * 2002-11-01 2005-10-11 Visteon Global Technologies, Inc. Circuit for measuring ionization current in a combustion chamber of an internal combustion engine
US6935323B2 (en) * 2003-07-01 2005-08-30 Caterpillar Inc Low current extended duration spark ignition system
US7886239B2 (en) * 2005-08-04 2011-02-08 The Regents Of The University Of California Phase coherent differtial structures
JP4188367B2 (en) * 2005-12-16 2008-11-26 三菱電機株式会社 Internal combustion engine ignition device
AT504369B8 (en) * 2006-05-12 2008-09-15 Ge Jenbacher Gmbh & Co Ohg IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
US7603226B2 (en) * 2006-08-14 2009-10-13 Henein Naeim A Using ion current for in-cylinder NOx detection in diesel engines and their control
DE102007034399B4 (en) * 2007-07-24 2019-06-19 Daimler Ag Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system
DE102007034390B4 (en) * 2007-07-24 2019-05-29 Daimler Ag Method for operating an ignition system for a spark-ignitable internal combustion engine of a motor vehicle and ignition system
DE102008031027A1 (en) * 2008-06-30 2009-12-31 Texas Instruments Deutschland Gmbh Automatic testing device
US20100006066A1 (en) * 2008-07-14 2010-01-14 Nicholas Danne Variable primary current for ionization
US8461844B2 (en) * 2009-10-02 2013-06-11 Woodward, Inc. Self charging ion sensing coil
DE102009057925B4 (en) 2009-12-11 2012-12-27 Continental Automotive Gmbh Method for operating an ignition device for an internal combustion engine and ignition device for an internal combustion engine for carrying out the method
CA2784725A1 (en) 2010-01-20 2011-07-28 Sem Aktiebolag Device and method for analysing a performance of an engine
DE102010061799B4 (en) 2010-11-23 2014-11-27 Continental Automotive Gmbh Method for operating an ignition device for an internal combustion engine and ignition device for an internal combustion engine for carrying out the method
CN102852693B (en) * 2011-06-28 2015-05-27 比亚迪股份有限公司 Ignition coil failure diagnosis system and diagnosis method thereof
US10054067B2 (en) * 2012-02-28 2018-08-21 Wayne State University Using ion current signal for engine performance and emissions measuring techniques and method for doing the same
DE102013004728A1 (en) 2013-03-19 2014-09-25 Daimler Ag Method for operating an internal combustion engine and internal combustion engine
JP6207223B2 (en) * 2013-05-01 2017-10-04 キヤノン株式会社 Motor drive device and control method thereof
US9249774B2 (en) 2013-10-17 2016-02-02 Ford Global Technologies, Llc Spark plug fouling detection for ignition system
CN103745816B (en) * 2013-12-31 2018-01-12 联合汽车电子有限公司 A kind of high-energy ignition coil
AT517272B1 (en) 2015-06-03 2017-03-15 Ge Jenbacher Gmbh & Co Og Method for operating an internal combustion engine
WO2020136709A1 (en) * 2018-12-25 2020-07-02 三菱電機株式会社 Ion current detection circuit, ignition control device, and ignition system
CN111835323A (en) * 2019-04-17 2020-10-27 联合汽车电子有限公司 Internal drive ignition IGBT overload protection method and device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945362A (en) * 1973-09-17 1976-03-23 General Motors Corporation Internal combustion engine ignition system
DE2623865A1 (en) * 1976-05-28 1977-12-08 Bosch Gmbh Robert IGNITION SYSTEM, IN PARTICULAR FOR COMBUSTION MACHINERY
US4329576A (en) * 1979-11-05 1982-05-11 Rapistan, Inc. Data storage means and reading system therefor
US4380989A (en) * 1979-11-27 1983-04-26 Nippondenso Co., Ltd. Ignition system for internal combustion engine
DE3006665A1 (en) * 1980-02-22 1981-09-03 Robert Bosch Gmbh, 7000 Stuttgart VOLTAGE SOURCE FOR MEASURING ION CURRENT ON THE COMBUSTION ENGINE
DE3327766A1 (en) * 1983-08-02 1985-02-14 Atlas Fahrzeugtechnik GmbH, 5980 Werdohl KNOCK DETECTION CIRCUIT ON AN OTTO ENGINE
DE3615548A1 (en) * 1986-05-09 1987-11-12 Bosch Gmbh Robert IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES
FR2603339B1 (en) * 1986-08-27 1988-12-16 Renault Sport DEVICE FOR DETECTING COMBUSTION ABNORMALITY IN A CYLINDER OF AN INTERNAL COMBUSTION ENGINE WITH CONTROLLED IGNITION
IT1208855B (en) * 1987-03-02 1989-07-10 Marelli Autronica VARIABLE SPARK ENERGY IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINES PARTICULARLY FOR MOTOR VEHICLES
SE457831B (en) * 1987-08-27 1989-01-30 Saab Scania Ab PROCEDURES AND ARRANGEMENTS FOR DETECTING IONIZATION CURRENT IN A COMBUSTION ENGINE IGNITION SYSTEM
US5056497A (en) * 1989-04-27 1991-10-15 Aisin Seiki Kabushiki Kaisha Ignition control system
DE3924985A1 (en) * 1989-07-28 1991-02-07 Volkswagen Ag FULLY ELECTRONIC IGNITION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
JP2552754B2 (en) * 1990-05-18 1996-11-13 三菱電機株式会社 Internal combustion engine combustion detection device
US5293129A (en) * 1990-11-09 1994-03-08 Mitsubishi Denki Kabushiki Kaisha Ionic current sensing apparatus for engine spark plug with negative ignition voltage and positive DC voltage application
US5309888A (en) * 1991-08-02 1994-05-10 Motorola, Inc. Ignition system
JP2536353B2 (en) * 1991-10-04 1996-09-18 三菱電機株式会社 Ion current detection device for internal combustion engine
JPH05149229A (en) * 1991-11-26 1993-06-15 Mitsubishi Electric Corp Ion current detecting device for internal combustion engine
US5337716A (en) * 1992-02-04 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Control apparatus for internal combustion engine
US5446385A (en) * 1992-10-02 1995-08-29 Robert Bosch Gmbh Ignition system for internal combustion engines
US5483818A (en) * 1993-04-05 1996-01-16 Ford Motor Company Method and apparatus for detecting ionic current in the ignition system of an internal combustion engine
JPH06299941A (en) * 1993-04-12 1994-10-25 Nippondenso Co Ltd Ion current detecting device
JP2880058B2 (en) * 1993-12-21 1999-04-05 本田技研工業株式会社 Misfire detection device for internal combustion engine
JP3192541B2 (en) * 1994-01-28 2001-07-30 三菱電機株式会社 Misfire detection circuit for internal combustion engine
DE4437480C1 (en) * 1994-10-20 1996-03-21 Bosch Gmbh Robert Method for monitoring the function of an internal combustion engine for detecting misfires
JP3194676B2 (en) * 1994-11-08 2001-07-30 三菱電機株式会社 Misfire detection device for internal combustion engine
GB9515272D0 (en) * 1994-12-23 1995-09-20 Philips Electronics Uk Ltd An ignition control circuit, and engine system
DE19605803A1 (en) * 1996-02-16 1997-08-21 Daug Deutsche Automobilgesells Circuit arrangement for ion current measurement

Also Published As

Publication number Publication date
US6043660A (en) 2000-03-28
EP0790409A2 (en) 1997-08-20
DE59710359D1 (en) 2003-08-07
ES2166479T3 (en) 2002-04-16
DE59705316D1 (en) 2001-12-20
EP0790408A3 (en) 1999-01-20
EP0790409A3 (en) 1999-01-20
DE59710592D1 (en) 2003-09-25
EP0790408A2 (en) 1997-08-20
EP0790409B1 (en) 2003-08-20
DE19605803A1 (en) 1997-08-21
EP0790406A3 (en) 1999-01-27
US5914604A (en) 1999-06-22
US5758629A (en) 1998-06-02
EP0790406A2 (en) 1997-08-20
EP0790406B1 (en) 2003-07-02

Similar Documents

Publication Publication Date Title
EP0790408B1 (en) Measuring circuit for an ionic current in ignition devices for internal combustion engines
DE19502402C2 (en) Misfire sampling circuit for an internal combustion engine
DE10347252B4 (en) Circuit for measuring the ionization current in a combustion chamber of an internal combustion engine
DE19601353C2 (en) Combustion state detection device for an internal combustion engine
DE19514633C2 (en) Device for detecting misfires in an internal combustion engine
DE19524539C1 (en) Circuit arrangement for ion current measurement in the combustion chamber of an internal combustion engine
DE19517140C2 (en) Device for detecting misfires in an internal combustion engine
EP0752580B1 (en) Measuring circuit for an ionic current
DE2922518C2 (en) Ignition system for internal combustion engine
DE10256456A1 (en) Monitoring method for an actuator and associated driver circuit
DE2734164A1 (en) ELECTRONIC IGNITION CONTROL SYSTEM FOR COMBUSTION ENGINE, IN PARTICULAR FOR MOTOR VEHICLES
DE69511664T2 (en) Device for misfire detection of an internal combustion engine
EP0848161B1 (en) Inductive ignition coils system for motor
DE1639125A1 (en) Analyzer for a multi-cylinder internal combustion engine with spark ignition
DE69412039T2 (en) Method and device of a coil ignition with additional discharges for diagnosis
DE19610862A1 (en) Inductive ignition device
DE4020986C2 (en) Electronic ignition system for an internal combustion engine
DE4305197C2 (en) Ignition device for a multi-cylinder engine
DE19926079A1 (en) Arrangement for detecting internal combustion engine combustion state has discharge current limiter between ignition current path formed by ion discharge at ignition plug, bias device
DE3931947A1 (en) IGNITION DEVICE FOR INTERNAL COMBUSTION ENGINES
DE69516359T2 (en) Misfire detection device and method for an internal gasoline engine
EP1039304B1 (en) Measuring process for a high voltage lead-through and related device
DE112018008224T5 (en) Ion current detection circuit, ignition controller and ignition system
DE4223274A1 (en) DRIVER CIRCUIT FOR INDUCTIVE LOADS
DE2635574B2 (en) Current mirror circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19990211

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

Owner name: DAIMLERCHRYSLER AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010405

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 59705316

Country of ref document: DE

Date of ref document: 20011220

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020204

Year of fee payment: 6

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020115

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2166479

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030207

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090223

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090212

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090206

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100206

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100206

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150228

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59705316

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901