EP0212338A2 - Procédé pour l'usinage de la surface d'une came - Google Patents
Procédé pour l'usinage de la surface d'une came Download PDFInfo
- Publication number
- EP0212338A2 EP0212338A2 EP86110285A EP86110285A EP0212338A2 EP 0212338 A2 EP0212338 A2 EP 0212338A2 EP 86110285 A EP86110285 A EP 86110285A EP 86110285 A EP86110285 A EP 86110285A EP 0212338 A2 EP0212338 A2 EP 0212338A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- contour
- point
- axis
- target contour
- machining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B19/00—Single-purpose machines or devices for particular grinding operations not covered by any other main group
- B24B19/08—Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section
- B24B19/12—Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section for grinding cams or camshafts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/30084—Milling with regulation of operation by templet, card, or other replaceable information supply
- Y10T409/301176—Reproducing means
- Y10T409/301624—Duplicating means
- Y10T409/30168—Duplicating means with means for operation without manual intervention
- Y10T409/30224—Duplicating means with means for operation without manual intervention and provision for circumferential relative movement of cutter and work
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T409/00—Gear cutting, milling, or planing
- Y10T409/30—Milling
- Y10T409/303752—Process
- Y10T409/303808—Process including infeeding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T82/00—Turning
- Y10T82/13—Pattern section
Definitions
- the invention relates to a method and a device for machining a surface of profiles with a contour deviating from a circular shape, in which, starting from a raw contour, the profile is passed through Removal of the surface is provided with a target contour by moving a processing tool and the profile relative to one another such that, on the one hand, a section of the processing tool that is in engagement on the surface is guided along the contour in web operation, and on the other hand in the feed operation by the surface distance between the raw contour and Target contour is delivered.
- Such methods are known, they are used, for example, to grind cams from camshafts.
- the camshaft is rotatably arranged about a fixed axis, and a grinding wheel is rotatably mounted about an axis parallel to the camshaft axis.
- the distance between the grinding wheel axis and the camshaft axis is changed with the camshaft rotating slowly in such a way that the surface section of the grinding wheel which is in engagement in each case removes the surface of the cam in such a way that the desired target contour is finally created.
- the distance between the axes must be varied in such a way that a certain infeed of the grinding wheel takes place, i.e. an approximation to the cam to be machined by the amount of the distance from the raw dimension to the target dimension. This part of the distance variation is referred to as "delivery operation".
- the known methods which usually use numerically controlled processing machines, provide for simultaneous execution of rail operations and delivery operations.
- next point to be approached is continuously interpolated depending on the rotation of the camshaft, the path movement and the infeed movement being numerically superposed as part of the interpolation.
- the grinding wheel is mounted on a two-part carriage, one part of which runs on the other part, one part of the carriage being controlled as a function of the rail operation and the other as a function of the infeed operation.
- the required superposition is achieved by mechanical superimposition.
- a common feature of the two known methods explained above is that the point of a surface section of the grinding wheel that is respectively in engagement is located moved from the raw contour to the target contour on a spiral winding path, which movement always has a radial component due to constant infeed and - as already mentioned - must be set by continuous superposition of rail operation and infeed operation.
- the invention is based on the object of developing a method of the type mentioned in such a way that the desired target contours can be achieved without loss of accuracy with significantly reduced effort and high processing speed.
- This object is achieved according to the invention in that the section is first guided from a first point on the surface of the raw contour only in the infeed mode to a second point in the nominal contour and then is guided along the nominal contour only in rail operation.
- the method according to the invention is therefore in principle independent of how the profile and the processing tool are arranged relative to one another and are moved relative to one another, it is also independent of the type of profile processed in each case, as well as of the type of processing tool provided.
- the machining tool can be rotated about a first axis.
- tools which can be rotated about a first axis are preferred because this allows the use of tried and tested types of tools, as are customary in particular for metalworking.
- the profile can be rotated about a second axis, although in principle spatially fixed profiles can also be processed.
- the rotatability of the profile about a second axis has the advantage that defined relationships can be set in a simple manner, because the machining points to be approached in each case can easily be determined as a function of the angle of rotation of the second axis, as is known per se.
- the first axis runs parallel to the second axis, and the distance between the axes is adjustable in the direction of a third axis running perpendicular thereto, in particular the second axis is spatially fixed.
- This measure has the advantage known per se that only the first axis has to be adjusted in the direction of the third axis for the rail operation and the delivery operation, depending on the angle of rotation of the profile.
- Another particularly preferred embodiment of the invention consists in that the first point and the second point define an angle of rotation of the second axis which is less than 180 ° and is preferably in the range between 20 ° and 180 °.
- This measure has the advantage that the target contour is approached in a purely infeed mode on a relatively small circumferential area when using a grinding wheel by so-called deep grinding, so that the major part of the contour is then finished to the specified size exclusively in the railway mode.
- a particularly good effect is also achieved if the processing tool is guided in the infeed mode with a uniform infeed.
- the locus of the respective processing point has the form of an Archimedean spiral, which can be handled particularly easily for control tasks in numerical control.
- an embodiment is preferred in which, after the section has been guided on the target contour, it is first guided from a third point on the target contour only in the delivery mode to a fourth point of a second target contour and then is only guided along the second target contour in rail operation.
- the effect according to the invention can also be achieved with large volumes of material to be removed.
- the raw contour is very irregular, so that the required target contour cannot be achieved with a single machining process for machining reasons.
- the point of the machining tool that is in engagement is not along a spiral that is wound several times, but the infeed area is always limited to a spatially narrow surface area, while the rest of the route is in turn only operated by rail.
- the location curve of the processing point thus has the shape of several location curves concentrically running at a parallel distance.
- a particularly preferred field of application is the machining of cams.
- Cams with at least one circular section are particularly preferably used, and the infeed mode is set in the region of the circular section.
- This measure has the particular advantage that, in the region of the circular section, it is particularly easy to dispense with railway operation because the surface there has a constant radius to the axis of rotation of the profile.
- the circular section is a base circle of the cam, this has the advantage that the circumference of the base circle is particularly long, so that the delivery operation can be carried out in wide areas around the circumference, depending on the requirements.
- 10 denotes a grinding machine as a whole, as can be used to carry out the method according to the invention.
- a camshaft 12 is rotatably arranged about a fixed axis 11, which is also referred to in technical terms as the C axis.
- the camshaft 12 is clamped between two tips 13 and 14 of a headstock 15 or a tailstock 16, and a rotationally fixed connection 17 between the camshaft 12 and a spindle of the headstock 15 ensures that the camshaft 12 is driven.
- a cam 18 of the camshaft 12 is being machined by means of a grinding wheel 19.
- the grinding wheel 19 is actuated by a drive 20 which can be moved by means of a feed 21 relative to a fixed base 22 along an axis 23, which is also referred to in technical terminology as the x-axis.
- the grinding wheel 19 itself is rotatable about an axis 24, so that the feed 21 is able to adjust the distance between the axes 11 and 24 in the direction of the axis 23 perpendicular thereto.
- FIGS. 1 and 2 do not show the control and regulating units which derive control signals for the feed 21 from the respective rotational position of the camshaft 12 in a manner known per se.
- 3 and 4 show, in a greatly enlarged representation and rotated 90 ° clockwise in relation to the representation of FIG. 1, the conditions when machining the cam 18 by means of the grinding wheel 19.
- FIGS. 3 and 4 show the starting position of the cam 18.
- the cam 18 is provided with an outer contour in which a base circle 30 and a secondary circle 31 occur, which are connected to one another by straight or curved flanks 32.
- the sections 30, 31, 32 drawn thick in FIGS. 3 and 4 denote a raw contour, i.e. a not yet finished cam, while the reference numerals 30a, 31a, 32a denote the corresponding elements of a target contour that is to be produced by the method according to the invention.
- an infeed 33 is required, which corresponds to the distance of the contour 30/31/32 from the contour 30a / 31a / 32a.
- An arrow 34 indicates the direction of rotation of the cam 18, and an arrow 35 indicates the direction of rotation of the grinding wheel 19.
- Fig. 3 shows the cam 18 in the starting position.
- the grinding wheel 19 has been moved up to the point where the cam 18 comes into contact with it, namely that the cam 18 in this basic position is aligned in its rotational position such that the cam 18 and grinding wheel 19 are at a first point 40 in the transition from the flank 32 to the base circle Touch 30.
- the cam 18 is now rotated in the direction of the arrow 34, and at the same time the grinding wheel 19 is moved linearly along the axis 23 to the left.
- the angular velocity of the cam 18 and the advancing speed of the grinding wheel 19 thus result in a locus 41 drawn in FIG. 4 from the first point 40 on the raw contour to a second point 42 on the target contour, which is reached within an angle of rotation y of, for example, 120 °. Due to the linear feed of the grinding wheel 19, the locus 41 has the shape of an Archimedean spiral.
- the grinding wheel 19 has thus been moved in a linearly controlled manner from the position 19 ′ shown in broken lines to the position 19 shown in solid lines.
- the deflection of the grinding wheel 19 in the direction of the x-axis 23 is set such that the point in engagement on the surface of the grinding wheel 19 exactly follows the desired contour 30a / 31a / 32a.
- FIG. 5 shows a variant in which the sequence of the two process sections described above is repeated cyclically.
- the thick curve in Fig. 5 of the respective processing point again starts at the first point 40 and runs in the manner described in the pure delivery mode along the locus 51 to the second point 42, where the method changes to the rail mode, so that the path curve now runs along the desired contour 30a / 31a / 32a, as already described.
- This rail operation now continues to a third point 40 a, which is located radially next to the first point 40.
- the method returns to the pure infeed mode, and the path curve of the respective processing point in turn runs along a locus 41a which runs within the locus 41 already described.
- the pure infeed operation now continues up to a fourth point 42a, which is located radially next to the second point 42, at which point the method again switches to pure rail operation, so that a further target contour 30b / 31b / 32b is created.
- This further target contour is continued via a fifth point 40b located radially next to the first point 40 and the third point 40a, so that the further target contour 30b / 31b / 32b is traversed to the fourth point 42a, so that the desired further target contour 30b / 31b / 32b is now completely processed.
- a four-cylinder camshaft was machined at a peripheral speed of the grinding wheel 19 of 45 m / s, the cams of which had a base circle of 38 mm in diameter and a cam stroke of approximately 10 mm.
- the radial grinding allowance was between 2 and 2.5 mm.
- the cam was rotated a total of four times for pre-grinding, a feed operation and a rail operation being set successively in the manner described. It was followed by a turn in pure rail operations. In the subsequent finish grinding, three revolutions with infeed operation and subsequent rail operation were set, and five revolutions without infeed operation followed.
- the ratio of infeed speed and angular speed of the cam was chosen so that an angle Winkel of 30 ° was set during pre-grinding and an angle ⁇ of 60 0 during finish grinding.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3529099 | 1985-08-14 | ||
DE19853529099 DE3529099A1 (de) | 1985-08-14 | 1985-08-14 | Verfahren und vorrichtung zum spanabhebenden bearbeiten einer oberflaeche von profilen mit einer von einer kreisform abweichenden kontur, insbesondere nockenwellen |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0212338A2 true EP0212338A2 (fr) | 1987-03-04 |
EP0212338A3 EP0212338A3 (en) | 1988-01-13 |
EP0212338B1 EP0212338B1 (fr) | 1990-11-22 |
Family
ID=6278462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86110285A Expired - Lifetime EP0212338B1 (fr) | 1985-08-14 | 1986-07-25 | Procédé pour l'usinage de la surface d'une came |
Country Status (3)
Country | Link |
---|---|
US (1) | US4747236A (fr) |
EP (1) | EP0212338B1 (fr) |
DE (2) | DE3529099A1 (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6384845A (ja) * | 1986-09-24 | 1988-04-15 | Toyoda Mach Works Ltd | 非真円形工作物の加工方法 |
DE4023587C2 (de) * | 1990-07-25 | 1993-11-18 | Fortuna Werke Maschf Ag | Verfahren zum meßgesteuerten Umfangsschleifen von radial unrunden Werkstücken |
DE4029129C2 (de) * | 1990-09-13 | 1994-12-22 | Bayerische Motoren Werke Ag | Vorrichtung zum Schleifen von insbesondere hohlen Nocken |
JPH06106410A (ja) * | 1992-09-29 | 1994-04-19 | Komatsu Ltd | カムシャフトミラーのカムシャフト加工方法 |
GB9401462D0 (en) * | 1994-01-26 | 1994-03-23 | Western Atlas Uk Ltd | Improvements in and relating to grinding |
DE19626189A1 (de) * | 1996-06-29 | 1998-01-02 | Schaudt Maschinenbau Gmbh | Verfahren zum Schleifen rotierender Werkstücke |
GB2361445A (en) * | 1999-02-03 | 2001-10-24 | Unova Uk Ltd | Angle head grinding |
DE59900206C5 (de) * | 1999-03-08 | 2010-09-09 | Alstom (Schweiz) Ag, Baden | Fräsverfahren |
MXPA02004139A (es) * | 1999-10-27 | 2002-10-17 | Unova Uk Ltd | Metodo para rectificar una pieza de trabajo que logra una capacidad de remocion constante del material. |
GB9928825D0 (en) | 1999-12-06 | 2000-02-02 | Unova Uk Ltd | Improvements in and relating to grinding |
JP3850224B2 (ja) * | 2001-03-26 | 2006-11-29 | 株式会社ジェイテクト | 研削加工方法及び数値制御研削盤 |
JP4065185B2 (ja) * | 2002-11-26 | 2008-03-19 | 武蔵精密工業株式会社 | 非円形回転体ワークの研削方法及びその装置 |
DE10327623B4 (de) * | 2003-06-19 | 2006-07-13 | Mtu Aero Engines Gmbh | Fräsverfahren zur Fertigung von Bauteilen |
JP5228554B2 (ja) * | 2008-03-19 | 2013-07-03 | 株式会社ジェイテクト | 非真円箇所研削盤における工作物異常回転検出装置 |
DE102008061528A1 (de) | 2008-12-10 | 2010-06-17 | Wedeniwski, Horst Josef, Dr. | Verfahren zum numerisch gesteuerten Schleifen von Nocken mit konkaven Flanken einer Nockenwelle |
DE102014018784A1 (de) * | 2014-12-19 | 2016-06-23 | Thyssenkrupp Presta Teccenter Ag | Verfahren zur Erzeugung eines Nockenprofils eines Nockenpaketes einer Nockenwelle und Nockenwelle |
JP6844772B2 (ja) * | 2017-02-28 | 2021-03-17 | 株式会社シギヤ精機製作所 | 研削装置及び、研削方法 |
CN110802474B (zh) * | 2019-11-16 | 2021-04-20 | 湖南腾盛智能科技有限公司 | 一种直线滑轨打磨装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3919614A (en) * | 1972-01-17 | 1975-11-11 | Warner Swasey Co | Dual-cycle cam grinding machine with electrical pulse operated wheel feed |
EP0085225A2 (fr) * | 1982-01-29 | 1983-08-10 | Litton Industrial Automation Systems, Inc. | Machine à meuler cylindrique |
EP0093352A2 (fr) * | 1982-04-29 | 1983-11-09 | Toyoda Koki Kabushiki Kaisha | Procédé pour le profilage de cames par rectification |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1062818A (en) * | 1963-08-09 | 1967-03-22 | Toyo Kogyo Kabushiki Kaisha | Rotating type cam grinding machine |
US3482357A (en) * | 1965-10-27 | 1969-12-09 | Fujitsu Ltd | Automatically controlled cam grinding system |
US4084243A (en) * | 1975-05-19 | 1978-04-11 | Oki Electric Industry Co., Ltd. | Cutter radius compensation system |
FR2391033A1 (fr) * | 1977-05-18 | 1978-12-15 | Clichy Const Sa | Machine a rectifier les arbres a cames |
DE3316619A1 (de) * | 1983-05-06 | 1984-11-08 | Otto 4010 Hilden Helbrecht | Schleifmaschine fuer die raender von brillenglaesern |
JPS6090667A (ja) * | 1983-10-20 | 1985-05-21 | Toyoda Mach Works Ltd | カム研削方法 |
-
1985
- 1985-08-14 DE DE19853529099 patent/DE3529099A1/de active Granted
-
1986
- 1986-07-25 EP EP86110285A patent/EP0212338B1/fr not_active Expired - Lifetime
- 1986-07-25 DE DE8686110285T patent/DE3675706D1/de not_active Revoked
- 1986-08-13 US US06/896,520 patent/US4747236A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3919614A (en) * | 1972-01-17 | 1975-11-11 | Warner Swasey Co | Dual-cycle cam grinding machine with electrical pulse operated wheel feed |
EP0085225A2 (fr) * | 1982-01-29 | 1983-08-10 | Litton Industrial Automation Systems, Inc. | Machine à meuler cylindrique |
EP0093352A2 (fr) * | 1982-04-29 | 1983-11-09 | Toyoda Koki Kabushiki Kaisha | Procédé pour le profilage de cames par rectification |
Also Published As
Publication number | Publication date |
---|---|
DE3529099C2 (fr) | 1989-04-27 |
EP0212338B1 (fr) | 1990-11-22 |
DE3675706D1 (de) | 1991-01-03 |
US4747236A (en) | 1988-05-31 |
DE3529099A1 (de) | 1987-02-19 |
EP0212338A3 (en) | 1988-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69127833T2 (de) | Verfahren und vorrichtung zur herstellung gerad- und schrägzahnstirnräder | |
DE69901004T2 (de) | Verfahren und vorrichtung zur bearbeitung von vorbearbeiteten, verzahnten werkstücken wie zahnräder | |
DE19910747B4 (de) | Verfahren und Vorrichtung zum Einmitten eines Abrichtwerkzeuges in die Ganglücke einer Schleifschnecke | |
EP0212338B1 (fr) | Procédé pour l'usinage de la surface d'une came | |
DE4210710C2 (de) | Verfahren und Einrichtung zum Schleifen rillenförmiger Außenprofile eines Werkstückes | |
DE69526851T2 (de) | Schneckenförmige schleifscheibe, verfahren zum abrichten und schleifen eines werkstückes | |
EP0543079B1 (fr) | Méthode à commande numérique pour meuler la came d'un arbre à cames | |
DE69122247T2 (de) | Verfahren zum schleifen der oberflächen von schneideblättern und schleifscheibe zum ausführen dieses verfahrens | |
DE4023587C2 (de) | Verfahren zum meßgesteuerten Umfangsschleifen von radial unrunden Werkstücken | |
DE102012002126A1 (de) | Verfahren zur Ansteuerung der Bewegung eines Abrichtwerkzeugs | |
DE2604281A1 (de) | Maschine zum schaben und/oder profilrollen der verzahnung von zahnraedern | |
WO2018130495A1 (fr) | Procédé pour usiner des roues coniques au moyen d'une meule boisseau rotative pouvant être dressée et se déplaçant de manière excentrique | |
EP0174280A1 (fr) | Dispositif pour fabriquer ou usiner des engrenages cylindriques | |
CH624864A5 (en) | Lathe | |
EP2470319B1 (fr) | Procédé de tournage et dispositif de tournage | |
DE1954845B2 (de) | Vorrichtung zur optimalen anpassung einer numerisch gesteuerten werkzeugmaschine an den bearbeitungsvorgang eines werkstueckes | |
EP2851150A2 (fr) | Outil, procédé et machine destinés à fabriquer un profil denté sur une pièce par taillage des engrenages par développante | |
CH697397B1 (de) | Verfahren und Vorrichtung zum Schleifen eines Profils eines Werkstücks. | |
DE3750688T2 (de) | Werkzeugmaschine. | |
EP0360953B1 (fr) | Machine pour la finition de flancs de dents de pièces dentées | |
DE4122461C1 (fr) | ||
DE3914549C2 (fr) | ||
EP0227663B1 (fr) | Appareil d'usinage pour endenter les roues dentees | |
DE3712454A1 (de) | Verfahren zum ausgleich von verzahnungsfehlern | |
EP0563412B1 (fr) | Machine-outil à commande numérique avec interruption et reprise d'usinage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB LI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE FR GB LI |
|
17P | Request for examination filed |
Effective date: 19880129 |
|
17Q | First examination report despatched |
Effective date: 19890404 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3675706 Country of ref document: DE Date of ref document: 19910103 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: SCHIESS AG, GESCHAEFTSBEREICH SCHIESS-KOPP, Effective date: 19910810 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: SCHIESS KOPP WERKZEUGMASCHINEN GMBH Effective date: 19910810 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19930929 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19940731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19940731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
APAU | Communication from the board of appeal sent |
Free format text: ORIGINAL CODE: EPIDOS OBAP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
APCC | Communication from the board of appeal sent |
Free format text: ORIGINAL CODE: EPIDOS OBAPO |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970619 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970716 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970820 Year of fee payment: 12 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: KOPP WERKZEUGMASCHINEN GMBH Effective date: 19910810 |
|
APCC | Communication from the board of appeal sent |
Free format text: ORIGINAL CODE: EPIDOS OBAPO |
|
APCC | Communication from the board of appeal sent |
Free format text: ORIGINAL CODE: EPIDOS OBAPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980725 |
|
APCC | Communication from the board of appeal sent |
Free format text: ORIGINAL CODE: EPIDOS OBAPO |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 19990809 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |