EP0146778B1 - Container for final radioactive waste disposal - Google Patents
Container for final radioactive waste disposal Download PDFInfo
- Publication number
- EP0146778B1 EP0146778B1 EP84113941A EP84113941A EP0146778B1 EP 0146778 B1 EP0146778 B1 EP 0146778B1 EP 84113941 A EP84113941 A EP 84113941A EP 84113941 A EP84113941 A EP 84113941A EP 0146778 B1 EP0146778 B1 EP 0146778B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- uranium
- weight
- container
- radioactive waste
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/34—Disposal of solid waste
- G21F9/36—Disposal of solid waste by packaging; by baling
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/08—Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F5/00—Transportable or portable shielded containers
- G21F5/005—Containers for solid radioactive wastes, e.g. for ultimate disposal
Definitions
- the invention relates to a container for the final storage of radioactive waste with uranium as radiation protection material within the container walls.
- Containers for radioactive material which contain uranium as radiation protection material between an inner and outer shell of the container body, in the shielding lid and on the container bottom, are known for example from DE-A-2 304 665.
- the uranium castings used for this purpose in the form of depleted material must always be encapsulated in another material, since they are not resistant to oxidation and corrosion.
- uranium is also anisotropic in its properties and therefore expands to different extents when heated in three dimensions, in contrast to the usual encapsulation materials such as B. steel, there can be warps when filling the container with strong heat-emitting radioactive substances or during the prescribed fire test (30 minutes at 800 ° C), which damage the container.
- uranium alloys with 5 to 15% by weight of molybdenum and / or 2 to 15% by weight of copper and / or 1 to 5% by weight of zirconium and / or 0.5 to 5 as the radiation protection material %
- chromium and / or 0.5 to 2% by weight of nickel and / or 0.5 to 1.5% by weight of niobium and / or 0 to 5% by weight of iron the rest uranium, can be used , the total content of the alloying metals 10 to 16 wt .-% and the addition of chromium and / or nickel and / or niobium must be at least 1.5 wt .-%.
- These alloys have a much higher corrosion resistance than the pure uranium metal and known uranium alloys, so that they can be used directly as container and radiation protection material, with only thin sheets of 1 to 2 mm to retain the alpha and beta radiation emanating from the core and no thick-walled encapsulations or steel jackets are required. In addition, these alloys show practically no anisotropy with regard to different thermal expansion.
- alloys are radiation-resistant and only show an approximately 10% lower radiation shielding effect than pure uranium.
- the production of the alloys during melting is without problems, as is the casting of the corresponding shaped bodies.
- the additions of the alloy metals can be varied in the areas claimed.
- uranium alloys as radiation protection and container material has the further advantage that depleted uranium, which accumulates in large quantities during the enrichment of uranium-235 and must also be treated as radioactive waste, is simultaneously disposed of without the need for separate containers .
- depleted uranium which accumulates in large quantities during the enrichment of uranium-235 and must also be treated as radioactive waste, is simultaneously disposed of without the need for separate containers .
- uranium that has been reprocessed several times from the reprocessing of spent fuel elements which can no longer be used for fuel element production due to the accumulation of non-fissile uranium-236.
- Alloying copper and zirconium to uranium primarily serves to improve the corrosion properties.
- the zirconium content should not be higher than 5%, otherwise the melting point of the alloy will be reduced too much. Alloying of iron is also possible, although here too no more than 5% may be added, since otherwise the melting point drops below 900 ° C.
- molybdenum and zircon eliminate the anisotropy of uranium.
- the container according to the invention normally consists of a cast body made of uranium alloy, which is surrounded by an approximately 2 mm thick sheet metal jacket, which shields the alpha and beta rays that originate from the uranium or its decay production.
- the figure shows schematically a cross section through a container.
- the radiation protection material (1) in the form of a uranium alloy is surrounded on the outside by a thin sheet metal jacket (2).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Environmental & Geological Engineering (AREA)
- Ceramic Engineering (AREA)
- Metallurgy (AREA)
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
Die Erfindung betrifft einen Behälter zur Endlagerung von radioaktiven Abfällen mit Uran als Strahlenschutzmaterial innerhalb der Behälterwandungen.The invention relates to a container for the final storage of radioactive waste with uranium as radiation protection material within the container walls.
Behälter für radioaktives Material, die als Strahlenschutzmaterial Uran zwischen einem inneren und äußeren Mantel des Behälterkörpers, im Abschirmdeckel und auf dem Behälterboden enthalten, sind beispielsweise aus der DE-A-2 304 665 bekannt. Die hierfür verwendeten Urangußkörper in Form von abgereichertem Material müssen stets in einen anderen Werkstoff eingekapselt werden, da sie nicht oxidations- und korrosionsbeständig sind.Containers for radioactive material, which contain uranium as radiation protection material between an inner and outer shell of the container body, in the shielding lid and on the container bottom, are known for example from DE-A-2 304 665. The uranium castings used for this purpose in the form of depleted material must always be encapsulated in another material, since they are not resistant to oxidation and corrosion.
Da Uran außerdem in seinen Eigenschaften anisotrop ist und sich daher bei Erwärmung in den drei Dimensionen verschieden stark ausdehnt, im Gegensatz zu den üblichen Kapselungsmaterialien, wie z. B. Stahl, kann es bei Füllung des Behälters mit stark wärmeabgebenden radioaktiven Stoffen oder beim vorgeschriebenen Feuertest (30 Minuten bei 800°C) zu Verwerfungen kommen, die den Behälter beschädigen.Since uranium is also anisotropic in its properties and therefore expands to different extents when heated in three dimensions, in contrast to the usual encapsulation materials such as B. steel, there can be warps when filling the container with strong heat-emitting radioactive substances or during the prescribed fire test (30 minutes at 800 ° C), which damage the container.
Es war daher Aufgabe der vorliegenden Erfindung, einen Behälter zur Endlagerung von radioaktiven Abfällen mit Uran als Strahlenschutzmaterial innerhalb der Behälterwandungen zu schaffen, bei dem Verwerfungen bei erhöhten Temperaturen ausgeschlossen sind und der weniger korrosionsanfällig ist.It was therefore an object of the present invention to provide a container for the final storage of radioactive waste with uranium as radiation protection material within the container walls, in which distortions at elevated temperatures are excluded and which is less susceptible to corrosion.
Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, daß als Strahlenschutzmaterial Uranlegierungen mit 5 bis 15 Gew.-% Molybdän und/oder 2 bis 15 Gew.-% Kupfer und/oder 1 bis 5 Gew.-% Zirkon und/oder 0,5 bis 5 Gew.-% Chrom und/oder 0,5 bis 2 Gew.-% Nickel und/oder 0,5 bis 1,5 Gew.-% Niob und/oder 0 bis 5 Gew.-% Eisen, Rest Uran, eingesetzt werden, wobei der Gesamtgehalt der Beilegierungsmetalle 10 bis 16 Gew.-% und der Zusatz an Chrom und/oder Nickel und/oder Niob mindestens 1,5 Gew.-% betragen muß.This object was achieved in that uranium alloys with 5 to 15% by weight of molybdenum and / or 2 to 15% by weight of copper and / or 1 to 5% by weight of zirconium and / or 0.5 to 5 as the radiation protection material % By weight of chromium and / or 0.5 to 2% by weight of nickel and / or 0.5 to 1.5% by weight of niobium and / or 0 to 5% by weight of iron, the rest uranium, can be used , the total content of the alloying metals 10 to 16 wt .-% and the addition of chromium and / or nickel and / or niobium must be at least 1.5 wt .-%.
Diese Legierungen weisen gegenüber dem reinen Uranmetall und bekannten Uranlegierungen eine wesentlich höhere Korrosionsbeständigkeit auf, so daß man sie direkt als Behälter- und Strahlenschutzmaterial verwenden kann, wobei nur dünne Bleche von 1 bis 2 mm zur Rückhaltung der vom Kern ausgehenden Alpha- und Beta-Strahlungen und keine dickwandigen Abkapselungen oder Stahlmäntel mehr benötigt werden. Außerdem zeigen diese Legierungen praktisch keine Anisotropie in bezug auf unterschiedliche Wärmeausdehnung auf.These alloys have a much higher corrosion resistance than the pure uranium metal and known uranium alloys, so that they can be used directly as container and radiation protection material, with only thin sheets of 1 to 2 mm to retain the alpha and beta radiation emanating from the core and no thick-walled encapsulations or steel jackets are required. In addition, these alloys show practically no anisotropy with regard to different thermal expansion.
Folgende Legierungen haben sich als besonders vorteilhaft erwiesen:
- a) 89 % Uran, 8 % Molybdän, 1 % Zirkon, 1 % Chrom und 1 % Nickel
- b) 88,5 % Uran, 5 % Molybdän, 5 % Zirkon, 1,5 % Niob
- c) 88,5 % Uran, 4 % Kupfer, 5 % Zirkon, 1 % Chrom, 1,5 % Niob
- d) 85 % Uran, 5 % Kupfer, 4 % Zirkon, 5 % Chrom, 1 % Nickel.
- a) 89% uranium, 8% molybdenum, 1% zircon, 1% chromium and 1% nickel
- b) 88.5% uranium, 5% molybdenum, 5% zircon, 1.5% niobium
- c) 88.5% uranium, 4% copper, 5% zircon, 1% chromium, 1.5% niobium
- d) 85% uranium, 5% copper, 4% zircon, 5% chromium, 1% nickel.
Diese Legierungen sind strahlenbeständig und zeigen nur eine um ca. 10 % niedrigere Strahlenabschirmwirkung als reines Uran. Die Herstellung der Legierungen beim Schmelzen ist ohne Probleme, wie auch das Gießen der entsprechenden Formkörper. Je nach Anforderung an die Korrosionsbeständigkeit entsprechend den unterschiedlichen geologischen Formationen der Endlager kann man die Zusätze der Legierungsmetalle in den beanspruchten Bereichen variieren.These alloys are radiation-resistant and only show an approximately 10% lower radiation shielding effect than pure uranium. The production of the alloys during melting is without problems, as is the casting of the corresponding shaped bodies. Depending on the requirement for corrosion resistance in accordance with the different geological formations of the repositories, the additions of the alloy metals can be varied in the areas claimed.
Die Verwendung von Uranlegierungen als Strahlenschutz- und Behältermaterial hat den weiteren Vorteil, daß abgereichertes Uran, das in großen Mengen bei der Anreicherung von Uran-235 anfällt und ebenfalls als radioaktiver Abfall behandelt werden muß, gleichzeitig endgelagert wird, ohne daß eigene Behälter hierfür notwendig wären. Das gleiche gilt für mehrmals aufgearbeitetes Uran aus der Wiederaufarbeitung abgebrannter Brennelemente, das wegen der Anreicherung von nicht spaltbarem Uran-236 nicht mehr für die Brennelementherstellung verwendet werden kann.The use of uranium alloys as radiation protection and container material has the further advantage that depleted uranium, which accumulates in large quantities during the enrichment of uranium-235 and must also be treated as radioactive waste, is simultaneously disposed of without the need for separate containers . The same applies to uranium that has been reprocessed several times from the reprocessing of spent fuel elements, which can no longer be used for fuel element production due to the accumulation of non-fissile uranium-236.
Das Zulegieren von Kupfer und Zirkon zu Uran dient vor allem der Verbesserung der Korrosionseigenschaften. Dabei sollte der Zirkongehalt nicht höher als 5 % sein, da sonst der Schmelzpunkt der Legierung zu stark herabgesetzt wird. Das Zulegieren von Eisen ist ebenfalls möglich, wobei auch hier nicht mehr als 5 % zugegeben werden dürfen, da sonst der Schmelzpunkt unter 900° C absinkt.Alloying copper and zirconium to uranium primarily serves to improve the corrosion properties. The zirconium content should not be higher than 5%, otherwise the melting point of the alloy will be reduced too much. Alloying of iron is also possible, although here too no more than 5% may be added, since otherwise the melting point drops below 900 ° C.
Molybdän und Zirkon beseitigen im Zusammenwirken mit Chrom, Nickel und/oder Niob die Anisotropie des Urans.In combination with chrome, nickel and / or niobium, molybdenum and zircon eliminate the anisotropy of uranium.
Der erfindungsgemäße Behälter besteht normalerweise aus einem Gußkörper aus Uranlegierung, der mit einem etwa 2 mm starken Blechmantel umgeben ist, der die Alpha- und Beta-Strahlen abschirmt, die aus dem Uran bzw. dessen Zerfallsproduktion herrühren. Außerdem kann man noch eine zusätzliche Außenhülle verwenden, deren Werkstoff gegen Korrosionseinflüsse, wie z. B. Salzlauge, beständig ist. Hierfür kommen Kupfer-Zinn-Bronzen, Titan und Nickelbasislegierungen in Betracht.The container according to the invention normally consists of a cast body made of uranium alloy, which is surrounded by an approximately 2 mm thick sheet metal jacket, which shields the alpha and beta rays that originate from the uranium or its decay production. In addition, you can still use an additional outer shell, the material against corrosion, such as. B. brine, is stable. Copper-tin bronzes, titanium and nickel-based alloys are suitable for this.
Die Abbildung zeigt schematisch einen Querschnitt durch einen Behälter. Das Strahlenschutzmaterial (1) in Form einer Uranlegierung ist außen von einem dünnen Blechmantel (2) umgeben.The figure shows schematically a cross section through a container. The radiation protection material (1) in the form of a uranium alloy is surrounded on the outside by a thin sheet metal jacket (2).
Claims (1)
- A container for the final storage of radioactive waste, with uranium as the radiation shielding material inside the container walls, characterised in that uranium alloys containing from 5 to 15 % by weight of molybdenum and/or from 2 to 15 % by weight of copper and/or from 1 to 5 % by weight of zirconium and/or from 0.5 to 5 % by weight of chromium and/or from 0.5 to 2 % by weight of nickel and/or from 0.5 to 1.5 % by weight of niobium and/or from 0.5 % by weight of iron, the remainder being uranium, are used as the radiation shielding material, wherein the total content of the alloying metals must be from 10 to 16 % by weight and the addition of chromium and/or nickel and/or niobium must be at least 1.5 % by weight.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3346355A DE3346355C2 (en) | 1983-12-22 | 1983-12-22 | Containers for the final disposal of radioactive waste |
DE3346355 | 1983-12-22 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0146778A2 EP0146778A2 (en) | 1985-07-03 |
EP0146778A3 EP0146778A3 (en) | 1985-12-27 |
EP0146778B1 true EP0146778B1 (en) | 1988-02-24 |
Family
ID=6217659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84113941A Expired EP0146778B1 (en) | 1983-12-22 | 1984-11-17 | Container for final radioactive waste disposal |
Country Status (5)
Country | Link |
---|---|
US (1) | US4650518A (en) |
EP (1) | EP0146778B1 (en) |
JP (1) | JPS60157098A (en) |
CA (1) | CA1235002A (en) |
DE (2) | DE3346355C2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4825088A (en) * | 1987-10-30 | 1989-04-25 | Westinghouse Electric Corp. | Lightweight titanium cask assembly for transporting radioactive material |
US4914306A (en) * | 1988-08-11 | 1990-04-03 | Dufrane Kenneth H | Versatile composite radiation shield |
DE3928711A1 (en) * | 1988-12-31 | 1990-07-05 | Karlheinz Hoesgen | ABSORPTION COAT FOR ABSORPTION OF RADIOACTIVE RADIATION AND SPLITTING PRODUCTS |
US4968482A (en) * | 1990-02-23 | 1990-11-06 | The United States Of America As Represented By The United States Department Of Energy | Uranium-titanium-niobium alloy |
DE4116022C2 (en) * | 1991-05-16 | 1995-03-23 | Isotopentechnik Dr Sauerwein G | Shielding body of a gammagraphy device |
DE4143481C2 (en) * | 1991-05-16 | 1995-04-06 | Isotopentechnik Dr Sauerwein G | Shielding system of a gammagraphy device |
DE4116021C2 (en) * | 1991-05-16 | 1995-03-23 | Isotopentechnik Dr Sauerwein G | Shielding system of a gammagraphy device |
US5273711A (en) * | 1991-10-08 | 1993-12-28 | Nuclear Metals, Inc. | High strength and ductile depleted uranium alloy |
US5387741A (en) * | 1993-07-30 | 1995-02-07 | Shuttle; Anthony J. | Method and apparatus for subterranean containment of hazardous waste material |
US5832392A (en) * | 1996-06-17 | 1998-11-03 | The United States Of America As Represented By The United States Department Of Energy | Depleted uranium as a backfill for nuclear fuel waste package |
WO2015075751A1 (en) | 2013-11-21 | 2015-05-28 | So.G.I.N. - Societa' Gestione Impianti Nucleari | Glass for the containment of radioactive elements and highly toxic and hazardous wastes and procedure of containment by said glass |
CN115094351B (en) * | 2022-07-05 | 2023-01-24 | 西安交通大学 | Depleted uranium-based hydrogen absorption and storage alloy and method |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR896910A (en) * | 1941-09-22 | 1945-03-07 | Auergesellschaft Ag | Containers for radioactive substances, in particular device for applying these substances |
US2756489A (en) * | 1946-05-03 | 1956-07-31 | Howard E Morris | Metal alloy |
US3072475A (en) * | 1951-03-07 | 1963-01-08 | Richard D Baker | Method of making alloys of second rare earth series metals |
US2789072A (en) * | 1952-12-22 | 1957-04-16 | Jr Donald W White | Heat treated uranium alloy and method of preparing same |
GB816603A (en) * | 1954-07-14 | 1959-07-15 | Atomic Energy Authority Uk | Ternary uranium alloy |
NL275348A (en) * | 1961-03-01 | |||
GB984489A (en) * | 1963-02-19 | 1965-02-24 | Atomic Energy Authority Uk | Uranium alloys |
GB984847A (en) * | 1963-02-19 | 1965-03-03 | Atomic Energy Authority Uk | Uranium alloys |
GB1019156A (en) * | 1964-12-17 | 1966-02-02 | Atomic Energy Authority Uk | Improvements in or relating to nuclear fuel materials |
GB983803A (en) * | 1964-02-11 | 1965-02-17 | Atomic Energy Authority Uk | Improvements in or relating to uranium alloys |
GB984846A (en) * | 1964-02-11 | 1965-03-03 | Atomic Energy Authority Uk | Improvements in or relating to uranium alloys |
US3266890A (en) * | 1964-03-23 | 1966-08-16 | Greenspan Jacob | Structural, high strength uranium alloys |
US3545966A (en) * | 1968-02-27 | 1970-12-08 | Etude La Realisation De Combus | Manufacture of improved nuclear fuels |
US3731101A (en) * | 1971-04-14 | 1973-05-01 | Nl Industries Inc | Shipping container for radioactive material |
US3780306A (en) * | 1971-05-27 | 1973-12-18 | Nat Lead Co | Radioactive shipping container with neutron and gamma absorbers |
US3888795A (en) * | 1971-07-07 | 1975-06-10 | Atlantic Richfield Co | Uh' 3 'cermet |
DE2446381A1 (en) * | 1974-09-27 | 1976-04-15 | Siemens Ag | Medical gamma ray source with uranium shielding - has protective coating resisting attack of shielding by nitrous gases |
FR2521337B1 (en) * | 1982-02-10 | 1987-01-16 | Mitsui Mining & Smelting Co | WATERPROOF CONTAINER FOR RADIOACTIVE WASTE |
-
1983
- 1983-12-22 DE DE3346355A patent/DE3346355C2/en not_active Expired
-
1984
- 1984-11-17 EP EP84113941A patent/EP0146778B1/en not_active Expired
- 1984-11-17 DE DE8484113941T patent/DE3469467D1/en not_active Expired
- 1984-12-14 US US06/681,579 patent/US4650518A/en not_active Expired - Fee Related
- 1984-12-19 CA CA000470530A patent/CA1235002A/en not_active Expired
- 1984-12-20 JP JP59267610A patent/JPS60157098A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0146778A3 (en) | 1985-12-27 |
US4650518A (en) | 1987-03-17 |
DE3346355C2 (en) | 1985-11-07 |
CA1235002A (en) | 1988-04-12 |
JPS60157098A (en) | 1985-08-17 |
DE3469467D1 (en) | 1988-03-31 |
DE3346355A1 (en) | 1985-07-11 |
EP0146778A2 (en) | 1985-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2549969C2 (en) | Nuclear fuel element | |
EP0146778B1 (en) | Container for final radioactive waste disposal | |
DE2550028B2 (en) | Nuclear fuel element | |
DE69006914T2 (en) | Corrosion-resistant zirconium alloys containing copper, nickel and iron. | |
DE60031804T2 (en) | Envelope for use in nuclear reactors with increased crack and corrosion resistance | |
DE2259569A1 (en) | NUCLEAR FUEL ELEMENT | |
CH639794A5 (en) | SHIELDED CONTAINERS FOR THE TRANSPORTATION AND/OR STORAGE OF BIOHAZARDOUS WASTE, IN PARTICULAR IRRADIATED FUEL. | |
EP0092679A1 (en) | Container for radioactive wastes | |
DE2527686C2 (en) | Nuclear fuel assembly with a cylindrical container | |
EP0036982A1 (en) | Housing for radioactive materials in transport and/or storage containers | |
EP0057429B1 (en) | Multi-layered container for transporting and storing radioactive wastes | |
DE1068821B (en) | ||
DE3310054A1 (en) | Nuclear fuel element and composite container therefor | |
EP0072429A1 (en) | Container for long-term storage of radioactive waste | |
DE3248235A1 (en) | COMPOSITE CONTAINER FOR CORE REACTORS | |
DE1204343B (en) | Nuclear reactor fuel element | |
DE2524169C2 (en) | Body with glass granules containing highly radioactive waste and / or actinides | |
DE2842198B2 (en) | Nuclear fuel element | |
DE3437112A1 (en) | Coated, neutron-absorbing control member | |
EP0062831B1 (en) | Container for a long term storage of radioactive materials | |
DE3006507A1 (en) | ACCIDENT PROTECTION FOR THE STORAGE OF SELF-HEATING RADIOACTIVE SUBSTANCES | |
DE1260153B (en) | Process for the production of bodies usable in nuclear reactors | |
DE1239180B (en) | Process for plating ferrous metals with uranium, zirconium, uranium alloys or zirconium alloys | |
DE2549970C2 (en) | Nuclear fuel element | |
DE3018746C2 (en) | Process for embedding tritiated waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19841117 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): DE FR GB SE |
|
17Q | First examination report despatched |
Effective date: 19870728 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3469467 Country of ref document: DE Date of ref document: 19880331 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19891117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19891118 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19900731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19900801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 84113941.3 Effective date: 19900705 |