EP0819033B1 - Einrichtung zur durchbruch-früherkennung beim stranggiessen - Google Patents
Einrichtung zur durchbruch-früherkennung beim stranggiessen Download PDFInfo
- Publication number
- EP0819033B1 EP0819033B1 EP96907513A EP96907513A EP0819033B1 EP 0819033 B1 EP0819033 B1 EP 0819033B1 EP 96907513 A EP96907513 A EP 96907513A EP 96907513 A EP96907513 A EP 96907513A EP 0819033 B1 EP0819033 B1 EP 0819033B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- pattern recognition
- value
- probability
- break
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
Definitions
- the continuous shell can be used during the Growth occurs in the mold places where the Strand shell not or only insufficiently hardened. This Growth defects lead as soon as the strand leaves the mold, to a breakthrough in the strand, through which liquid Steel emerges. The resulting damage to the Casting plant forces a longer downtime and causes high repair costs. So you try Growth defects in the shell before it leaves the mold to recognize. If this succeeds, the exit speed will be so reduced that the potential breakthrough can harden.
- Possible breakthrough points are based on the surface temperature profiles found by the in the mold in Temperature sensors attached to the inner wall of the mold be measured. It is known the temperature sensors offset in one or more in the direction of the strand Arrange layers around the strand. When a Fault in the strand shell migrates past the temperature sensors, the measured temperature increases due to the not or only weakly developed strand shell, behind which there is liquid steel, the recorded temperature curves a characteristic in the event of an impending breakthrough Have shape.
- JP-A-4 172 160 the temperatures detected with the temperature sensors neural network, which generates an output signal, if the spatial temperature distribution is one for one impending breakthrough characteristic pattern.
- a reasonably reliable prediction of breakthroughs using neural networks requires sufficient training data for the neural network.
- training data from a facility is not can be easily transferred to another system.
- decision criteria according to which breakthroughs are predicted for the plant operator are essentially invisible.
- the known methods for pattern recognition require fully existing temperature patterns, e.g. Temperature curves, which results in a large amount of memory Has.
- the computational effort is very high, because with everyone Changing the temperature pattern, e.g. if the temperature curve is supplemented by a new temperature value and at the same time the oldest temperature value is deleted, one completely new pattern recognition is required.
- the invention has for its object a device for early detection of breakthroughs, which indicate only a small amount computational effort a safe and for the plant operator understandable detection of possible breakthroughs guaranteed.
- the early breakthrough detection according to the invention is based on a fuzzy pattern recognition, the rules of which are based on process knowledge be derived.
- the ones required for pattern recognition There is only information about the temperature profiles from the currently recorded temperatures and one of the representing the current temperature profile and ongoing updated inner state quantity.
- the pattern recognition can therefore be changed to the previous one for each new temperature value Results of pattern recognition, i.e. the internal state variable, build up so that not a completely new one every time Pattern recognition required due to the temperature curve is.
- there is no need to save the temperature profiles so that overall the pattern recognition by means of the invention Setup faster and more efficiently than procedures which is the pattern recognition based on complete existing patterns.
- Figure 1 shows a schematic representation of a continuous caster.
- a ladle 1 turns liquid steel 2 into one Distributor 3 cast, which the steel on different strands 4 distributed and also as a buffer and separator for non-metallic Particle serves.
- From the distributor 3 flows Steel in a mold 5, the inner walls of which are made of copper and water-cooled channels 6 included. Because of the heat dissipation the steel cools down on the mold inner walls and it a solid strand shell 7 is formed. This encloses the liquid steel, so that the strand 4 after leaving the Chill mold 5 transported via rollers 8 and finally in individual Slabs 9 can be cut.
- the mold is in the inner walls 5 temperature sensors 10 in two, offset in the direction of the strand Layers distributed around the strand. It can several levels or only one level can also be provided. Due to changes in the recorded temperature profiles can be concluded on a weak point in the strand shell 7 will. If an error is discovered, the casting speed reduced, so that the cooling time in the mold 5 increases and a sufficiently strong strand shell on the Can form a defect.
- FIG 3 is an example of that with one of the temperature sensors 10 recorded temperature curve shown when a such errors migrate past the relevant temperature sensor 10. While the adhesive on the temperature sensor 10 passes, a significant rise in temperature is measured. If the adhesive has passed the temperature sensor 10, it drops Temperature drops below the temperature level that is normal Casting conditions prevail. This reduction can be attributed on a thickened strand shell behind the glue due to a reduced speed has arisen there.
- Air cushions are located between the strand 4 and the mold 5 form.
- Figure 4 shows an example of when such occurs Error recorded temperature curve. Because of the low The thermal conductivity of the air is the heat dissipation from line 4 to the mold 5 greatly reduced, so that only one very forms thin strand shell 7. If a crack happens to one of the Temperature sensors 10, it is reflected in the detected Temperature curve as a pronounced slump again. Together makes glue and cracks the cause of over 90% of all Breakthroughs.
- the different growth errors in the strand shell 7 thus cause characteristic patterns in the detected Temperature curves. These patterns arise sequentially by new measured values can be added to a temperature curve.
- the fuzzy logic 12 is able to recognize the pattern only on the basis of the current temperature T (i) and its change ⁇ T (i), ie without Knowledge of the temperature profile.
- the temperature profile T is exemplified of an adhesive, as shown in Figure 6, considered:
- the temperature T is constant under normal casting conditions and their change over time fluctuates very slightly.
- the Probability P for a breakthrough is zero here.
- the temperature T rises.
- the probability P is therefore on a small positive Value, for example 0.1, increased.
- the temperature T, and the change in temperature T over time also increases. Lies now a low probability from the previous step P before, which is synonymous with observing one Is the beginning of the adhesive, then the probability P becomes one medium value, e.g. 0.4, increased. However, is from the previous one Step no low probability P, i.e. of the Beginning of an adhesive, before, the probability P also not changed.
- the temperature increase caused by the adhesive is reached now their maximum value, with the temporal Change in temperature T becomes zero. Been up to this Go through the typical temperature curve of an adhesive at this point in time and so far a medium breakthrough probability P is determined, then the probability P becomes a great value, e.g. 0.7, increased.
- the adhesive has now passed the temperature sensor 10, and the Temperature T drops to medium in the event of a negative temperature change Values.
- the probability then follows the scheme above P further, e.g. to 0.9, increased, but below provided that it already has great value.
- the temperature T finally decreases so far that it below the temperature level under normal casting conditions lies. Once this happens and the probability P due to what has happened so far, a very high value , the probability P is at its maximum Value, e.g. 1.0, increased.
- FIG. 7 shows the fuzzy state graph of the pattern recognition device 11.
- the states i.e. the linguistic values the breakdown probability P (i), form the nodes 14 of the state graph.
- the probability P (i) can be assume the following linguistic values:
- the probability P (i) increases step by step from Z to H only if that Temperature pattern causes the rule sets one after the other R2, R5, R9, R13 and R17 are met. That is with glue or Crack patterns the case.
- the detected temperature pattern gives way only slightly from these reference patterns, so either keep the current state or the next one in a lower state. If the deviations are larger, depending on the current state reached, one of the rule sets will be activated R3, R8, R12, R16 or R20 active and the probability P (i) becomes Z.
- Figure 8 shows an example of a in the fuzzy logic of the Pattern recognition device 11 implemented fuzzy rules, at which in addition to the detected temperature T (i) and the change in temperature ⁇ T (i) the change in casting speed ⁇ v (i) to determine breakthrough probability P (i) is used. Otherwise, the one shown in Figure 7 Fuzzy state graph and that shown in Figure 8 Fuzzy rules are equivalent to each other.
- the rules of the rules give the combinations of linguistic values of the Input variables T (i), ⁇ T (i) and ⁇ v (i) that are met must for the pattern recognition device 11 to be in its state changed or maintained.
- the temperature will be T (i) assigned the following values:
- NB negative large
- NS negative small
- Z zero
- PS positive small
- PM positive medium
- PB positive large.
- NB negative large
- NS negative small
- Z zero
- PS positive small
- PB positive large.
- the internal state variable i.e. the temporarily stored probability P (i) takes the following linguistic values on:
- the inference takes place according to the max-min method and the defuzzification according to the focus method.
- FIG. 9 shows a generalized exemplary embodiment for the pattern recognition device in which the input variables T (i), ⁇ T (i) and ⁇ v (i) are combined in an input vector u (i).
- a first fuzzy logic 16 generates an updated state vector z (i + 1) from the input vector u (i) and a temporarily stored inner state vector z (i), which is temporarily stored in a memory element 17.
- the temporarily stored state vector z (i) and the input vector u (i) are linked together in a second fuzzy logic 18 to form an output vector y .
- FIG. 10 shows an example of a device for predicting the overall probability of breakthroughs on the basis of the individual temperature profiles detected by the temperature sensors 10.
- the patterns of certain growth disorders of the strand shell are not only found in a temperature profile, but also due to the expansion of the growth error and the strand movement in adjacent temperature profiles.
- each temperature sensor 10 is followed by its own pattern recognition device 11, which monitors the temperature profile detected in each case for the occurrence of a predetermined pattern. So that the detection of growth errors in the strand shell takes place more reliably, the prediction values P a and P b supplied by the pattern recognition devices 11 each of two immediately adjacent temperature sensors 10 are combined in a linking device 19 to form a local breakdown probability P loc .
- Erroneous pattern recognitions of an individual pattern recognition device 11 are corrected in that the local breakdown probability P loc is only assigned a large value if both P a and P b each have large values. Furthermore, the detection of adhesives or cracks also improves, since increased values for the individual probabilities P a , P b can be used to infer a local breakthrough probability P loc that is greater than each of the individual probabilities P a , P b .
- the combination of the individual probabilities P a and P b to the local breakdown probability P loc is therefore preferably based on fuzzy inferences.
- the pattern recognition results P a and P b from the pattern recognition devices 11 of two adjacent temperature sensors 10 can have a time offset for the same growth error .
- both pattern recognition results P a and P b can be combined in the linking device 19, they must be present at the same time. For this reason, each pattern recognition device 11 is followed by a delay device 20 with which this time offset is compensated.
- the pattern recognition in the pattern recognition devices 11 must be independent of different system and operating conditions be. Therefore, there is 10 between each temperature sensor and the associated pattern recognition device 11 a device 22 arranged for the processing of measured values in which the Input variables of the pattern recognition device 11, that is to say the Temperature T, the temporal change in temperature ⁇ T and normalized the change in the casting speed ⁇ v over time or transformed that different plant conditions or changing process conditions the detection of glue and crack patterns do not affect or only slightly.
- FIG. 11 shows a block diagram of such a device 22 for processing measured values.
- the temperature values T (i) measured in a time step i are, depending on different system and operating conditions, relatively constant between approx. 100 ° C. and 200 ° C. under normal casting conditions. Adhesives and cracks cause deviations of up to 50 ° C from this constant offset temperature T 0 .
- the pattern recognition device 11 can only recognize adhesive and cracking patterns if they start from a constant temperature level. To achieve this, an offset temperature T 0 is determined by means of a first-order time-discrete filter 23 and subtracted from the current temperature value T (i) in a subtracting device 24.
- T A (i) T (i) -T 0 (i) is optionally smoothed to suppress noise in a filter 25 and then fed to a normalization device 26, in which the temperature deviations caused by typical growth errors from the normal temperature level are limited to a value range between zero and one.
- the normalized temperature value T A (i) thus obtained is then fed to the pattern recognition device 11.
- the pattern recognition device 11 also receives the temporal change in the temperature ⁇ T A (i), which is formed in a device 27 by means of the difference quotient from the output signal of the subtracting device 24 and subsequently normalized to a value range between zero and one in a further normalization device 28.
- the change in the casting speed over time can also be an input variable of the pattern recognition device 11.
- the change in the casting speed ⁇ v (i) over time is determined in a device 29 by means of the difference quotient from the casting speed v (i).
- the casting speed v (i) is not increased steadily, but in leaps and bounds.
- the resulting temperature rise which arises from the shorter cooling time in the mold 5, however, takes place continuously over a certain period of time.
- the influence of changes in the casting speed over time on the temperature profiles can be taken into account by changing the rules for pattern recognition.
- Another way of reducing the influence of the casting speed changes is to eliminate the temperature changes caused thereby in the recorded temperature profiles before the pattern recognition. This is done by averaging all the temperature values T (i) simultaneously delivered by the temperature sensors 10 on one level in the mold 5 and subtracting the mean value MT (i) thus obtained from the individual temperature values T (i) in a subtractor 32.
- the adaptation of the pattern recognition by ⁇ v A (i) can also be omitted, so that the structure of the device for early breakthrough detection becomes simpler.
- the mean value MT (i) of the comparison device 32 is fed via a controllable switching device 33, which switches the mean value MT (i) on to the comparison device 32 only when the change in the casting speed ⁇ v A (i) exceeds a predetermined threshold value v S.
- the values ⁇ v A (i) and v S are fed to a threshold value detector 34, which controls the controllable switching device 33 on the output side.
- T A (i) changes abruptly due to the connection of the mean value MT (i)
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Radiation Pyrometers (AREA)
Description
- Figur 1
- den prinzipiellen Aufbau einer Stranggießanlage,
- Figur 2
- eine in der Stranggießanlage verwendete Kokille mit Temperatursensoren in den Kokilleninnenwänden,
- Figuren 3 und 4
- Beispiele für die mit den Temperatursensoren erfaßten Temperaturverläufe bei unterschiedlichen Wachstumsfehlern in der Strangschale,
- Figur 5
- ein Beispiel für eine Fuzzy-Mustererkennungseinrichtung zur Bildung eines Vorhersagewertes für die Durchbruch-Wahrscheinlichkeit aufgrund des mit einem Temperatursensor erfaßten Temperaturverlaufs,
- Figur 6
- ein Beispiel für den beim Auftreten eines bestimmten Wachstumsfehlers erfaßten Temperaturverlauf zusammen mit der in Abhängigkeit davon ermittelten Durchbruch-Wahrscheinlichkeit,
- Figur 7
- ein Beispiel für die Fuzzy-Zustände der Fuzzy-Mustererkennungseinrichtung,
- Figur 8
- ein Beispiel für das Fuzzy-Regelwerk der Mustererkennungseinrichtung,
- Figur 9
- ein verallgemeinertes Ausführungsbeispiel für die Mustererkennungseinrichtung,
- Figur 10
- ein Beispiel für eine Einrichtung zur Vorhersage der Gesamtwahrscheinlichkeit von Durchbrüchen und
- Figur 11
- ein Beispiel für die Meßwertaufbereitung der der Mustererkennungseinrichtung zugeführten Signale.
Claims (10)
- Einrichtung zur Durchbruch-Früherkennung beim Stranggießen mit einer Kokille (5), in der Temperatursensoren (10) um den Strang (4) herum verteilt angeordnet sind, wobei jedem Temperatursensor (10) jeweils eine Mustererkennungseinrichtung (11) zugeordnet ist, die aus der erfaßten Temperatur (T(i)) und einer den bisherigen Temperaturverlauf repräsentierenden inneren Zustandsgröße (P(i)) auf der Grundlage von Fuzzy-Folgerungen die innere Zustandsgröße (P(i)) aktualisiert und ausgangsseitig einen aktuellen Vorhersagewert (P(i+1)) für die Durchbruch-Wahrscheinlichkeit erzeugt.
- Einrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß der Vorhersagewert (P(i+1)) mit der inneren Zustandsgröße identisch ist. - Einrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß jede Mustererkennungseinrichtung (11) den aktuellen Wert (T(i)) und die Änderung (ΔT(i)) der von dem jeweils zugeordneten Temperatursensor (10) erfaßten Temperatur auswertet. - Einrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß die Mustererkennungseinrichtung (11) zur Erzeugung des Vorhersagewertes (P(i+1)) für die Durchbruch-Wahrscheinlichkeit zusätzlich die Änderung der Gießgeschwindigkeit (Δv(i)) auswertet. - Einrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß zwischen jedem Temperatursensor (10) und der zugeordneten Mustererkennungseinrichtung (11) eine Einrichtung (22) zur Meßwertaufbereitung liegt, in der von der erfaßten Temperatur (T(i)) ein aufgrund des bisherigen Temperaturverlaufs ermittelter zeitlicher Mittelwert (T0(i)) subtrahiert wird. - Einrichtung nach Anspruch 5,
dadurch gekennzeichnet,
daß in der Einrichtung (22) zur Meßwertaufbereitung von der erfaßten Temperatur (T(i)) zusätzlich ein Mittelwert (MT(i)) subtrahiert wird, der aus den mit allen jeweils in ein und derselben Ebene um den Strang (4) herum verteilten Temperatursensoren (10) gleichzeitig erfaßten Temperaturwerten gebildet wird. - Einrichtung nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
daß die jeweils mindestens zwei unmittelbar benachbarten Temperatursensoren (10) zugeordneten Mustererkennungseinrichtungen (11) ausgangsseitig jeweils an einer Verknüpfungseinrichtung (19) angeschlossen sind, die die von den Mustererkennungseinrichtungen (11) gelieferten Vorhersagewerte (Pa, Pb) zu einem Wahrscheinlichkeitswert (Ploc) für einen lokalen Durchbruch im Bereich der benachbarten Temperatursensoren (10) verknüpft. - Einrichtung nach Anspruch 7,
dadurch gekennzeichnet,
daß zumindest denjenigen Mustererkennungseinrichtungen (11), deren zugeordnete Temperatursensoren (10) in der Kokille (5) oberhalb der übrigen Temperatursensoren (10) angeordnet sind, jeweils eine Verzögerungseinrichtung (20) nachgeordnet ist. - Einrichtung nach Anspruch 8,
dadurch gekennzeichnet,
daß die Verzögerungseinrichtung (20) ausgangsseitig jeweils den Maximalwert einer vorgegebenen Anzahl der ihr zuletzt zugeführten Vorhersagewerte (P(i+1)) erzeugt. - Einrichtung nach einem der Ansprüche 7 bis 9,
dadurch gekennzeichnet,
daß den Verknüpfungseinrichtungen (19) eine gemeinsame Logikschaltung (21) nachgeordnet ist, die aus den Wahrscheinlichkeiten (Ploc) für lokale Durchbrüche einen Wert (Pges) für die Gesamtwahrscheinlichkeit eines Durchbruchs ermittelt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96907513A EP0819033B1 (de) | 1995-04-03 | 1996-03-28 | Einrichtung zur durchbruch-früherkennung beim stranggiessen |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95104909 | 1995-04-03 | ||
EP95104909 | 1995-04-03 | ||
PCT/EP1996/001371 WO1996031304A1 (de) | 1995-04-03 | 1996-03-28 | Einrichtung zur durchbruch-früherkennung beim stranggiessen |
EP96907513A EP0819033B1 (de) | 1995-04-03 | 1996-03-28 | Einrichtung zur durchbruch-früherkennung beim stranggiessen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0819033A1 EP0819033A1 (de) | 1998-01-21 |
EP0819033B1 true EP0819033B1 (de) | 1998-09-16 |
Family
ID=8219152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96907513A Expired - Lifetime EP0819033B1 (de) | 1995-04-03 | 1996-03-28 | Einrichtung zur durchbruch-früherkennung beim stranggiessen |
Country Status (7)
Country | Link |
---|---|
US (1) | US5904202A (de) |
EP (1) | EP0819033B1 (de) |
CN (1) | CN1072065C (de) |
CA (1) | CA2217156C (de) |
DE (1) | DE59600581D1 (de) |
ES (1) | ES2122805T3 (de) |
WO (1) | WO1996031304A1 (de) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998024009A1 (de) * | 1996-11-28 | 1998-06-04 | Siemens Aktiengesellschaft | Verfahren zur parametrierung eines zum vergleich eines messsignals mit einem mustersignal dienenden fuzzy-automaten |
DE19734711C1 (de) | 1997-08-11 | 1999-04-15 | Siemens Ag | Regler mit zeitdiskreten, dynamischen Fuzzy-Regelgliedern |
DE19808998B4 (de) * | 1998-03-03 | 2007-12-06 | Siemens Ag | Verfahren und Einrichtung zur Durchbruchfrüherkennung in einer Stranggußanlage |
ATE281260T1 (de) | 1998-07-21 | 2004-11-15 | Dofasco Inc | Auf einem multivariablen statistischen modell basierendes system zur darstellung des betriebs einer stranggiessanlage und detektion bevorstehender durchbrüche |
WO2000051762A1 (fr) * | 1999-03-02 | 2000-09-08 | Nkk Corporation | Procede et dispositif permettant, en coulee continue, de predire et de reguler la configuration d'ecoulement de l'acier en fusion |
CA2414167A1 (en) * | 2002-12-12 | 2004-06-12 | Dofasco Inc. | Method and online system for monitoring continuous caster start-up operation and predicting start cast breakouts |
JP4430411B2 (ja) * | 2004-01-21 | 2010-03-10 | ヤマハ発動機株式会社 | 低圧鋳造用鋳造機 |
US6885907B1 (en) | 2004-05-27 | 2005-04-26 | Dofasco Inc. | Real-time system and method of monitoring transient operations in continuous casting process for breakout prevention |
CN101379381B (zh) * | 2006-02-01 | 2012-08-22 | 新日本制铁株式会社 | 断裂预测方法 |
DE102008028481B4 (de) * | 2008-06-13 | 2022-12-08 | Sms Group Gmbh | Verfahren zur Vorhersage der Entstehung von Längsrissen beim Stranggießen |
CN103209784B (zh) * | 2010-09-29 | 2015-09-09 | 现代制铁株式会社 | 铸型内凝固壳的裂纹诊断装置及其方法 |
JP5673100B2 (ja) * | 2010-12-28 | 2015-02-18 | Jfeスチール株式会社 | ブレイクアウト予知方法 |
US9568931B2 (en) * | 2013-06-19 | 2017-02-14 | Nec Corporation | Multi-layer control framework for an energy storage system |
DE102018100992A1 (de) * | 2018-01-17 | 2019-07-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Überwachungsvorrichtung für eine Kühlvorrichtung |
EP4124400A1 (de) * | 2021-07-28 | 2023-02-01 | Primetals Technologies Austria GmbH | Verfahren zur feststellung einer defektwahrscheinlichkeit eines gegossenen produktabschnittes |
CN113887133A (zh) * | 2021-09-27 | 2022-01-04 | 中国计量大学 | 一种基于深度学习的压铸系统自动冷却方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4949777A (en) * | 1987-10-02 | 1990-08-21 | Kawasaki Steel Corp. | Process of and apparatus for continuous casting with detection of possibility of break out |
JPH0722811B2 (ja) * | 1990-11-02 | 1995-03-15 | 新日本製鐵株式会社 | 連続鋳造の拘束性ブレークアウト予知方法 |
JP3035688B2 (ja) * | 1993-12-24 | 2000-04-24 | トピー工業株式会社 | 連続鋳造におけるブレークアウト予知システム |
US5714866A (en) * | 1994-09-08 | 1998-02-03 | National Semiconductor Corporation | Method and apparatus for fast battery charging using neural network fuzzy logic based control |
US5751910A (en) * | 1995-05-22 | 1998-05-12 | Eastman Kodak Company | Neural network solder paste inspection system |
-
1996
- 1996-03-28 WO PCT/EP1996/001371 patent/WO1996031304A1/de active IP Right Grant
- 1996-03-28 DE DE59600581T patent/DE59600581D1/de not_active Expired - Lifetime
- 1996-03-28 ES ES96907513T patent/ES2122805T3/es not_active Expired - Lifetime
- 1996-03-28 CN CN96192860A patent/CN1072065C/zh not_active Expired - Fee Related
- 1996-03-28 CA CA002217156A patent/CA2217156C/en not_active Expired - Lifetime
- 1996-03-28 EP EP96907513A patent/EP0819033B1/de not_active Expired - Lifetime
- 1996-03-28 US US08/930,926 patent/US5904202A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CN1072065C (zh) | 2001-10-03 |
ES2122805T3 (es) | 1998-12-16 |
CA2217156A1 (en) | 1996-10-10 |
WO1996031304A1 (de) | 1996-10-10 |
DE59600581D1 (de) | 1998-10-22 |
CN1189113A (zh) | 1998-07-29 |
US5904202A (en) | 1999-05-18 |
CA2217156C (en) | 2006-11-14 |
EP0819033A1 (de) | 1998-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0819033B1 (de) | Einrichtung zur durchbruch-früherkennung beim stranggiessen | |
DE60311739T2 (de) | Verfahren und Online-Überwachungssystem zum Angiessen einer Stranggiessanlage und Verfahren zur Durchbruchfrüherkennung beim Stranggiessen von Stahl | |
EP0813701B1 (de) | Leitsystem für eine anlage der grundstoff- oder der verarbeitenden industrie o.ä. | |
DE69921602T2 (de) | Auf einem multivariablen statistischen modell basierendes system zur darstellung des betriebs einer stranggiessanlage und detektion bevorstehender durchbrüche | |
EP2222426B1 (de) | Vorfahren zur steuerung oder regelung einer temperatur | |
DE4008510A1 (de) | Regeleinheit mit optimal-entscheidungsmitteln | |
AT525791B1 (de) | Überwachungsverfahren für eine Stranggießkokille mit Aufbau einer Datenbank | |
DE102005022922A1 (de) | Echtzeitsystem und -verfahren zum Überwachen transienter Vorgänge bei einem Stranggießprozess zur Ausbruchsverhinderung | |
EP2291252A1 (de) | Verfahren zur vorhersage der entstehung von längsrissen beim stranggiessen | |
EP0756219A2 (de) | Verfahren zur Überwachung von Produkteigenschaften und Verfahren zur Regelung eines Herstellungs-prozesses | |
EP0897786A2 (de) | Verfahren zum Regeln einer Spritzgiessanlage für Kunststoff-Materialien | |
DE4416317B4 (de) | Verfahren und Regeleinrichtung zur Regelung eines materialverarbeitenden Prozesses | |
WO2012025438A1 (de) | Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose | |
DE4131765A1 (de) | Regelparameter-verbesserungsverfahren fuer industrielle anlagen | |
EP1324845B1 (de) | Verfahren zum betreiben einer anlage der grundstoffindustrie | |
EP1455976B1 (de) | Maulweitenregelung an segmenten für stranggie anlagen | |
DE19881041B4 (de) | Verfahren zur Steuerung und Voreinstellung eines Stahlwerkes oder von Teilen eines Stahlwerkes | |
EP2476031B1 (de) | Verfahren zum überwachen einer walze in einer anlage zum walzen von metall | |
DE10310357A1 (de) | Gießwalzanlage zur Erzeugen eines Stahlbandes | |
DE4442087C2 (de) | Einrichtung zur Durchbruch-Früherkennung beim Stranggießen | |
DE19623671C2 (de) | Verfahren und Einrichtung zum Führen eines Prozesses in der Grundstoffindustrie | |
EP1431927A1 (de) | Verfahren zur Schätzung der Restlebensdauer einer Vorrichtung | |
EP3488948B1 (de) | Verfahren zur analyse von fehlerursachen beim stranggiessen | |
DE10204064A1 (de) | Maulweitenregelung an Segmenten für Stranggießanlagen | |
DE102023203745A1 (de) | Verfahren zur Optimierung der Ausgangstemperaturen einer Metallschmelze wenigstens an Primär- und Sekundäraggregaten eines Schmelzbetriebs mit umlaufenden Gießpfannen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970918 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FI FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19980216 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FI FR GB |
|
REF | Corresponds to: |
Ref document number: 59600581 Country of ref document: DE Date of ref document: 19981022 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19981117 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2122805 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20110314 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111001 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120312 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120518 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120328 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120404 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130408 Year of fee payment: 18 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130328 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59600581 Country of ref document: DE Effective date: 20131001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130328 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140611 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130329 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20141128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131001 |