Nothing Special   »   [go: up one dir, main page]

EP0378045B1 - Hydraulischer Bohrhammer - Google Patents

Hydraulischer Bohrhammer Download PDF

Info

Publication number
EP0378045B1
EP0378045B1 EP89810844A EP89810844A EP0378045B1 EP 0378045 B1 EP0378045 B1 EP 0378045B1 EP 89810844 A EP89810844 A EP 89810844A EP 89810844 A EP89810844 A EP 89810844A EP 0378045 B1 EP0378045 B1 EP 0378045B1
Authority
EP
European Patent Office
Prior art keywords
drill
liquid
turbine rotor
drill according
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89810844A
Other languages
English (en)
French (fr)
Other versions
EP0378045A1 (de
Inventor
Wolfgang Dr. Wührer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Priority to AT89810844T priority Critical patent/ATE84850T1/de
Publication of EP0378045A1 publication Critical patent/EP0378045A1/de
Application granted granted Critical
Publication of EP0378045B1 publication Critical patent/EP0378045B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/12Means for driving the impulse member comprising a crank mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/06Means for driving the impulse member
    • B25D9/12Means for driving the impulse member comprising a built-in liquid motor, i.e. the tool being driven by hydraulic pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/14Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor using liquids and gases, e.g. foams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S173/00Tool driving or impacting
    • Y10S173/04Liquid operated

Definitions

  • the invention relates to a hydraulic hammer drill with a bear supported resiliently in the direction of impact, which is force-coupled on the one hand via spring elements and pistons with a connecting rod and a crank mechanism of a reduction gear and which on the other hand strikes an axially movable boring bar.
  • a hydraulic hammer drill with a bear supported resiliently in the direction of impact, which is force-coupled on the one hand via spring elements and pistons with a connecting rod and a crank mechanism of a reduction gear and which on the other hand strikes an axially movable boring bar.
  • a hammer has become known from FR-A-2 232 410.
  • Hydraulic hammer drills are used to drill mounting holes and blast holes in the rock.
  • a preferred area is mining.
  • the invention provides a remedy here. It has the task of doing this at large mining depths. Utilize cooling water supplied from the earth's surface in such a way that back pressure and the on-site cooling and rinsing water consumption are sufficient to drive a hammer drill.
  • a constant-pressure turbine wheel connected to the transmission is partially axially acted upon by at least one liquid jet, for which a collecting nozzle after it has been deflected at the outlet from the turbine wheel is installed, which sucks air and residual water out of the turbine housing as a mixing section and by operating the rotary hammer in such a way that, in a first process step, a turbine wheel is partially axially pressurized by at least one liquid jet, and that the energy obtained from the jet deflection acts as a power source for the Rotary and impact movement of a drill bit is used, that in a second process step ambient air is brought into the turbine housing under vacuum via a suction opening with a filter, that in a third process step the kinetic residual energy of the liquid jets deflected by the turbine wheel is used according to the injector principle Aspirating air and residual liquid from the turbine housing, bringing it to a lower speed by decelerating it and transporting it further at higher pressure,
  • a hydraulically driven hammer drill is shown, with a guide head 14a, 14b which is movable in the direction of impact in the housing 1 and which guides the impact movement of the bear 2a, 2b, by the bear 2a, 2b, until it hits the drill rod 15 rotating with the drill chuck 16 is clamped to the guide head 14a, 14b via the shock spring 3a, 3b and follows the movement of the guide head 14a, 14b.
  • the movement of the guide head 14a, 14b is indicated as a function of the time t in FIG. 1a.
  • the movement is generated by a turbine wheel 20 which is connected to a planetary gear 7, the planet carrier of which is mounted in the housing 1, 1a via roller bearings 10.
  • the planet carrier guides the planet gears with the bolt 9 and is itself designed as an eccentric 12, whereby it has counter masses to the eccentric mass, which equalize forces for the masses of the eccentric 12 and connecting rod 6 accelerated transversely to the direction of impact of the bear 2a, 2b.
  • the turbine wheel 20 is acted upon by a nozzle 24 with a liquid jet 25, the liquid jet 25 striking the blades 21 of the turbine wheel 20 with a tangential and an axial component and with a tangential, an axial and a radial component from the Buckets 21 emerges.
  • the exit angles have to be determined empirically in order for a collecting nozzle 26 with a kidney-shaped cross section to be attached in the jet direction to work according to the injector principle.
  • the exit jet is deformed from a rather round cross section to a slot cross section 27 in the base of the collecting nozzle 26, which the jet enriched with air completely fills.
  • the guide channel 28 can be designed as a cooling channel which dissipates heat from the hammer drill.
  • the turbine wheel 20 is axially opposed in the area of the blade roots and in the area of the blades 21 with a play of 0.3 mm, with the exception of the location of the entry and exit of the pressure jet 25 provided the housing wall 1 and 1b. Furthermore, the housing surrounds the turbine blades 21 radially in the angular range of the incident and exiting the pressure jet 25 with an intermediate wall 23 at a distance of 0.3 mm.
  • the inlet cross section of the collecting nozzle 26 overlaps the blades 21 in the region of the undercut blade feet and draws air through the gap and the bores 22 in the turbine wheel 20, which air enters the turbine housing 1b through a suction opening 19 with a filter.
  • the overpressure of the liquid-air mixture in the guide channel 28 is approximately 1.5 bar.
  • the excess amount of the mixture for flushing is discharged via an orifice in the lower part of the housing, so that an air cushion 29 forms in the upper part of the housing 30 between the bear 2a, 2b and the drill rod 15, which absorbs liquid for a short time in addition to the generally present air bubbles and the RAM has the effect without the pressure being unnecessarily displaced by the bear 2a, 2b increases.
  • the intermediate housing wall 30 and the intermediate housing part 1c form a pressure vessel which is open via the hollow boring bar 15. Static soft seals 17 and dynamic soft seals 18 with respect to the moving bodies ensure tightness. When the bear 2a, 2b strikes, the liquid forms a transmission resistance before the end faces of the bear and the boring bar 15 touch, which increases the length of the transmitted impulse and leads to a greater power transmission without the end faces being mechanically damaged.
  • Hitting the rotary hammer at idle i.e. without feed force on its suspension, is prevented by locking the opening of the feed line to the nozzle 24 via the presence or setting of a feed force, which results in savings in water consumption and protection of the mechanics.
  • the drilling operation is achieved and interrupted by setting the feed in and out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Bridges Or Land Bridges (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Lubricants (AREA)

Description

  • Die Erfindung bezieht sich auf einen hydraulischen Bohrhammer mit einem in Schlagrichtung federnd abgestützten Bär, der einerseits über Federelemente und Kolben mit einem Pleuel und einem Kurbeltrieb von einem Untersetzungsgetriebe kraftgekoppelt ist und der andererseits auf eine axial bewegliche Bohrstange aufschlägt. Ein solcher Hammer ist aus der FR-A-2 232 410 bekanntgeworden.
  • Hydraulische Bohrhammer werden beim Bohren von Befestigungslöchern und von Sprenglöchern im Gestein eingesetzt. Ein bevorzugtes Gebiet ist der Bergbau.
  • Eine Uebersicht über den Stand der hydraulischen Bohrhammer findet sich im Artikel "Hydraulic Rockdrills" von Joffrey Pearse (Mining Magazine - March 1985, Seite 221 bis 231, Mining Journal Ltd., 60 Worshipstreet, London, EC2A 2HD)), in dem die Produkte von 17 Herstellern untersucht wurden. Diesen hydraulischen Bohrhammern ist gemeinsam, dass sie zur Erzeugung der Schlagbewegung mit Drücken zwischen 75 und 220 bar im geschlossenen Kreislauf mit Oel oder mit Wasser und Schmierzusätzen betrieben werden, dass ein Bär als Hydraulikkolben über Umsteuereinrichtungen mit Druckflüssigkeit beaufschlagt wird, dass die Druckerhöhung mittels Pumpe und Motor erfolgt und dass die Spülung und Kühlung des Bohrmeissels über ein separates Wassersystem erfolgt. Für ihren Betrieb darf die mechanische Kraftquelle, der Motor, nicht allzu weit vom Abbauort in der Sohle installiert sein. Elektrische Antriebsenergie oder Treibstoff und Rauchgasableitungen sind für den Betrieb dieser Bohrhammer notwendig. Weiterhin sind pneumatische Bohrhammer bekannt, die mit Erfolg im Bergbau bis zu mittleren Tiefen eingesetzt werden. Wegen der Strömungs- und Leckverluste steigen mit zunehmender Tiefe die Bereitstellungskosten für Pressluft so überproportional, dass der Einsatz von hydraulischen Bohrhammern gerechtfertigt ist. Bei Bergwerken, die bis auf Sohlentiefen von 2000 m und tiefer Gestein fördern, treten zusätzliche Grenzen für den Hauer beim Bohren vor Ort auf. Die Umgebungstemperatur des Gesteins ist so hoch, dass der Wärmeinhalt von Luft nicht mehr ausreicht, um das Gestein genügend herunterzukühlen. Die Betreiber von solchen Bergwerken sind daher gezwungen, einerseits Kühlwasser von der Erdoberfläche zu den Abbauplätzen vor Ort zu bringen, das die Maschinen und durch Versprühen das Gestein kühlt, wobei ein Teil des Wassers verdampft, und andererseits Diesel- oder Elektromotoren als Energiequellen für die Bohrhammer auf den Sohlen zu installieren; beides Massnahmen, die die Abbaukosten mit zunehmender Tiefe enorm ansteigen lassen.
  • Hier schafft die Erfindung Abhilfe. Sie hat die Aufgabe, das bei grossen Abbautiefen. von der Erdoberfläche zugeführte Kühlwasser so auszunutzen, dass Staudruck und der vor Ort nowendige Kühl- und Spülwasserverbrauch ausreichen, um einen Bohrhammer anzutreiben.
  • Sie löst die Aufgabe mit einem hydraulischen Bohrhammer, indem ein mit dem Getriebe verbundenes Gleichdruck-Turbinenrad durch mindestens einen Flüssigkeitsstrahl teilweise axial beaufschlagt ist, für den nach seiner Ablenkung am Austritt aus dem Turbinenrad eine Sammeldüse installiert ist, die als Mischstrecke Luft und Restwasser aus dem Turbinengehäuse absaugt und indem der Betrieb des Bohrhammers so erfolgt, dass in einem ersten Verfahrensschritt ein Turbinenrad teilweise axial durch mindestens einen Flüssigkeitsstrahl teilbeaufschlagt wird, und dass die aus der Strahlumlenkung gewonnene Energie als Kraftquelle für die Dreh- und Schlagbewegung eines Bohrmeissels verwendet wird, dass in einem zweiten Verfahrensschritt Umgebungsluft über eine Ansaugöffnung mit Filter in das unter Unterdruck stehende Turbinengehäuse gebracht wird, dass in einem dritten Verfahrensschritt die kinetische Restenergie der durch das Turbinenrad abgelenkten Flüssigkeitsstrahlen dazu verwendet wird, nach dem Injektiorprinzip Luft und Restflüssigkeit aus dem Turbinengehäuse abzusaugen, durch Verzögerung auf niedrigere Geschwindigkeit zu bringen und bei höherem Druck weiter zu transportieren, dass in einem vierten Verfahrensschritt das unter mehrfachem Atmosphärendruck stehende Flüssigkeits-Luft-Gemisch in den Raum zwischen Bär und Bohrstange geführt wird, dass in einem fünften Verfahrensschritt überschüssiges Flüssigkeits-Luft-Gemisch an die Umgebung abgegeben wird, dass in einem sechsten Verfahrensschritt ein federndes Luftpolster im oberen Teil des Raumes, der durch Bär und Bohrstange begrenzt ist, gebildet wird, das einen Teil der beim Zu- schlagen vom Bär verdrängten Flüssigkeit kurzzeitig aufnimmt, und dass in einem siebten Verfahrensschritt das Flüssigkeits-Luft-Gemisch als Kühl- und Spülmedium durch die hohle Bohrstange dem Bohrmeissel zugeführt wird, wobei sich Flüssigkeit zwischen den Stirnflächen des zuschlagenden Bärs und der Bohrstange befindet, die durch ihren Widerstand beim Zusammenschlagen der Flächen die Länge des übertragenen Stossimpulses wesentlich vergrössert und eine grössere Leistungsübertragung ohne mechanische Schädigung der Flächen ermöglicht.
  • Die Vorteile der Erfindung sind darin zu sehen, dass nur ein einziger Energieträger, nämlich das bei grossen Abbautiefen notwendige Kühlwasser, vor Ort geführt werden muss und dort sowohl als Antriebs- und Spülmedium für das Bohren, als auch als Kühlmedium für das Gestein verwendet wird. Durch die Verwendung eines Turbinenrades wird auf die von der Wasserqualität abhängige Funktion von Hochdruckdichtungen verzichtet und ein offener Wasserkreislauf erreicht. Die Spülung des Bohrmeissels erfolgt zwangsläufig mit dem Antrieb des Turbinenrades. Das Wasser durchläuft keine empfindlichen Regelorgane. Vorschub und Bohrantrieb können über ein einziges Einstellelement angesteuert werden.
  • Im folgenden wird die Erfindung anhand von Ausführungsbeispielen beschrieben.
    • Fig. 1a zeigt schematisch eine kinematische Verknüpfung zwischen Bohrstange und Antriebsturbine eines hydraulischen Bohrhammers, wobei die Federelemente Schraubenfedern sind,
    • Fig. 1b zeigt schematisch einen Ausschnitt zu Figur 1a, in dem die Schraubenfedern durch Luftpolster beidseitig des als Kolben ausgebildeten Bärs ersetzt sind,
    • Fig. 2 zeigt schematisch den Ausschnitt eines Turbinenrades mit einem schräg anspritzenden Flüssigkeitsstrahl und mit der Kontur einer Sammeldüse, die den aus dem Turbinenrad austretenden Flüssigkeitsstrahl auffängt und
    • Fig. 3 ist eine schematische Schnittzeichnung von einem Bohrhammer, der über ein Turbinenrad hydraulisch angetrieben ist, wobei mit der Restenergie des Antriebsstrahls Flüssigkeit zur Spülung und Kühlung zum Bohrmeissel geführt wird.
  • In den Figuren ist ein hydraulisch angetriebener Bohrhammer gezeigt, mit einem im Gehäuse 1 in Schlagrichtung beweglichen Führungskopf 14a,14b der die Schlagbewegung des Bärs 2a,2b führt, indem bis zum Aufprall auf die mit dem Bohrfutter 16 mitdrehende Bohrstange 15 der Bär 2a,2b über die Stossfeder 3a,3b mit dem Führungskopf 14a,14b verspannt ist und der Bewegung des Führungskopfes 14a,14b folgt. Die Bewegung des Führungskopfes 14a,14b ist in Abhängigkeit von der Zeit t in Fig. 1a angedeutet. Beim Aufprall geht die vom Getriebe 7 über Exzenter 12, den Pleuel 6 und den Lagerbolzen 8 auf den Führungskopf 14a,14b übertragene Bewegung weiter, indem die Stossfeder 3a,3b und die Rückstossfeder 4a,4b weiter komprimiert werden, wobei ein Kolben 5a oder Ausgleichsbohrungen 5b als Dämpfung und im Zusammenhang mit Ausgleichsräumen als Arbeitsspeicher wirken. Die Drehbewegung wird über eine Schnecke 11 im Getriebegehäuse 1a und eine Antriebswelle 13 auf das Bohrfutter 16 im Gehäuse 1d übertragen.
  • Erfindungsgemäss wird die Bewegung durch ein Turbinenrad 20 erzeugt, das mit einem Planetengetriebe 7 verbunden ist, dessen Planetenträger über Wälzlager 10 im Gehäuse 1, 1a gelagert ist. Der Planetenträger führt die Planetenräder mit dem Bolzen 9 und ist selbst als Exzenter 12 ausgebildet, wobei er Gegenmassen zur Exzentermasse besitzt, die einen Kräfteausgleich für die quer zur Stossrichtung des Bärs 2a,2b beschleunigten Massen vom Exzenter 12 und Pleuel 6 bewirken. Das Turbinenrad 20 wird von einer Düse 24 mit einem Flüssigkeitsstrahl 25 beaufschlagt, wobei der Flüssigkeitsstrahl 25 mit einer tangentialen und einer axialen Komponente auf den Schaufeln 21 des Turbinenrades 20 auftrifft und mit einer tangentialen, einer axialen und einer radialen Komponente aus den Schaufeln 21 austritt. Die Austrittswinkel müssen empirisch bestimmt werden, um eine in Strahlrichtung anzubringende Sammeldüse 26 mit nierenförmigem Querschnitt nach dem Injektorprinzip arbeiten zu lassen. Um Rückströmung zu verhindern, wird der Austrittsstrahl von einem eher runden Querschnitt auf einen Schlitzquerschnitt 27 im Grund der Sammeldüse 26 deformiert, den der mit Luft angereicherte Strahl vollständig ausfüllt. Im Anschluss an den Schlitzquerschnitt 27 findet eine diffusorähnliche Aufweitung zur Druckerhöhung in dem Führungskanal 28 statt, in welchem der volumetrische Luftanteil ca. 20 % beträgt. Der Führungskanal 28 kann als Kühlkanal ausgebildet sein, der Wärme vom Bohrhammer abführt.Das Turbinenrad 20 ist im Bereich der Schaufelfüsse und im Bereich der Schaufeln 21 mit Ausnahme vom Ort des Eintretens und Austretens des Druckstrahls 25 axial mit einem Spiel von 0,3 mm gegen die Gehäusewand 1 und 1b versehen. Im weiteren umgibt das Gehäuse die Turbinenschaufeln 21 radial im Winkelbereich des auftreffenden und die Schaufeln verlassenden Druckstrahls 25 mit einer Gehäusezwischenwand 23 im Abstand von 0,3 mm. Der Eintrittsquerschnitt der Sammeldüse 26 überlappt die Schaufeln 21 im Bereich der hinterschnittenen Schaufelfüsse und zieht durch den entstandenen Spalt und die Bohrungen 22 im Turbinenrad 20 Luft ein, die durch eine Ansaugöffnung 19 mit Filter in das Turbinengehäuse 1b eintritt.
  • Der Ueberdruck des Flüssigkeits-Luft-Gemisches im Führungskanal 28 beträgt ca. 1,5 bar. Die zur Spülung überschüssige Menge des Gemisches wird über eine Blende im unteren Teil des Gehäuses abgeführt, damit sich im oberen Teil des Gehäuses 30 zwischen Bär 2a,2b und Bohrstange 15 ein Luftpolster 29 bildet, das kurzzeitig neben den allgemein vorhandenen Luftblasen Flüssigkeit aufnimmt und die Wirkung eines Arbeitsspeichers hat, ohne dass der Druck bei der Verdrängung durch den Bär 2a,2b unnötig ansteigt. Die Gehäusezwischenwand 30 und das Gehäusezwischenstück 1c bilden ein Druckgefäss, das über die hohle Bohrstange 15 offen ist. Statische Weichdichtungen 17 und dynamische Weichdichtungen 18 gegenüber den bewegten Körpern sorgen für Dichtheit. Beim Zuschlagen von Bär 2a,2b bildet die Flüssigkeit vor der Berührung der Stirnflächen von Bär und Bohrstange 15 einen Übertragungswiderstand, der die Länge vom übertragenen Impuls vergrössert und zu einer grösseren Leistungsübertragung führt, ohne dass die Stirnflächen mechanisch beschädigt werden.
  • Ein Schlagen des Bohrhammers im Leerlauf, d.h. ohne Vorschubkraft an seiner Aufhängung, wird verhindert, indem das Oeffnen der Zuleitung zur Düse 24 über das Vorhandensein oder Einstellen einer Vorschubkraft verriegelt ist, was Einsparungen am Wasserverbrauch und Schonung der Mechanik bewirkt. Der Bohrbetrieb wird so über das Ein- und Ausstellen des Vorschubes erreicht und unterbrochen.

Claims (15)

  1. Hydraulischer Bohrhammer mit einem in Schlagrichtung federnd abgestützten Bär (2a,2b), der einerseits über Federelemente (3a,3b,4a,4b) und Kolben mit einem Pleuel (6) und einem Kurbeltrieb von einem Untersetzungsgetriebe (7) kraftgekoppelt ist, und der andererseits auf eine axial bewegliche Bohrstange (15) aufschlägt, dadurch gekennzeichnet, dass ein mit dem Getriebe (7) verbundenes Turbinenrad (20) durch mindestens einen Flüssigkeitsstrahl (25) teilweise axial beaufschlagt ist, für den nach seiner Ablenkung am Austritt aus dem Turbinenrad (20) eine Sammeldüse (26) installiert ist, die als Mischstrecke Luft und Restwasser aus dem Turbinengehäuse (1b) absaugt.
  2. Hydraulischer Bohrhammer nach Anspruch 1, dadurch gekennzeichnet, dass der Flüssigkeitsstrahl (25) beim Auftreffen auf die Schaufelung (21) eine axiale Komponente von 40 bis 20 %, eine tangentiale Komponente von 80 bis 96 % und eine radiale Komponente von höchstens 15 % aufweist.
  3. Hydraulischer Bohrhammer nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass das Turbinenrad (20) in seiner Radscheibe Durchbrüche (22) für den Luftdurchtritt aufweist.
  4. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Turbinenrad (20) im Bereich der Schaufeln (21) und der Schaufelfüsse mit Ausnahme des Zuführ- und Abführbereiches für den Flüssigkeitsstrahl (25) axial mit engem Spiel vom Gehäuse umgeben ist.
  5. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schaufeln (21) des Turbinenrades (20) im Bereich des Zuführens und Abführens des Flüssigkeitsstrahles (25) radial mit engem Spiel von einer Gehäusezwischenwand (23) umgeben sind.
  6. Hydraulicher Bohrhammer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Sammeldüse (26) mit wenig Spiel an der Kontur der Austrittsseite des Turbinenrades (20) anliegt, mit ihrem Eintrittsquerschnitt nierenförmig ausgebildet ist und die unterschiedlichen Austrittsorte des zugehörigen Druckstrahls (25) aus dem Turbinenrad (20) abdeckt, wobei die Austrittsorte, die dem Bereich der normalen Arbeitsdrehzahlen des Turbinenrades (20) entsprechen, berücksichtigt sind.
  7. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sich die Sammeldüse (26) in Richtung der mittleren, aus dem Turbinenrad (20) austretenden Druckstrahlen zu einem schlitzförmigen Querschnitt (27) verjüngt derart, dass der Druckstrahl in seinem Querschnitt so deformiert wird, dass er unabhängig vom Austrittsort aus dem Turbinenrad (20) den engsten Schlitzquerschnitt (27) im Grund der Sammeldüse (26) vollständig ausfüllt.
  8. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Sammeldüse (26) mit ihrer Eintrittskante den Flüssigkeitsstrahl bei der höchsten Arbeitsdrehzahl gerade noch einfängt, und dass bei noch höheren Drehzahlen Stoss- und Stauverluste mit dem Auftreffen des Flüssigkeitsstrahl auf die Eintrittskante der Sammeldüse (26) erzeugt werden, die unerwünschte Ueberdrehzahlen verhindern.
  9. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Sammeldüse (26) oder ein daran anschliessender Führungskanal (28) in Durchtrittrichtung nach dem engsten Schlitzquerschnitt (27) eine diffusorähnliche Querschnittsvergrösserung aufweisen.
  10. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass ein Planetengetriebe (7) zur Reduktion der Turbinendrehzahl eingesetzt ist, dessen Planetenträger als Exzenter (12) für den Kurbeltrieb mit Pleuel (6) ausgebildet ist, einen Massenausgleich für die zur Stossrichtung des Bärs (2a,2b) quer beschleunigten Massen vom Exzenter (12) und Pleuel (6) aufweist.
  11. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Raum zwischen Bär (2a,2b) und dem Aufnahmefutter (16) für die Bohrstange (15) durch Gehäusewände und Dichtungen mit Ausnahme der Zulauf- und Ablauföffnungen abgedichtet ist.
  12. Hydraulischer Bohrhammer nach Anspruch 11, dadurch gekennzeichnet, dass der Raum zwischen Bär(2a,2b) und dem Aufnahmefutter(16) in Arbeitsstellung des Bohrhammers oberhalb des Ausflusses zur Bohrstange(15) als Sack nach oben ausgebildet ist, in dem sich ein Luftpolster als Arbeitsspeicher bildet.
  13. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Flüssigkeit im Führungskanal(28) oder eine davon später abgezweigte Überschussmenge zur Kühlung des Bohrhammers mitverwendet ist.
  14. Verfahren zum Betreiben des hydraulischen Bohrhammers nach Anspruch 1, dadurch gekennzeichnet,
       dass in einem ersten Verfahrensschritt ein Turbinenrad (20) teilweise axial durch mindestens einen Flüsigkeitsstrahl (25) teilbeaufschlagt wird, und dass die aus der Strahlumlenkung gewonnene Energie als Kraftquelle für die Dreh- und Schlagbewegung eines Bohrmeissels verwendet wird,
       dass in einem zweiten Verfahrensschritt Umgebungsluft über eine Ansaugöffnung (19) mit Filter in das unter Unterdruck stehende Turbinengehäuse (1b) gebracht wird,
       dass in einem dritten Verfahrensschritt die kinetische Restenergie der durch das Turbinenrad (20) abgelenkten Flüssigkeitsstrahlen (25) dazu verwendet wird, nach dem Injektorprinzip Luft und Restflüssigkeit aus dem Turbinengehäuse (1b) abzusaugen, durch Verzögerung in einem Diffusor auf niedrigere Geschwindigkeit zu bringen und bei höherem Druck weiter zu transportieren,
       dass in einem vierten Verfahrensschritt das unter mehrfachem Atmosphärendruck stehende Flüssigkeits-Luft-Gemisch in den Raum zwischen Bär (2a,2b) und Bohrstange (15) geführt wird,
       dass in einem fünften Verfahrensschritt überschüssiges Flüssigkeits-Luft-Gemisch an die Umgebung abgegeben wird,
       dass in einem sechsten Verfahrensschritt ein federndes Luftpolster (29) im oberen Teil des Raumes, der durch Bär (2a,2b) und Bohrstange (15) begrenzt ist, gebildet wird, das einen Teil der beim Zuschlagen vom Bär (2a,2b) verdrängten Flüssigkeit kurzzeitig aufnimmt,
       und dass in einem siebten Verfahrensschritt das Flüssigkeits-Luft-Gemisch als Kühl- und Spülmedium durch die hohle Bohrstange (15) dem Bohrmeissel zugeführt wird, wobei sich Flüssigkeit zwischen den Stirnflächen des zuschlagenden Bärs(2a,2b) und der Bohrstange(15) befindet, die durch ihren Widerstand beim Zusammenschlagen der Flächen die Länge des übertragenen Stossimpulses wesentlich vergrössert und eine grössere Leistungsübertragung ohne mechanische Schädigung der Flächen ermöglicht.
  15. Hydraulischer Bohrhammer nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Flüssigkeitszuleitung zur Düse (24) nur bei Vorhandensein oder mit Einstellen von einer Vorschubkraft für den Bohrhammer geöffnet ist.
EP89810844A 1989-01-11 1989-11-08 Hydraulischer Bohrhammer Expired - Lifetime EP0378045B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89810844T ATE84850T1 (de) 1989-01-11 1989-11-08 Hydraulischer bohrhammer.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH7489 1989-01-11
CH74/89 1989-01-11

Publications (2)

Publication Number Publication Date
EP0378045A1 EP0378045A1 (de) 1990-07-18
EP0378045B1 true EP0378045B1 (de) 1993-01-20

Family

ID=4178688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89810844A Expired - Lifetime EP0378045B1 (de) 1989-01-11 1989-11-08 Hydraulischer Bohrhammer

Country Status (9)

Country Link
US (1) US5117923A (de)
EP (1) EP0378045B1 (de)
JP (1) JPH02224983A (de)
AT (1) ATE84850T1 (de)
AU (1) AU638960B2 (de)
CA (1) CA2007428C (de)
DE (1) DE58903355D1 (de)
FI (1) FI91098C (de)
ZA (1) ZA899569B (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626199A (en) * 1995-07-05 1997-05-06 T.C. Service Company Pneumatic impact tool having improved vibration and noise attenuation
US5573075A (en) * 1995-07-05 1996-11-12 T.C. Service Company Pneumatic impact tool having improved vibration and noise attenuation
JP2000024958A (ja) * 1998-07-15 2000-01-25 Yamada Kikai Kogyo Kk 連続衝撃作業機
FR2785347B1 (fr) * 1998-11-03 2002-03-08 Andre Gonon Amortisseur des incidences dues aux chocs, par une liaison flottante entre les mecanismes de rotation et de percussion dans un perforateur roto percutant hydraulique
DE19933972A1 (de) * 1999-07-20 2001-01-25 Bosch Gmbh Robert Bohr- oder Schlaghammer
US20030056352A1 (en) * 2000-12-19 2003-03-27 Mclellan Dale C. Liner bolt removal tool
US7013986B2 (en) * 2003-05-12 2006-03-21 Nitto Kohki Co., Ltd. Impact tool
DE102004022623A1 (de) * 2004-05-07 2005-12-08 Robert Bosch Gmbh Handwerkzeugmaschine mit einem Schlagwerk
GB2429991A (en) * 2005-09-07 2007-03-14 Alan Barrows Water powered impulsive unit
DE102006061627A1 (de) * 2006-12-27 2008-07-10 Robert Bosch Gmbh Schlagwerk einer Elektrohandwerkzeugmaschine
SE537773C2 (sv) * 2012-02-17 2015-10-13 Tools Pc Ab Const Slaganordning innehållande en rekyldämpare
CN104033102B (zh) * 2014-05-29 2016-09-28 广西恒日科技股份有限公司 冲击式液压凿岩机
EP3697574A1 (de) 2017-10-20 2020-08-26 Milwaukee Electric Tool Corporation Schlagwerkzeug
EP4349534A3 (de) 2018-01-26 2024-07-17 Milwaukee Electric Tool Corporation Schlagwerkzeug
US10808379B1 (en) * 2019-08-28 2020-10-20 Cciip Llc Roadway access hole drill and a method of microtrenching using the drill to open an access hole in the roadway
CN110513047B (zh) * 2019-08-30 2021-07-23 沧州格锐特钻头有限公司 一种自激发液击振动牙轮钻头
CN112781455B (zh) * 2021-01-29 2021-12-28 安徽雷鸣爆破工程有限责任公司 一种露天矿山开采用爆破凿岩设备及其工作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE268718C (de) *
USRE20365E (en) * 1937-05-18 Portable power hammer
US2145760A (en) * 1936-07-24 1939-01-31 Milwaukee Electric Tool Corp Electric hammer
DE726586C (de) * 1939-05-06 1942-10-16 Siemens Ag Mit elektrischem oder mechanischem Antrieb versehenes Schlaggeraet, z. B. Bohrhammer, mit selbsttaetiger Umsetzvorrichtung
US2251224A (en) * 1940-07-11 1941-07-29 Sullivan Machinery Co Rock drill
US3133600A (en) * 1959-04-29 1964-05-19 Hochreuter Johann Electric hammer drilling device with intermittent change over gear for the hammer tool
DE1192132B (de) * 1960-11-18 1965-05-06 Hermann Wacker, Peter Wacker, München Bohr- und Aufbruchhammer mit Benzin- oder Elektromotor-Antrieb
DE1503195A1 (de) * 1965-04-10 1969-02-13 Tsni I Pk I Podzemnogo I Shakh Schlagwerk
US3695367A (en) * 1970-06-08 1972-10-03 North American Rockwell Hydraulic power tool
US3685593A (en) * 1970-11-03 1972-08-22 Chicago Pneumatic Tool Co Fluid operated rock drill having an independent rotation motor
US3866693A (en) * 1973-06-11 1975-02-18 Allied Steel Tractor Prod Inc Vibratory impact hammer
US3865194A (en) * 1973-11-01 1975-02-11 Jr John F Chatfield Hydraulically-operated fire extinguishing drill
AU510290B2 (en) * 1978-12-06 1980-06-19 Cooper Industries Inc Hydraulic rock drill
AU558266B2 (en) * 1980-07-01 1987-01-22 Rear, I.G. Improved fluid operated hammer
US5079150A (en) * 1988-11-17 1992-01-07 Becton, Dickinson And Company High sensitivity detection of peroxidase activity

Also Published As

Publication number Publication date
ATE84850T1 (de) 1993-02-15
EP0378045A1 (de) 1990-07-18
US5117923A (en) 1992-06-02
CA2007428A1 (en) 1990-07-11
JPH02224983A (ja) 1990-09-06
FI900009A0 (fi) 1990-01-02
ZA899569B (en) 1990-09-26
FI900009A (fi) 1990-07-12
AU638960B2 (en) 1993-07-15
FI91098C (fi) 1994-05-10
FI91098B (fi) 1994-01-31
DE58903355D1 (de) 1993-03-04
AU4783690A (en) 1990-07-19
CA2007428C (en) 1994-09-13

Similar Documents

Publication Publication Date Title
EP0378045B1 (de) Hydraulischer Bohrhammer
US4289275A (en) Method and device for breaking a hard compact material
US6273199B1 (en) Arrangement in rock drill and method of controlling rock drilling
AU649768B2 (en) A cyclic hydraulic actuator
US3490549A (en) Hydraulic percussive drill
US3780621A (en) Hydraulic fluid actuated percussion tool
US3704966A (en) Method and apparatus for rock excavation
EP1040231B1 (de) Vorrichtung, werkzeug und methode zur bodenverdichtung
CA1092941A (en) Hydraulic impact device
US9138879B2 (en) Method and arrangement for lubricating drill shank of rock drilling machine
US4230019A (en) Fluid arrangement
US3741072A (en) Hydraulic fluid actuated percussion tool
US4291771A (en) Rotary percussion hydraulic drilling machine
US3620312A (en) Rock drill
DE2804388A1 (de) Hydraulischer gesteinsbohrer
US4555143A (en) Apparatus for cutting rock
DE1923282A1 (de) Vorrichtung zum Abdichten von Bohrmotorwellen
EP1632637B1 (de) Bodenbearbeitungsgerät und Verfahren zum Einbringen eines Arbeitselementes in den Boden
EP0080964B1 (de) Steuereinrichtung für hydraulisches Schlagwerkzeug
EP1607187A1 (de) Verfahren und Einrichtung zur Verbesserung des Abschaltverhaltens eines elektropneumatischen Abbaugeräts
DE2461662B2 (de) Bohrhammer, insbesondere druckluftbohrhammer
DE19725052C2 (de) Bohrgerät
US3356164A (en) Pile driving mechanisms
CH676734A5 (de)
CA1090379A (en) Method and device for breaking hard compact material such as rock

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19901112

17Q First examination report despatched

Effective date: 19920410

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 84850

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58903355

Country of ref document: DE

Date of ref document: 19930304

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930208

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89810844.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011024

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011026

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20011102

Year of fee payment: 13

Ref country code: DE

Payment date: 20011102

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011105

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011106

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021108

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030603

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST