Nothing Special   »   [go: up one dir, main page]

EP0146778B1 - Container for final radioactive waste disposal - Google Patents

Container for final radioactive waste disposal Download PDF

Info

Publication number
EP0146778B1
EP0146778B1 EP84113941A EP84113941A EP0146778B1 EP 0146778 B1 EP0146778 B1 EP 0146778B1 EP 84113941 A EP84113941 A EP 84113941A EP 84113941 A EP84113941 A EP 84113941A EP 0146778 B1 EP0146778 B1 EP 0146778B1
Authority
EP
European Patent Office
Prior art keywords
uranium
weight
container
radioactive waste
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84113941A
Other languages
German (de)
French (fr)
Other versions
EP0146778A3 (en
EP0146778A2 (en
Inventor
Paul Arntzen
Hans Dipl.-Ing. Pirk
Horst Dr. Dipl.-Chem. Vietzke
Hans Dr. Wingender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nukem GmbH
Original Assignee
Nukem GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nukem GmbH filed Critical Nukem GmbH
Publication of EP0146778A2 publication Critical patent/EP0146778A2/en
Publication of EP0146778A3 publication Critical patent/EP0146778A3/en
Application granted granted Critical
Publication of EP0146778B1 publication Critical patent/EP0146778B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal

Definitions

  • the invention relates to a container for the final storage of radioactive waste with uranium as radiation protection material within the container walls.
  • Containers for radioactive material which contain uranium as radiation protection material between an inner and outer shell of the container body, in the shielding lid and on the container bottom, are known for example from DE-A-2 304 665.
  • the uranium castings used for this purpose in the form of depleted material must always be encapsulated in another material, since they are not resistant to oxidation and corrosion.
  • uranium is also anisotropic in its properties and therefore expands to different extents when heated in three dimensions, in contrast to the usual encapsulation materials such as B. steel, there can be warps when filling the container with strong heat-emitting radioactive substances or during the prescribed fire test (30 minutes at 800 ° C), which damage the container.
  • uranium alloys with 5 to 15% by weight of molybdenum and / or 2 to 15% by weight of copper and / or 1 to 5% by weight of zirconium and / or 0.5 to 5 as the radiation protection material %
  • chromium and / or 0.5 to 2% by weight of nickel and / or 0.5 to 1.5% by weight of niobium and / or 0 to 5% by weight of iron the rest uranium, can be used , the total content of the alloying metals 10 to 16 wt .-% and the addition of chromium and / or nickel and / or niobium must be at least 1.5 wt .-%.
  • These alloys have a much higher corrosion resistance than the pure uranium metal and known uranium alloys, so that they can be used directly as container and radiation protection material, with only thin sheets of 1 to 2 mm to retain the alpha and beta radiation emanating from the core and no thick-walled encapsulations or steel jackets are required. In addition, these alloys show practically no anisotropy with regard to different thermal expansion.
  • alloys are radiation-resistant and only show an approximately 10% lower radiation shielding effect than pure uranium.
  • the production of the alloys during melting is without problems, as is the casting of the corresponding shaped bodies.
  • the additions of the alloy metals can be varied in the areas claimed.
  • uranium alloys as radiation protection and container material has the further advantage that depleted uranium, which accumulates in large quantities during the enrichment of uranium-235 and must also be treated as radioactive waste, is simultaneously disposed of without the need for separate containers .
  • depleted uranium which accumulates in large quantities during the enrichment of uranium-235 and must also be treated as radioactive waste, is simultaneously disposed of without the need for separate containers .
  • uranium that has been reprocessed several times from the reprocessing of spent fuel elements which can no longer be used for fuel element production due to the accumulation of non-fissile uranium-236.
  • Alloying copper and zirconium to uranium primarily serves to improve the corrosion properties.
  • the zirconium content should not be higher than 5%, otherwise the melting point of the alloy will be reduced too much. Alloying of iron is also possible, although here too no more than 5% may be added, since otherwise the melting point drops below 900 ° C.
  • molybdenum and zircon eliminate the anisotropy of uranium.
  • the container according to the invention normally consists of a cast body made of uranium alloy, which is surrounded by an approximately 2 mm thick sheet metal jacket, which shields the alpha and beta rays that originate from the uranium or its decay production.
  • the figure shows schematically a cross section through a container.
  • the radiation protection material (1) in the form of a uranium alloy is surrounded on the outside by a thin sheet metal jacket (2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Die Erfindung betrifft einen Behälter zur Endlagerung von radioaktiven Abfällen mit Uran als Strahlenschutzmaterial innerhalb der Behälterwandungen.The invention relates to a container for the final storage of radioactive waste with uranium as radiation protection material within the container walls.

Behälter für radioaktives Material, die als Strahlenschutzmaterial Uran zwischen einem inneren und äußeren Mantel des Behälterkörpers, im Abschirmdeckel und auf dem Behälterboden enthalten, sind beispielsweise aus der DE-A-2 304 665 bekannt. Die hierfür verwendeten Urangußkörper in Form von abgereichertem Material müssen stets in einen anderen Werkstoff eingekapselt werden, da sie nicht oxidations- und korrosionsbeständig sind.Containers for radioactive material, which contain uranium as radiation protection material between an inner and outer shell of the container body, in the shielding lid and on the container bottom, are known for example from DE-A-2 304 665. The uranium castings used for this purpose in the form of depleted material must always be encapsulated in another material, since they are not resistant to oxidation and corrosion.

Da Uran außerdem in seinen Eigenschaften anisotrop ist und sich daher bei Erwärmung in den drei Dimensionen verschieden stark ausdehnt, im Gegensatz zu den üblichen Kapselungsmaterialien, wie z. B. Stahl, kann es bei Füllung des Behälters mit stark wärmeabgebenden radioaktiven Stoffen oder beim vorgeschriebenen Feuertest (30 Minuten bei 800°C) zu Verwerfungen kommen, die den Behälter beschädigen.Since uranium is also anisotropic in its properties and therefore expands to different extents when heated in three dimensions, in contrast to the usual encapsulation materials such as B. steel, there can be warps when filling the container with strong heat-emitting radioactive substances or during the prescribed fire test (30 minutes at 800 ° C), which damage the container.

Es war daher Aufgabe der vorliegenden Erfindung, einen Behälter zur Endlagerung von radioaktiven Abfällen mit Uran als Strahlenschutzmaterial innerhalb der Behälterwandungen zu schaffen, bei dem Verwerfungen bei erhöhten Temperaturen ausgeschlossen sind und der weniger korrosionsanfällig ist.It was therefore an object of the present invention to provide a container for the final storage of radioactive waste with uranium as radiation protection material within the container walls, in which distortions at elevated temperatures are excluded and which is less susceptible to corrosion.

Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, daß als Strahlenschutzmaterial Uranlegierungen mit 5 bis 15 Gew.-% Molybdän und/oder 2 bis 15 Gew.-% Kupfer und/oder 1 bis 5 Gew.-% Zirkon und/oder 0,5 bis 5 Gew.-% Chrom und/oder 0,5 bis 2 Gew.-% Nickel und/oder 0,5 bis 1,5 Gew.-% Niob und/oder 0 bis 5 Gew.-% Eisen, Rest Uran, eingesetzt werden, wobei der Gesamtgehalt der Beilegierungsmetalle 10 bis 16 Gew.-% und der Zusatz an Chrom und/oder Nickel und/oder Niob mindestens 1,5 Gew.-% betragen muß.This object was achieved in that uranium alloys with 5 to 15% by weight of molybdenum and / or 2 to 15% by weight of copper and / or 1 to 5% by weight of zirconium and / or 0.5 to 5 as the radiation protection material % By weight of chromium and / or 0.5 to 2% by weight of nickel and / or 0.5 to 1.5% by weight of niobium and / or 0 to 5% by weight of iron, the rest uranium, can be used , the total content of the alloying metals 10 to 16 wt .-% and the addition of chromium and / or nickel and / or niobium must be at least 1.5 wt .-%.

Diese Legierungen weisen gegenüber dem reinen Uranmetall und bekannten Uranlegierungen eine wesentlich höhere Korrosionsbeständigkeit auf, so daß man sie direkt als Behälter- und Strahlenschutzmaterial verwenden kann, wobei nur dünne Bleche von 1 bis 2 mm zur Rückhaltung der vom Kern ausgehenden Alpha- und Beta-Strahlungen und keine dickwandigen Abkapselungen oder Stahlmäntel mehr benötigt werden. Außerdem zeigen diese Legierungen praktisch keine Anisotropie in bezug auf unterschiedliche Wärmeausdehnung auf.These alloys have a much higher corrosion resistance than the pure uranium metal and known uranium alloys, so that they can be used directly as container and radiation protection material, with only thin sheets of 1 to 2 mm to retain the alpha and beta radiation emanating from the core and no thick-walled encapsulations or steel jackets are required. In addition, these alloys show practically no anisotropy with regard to different thermal expansion.

Folgende Legierungen haben sich als besonders vorteilhaft erwiesen:

  • a) 89 % Uran, 8 % Molybdän, 1 % Zirkon, 1 % Chrom und 1 % Nickel
  • b) 88,5 % Uran, 5 % Molybdän, 5 % Zirkon, 1,5 % Niob
  • c) 88,5 % Uran, 4 % Kupfer, 5 % Zirkon, 1 % Chrom, 1,5 % Niob
  • d) 85 % Uran, 5 % Kupfer, 4 % Zirkon, 5 % Chrom, 1 % Nickel.
The following alloys have proven to be particularly advantageous:
  • a) 89% uranium, 8% molybdenum, 1% zircon, 1% chromium and 1% nickel
  • b) 88.5% uranium, 5% molybdenum, 5% zircon, 1.5% niobium
  • c) 88.5% uranium, 4% copper, 5% zircon, 1% chromium, 1.5% niobium
  • d) 85% uranium, 5% copper, 4% zircon, 5% chromium, 1% nickel.

Diese Legierungen sind strahlenbeständig und zeigen nur eine um ca. 10 % niedrigere Strahlenabschirmwirkung als reines Uran. Die Herstellung der Legierungen beim Schmelzen ist ohne Probleme, wie auch das Gießen der entsprechenden Formkörper. Je nach Anforderung an die Korrosionsbeständigkeit entsprechend den unterschiedlichen geologischen Formationen der Endlager kann man die Zusätze der Legierungsmetalle in den beanspruchten Bereichen variieren.These alloys are radiation-resistant and only show an approximately 10% lower radiation shielding effect than pure uranium. The production of the alloys during melting is without problems, as is the casting of the corresponding shaped bodies. Depending on the requirement for corrosion resistance in accordance with the different geological formations of the repositories, the additions of the alloy metals can be varied in the areas claimed.

Die Verwendung von Uranlegierungen als Strahlenschutz- und Behältermaterial hat den weiteren Vorteil, daß abgereichertes Uran, das in großen Mengen bei der Anreicherung von Uran-235 anfällt und ebenfalls als radioaktiver Abfall behandelt werden muß, gleichzeitig endgelagert wird, ohne daß eigene Behälter hierfür notwendig wären. Das gleiche gilt für mehrmals aufgearbeitetes Uran aus der Wiederaufarbeitung abgebrannter Brennelemente, das wegen der Anreicherung von nicht spaltbarem Uran-236 nicht mehr für die Brennelementherstellung verwendet werden kann.The use of uranium alloys as radiation protection and container material has the further advantage that depleted uranium, which accumulates in large quantities during the enrichment of uranium-235 and must also be treated as radioactive waste, is simultaneously disposed of without the need for separate containers . The same applies to uranium that has been reprocessed several times from the reprocessing of spent fuel elements, which can no longer be used for fuel element production due to the accumulation of non-fissile uranium-236.

Das Zulegieren von Kupfer und Zirkon zu Uran dient vor allem der Verbesserung der Korrosionseigenschaften. Dabei sollte der Zirkongehalt nicht höher als 5 % sein, da sonst der Schmelzpunkt der Legierung zu stark herabgesetzt wird. Das Zulegieren von Eisen ist ebenfalls möglich, wobei auch hier nicht mehr als 5 % zugegeben werden dürfen, da sonst der Schmelzpunkt unter 900° C absinkt.Alloying copper and zirconium to uranium primarily serves to improve the corrosion properties. The zirconium content should not be higher than 5%, otherwise the melting point of the alloy will be reduced too much. Alloying of iron is also possible, although here too no more than 5% may be added, since otherwise the melting point drops below 900 ° C.

Molybdän und Zirkon beseitigen im Zusammenwirken mit Chrom, Nickel und/oder Niob die Anisotropie des Urans.In combination with chrome, nickel and / or niobium, molybdenum and zircon eliminate the anisotropy of uranium.

Der erfindungsgemäße Behälter besteht normalerweise aus einem Gußkörper aus Uranlegierung, der mit einem etwa 2 mm starken Blechmantel umgeben ist, der die Alpha- und Beta-Strahlen abschirmt, die aus dem Uran bzw. dessen Zerfallsproduktion herrühren. Außerdem kann man noch eine zusätzliche Außenhülle verwenden, deren Werkstoff gegen Korrosionseinflüsse, wie z. B. Salzlauge, beständig ist. Hierfür kommen Kupfer-Zinn-Bronzen, Titan und Nickelbasislegierungen in Betracht.The container according to the invention normally consists of a cast body made of uranium alloy, which is surrounded by an approximately 2 mm thick sheet metal jacket, which shields the alpha and beta rays that originate from the uranium or its decay production. In addition, you can still use an additional outer shell, the material against corrosion, such as. B. brine, is stable. Copper-tin bronzes, titanium and nickel-based alloys are suitable for this.

Die Abbildung zeigt schematisch einen Querschnitt durch einen Behälter. Das Strahlenschutzmaterial (1) in Form einer Uranlegierung ist außen von einem dünnen Blechmantel (2) umgeben.The figure shows schematically a cross section through a container. The radiation protection material (1) in the form of a uranium alloy is surrounded on the outside by a thin sheet metal jacket (2).

Claims (1)

  1. A container for the final storage of radioactive waste, with uranium as the radiation shielding material inside the container walls, characterised in that uranium alloys containing from 5 to 15 % by weight of molybdenum and/or from 2 to 15 % by weight of copper and/or from 1 to 5 % by weight of zirconium and/or from 0.5 to 5 % by weight of chromium and/or from 0.5 to 2 % by weight of nickel and/or from 0.5 to 1.5 % by weight of niobium and/or from 0.5 % by weight of iron, the remainder being uranium, are used as the radiation shielding material, wherein the total content of the alloying metals must be from 10 to 16 % by weight and the addition of chromium and/or nickel and/or niobium must be at least 1.5 % by weight.
EP84113941A 1983-12-22 1984-11-17 Container for final radioactive waste disposal Expired EP0146778B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3346355A DE3346355C2 (en) 1983-12-22 1983-12-22 Containers for the final disposal of radioactive waste
DE3346355 1983-12-22

Publications (3)

Publication Number Publication Date
EP0146778A2 EP0146778A2 (en) 1985-07-03
EP0146778A3 EP0146778A3 (en) 1985-12-27
EP0146778B1 true EP0146778B1 (en) 1988-02-24

Family

ID=6217659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84113941A Expired EP0146778B1 (en) 1983-12-22 1984-11-17 Container for final radioactive waste disposal

Country Status (5)

Country Link
US (1) US4650518A (en)
EP (1) EP0146778B1 (en)
JP (1) JPS60157098A (en)
CA (1) CA1235002A (en)
DE (2) DE3346355C2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825088A (en) * 1987-10-30 1989-04-25 Westinghouse Electric Corp. Lightweight titanium cask assembly for transporting radioactive material
US4914306A (en) * 1988-08-11 1990-04-03 Dufrane Kenneth H Versatile composite radiation shield
DE3928711A1 (en) * 1988-12-31 1990-07-05 Karlheinz Hoesgen ABSORPTION COAT FOR ABSORPTION OF RADIOACTIVE RADIATION AND SPLITTING PRODUCTS
US4968482A (en) * 1990-02-23 1990-11-06 The United States Of America As Represented By The United States Department Of Energy Uranium-titanium-niobium alloy
DE4116022C2 (en) * 1991-05-16 1995-03-23 Isotopentechnik Dr Sauerwein G Shielding body of a gammagraphy device
DE4143481C2 (en) * 1991-05-16 1995-04-06 Isotopentechnik Dr Sauerwein G Shielding system of a gammagraphy device
DE4116021C2 (en) * 1991-05-16 1995-03-23 Isotopentechnik Dr Sauerwein G Shielding system of a gammagraphy device
US5273711A (en) * 1991-10-08 1993-12-28 Nuclear Metals, Inc. High strength and ductile depleted uranium alloy
US5387741A (en) * 1993-07-30 1995-02-07 Shuttle; Anthony J. Method and apparatus for subterranean containment of hazardous waste material
US5832392A (en) * 1996-06-17 1998-11-03 The United States Of America As Represented By The United States Department Of Energy Depleted uranium as a backfill for nuclear fuel waste package
WO2015075751A1 (en) 2013-11-21 2015-05-28 So.G.I.N. - Societa' Gestione Impianti Nucleari Glass for the containment of radioactive elements and highly toxic and hazardous wastes and procedure of containment by said glass
CN115094351B (en) * 2022-07-05 2023-01-24 西安交通大学 Depleted uranium-based hydrogen absorption and storage alloy and method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR896910A (en) * 1941-09-22 1945-03-07 Auergesellschaft Ag Containers for radioactive substances, in particular device for applying these substances
US2756489A (en) * 1946-05-03 1956-07-31 Howard E Morris Metal alloy
US3072475A (en) * 1951-03-07 1963-01-08 Richard D Baker Method of making alloys of second rare earth series metals
US2789072A (en) * 1952-12-22 1957-04-16 Jr Donald W White Heat treated uranium alloy and method of preparing same
GB816603A (en) * 1954-07-14 1959-07-15 Atomic Energy Authority Uk Ternary uranium alloy
NL275348A (en) * 1961-03-01
GB984489A (en) * 1963-02-19 1965-02-24 Atomic Energy Authority Uk Uranium alloys
GB984847A (en) * 1963-02-19 1965-03-03 Atomic Energy Authority Uk Uranium alloys
GB1019156A (en) * 1964-12-17 1966-02-02 Atomic Energy Authority Uk Improvements in or relating to nuclear fuel materials
GB983803A (en) * 1964-02-11 1965-02-17 Atomic Energy Authority Uk Improvements in or relating to uranium alloys
GB984846A (en) * 1964-02-11 1965-03-03 Atomic Energy Authority Uk Improvements in or relating to uranium alloys
US3266890A (en) * 1964-03-23 1966-08-16 Greenspan Jacob Structural, high strength uranium alloys
US3545966A (en) * 1968-02-27 1970-12-08 Etude La Realisation De Combus Manufacture of improved nuclear fuels
US3731101A (en) * 1971-04-14 1973-05-01 Nl Industries Inc Shipping container for radioactive material
US3780306A (en) * 1971-05-27 1973-12-18 Nat Lead Co Radioactive shipping container with neutron and gamma absorbers
US3888795A (en) * 1971-07-07 1975-06-10 Atlantic Richfield Co Uh' 3 'cermet
DE2446381A1 (en) * 1974-09-27 1976-04-15 Siemens Ag Medical gamma ray source with uranium shielding - has protective coating resisting attack of shielding by nitrous gases
FR2521337B1 (en) * 1982-02-10 1987-01-16 Mitsui Mining & Smelting Co WATERPROOF CONTAINER FOR RADIOACTIVE WASTE

Also Published As

Publication number Publication date
EP0146778A3 (en) 1985-12-27
US4650518A (en) 1987-03-17
DE3346355C2 (en) 1985-11-07
CA1235002A (en) 1988-04-12
JPS60157098A (en) 1985-08-17
DE3469467D1 (en) 1988-03-31
DE3346355A1 (en) 1985-07-11
EP0146778A2 (en) 1985-07-03

Similar Documents

Publication Publication Date Title
DE2549969C2 (en) Nuclear fuel element
EP0146778B1 (en) Container for final radioactive waste disposal
DE2550028B2 (en) Nuclear fuel element
DE69006914T2 (en) Corrosion-resistant zirconium alloys containing copper, nickel and iron.
DE60031804T2 (en) Envelope for use in nuclear reactors with increased crack and corrosion resistance
DE2259569A1 (en) NUCLEAR FUEL ELEMENT
CH639794A5 (en) SHIELDED CONTAINERS FOR THE TRANSPORTATION AND/OR STORAGE OF BIOHAZARDOUS WASTE, IN PARTICULAR IRRADIATED FUEL.
EP0092679A1 (en) Container for radioactive wastes
DE2527686C2 (en) Nuclear fuel assembly with a cylindrical container
EP0036982A1 (en) Housing for radioactive materials in transport and/or storage containers
EP0057429B1 (en) Multi-layered container for transporting and storing radioactive wastes
DE1068821B (en)
DE3310054A1 (en) Nuclear fuel element and composite container therefor
EP0072429A1 (en) Container for long-term storage of radioactive waste
DE3248235A1 (en) COMPOSITE CONTAINER FOR CORE REACTORS
DE1204343B (en) Nuclear reactor fuel element
DE2524169C2 (en) Body with glass granules containing highly radioactive waste and / or actinides
DE2842198B2 (en) Nuclear fuel element
DE3437112A1 (en) Coated, neutron-absorbing control member
EP0062831B1 (en) Container for a long term storage of radioactive materials
DE3006507A1 (en) ACCIDENT PROTECTION FOR THE STORAGE OF SELF-HEATING RADIOACTIVE SUBSTANCES
DE1260153B (en) Process for the production of bodies usable in nuclear reactors
DE1239180B (en) Process for plating ferrous metals with uranium, zirconium, uranium alloys or zirconium alloys
DE2549970C2 (en) Nuclear fuel element
DE3018746C2 (en) Process for embedding tritiated waste

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841117

AK Designated contracting states

Designated state(s): DE FR GB SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 19870728

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3469467

Country of ref document: DE

Date of ref document: 19880331

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19891117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19891118

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84113941.3

Effective date: 19900705