EP0691662B1 - Summenstromwandler für elektronische Schutzgeräte - Google Patents
Summenstromwandler für elektronische Schutzgeräte Download PDFInfo
- Publication number
- EP0691662B1 EP0691662B1 EP95109486A EP95109486A EP0691662B1 EP 0691662 B1 EP0691662 B1 EP 0691662B1 EP 95109486 A EP95109486 A EP 95109486A EP 95109486 A EP95109486 A EP 95109486A EP 0691662 B1 EP0691662 B1 EP 0691662B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- current transformer
- differential
- winding
- transformer according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004804 winding Methods 0.000 claims description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 2
- 239000000696 magnetic material Substances 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 239000011162 core material Substances 0.000 description 54
- 230000035699 permeability Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000005291 magnetic effect Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/08—Cores, Yokes, or armatures made from powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/20—Instruments transformers
- H01F38/22—Instruments transformers for single phase ac
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H83/00—Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
- H01H83/14—Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
- H01H83/144—Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer
Definitions
- the invention relates to a total current transformer with a wound, self-contained core made of highly permeable, soft magnetic material for detecting the total current of power lines passing through the core, in which the winding of the core is connected to a circuit breaker via an amplifier.
- Such a total current transformer is described in WO 93/16479.
- the core for this known summation current transformer can optionally consist of sintered, ferromagnetic material, of stacked disks or wound strips or wires.
- US 5 235 488 describes a total current transformer with a wound core made of an iron-nickel alloy. All these cores have in common that insulating layers are provided either by small air gaps in the material or by the division into disks or by winding, which reduce eddy currents induced in the material by the alternating field acting on them. The consequence of this is that such cores - particularly because of their small dimensions - have a low mechanical strength and are therefore sensitive to shock loads and also have a low strength for the winding.
- a summation current transformer is connected to the input of an amplifier, i.e. the power for switching a relay is not taken from the core itself, it requires a relatively low transmission power and can therefore be designed with small dimensions.
- the reduction in size is essentially limited by the associated mechanical weakening of the summation current transformer core and by the inevitable Increasing the ohmic resistance of the winding, since this must then consist of relatively thin wires.
- this ohmic resistance of the winding of the summation current transformer core is decisive, among other things, for the amplification factor of the downstream amplifier. Since the ohmic resistance changes with the temperature, the amplifier will also have a temperature response, so that the accuracy of the tripping characteristic suffers.
- EP 0 392 204 A2 describes the use of a finely crystalline iron alloy as a material for a magnetic core of a residual current circuit breaker.
- a nickel-iron alloy with approx. 77 percent nickel is used as the material.
- the material is subjected to an extensive annealing treatment.
- the object of the present invention is now to provide a summation current transformer which can have relatively small dimensions and nevertheless has a mechanically firm core and a low temperature response.
- the core is solid, that is, without insulating intermediate layers or air gaps that divide the core cross section, that the material of the core consists of a metallic alloy with a content of at least 40 percent nickel, which is a positive Has temperature coefficient of electrical resistance, and that the wall thickness in relation to the average geometric diameter of the core is chosen so that it is not less than 0.01 times and not greater than 0.5 times the average geometric diameter.
- the total current transformer 1 in FIG. 1 consists of a core 2 with a winding 3. Power lines 5 and 6 are passed through the core and connect an AC voltage source 8 to a consumer 9 via a circuit breaker 7.
- the supply lines of an amplifier 10 are connected to the power lines 5 and 6, the input lines of which are connected to the winding 3 of the summation current transformer 1 and the output lines of which are connected to the turn-off winding 11 of the circuit breaker 7.
- FIG. 2 When using a solid core made of a metallic alloy with a high nickel content, an equivalent circuit diagram for the circuit results, as shown in FIG. 2.
- Metallic nickel-iron alloys containing high nickel have a magnetic permeability, the values of which are orders of magnitude higher than are required for use as the core of a summation current transformer.
- the core 2 thus has a very high inductance.
- a flow in the core 2 causes eddy currents to spread, since they are not prevented by air gaps or other insulating layers that divide the core cross section. These eddy currents generate an opposing field to the alternating field in the core 2 caused by the total current; they are only limited by the electrical resistance of the material from which the core 2 is made.
- core 2 is therefore represented by an ohmic resistor R2 and an inductor L2.
- the winding 3 is divided into an inductor N3 and a resistor R3, which characterizes the copper resistance of the winding.
- the circuit in FIG. 2 is tuned so that the protective switch 7 is triggered by the amplifier 10 at the desired maximum total current value. If the ambient temperature now increases, the copper resistance R3 of the winding 3 also increases, so that the input voltage at the amplifier 10 would decrease. On the other hand, the resistance R2 also increases, since the material of the core 2 has a positive temperature coefficient of the electrical resistance. However, the increase in the resistance R2 means that the eddy currents in the core 2 decrease and the field generated by the total current is less weakened. This necessitates a higher AC permeability of the core 2 and leads to an increase in the induced voltage in the winding 3 and thus at the input of the amplifier 10.
- the core 2 can be produced, for example, by cutting it off a tube or by extrusion.
- Fig. 3 shows a divided core in a circular shape
- Fig. 4 such a rectangular shape
- Fig. 5 shows a core of two U-halves, which are to be assembled overlapped.
- These cores have the advantage that the winding is known Way is easier to apply and that it can be pushed wrapped over the core parts.
- the overlap area in FIG. 5 does indeed cause an air gap, albeit small, to be present on part of the core. A significant reduction in the eddy currents does not occur as a result, so that the level of the eddy currents is still determined almost completely by the conductivity of the core material and the temperature-compensating effect is retained.
- Fig. 6 for an embodiment of a core according to the invention with 1000 turns for winding 3 and a winding resistance of 50 ohms and a core cross section of 0.03 cm 2 and an iron length of 4.15 cm
- the output voltage of the amplifier 10 that is Voltage on the winding 11 of the circuit breaker 7 shown depending on the AC permeability, which can result from different core material, different annealing treatments.
- the solid curve is the output voltage at room temperature, the dashed curves are obtained if a temperature of + 70 ° or -20 ° C is used.
- the use of the summation current transformer according to the invention means that, on the one hand, one has a mechanically very strong, practically directly wound core and, moreover, the temperature response can be compensated for by the ohmic resistance of the winding of the summation current transformer core.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transformers For Measuring Instruments (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
Description
- Die Erfindung betrifft einen Summenstromwandler mit einem bewickelten, in sich geschlossenen Kern aus hochpermeablem weichmagnetischen Material zur Erfassung des Summenstromes von durch den Kern hindurchtretenden Stromleitungen, bei dem die Wicklung des Kerns über einen Verstärker an einen Schutzschalter angeschlossen ist.
- Ein derartiger Summenstromwandler ist in WO 93/16479 beschrieben. Der Kern für diesen bekannten Summenstromwandler kann wahlweise aus gesintertem, ferromagnetischem Material, aus aufeinandergestapelten Scheiben oder gewickelten Bändern oder Drähten bestehen. In US 5 235 488 ist ein Summenstromwandler mit einem gewickelten Kern aus einer Eisen-Nickel-Legierung beschrieben. Allen diesen Kernen ist gemeinsam, daß entweder durch kleine Luftspalte im Material oder durch die Aufteilung in Scheiben oder durch Wickeln Isolierschichten vorgesehen sind, die durch das einwirkende Wechselfeld induzierte Wirbelströme im Material vermindern. Dies hat zur Folge, daß derartige Kerne - besonders wegen ihrer kleinen Abmessungen - eine geringe mechanische Festigkeit aufweisen und daher gegen Schockbeanspruchungen empfindlich sind und auch für die Bewicklung eine geringe Festigkeit aufweisen.
- Wenn ein Summenstromwandler an den Eingang eines Verstärkers angeschlossen wird, die Leistung für das Schalten eines Relais also nicht dem Kern selbst entnommen wird, so benötigt er eine relativ geringe Übertragungsleistung und kann daher mit kleinen Abmessungen ausgeführt werden. Die Verkleinerung der Abmessungen wird im wesentlichen begrenzt durch die damit verbundene mechanische Schwächung des Summenstromwandlerkerns und durch die unvermeidliche Erhöhung des ohmschen Widerstandes der Wicklung, da diese dann aus relativ dünnen Drähten bestehen muß. Dieser ohmsche Widerstand der Wicklung des Summenstromwandlerkerns ist aber unter anderem maßgebend für den Verstärkungsfaktor des nachgeschalteten Verstärkers. Da der ohmsche Widerstand sich mit der Temperatur ändert, wird auch der Verstärker einen Temperaturgang aufweisen, so daß die Genauigkeit der Auslösecharakteristik darunter leidet.
- In EP 0 392 204 A2 wird die Verwendung einer feinkristallinen Eisenlegierung als Material für einen Magnetkern eines Fehlerstrom-Schutzschalters beschrieben. Um eine geringe Temperaturabhängigkeit der magnetischen Eigenschaften des Kerns zu erzielen, wird als Material eine Nickel-Eisen-Legierung mit ca. 77 Prozent Nickel eingesetzt. Das Material wird einer aufwendigen Glühbehandlung unterzogen.
- Aufgabe der vorliegenden Erfindung ist es nun, einen Summenstromwandler anzugeben, der relativ kleine Abmessungen haben kann und trotzdem einen mechanisch festen Kern und einen geringen Temperaturgang besitzt.
- Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Kern massiv, das heißt ohne isolierende Zwischenlagen oder Luftspalte, die den Kernquerschnitt aufteilen, ausgebildet ist, daß das Material des Kerns aus einer metallischen Legierung mit einem Gehalt von mindstens 40 Prozent Nickel besteht, das einen positiven Temperaturkoeffizienten des elektrischen Widerstandes besitzt, und daß die Wandstärke im Verhältnis zum mittleren geometrischen Durchmesser des Kerns so gewählt ist, daß sie nicht kleiner als das 0,01-fache und nicht größer als das 0,5-fache des mittleren geometrischen Durchmessers beträgt.
- Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
- Fig. 1 zeigt die Schaltung des Summenstromwandlers beim Einsatz für eine elektronische Schutzeinrichtung;
- Fig. 2 enthält ein Ersatzschaltbild zur Erläuterung der Wirkungsweise;
- in den Fig. 3 bis 5 sind mögliche weitere Kernformen dargestellt und
- in Fig. 6 ist der Temperaturgang eines erfindungsgemäßen Kerns dargestellt.
- Der Summenstromwandler 1 in Fig. 1 besteht aus einem Kern 2 mit einer Wicklung 3. Durch den Kern sind Stromleitungen 5 und 6 hindurchgeführt, die über einen Schutzschalter 7 eine Wechselspannungsquelle 8 mit einem Verbraucher 9 verbinden. An die Stromleitungen 5 und 6 sind die Versorgungsleitungen eines Verstärkers 10 angeschlossen, dessen Eingangsleitungen mit der Wicklung 3 des Summenstromwandlers 1 und dessen Ausgangsleitungen mit der Ausschaltwicklung 11 des Schutzschalters 7 verbunden sind.
- Wenn der Summenstrom, der durch die in den Stromleitungen 5 und 6 fließenden Ströme beispielsweise infolge eines Erdschlusses nicht Null ist, so wird in dem Kern 2 des Summenstromwandlers 1 ein Wechselfluß erzeugt, der eine Spannung in der Wicklung 3 induziert, die ihrerseits über den Verstärker 10 die Auslösung des Schutzschalters 7 bewirkt.
- Bei Verwendung eines Massivkerns aus einer metallischen Legierung mit hohem Nickelgehalt ergibt sich ein Ersatzschaltbild für die Schaltung, wie es in Fig. 2 dargestellt ist. Hochnickelhaltige metallische Nickel-Eisen-Legierungen besitzen eine magnetische Permeabilität, deren Werte um Größenordnungen höher sind, als sie für den Einsatz als Kern eines Summenstromwandlers benötigt werden. Der Kern 2 besitzt damit eine sehr hohe Induktivität. Da er jedoch massiv ausgeführt ist, bewirkt ein Fluß in dem Kern 2, daß sich Wirbelströme ausbreiten können, da sie durch Luftspalte oder andere isolierende Schichten, die den Kernquerschnitt aufteilen, nicht gehindert werden. Diese Wirbelströme erzeugen ein Gegenfeld zu dem durch den Summenstrom bedingten Wechselfeld in dem Kern 2; sie werden nur begrenzt durch den elektrischen Widerstand des Materials, aus dem der Kern 2 besteht. Im Ersatzschaltbild ist der Kern 2 daher durch einen ohmschen Widerstand R2 und eine Induktivität L2 dargestellt. Die Wicklung 3 ist im Ersatzschaltbild nach Fig. 2 aufgeteilt in eine Induktivität N3 und einen Widerstand R3, der den Kupferwiderstand der Wicklung kennzeichnet.
- Es wird angenommen, daß die Schaltung in Fig. 2 so abgestimmt ist, daß bei dem gewünschten maximalen Summenstromwert eine Auslösung des Schutzschalters 7 über den Verstärker 10 erfolgt. Wenn sich nun die Umgebungstemperatur erhöht, erhöht sich auch der Kupferwiderstand R3 der Wicklung 3, so daß die Eingangsspannung am Verstärker 10 sinken würde. Andererseits erhöht sich aber auch der Widerstand R2, da das Material des kernes 2 einen positiven Temperaturkoeffizienten des elektrischen Widerstandes besitzt. Die Erhöhung des Widerstandes R2 bedingt aber, daß die Wirbelströme in dem Kern 2 abnehmen und das durch den Summenstrom erzeugte Feld weniger schwächen. Dies bedingt eine höhere Wechselstrompermeabilität des Kernes 2 und führt zu einer Erhöhung der induzierten Spannung in der Wicklung 3 und damit am Eingang des Verstärkers 10. Hieraus ist ersichtlich, daß durch die bewußte Inkaufnahme von nennenswerten Wirbelströmen durch Verwendung eines Massivkerns eine Temperaturkompensation der Schaltung möglich ist; in der Praxis hat sich herausgestellt, daß die Kompensation optimal ist, wenn - abhängig von dem jeweils verwendeten Material und der Kernform - die Wandstärke des Kernes 2 im Verhältnis zu dem mittleren Durchmesser einen Wert im Bereich von 0,01 bis 0,5 aufweist. Die besonders hohe statische Permeabilität der erfindungsgemäß verwendeten hochnickelhaltigen Legierung gestattet es außerdem, den Kern in verschiedenen geometrischen Formen und auch geteilt aus zwei oder mehr Kernteilen zusammenzusetzen.
- Der Kern 2 kann zum Beispiel durch Abtrennen von einem Rohr oder durch Fließpressen hergestellt werden.
- Fig. 3 zeigt einen geteilten Kern in Kreisform, Fig. 4 einen solchen in Rechteckform und Fig. 5 einen Kern aus zwei U-Hälften, die überlappt zusammenzusetzen sind. Diese Kerne besitzen den Vorteil, daß die Wicklung in bekannter Weise leichter aufzubringen ist und daß sie fertig gewickelt über die Kernteile geschoben werden kann. Der Überlappungsbereich in Fig. 5 bewirkt zwar, daß auf einem Teil des Kerns ein wenn auch kleiner Luftspalt vorhanden ist. Eine wesentliche Verminderung der Wirbelströme tritt dadurch nicht ein eintreten, so daß nach wie vor die Höhe der Wirbelströme nahezu vollständig von der Leitfähigkeit des Kernmaterials bestimmt wird und der temperatur-kompensierende Effekt erhalten bleibt.
- In Fig. 6 ist für ein Ausführungsbeispiel eines erfindungsgemäßen Kerns mit 1000 Windungen für die Wicklung 3 und einem Wicklungswiderstand von 50 Ohm sowie einem Kernquerschnitt von 0,03 cm2 und einer Eisenlänge von 4,15 cm, die Ausgangsspannung des Verstärkers 10, also die Spannung an der Wicklung 11 des Schutzschalters 7 abhängig von der Wechselstrompermeabilität dargestellt, die sich durch unterschiedliches Kernmaterial, unterschiedliche Glühbehandlungen ergeben kann. Die ausgezogene Kurve ist damit die Ausgangsspannung bei Raumtemperatur, die gestrichelten Kurven ergeben sich, wenn man eine Temperatur von +70° bzw. -20°C zugrundelegt. Man sieht hier einerseits, daß eine sehr gute Kompensation des Temperaturganges ermöglicht wird, und daß andererseits bei einer Wechselstrompermeabilität von mehr als 15 000 oder 20 000 keine wesentliche Änderung der Ausgangsspannung mehr auftritt, so daß bei diesem Anwendungsfall ohne weiteres die zur Temperaturkompensation verwendete Schwächung der statischen Permeabilität des Kernmaterials durch die im Massivkern auftretenden Wirbelströme in Kauf genommen werden kann.
- Dies gilt umso mehr, als tatsächlich Verluste durch Wirbelströme nur auftreten, wenn ein Fehlerfall, d. h. ein Summenstrom verschieden von Null, vorliegt, so daß also nur kurzzeitig vom Auftreten des Fehlers bis zum Abschalten des Schutzschalters 7 ein Fluß im Kern 2 vorhanden ist. Eine Aufheizung des Kerns 2 im Normalbetrieb des Summenstromwandlers findet also nicht statt. Durch die Verwendung des erfindungsgemäßen Summenstromwandlers wird erreicht, daß man einerseits einen mechanisch sehr festen, praktisch direkt bewickelbaren Kern besitzt und außerdem den Temperaturgang bedingt durch den ohmschen Widerstand der Wicklung des Summenstromwandlerkerns ausgleichen kann.
Claims (4)
- Summenstromwandler (1) mit einem bewickelten, in sich geschlossenen Kern (2) aus hochpermeablem weichmagnetischem Material zur Erfassung des Summenstromes von durch den Kern (2) hindurchtretenden Stromleitungen (5, 6), bei dem die Wicklung des Kerns (2) über einen Verstärker (10) an einen Schutzschlater (7) angeschlossen ist,
dadurch gekennzeichnet,- daß der Kern (2) massiv, das heißt ohne isolierende Zwischenlagen oder Luftspalte, die den Kernquerschnitt aufteilen, ausgebildet ist,- daß das Material des Kerns (2) aus einer metallischen Legierung mit einem Gehalt von mindestens 40 Prozent Nickel besteht, das einen positiven Temperaturkoeffizienten des elektrischen Widerstandes besitzt,- daß die Wandstärke im Verhältnis zum mittleren geometrischen Durchmesser des Kerns (2) so gewählt ist, daß sie nicht kleiner als das 0,01-fache und nicht größer als das 0,5-fache des mittleren geometrischen Durchmessers beträgt. - Summenstromwandler nach Anspruch 1,
dadurch gekennzeichnet,
daß der Kern (2) aus mehreren Teilen zusammengesetzt ist. - Summenstromwandler nach Anspruch 1,
dadurch gekennzeichnet,
daß der Kern (2) kreisförmig ausgebildet ist und durch Abrennen von einem Rohr hergestellt ist. - Summenstromwandler nach Anspruch 1,
dadurch gekennzeichnet,
daß der Kern (2) durch Fließpressen hergestellt ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4423622 | 1994-07-06 | ||
DE4423622A DE4423622A1 (de) | 1994-07-06 | 1994-07-06 | Summenstromwandler für elektronische Schutzgeräte |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0691662A1 EP0691662A1 (de) | 1996-01-10 |
EP0691662B1 true EP0691662B1 (de) | 2001-09-19 |
Family
ID=6522344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95109486A Expired - Lifetime EP0691662B1 (de) | 1994-07-06 | 1995-06-20 | Summenstromwandler für elektronische Schutzgeräte |
Country Status (4)
Country | Link |
---|---|
US (1) | US5576921A (de) |
EP (1) | EP0691662B1 (de) |
DE (2) | DE4423622A1 (de) |
ES (1) | ES2164123T3 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101847502B (zh) * | 2010-06-10 | 2012-07-25 | 中国西电电气股份有限公司 | 一种二次电流为5a的tpy级电流互感器的制备方法 |
EP3026443B1 (de) | 2014-11-27 | 2018-01-31 | ABB Schweiz AG | Elektronische Vorrichtung zur Messung einer Differenzstromänderung in einer elektrischen Leitung |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS582443B2 (ja) * | 1975-08-14 | 1983-01-17 | 松下電器産業株式会社 | テイコウタイ |
JPS5612705A (en) * | 1979-07-13 | 1981-02-07 | Toshiba Corp | Raw material for magnetic head core |
US5110378A (en) * | 1988-08-17 | 1992-05-05 | Allied-Signal Inc. | Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability |
DE3911480A1 (de) * | 1989-04-08 | 1990-10-11 | Vacuumschmelze Gmbh | Verwendung einer feinkristallinen eisen-basislegierung als magnetwerkstoff fuer fehlerstrom-schutzschalter |
JPH03238805A (ja) * | 1990-02-15 | 1991-10-24 | Toshiba Corp | イグニッションコイル |
US5235488A (en) * | 1992-02-05 | 1993-08-10 | Brett Products, Inc. | Wire wound core |
-
1994
- 1994-07-06 DE DE4423622A patent/DE4423622A1/de not_active Withdrawn
-
1995
- 1995-06-20 ES ES95109486T patent/ES2164123T3/es not_active Expired - Lifetime
- 1995-06-20 DE DE59509601T patent/DE59509601D1/de not_active Expired - Fee Related
- 1995-06-20 EP EP95109486A patent/EP0691662B1/de not_active Expired - Lifetime
- 1995-07-06 US US08/498,897 patent/US5576921A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
ES2164123T3 (es) | 2002-02-16 |
DE59509601D1 (de) | 2001-10-25 |
US5576921A (en) | 1996-11-19 |
DE4423622A1 (de) | 1996-01-11 |
EP0691662A1 (de) | 1996-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69103135T2 (de) | Vorrichtung zum motor- und kurzschlussschutz. | |
DE102017205004B4 (de) | Leistungsschalter | |
DE3543463A1 (de) | Stromfuehlertransformatoranordnung | |
DE2835389A1 (de) | Magnetische legierung | |
DE102017205003A1 (de) | Leistungsschalter | |
DE2701884A1 (de) | Stromueberlastungsschutz | |
DE2119950C3 (de) | Funk-Entstördrossel | |
DE3213558A1 (de) | Ptc-widerstandsanordnung | |
DE2348881C3 (de) | Fehlerstromschutzschalter | |
DE3703561C2 (de) | ||
DE3201569A1 (de) | Differential-transformator-kern fuer pulsierende stroeme | |
DE2231431A1 (de) | Summenstromwandler insbesondere fuer einen fehlerstromschutzschalter | |
DE2044302A1 (de) | Fehlerstromschutzschalter | |
EP0691662B1 (de) | Summenstromwandler für elektronische Schutzgeräte | |
DE2062694A1 (de) | Fehlerstromschutzschalter | |
DE19851047C2 (de) | Strombegrenzungsanordnung mit Dämpfelement | |
DE1458521A1 (de) | Magnetisch betaetigbarer Schalter | |
EP0183015A1 (de) | Strombegrenzungsvorrichtung | |
DE1638885A1 (de) | Hochspannungswicklung | |
DE2741870A1 (de) | Elektrische synchronmaschine mit schenkelpolen | |
EP1710812A1 (de) | Fehlerstromschutzschalter und Magnetkern für einen Fehlerstromschutzschalter | |
EP1060553B1 (de) | Anordnung sowie verfahren zur strombegrenzung mit einer supraleitenden transformatoranordnung in einem elektrischen schaltkreis | |
DE1515736C3 (de) | Elektromagnetisches Gerät zur Auswertung eines eine Leiterschiene durchfließenden Stromes großer Stromstärke | |
AT256220B (de) | Anordnung zur Begrenzung von Überströmen | |
AT243915B (de) | Elektromagnetische Spule für Transformatoren, Drosseln u. dgl. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
17P | Request for examination filed |
Effective date: 19960506 |
|
17Q | First examination report despatched |
Effective date: 19990916 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20010919 |
|
REF | Corresponds to: |
Ref document number: 59509601 Country of ref document: DE Date of ref document: 20011025 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2164123 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050513 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050621 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20050628 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050727 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060621 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060630 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070103 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060620 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20060621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070620 |