Nothing Special   »   [go: up one dir, main page]

EP0000904B1 - Wiedergewinnung hochwertiger Polycarbonate aus Polycarbonat-Abfällen - Google Patents

Wiedergewinnung hochwertiger Polycarbonate aus Polycarbonat-Abfällen Download PDF

Info

Publication number
EP0000904B1
EP0000904B1 EP78100635A EP78100635A EP0000904B1 EP 0000904 B1 EP0000904 B1 EP 0000904B1 EP 78100635 A EP78100635 A EP 78100635A EP 78100635 A EP78100635 A EP 78100635A EP 0000904 B1 EP0000904 B1 EP 0000904B1
Authority
EP
European Patent Office
Prior art keywords
polycarbonate
bis
hydroxyphenyl
saponification
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100635A
Other languages
English (en)
French (fr)
Other versions
EP0000904A1 (de
Inventor
Karsten Dr. Idel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000904A1 publication Critical patent/EP0000904A1/de
Application granted granted Critical
Publication of EP0000904B1 publication Critical patent/EP0000904B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/64Preparation of O-metal compounds with O-metal group bound to a carbon atom belonging to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • C07C37/0555Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group being esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment

Definitions

  • the present invention relates to a process for the recovery of aromatic, high molecular weight, thermoplastic polycarbonates from polycarbonate waste, the polycarbonate waste being present both purely as a transparent natural material and also together with organic and in particular inorganic dyes and / or other additives or as an alloy in combination with other thermoplastic materials can.
  • the 4,4'-dioxy-diarylalkanes are cleaved by means of alcohols, acid anhydrides or small amounts of basic catalysts according to some. receive complex cleaning procedures.
  • the cleavage is achieved by adding phenols or diaryl carbonates in the presence of metal oxide catalysts and temperatures above 180 ° C. At these temperatures, especially in the presence of metal oxide catalysts, there is a risk of side reactions, and extensive cleaning operations are necessary to obtain clean starting substances.
  • polycarbonates are saponified gently both in pure or colored form and as polymer alloys in a smooth one-pot reaction and, if appropriate after filtering off additives, dyes, etc. or alloy constituents, immediately afterwards in a smooth one-pot reaction in the same reaction media to high-molecular, thermoplastic and can dissolve soluble polycarbonates.
  • later disruptive catalysts and under gentle thermal conditions polycarbonates were thus cleaved and the reaction mixture remaining after the cleavage was directly converted back to polycarbonate synthesis using the phase interface process without any intermediate purification.
  • a water-immiscible solvent commonly used in the phase interface condensation of polycarbonates, e.g.
  • Methylene chloride or chlorobenzene can be condensed directly by introducing phosgene without any intermediate cleaning.
  • the pH of the alkaline phase should be kept between 9 and 14 depending on the type of diphenol.
  • tertiary amines such as e.g. Triethylamine, tributylamine, N-alkylpiperidine or ammonium, sulfonium, phosphonium or arsonium compounds or nitrogen hetaryls such as pyridine are used.
  • the monohydric phenols present at the chain end in polycarbonates are found as cleavage products after the saponification step in the alkaline reaction medium and, during or after the phosgenation, are fully incorporated again as chain limiters, so that the resynthesized polycarbonates achieve the same solution viscosity as the polycarbonate wastes converted as starting material. If other solution viscosities are to be set, an additional amount of free bisphenol can be added for a desired higher solution viscosity and an additional amount of monohydric phenol can be added for a lower solution viscosity.
  • condensed compounds with more than two condensable functional groups such as e.g. Tris or tetraphenols, which are incorporated as branching agents in polycarbonates, are fully incorporated again in the resynthesis of the polycarbonates.
  • a change in the branching concentration in the recovered polycarbonate is again possible by adding an additional amount of branching agent or free bisphenol to the reaction medium before the phosgenation.
  • the present invention thus relates to a process for the recovery of aromatic, high molecular weight, thermoplastic polycarbonates from polycarbonate waste by degradation and repolycondensation, which is characterized in that the polycarbonate waste in bulk or in solution at temperatures between 25 ° C and 220 ° C, if necessary, under Saponified under pressure, separated from unsaponifiable constituents and then the saponification mixture is phosgenized and polycondensed without further purification and workup steps using the methods of two-phase interfacial polycondensation.
  • Polycarbonate waste is understood to mean all polycarbonate plastic articles that are no longer usable, but also the residues, waste products, waste, etc. that are produced during the manufacture and deformation of the polycarbonate plastic.
  • aromatic polycarbonates which can be worked up as polycarbonate wastes can also be incorporated by incorporating small amounts, preferably amounts between 0.05 and 2.0 mol% (based on diphenols used), of three- or more than three-functional compounds, in particular those with three or more than three phenolic hydroxyl groups, for example by the incorporation of phloroglucin, 1,3,5-tri- (4-hydroxyphenyl) benzene, 1,1,1-tri- (4-hydroxyphenyl) -ethane or 1,4-bis (4,4'-dihydroxytriphenylmethyl) benzene.
  • the aromatic polycarbonates which can be worked up as polycarbonate wastes generally have average weight-average molecular weights Mw of 10,000 to more than 200,000, preferably 20,000 to 80,000, determined by measuring the rel. Viscosity in CH Z CI Z at 25 ° C and a concentration of 0.5% by weight.
  • the molecular weights of the polycarbonates can be regulated in a conventional manner, for example by incorporating phenol, tribromophenol or p-tert-butylphenol.
  • polycarbonates that can be processed as polycarbonate waste can also be present as mixtures of different polycarbonates, for example mixed with fractions of low molecular weight polycarbonates, or also as polymer alloys, for example with polymers or copolymers based on styrene, styrene-acrylonitrile, acrylonitrile-butadiene-styrene or butadiene rubber.
  • the polycarbonate waste is saponified in bulk or in solution, the solvents used being the customary solvents, such as methylene chloride or chlorobenzene, which are suitable for polycarbonate production by the two-phase interface process.
  • the solvents used being the customary solvents, such as methylene chloride or chlorobenzene, which are suitable for polycarbonate production by the two-phase interface process.
  • the saponification takes place in an alkaline aqueous reaction medium, the saponification in substance being heterogeneous and the saponification in solution taking place at the interface of the two-phase system, the latter proceeding more cheaply and more rapidly.
  • aqueous reaction medium preferably between 25 and 100 moles of water per mole of polycarbonate structural unit to be saponified are used.
  • AI bass saponification agents serve e.g. Sodium hydroxide, potassium hydroxide, calcium oxide, preferably sodium hydroxide.
  • the saponification takes place at temperatures between 25 ° and 220 ° C and, if appropriate, using excess pressure up to preferably 100 atmospheres.
  • the amount of basic saponification agents is between 0.01 and 15 times the molar amount, based on the moles of aromatic dihydroxy compound formed; the pH of the saponification medium is between 9 and 14; the duration of saponification, depending on the steric shielding of the carbonate structure, between 0.5 and rnax. 20 hours.
  • Phosphites or phosphines can also be added as catalysts.
  • the polycarbonate wastes contain unsaponifiable components such as lubricants, stabilizers, pigments, dyes, fillers such as glass powder, quartz products, graphite, molybdenum sulfide, metal powder, powder of high-melting plastics such as polytetraethylene powder, natural fibers such as asbestos, and also glass fibers of various types, metal threads etc. after filtration, these are separated in a known manner, for example by filtration.
  • unsaponifiable components such as lubricants, stabilizers, pigments, dyes, fillers such as glass powder, quartz products, graphite, molybdenum sulfide, metal powder, powder of high-melting plastics such as polytetraethylene powder, natural fibers such as asbestos, and also glass fibers of various types, metal threads etc. after filtration, these are separated in a known manner, for example by filtration.
  • the one- or two-phase solutions resulting from the saponification of the polycarbonate wastes can be used directly for the polycarbonate production according to the interfacial process, optionally adding the customary polycarbonate solvents such as methylene chloride or chlorobenzene and the pH of the aqueous solution between 9 and 14 is set.
  • the customary polycarbonate solvents such as methylene chloride or chlorobenzene
  • the subsequent phosgenation is usually carried out at room temperature, a phosgene amount of 1 to 3 moles, based on 1 mole of diphenol, preferably being used.
  • the duration of phosgenation is a maximum of 1 hour.
  • Tertiary amines or other polycondensation catalysts are used in amounts between 0.01 and 10 mol%, based on the moles of diphenols, before or in particular after Phosgenation added.
  • the polycondensation then takes place in the usual manner at temperatures between 20 ° and 40 ° C and, depending on the diphenol used, is complete after a period of 1-5 hours.
  • the duration of saponification and the amount of base used are directly related. As the table below shows, the amount of caustic soda used can be reduced at the cost of extended saponification times.
  • the saponification was carried out in the interface: 25.4 g of polycarbonate from Example 1 were dissolved in 300 ml of chlorobenzene and mixed with 15 N sodium hydroxide solution. The time until the polycarbonate was completely hydrolyzed was measured:
  • the saponification can also be carried out under pressure. 101.6 g of polycarbonate from Example 1, 400 ml of dist. Water and 2.26 g of 45% sodium hydroxide solution are heated in an autoclave to 210 ° C. at 50 bar pressure in 1 hour and held there for 2 hours. 840 g of 6.2% sodium hydroxide solution and 1500 ml of methylene chloride are added to the resulting mixture. While maintaining a pH of 13-14, 60 g of phosgene are introduced in 1 h and then condensed for 1 h after the addition of 6 ml of 4% aqueous triethylamine. The reaction mixture is worked up according to Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Rückgewinnung von aromatischen, hochmolekularen, thermoplastischen Polycarbonaten aus Polycarbonatabfällen, wobei die Polycarbonatabfälle sowohl rein als transparentes Naturmaterial als auch zusammen mit organischen und insbesondere anorganischen Farbstoffen und/oder anderen Additiven oder als Legierung im Verbund mit anderen thermoplastischen Materialien vorliegen können.
  • Aufgrund der fortschreitenden Verknappung von Rohstoffresourcen und den daraus resultierenden Rhostoffpreiserhöhungen werden Verfahren zur Aufarbeitung von nicht mehr verwendungsfähigen Kunststoffgebrauchsartikeln im Sinne einer Rückgewinnung entweder von Ausgangssubstanzen oder direkt des ursprünglichen Kunststoffes immer wichtiger.
  • So beschreibt E. Bullack in den Patentschriften DDR 45575, 46282, 45599, 45600 und 46353 Verfahren der Aufarbeitung von Polycarbonaten insbesondere im Hinblick auf die Gewinnung von 4,4'-Dioxy-diaryl-alkanen als Ausgangssubstanzen für die Polycarbonatsynthese.
  • Gemäß den Patentschriften DDR 45575, 46282 und 45599 werden die 4,4'-Dioxy-diarylalkane über Spaltung mittels Alkoholen, Säureanhydriden oder geringen Mengen basischer Katalysatoren nach z.T. aufwendigen Reinigungsverfahren erhalten. Gemäß den Patentschriften 45600 und 46353 wird die Spaltung durch Zugabe von Phenolen oder Diarylcarbonaten bei Anwesenheit von Metalloxid-Katalysatoren und Temperaturen über 180°C erreicht. Bei diesen Temperaturen besteht insbesondere bei Anwesenheit von Metalloxid-Katalysatoren die Gefahr von Nebenreaktionen, und umfangreiche Reinigungsoperationen sind zur Gewinnung sauberer Ausgangssubstanzen nötig.
  • Überraschenderweise wurde gefunden, daß man Polycarbonate sowohl in reiner oder eingefärbter Form als auch als Polymerlegeirungen in einer glatt verlaufenden Eintopfreaktion schonend verseifen und gegebenenfalls nach Abfiltrieren von Additiven, Farbstoffen usw. oder Legierungsbestandteilen direkt anschließend in einer glatten Eintopfreaktion in gleichen Reaktionsmedien wieder zu hochmolekularen, thermoplastischen und löslichen Polycarbonaten aufphosgenieren kann. Ohne Zusatz später störender Katalysatoren und unter schonenden thermischen Bedingungen wurden somit Polycarbonate gespalten und das nach der Spaltung verbleibende Reaktionsgemisch ohne jede Zwischenreinigung direkt wieder zur Polycarbonatsynthese nach dem Phasengrenzflächenverfahren umgesetzt. Nach Zugabe eines nicht mit Wasser mischbaren, in der Phasengrenzflächenkondensation von Polycarbonaten gebräuchlichen Lösungsmittels wie z.B. Methylenechloride oder Chlorbenzol kann ohne jede Zwischenreinigung durch Einleiten von Phosgen direkt aufkondensiert werden. Der pH-Wert der alkalischen Phase sollte dabei je nach Art des Diphenols zwischen 9 und 14 gehalten werden. Üblicherweise werden vor und insbesondere nach der Phosgenierung tertiäre Amine wie z.B. Triäthylamin, Tributylamin, N-Alkylpiperidin oder Ammonium-, Sulfonium-, Phosphonium- oder Arsoniumverbindungen oder auch Stickstoffhetaryle wie beispielsweise Pyridin eingesetzt.
  • Die bei Polycarbonaten am Kettenende vorliegenden einwertigen Phenole befinden sich als Spaltprodukte nach dem Verseifungsschritt im alkalischen Reaktionsmedium und bauen während oder nach der Phosgenierung wieder vollständig als Kettenbegrenzer ein, so daß die resynthetisierten Polycarbonate die gleiche Lösungsviskosität wie die als Ausgangsmaterial umgesetzten Polycarbonatabfälle erreichen. Sollen andere Lösungsviskositäten eingestellt werden, so kann für eine gewünschte höhere Lösungsviskosität eine zusätzliche Menge an freiem Bisphenol und für eine niedrigere Lösungsviskosität eine zusätzliche Menge an einwertigem Phenol zudosiert werden.
  • Ebenso werden einkondensierte Verbindungen mit mehr als zwei kondensationsfähigen funktionellen Gruppen wie z.B. Trisoder Tetraphenole, die als Verzweiger in Polycarbonate eingebaut sind, bei der Resynthese der Polycarbonate wieder vollständig eingebaut. Eine Änderung der Verzweigerkonzentration im rückgewonnenen Polycarbonat bietet sich wieder durch Zugabe einer zusätzlichen Menge an Verzweiger oder an freiem Bisphenol zu dem Reaktionsmedium vor der Phosgenierung an.
  • Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur Rückgewinnung von aromatischen, hochmolekularen, thermoplastischen Polycarbonaten aus Polycarbonatabfällen durch Abbau und Repolykondensation, das dadurch gekennzeichnet ist, daß man die Polycarbonatabfälle in Substanz oder in Lösung bei Temperaturen zwischen 25°C und 220°C gegebenenfalls unter Druck verseift, von unverseifbaren Bestandteilen abtrennt und anschließend das Verseifungsgemisch ohne weitere Reinigungs- und Aufarbeitungsschritte nach den Methoden der Zweiphasengrenzflächenpolykondensation phosgeniert und polykondensiert.
  • Als Polycarbonatabfälle sind alle nicht mehr verwendbaren Polycarbonatkunststoffartikel, aber auch die bei der Herstellung und Verformung des Polycarbonatkunststoff anfallenden Rückstände, Abfallprodukte, Verschnitt etc. zu verstehen.
  • Die für die Aufarbeitung geeigneten Polycarbonatabfälle resultieren aus aromatischen Homopolycarbonaten und Copolycarbonaten, denen z.B. ein oder mehrere der folgenden Diphenole zugrunde liegen:
    • Hydrochinon
    • Resorcin
    • Dihydroxydiphenyle
    • Bis-(hydroxyphenyl)-alkane
    • Bis-(hydroxyphenyl)-cycloalkane
    • Bis-(hydroxyphenyl)-sulfide
    • Bis-(hydroxyphenyl)-äther
    • Bis-(hydroxyphenyi)-ketone
    • Bis-(hydroxyphenyl)-sulfoxide
    • Bis-(hydroxyphenyl)-sulfone
    • (x,a' - Bis - (hydroxyphenyl) - diisopropylbenzole

    sowie beispielsweise deren kernhalogenierte Verbindungen. Diese und weitere geeignete Diphenole sind z.B. in der US-Patentschrift 3 028 365, und in der Monographie "H. Schnell, Chemistry and Physics of Polycarbonates, Interscience Publishers, New York, 1964" beschrieben.
  • Bevorzugte Diphenole sind z.B.:
    • 4,4'-Dihydroxydiphenyl
    • 2,2 - Bis - (4 - hydroxyphenyl) - propan (Bisphenol - A)
    • 2,4-Bis-(4-hydroxyphenyi)-2-methytbutan
    • 1,1-Bis-(4-hydroxyphenyl)-cyclohexan
    • α,α'-Bis-(4-hydroxyphenyl)-p-düsopropylbenzol
    • 2,2-Bis-(3-chlor-4-hydroxyphenyl)-propan
    • 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-prcpan
    • 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan.
  • Die als Polycarbonatabfälle aufarbeitbaren aromatischen Polycarbonate können auch durch den Einbau geringer Mengen, vorzugsweise von Mengen zwischen 0,05 und 2,0 Mol-% (bezogen auf eingesetzte Diphenole), an drei- oder mehr als drei-funktionellen Verbindungen, insbesondere solchen mit drei oder mehr als drei phenolischen Hydroxygruppen verzweigt sein, beispielsweise durch den Einbau von Phloroglucin, 1,3,5-Tri-(4-hydroxy-phenyl)-benzol, 1,1,1-Tri-(4-hydroxyphenyl)-äthan oder 1,4-Bis-(4,4'-dihydroxytriphenyl-methyl)-benzol.
  • Die als Polycarbonatabfälle aufarbeitbaren aromatischen Polycarbonate haben in der Regel mittlere Gewichtsmittelmolekulargewichte Mw von 10 000 bis über 200 000, vorzugsweise von 20 000 bis 80 000, ermittelt durch Messungen der rel. Viskosität in CHZCIZ bei 25°C und einer Konzentration von 0,5 Gew.-%.
  • Die Molekulargewichte der Polycarbonate können in üblicher Weise geregelt sein, beispielsweise durch den Einbau von Phenol, Tribromphenol oder p-tert.-Butylphenol.
  • Die als Polycarbonatabfälle aufarbeitbaren Polycarbonate können auch als Gemische von verschiedenen Polycarbonaten, beispielsweise mit Anteilen niedermolekularer Polycarbonate vermischt, vorliegen, oder auch als Polymerlegierungen beispielsweise mit Polymerisaten oder Copolymerisaten auf Basis Styrol, Styrol-Acrylnitril, Acrylnitril-Butadien-Styrol oder Butadien-Kautschuk vorliegen.
  • Die Verseifung der Polycarbonatabfälle erfolgt in Substanz oder in Lösung, wobei als Lösungsmittel die üblichen, für die Polycarbonatherstellung nach dem Zweiphasengrenzflächenverfahren geeigneten Lösungsmittel wie Methylenchlorid oder Chlorbenzol verwendet werden.
  • Die Verseifung erfolgt in alkalischem wäßrigem Reaktionsmedium, wobei die Verseifung in Substanz heterogen und die Verseifung in Lösung an der Grenzfläche des Zweiphasensystems erfolgt, wobei letztere günstiger und rascher verläuft. Bezüglich des wäßrigen Reaktionsmediums werden vorzugsweise zwischen 25 und 100 Mol Wasser pro Mol zu verseifender Polycarbonat-Struktureinheit eingesetzt.
  • AI bassiche Verseifungsagenzien dienen z.B. Natriumhydroxid, Kaliumhydroxid, Calciumoxid, vorzugsweise Natriumhydroxid.
  • Die Verseifung erfolgt bei Temperaturen zwischen 25° und 220°C und gegebenenfalls unter Verwendung von Überdruck bis vorzugsweise 100 Atmosphären.
  • Die Menge an basischen Verseifungsagenzien liegt zwischen der 0,01 und 15- fachen Molmenge, bezogen auf die Mole entstehender aromatischer Dihydroxyverbindung; der pH-Wert des Verseifungsmediums liegt zwischen 9 und 14; die Dauer der Verseifung je nach sterischer Abschirmung der Carbonatstruktur zwischen 0,5 und rnax. 20 Stunden.
  • Es können als Katalysatoren zusätzlich Phosphite oder Phosphine zugesetz werden.
  • Enthalten die Polycarbonatabfälle unverseifbare Bestandteile wie Gleitmittel, Stabilisatoren, Pigmente, Farbstoffe, Füllstoffe wie Glaspulver, Quarzerzeugnisse, Graphit, Molybdänsulfid, Metallpulver, Pulver höherschmelzender Kunststoffe wie Polytetra- äthylenpulver, natürliche Fasern wie Asbest, ferner Glasfasern der verschiedensten Art, Metallfäden etc., so werden diese nach erfolgter Filtration auf bekannte Weise, beispielsweise durch Filtration abgetrennt.
  • Die nach der Verseifung der Polycarbonatabfälle resultierenden ein- oder zweiphasigen Lösungen können direkt für die Polycarbonatherstellung nach dem Phasengrenzflächenverfahren eingesetzt werden, wobei gegebenenfalls die gebräuchlichen Polycarbonat-Lösungsmittel wie Methylenchlorid oder Chlorbenzol zugesetzt werden und der pH-Wert der wäßrigen Lösung je nach Anforderung zwischen 9 und 14 eingestellt wird.
  • Die nachfolgende Phosgenierung erfolgt gewöhnlich bei Raumtemperatur, wobei vorzugsweise eine Phosgennlenge von 1 bis 3 Mol, bezogen auf 1 Mol Diphenol, eingesetzt wird.
  • Die Dauer der Phosgenierung beträgt max.1 Stunde.
  • Tertiäre Amine oder andere Polykondensationskatalysatoren werden in Mengen zwischen 0,01 und 10 Mol-%, bezogen auf die Mole Diphenole, vor oder insbesondere nach der Phosgenierung zugesetzt.
  • Die Polykondensation erfolgt anschließend in der üblichen Weise bei Temperaturen zwischen 20° und 40°C und ist je nach eingesetztem Diphenol nach einem Zeitraum von 1-5 Std. beendet.
  • Die erhaltenen Polycarbonatlösungen werden wie üblich aufgearbeitet und das Polycar- bonat in der üblichen Weise isoliert.
  • BEISPIEL 1
  • 25,4 g Polycarbonat aus 2,2-Bis-(4-hydroxyphenyl)-propan mit einer Lösungsviskosität von ηrel = 1,288 (gemessen an Lösungen von 0,5 g Polycarbonat in 100 ml Methylenchlorid) werden in Granulatform in 80 ml 15 n Natronlauge gegeben. Das Reaktionsgemisch wird 4 Std. auf 100°C erhitzt. In dieser Zeit wird eine vollständige Spaltung des Polycarbonats bis zum Monomerbaustein Bisphenol A erreicht. Gibt man 500 ml dest. Wasser zu der resultierenden Suspension, so erhält man eine klare alkalische Lösung des Bisphenol A, die nach Zugabe von 500 ml Methylenchlorid nach den üblichen Methoden der Phasengrenzflächenkondensation phosgeniert werden kann.
  • Hierzu werden in 1 Stunde bei 25°C 15 g Phosgen unter Einstellung eines pH-Wertes von 13-14 eingeleitet und anschließend wird nach Zugabe von 1,5 ml einer 4 96igen wäßrigen Triäthylaminlösung noch 1 h aufkondensiert. Die organische Phase wird abgetrennt, zweimal mit 2 96iger Phosphorsäure und dann mit dest. Wasser elektrolytfrei gewaschen. Nach dem Abdampfen des Lösungsmittels erhält man 24 g Polycarbonat mit einer ηrel = 1,295. Das recyclisierte Polycarbonat zeigt die gleichen guten mechan. und rheologischen Eigenschaften wie das Ausgangsmaterial.
  • BEISPIEL 2
  • 25,4 g Polycarbonat aus 2,2-Bis-(4-hydroxyphenyl)-propan des Beispiels 1 werden in Granulatform in 30 ml 15 n Natronlauge gegeben. Zusätzlich werden noch 2,5 g (10 Gew.- %) Triphenylphosphit zugesetzt und dann gemäß Beispiel 1 bei 100°C verseift. Durch Zusatz des Phosphits verkürzt sich die Zeit bis zur vollständigen Verseifung auf 2 Std. 45 min. Danach wird analog Beispiel 1 in der Phasengrenzfläche aufphosgeniert. Das zurückgewonnene Polycarbonat besitzt eine Lösungsviskosität von ηrel = 1,297 und zeigt nach Ausfällen aus der Methylenchloridlösung mittels Methanol in den mechanischen und reheologischen Eigenschaften keinen Unterschied zum Ausgangsmaterial.
  • BEISPIEL 3
  • 25,4 g Polycarbonat aus 2,2-Bis-(4-hydroxyphenyl)-propan gemäß Beispiel 1 werden in 300 ml Chlorbenzol gelöst und 80 ml 15 n Natronlauge als alkalische Phase hinzugegeben. Das Gemisch wurde auf 100°C gebracht und die organische Phase in kurzen Abständen auf den Gehalt an noch unverseiftem Polycarbonat geprüft. Bereits nach 60 Min. war die Spaltung vollständig abgeschlossen und das Phasengrenzflächengemisch konnte direkt nach Zugabe von 350 ml Wasser analog Beispiel 1 phosgeniert und aufgearbeit werden. Man erhält 23,5 g eines Polycarbonats mit einer ηrel bon 1,315 und ähnlichem Eigenschaftsbild wie das Ausgansmaterial.
  • Durch Zugabe von 450 mg p-tert.-Butylphenol als zusätzlichen Kettenabbrecher zum Verseifungsgemisch kann nach Phosgenierung und Aufkondensation die Lösungsviskosität von ηrel = 1,282 eingestellt werden.
  • BEISPIEL 4
  • Verseifungsdauer und Menge der eingesetzten Base stehen in einem direkten Vorhältnis. Wie die untenstehende Tabelle zeigt, kann die eingesetzte Menge Natronlauge auf Kosten verlängerter Verseifungszeiten reduziert werden. Die Verseifung wurde in der Grenzfläche durchgeführt: 25,4 g Polycarbonat des Beispiels 1 wurden in 300 ml Chlorbenzol gelöst und mit wechselnden Mengen 15 n Natronlauge versetzt. Es wurde jeweils die Zeit bis zur vollständigen Verseifung des Polycarbonats gemessen:
    Figure imgb0001
  • BEISPIEL 5
  • Die Verseifung kann auch unter Druck durchgeführt werden. 101,6 g Polycarbonat des Beispiels 1, 400 ml dest. Wasser und 2,26 g 45 %ige Natronlauge werden in einem Autoklaven in 1 h auf 210°C bei 50 bar Druck erhitzt und 2 Std. dabei gehalten. Das erhaltene Gemisch wird mit 840 g 6,2 96iger Natronlauge und 1500 ml Methylenchlorid versetzt. Unter Einhaltung eines pH-Wertes von 13-14 werden 60 g Phosgen in 1 h eingeleitet und anschließend nach Zugabe von 6 ml 4 %igem wäßrigen Triäthylamin 1 h aufkondensiert. Das Reaktionsgemisch wird gemäß Beispiel 1 aufgearbeitet. Da bei der Druckverseifung vermutlich geringe Mengen monofunktioneller Monomerer abgespalten werden, beträgt die Lösungsviskosität des resultierenden Polycarbonats ηrel = 1,212. Durch zusätzliche Zugabe von 19 g. Bisphenol A zum Verseifungsgemisch und entsprechende Erhöhung der Anteile Phosgen und Triäthylamin kann ein Polycarbonat der gewünschten ηrel = 1,287 erhalten werden.
  • BEISPIEL 6
  • 27,9 g eines Polycarbonats auf Basis Bisphenol A (ηrel = 1,305) mit 10 Gew.-% Glasfaser wird mit 80 ml 15 n Natronlauge versetzt und das Gemisch auf 100°C erwärmt. Nach 3 h ist die Verseifung beendet. Man gibt 500 ml dest. H20 zu dem Verseifungsmisch und filtriert die verbleibende Glasfaser ab. Das Filtrat wird mit 500 ml Methylenchlorid versetzt und analog Beispiel 1 mit 15 g Phosgen versetzt und 1,5 ml einer 4 %igen wäßr. Triäthylaminlösung aufkondensiert. Nach der Aufarbeitung gemäß Beispiel 1 erhält man 10 g eines Glasfaserfreien Polycarbonats ηrel = 1,317. Das Polycarbonat zeigt das gleiche Eigenschaftsbild wie ein Polycarbonat entsprechender Kettenlänge, das durch übliche Kondensation von Bisphenol A und Phosgen nach dem Phasengrenzflächenverfahren gewonnen wurde.
  • BEISPIEL 7
  • 25,4 g eines Polycarbonats auf Basis Bisphenol A mit einer Lösungsviskosität von ηrel = 1,367, das 0,2 Mol-%, bezogen auf die Anteile Diphenole, des tetrafunktionellen Verzweigers 1,4-Bis-(4,4'-Dihydroxytriphenyi- methyl)-benzol eingebaut enthält, wird mit 80 ml 15 n Natronlauge versetzt und 3 Std. bei 100°C gehalten. Danach gibt man 500 ml dest. H20 bis zur klaren Lösung und anschließend 500 ml Methylenchlorid hinzu. Das Verseifungsgemisch wird analog Beispiel 1 mit 15 g Phosgen versetzt und mit 1,5 ml einter 4 %igen wäßrigen Triäthylaminlösung aufkondensiert. Nach den üblichen Aufarbeitungsmethoden erhält man ein Polycarbonat mit einer Lösungsviskosität von ηrel = 1,375, das nach Spaltung und chromatographischer Untersuchung der Monomerbestandteile 0,2 Mol-% eines tetrafunktionellen Verzweigers eingebaut enthält.
  • BEISPIEL 8
  • 36,3 g einer Polymerlegierung, die sich aus 30 Gew.-% eines ABS-Polymeren und 70% eines Polycarbonats auf Basis Bisphenol A (ηrel. 1.292) zusammensetzt, werden mit 120 ml 15 n Natronlauge 10 Std. bei 100°C behandelt. Danach füllt man mit 500 ml dest. H20 auf und filtriert das ungelöste ABS-Polymerisat ab. Anschließend gibt man noch 500 ml Methylenchlorid zu dem Filtrat und leitet in 1 h bei Raumtemperatur 11 g Phosgen ein und kondensiert nach Zugabe von 1,5 ml einer 4 %igen wäßrigen Triäthylaminlösung noch 1 h auf. Man erhält nach den üblichen Aufarbeitungsmethoden 17 g des hochmolekularen, thermoplastischen Polycarbonats mit einer Lösungsviskosität ηrel = 1,305.
  • BEISPIEL 9
  • 25,4 g eines mit 0,35 Gew.-% Cadmiumselenid rot eingefärbten Polycarbonats auf Basis Bisphenol A (ηrel % 1,285) wird mit 80 ml Natronlauge versetzt und 3 Std. auf 100°C erwärmt. Danach wird mit 500 ml dest. H20 aufgefüllt und das ungelöste Farbpigment abfiltriert. Zu dem klaren Filtrat werden 500 ml Methylenchlorid gegeben und das Phasengrenzflächengemisch wie in Beispiel 1 phosgeniert und aufgearbeitet. Es verbleiben 22 g eines ungefärbten, thermoplast. Polycarbonats mit einer Lösungsviskostät von ηrel = 1,297.
  • BEISPIEL 10
  • 27 g eines Copolycarbonats auf Basis Bisphenol A und Tetrabrom-Bisphenol A (5,3 Gew.-% Brom) (ηrel = 1,297) werden in 150 ml Chlorbenzol gelöst und 80 ml 15 n Natronlauge zudosiert. Nach 4 Std. wird die Verseifung beendet und man erhält nach Zugabe von 350 ml Methylenchlorid und 400 ml Wasser ein klares Phasengemisch. Zur Rückgewinnung des Polycarbonats werden 15 g Phosgen in 1 h bei Raumtemperatur eingeleitet. Am Ende der Phosgenierung sollte die Lösung einen pH-Wert von ca. 11-12 haben. Nach Zugabe von 0,43 ml Triäthylamin kondensiert man noch 1 h auf und arbeitet gemäß Beispiel 1 auf. Es resultiert ein bromhaltiges Polycarbonat (5,4 % Brom) mit einer Lösungsviskosität von ηrel = 1,285 und ähnlichen Eigenschaften wie das Ausgangsmaterial.

Claims (1)

  1. Verfahren zur Rückgewinnung aromatischer, hochmolekularer, thermoplastischer Polycarbonate aus Polycarbonatabfällen durch Abbau und Repolykondensation, dadurch gekennzeichnet, daß man die Polycarbonatabfälle in Substanz oder in Lösung bei Temperaturen zwischen 25°C und 220°C gegebenenfalls unter Druck verseift, von unverseifbaren Bestandteilen abtrennt, und anschließend das Verseifungsgemisch ohne weitere Reinigungs- und Aufarbeitungsschritte nach den Methoden der Zweiphasengrenzflächenpolykondensation phosgeniert und polykondensiert.
EP78100635A 1977-08-20 1978-08-09 Wiedergewinnung hochwertiger Polycarbonate aus Polycarbonat-Abfällen Expired EP0000904B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772737693 DE2737693A1 (de) 1977-08-20 1977-08-20 Wiedergewinnung hochwertiger polycarbonate aus polycarbonat-abfaellen
DE2737693 1977-08-20

Publications (2)

Publication Number Publication Date
EP0000904A1 EP0000904A1 (de) 1979-03-07
EP0000904B1 true EP0000904B1 (de) 1980-07-23

Family

ID=6016956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100635A Expired EP0000904B1 (de) 1977-08-20 1978-08-09 Wiedergewinnung hochwertiger Polycarbonate aus Polycarbonat-Abfällen

Country Status (5)

Country Link
US (1) US4212774A (de)
EP (1) EP0000904B1 (de)
JP (1) JPS6051499B2 (de)
DE (2) DE2737693A1 (de)
IT (1) IT1106890B (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2842004A1 (de) * 1978-09-27 1980-04-10 Bayer Ag Verfahren zur herstellung von modifizierten polycarbonat-formmassen
DE2928464A1 (de) * 1979-07-13 1981-01-29 Bayer Ag Verwendung von speziellen rohbisphenolen zur herstellung von polycarbonaten
US4451583A (en) * 1982-01-26 1984-05-29 Olin Corporation Recycling of flexible polyurethane foam scrap
DE3204078A1 (de) * 1982-02-06 1983-08-18 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von tetramethylencarbonat und bis-tetramethylendicarbonat
US4885407A (en) * 1988-07-11 1989-12-05 General Electric Company Method for recovering a dihydric phenol from a scrap polyester
DE4039024A1 (de) * 1990-09-21 1992-03-26 Bayer Ag Reinigung von polycarbonat- und polyestercarbonat-abfaellen
US5340839A (en) * 1992-09-24 1994-08-23 General Electric Company Method for salvaging organic thermoplastic values from discarded surface treated organic thermoplastic substrates
US5306349A (en) * 1992-11-23 1994-04-26 Sony Music Entertainment, Inc. Method for removing coatings from compact discs
US5414021A (en) * 1993-08-02 1995-05-09 General Electric Company Method for salvaging aromatic polycarbonate blend values
US5336814A (en) * 1993-09-07 1994-08-09 General Electric Company Method for recovering bis hydroxy aromatic organic values and bis aryl carbonate values from scrap aromatic polycarbonate
JPH09194614A (ja) * 1996-01-25 1997-07-29 Matsushita Electric Ind Co Ltd プラスチック成形体、およびプラスチック成形体の処理方法
US5958987A (en) 1996-04-10 1999-09-28 The Coca-Cola Company Process for separating polyester from other materials
JP3523199B2 (ja) 1998-03-16 2004-04-26 アメリカン・コモディティーズ・インコーポレーテッド 粉砕再生ポリマー粒子から有害な表面物質を除去するための方法
AUPQ747100A0 (en) * 2000-05-11 2000-06-08 Geo2 Limited Delamination process
US6436197B1 (en) 2000-09-05 2002-08-20 Metss Corporation Optical media demetallization process
PL203890B1 (pl) * 2001-06-19 2009-11-30 United Resource Recovery Corp Sposoby uwalniania zanieczyszczeń z podłoża poliestru oraz sposoby oddzielania poliestru od poli(chlorku winylu) i od aluminium
JP2005126358A (ja) * 2003-10-23 2005-05-19 Teijin Chem Ltd 廃芳香族ポリカーボネートから芳香族ジヒドロキシ化合物金属塩水溶液を得る方法
JP4571395B2 (ja) * 2003-12-03 2010-10-27 帝人化成株式会社 廃芳香族ポリカーボネートから芳香族ジヒドロキシ化合物を得る方法
JP2005162674A (ja) * 2003-12-03 2005-06-23 Teijin Chem Ltd 廃芳香族ポリカーボネートから芳香族ジヒドロキシ化合物を得る方法
JP4571398B2 (ja) * 2003-12-18 2010-10-27 帝人化成株式会社 廃芳香族ポリカーボネート樹脂から芳香族ジヒドロキシ化合物のアルカリ水溶液を得る方法
JP2005179228A (ja) * 2003-12-18 2005-07-07 Teijin Chem Ltd 廃芳香族ポリカーボネート樹脂から芳香族ジヒドロキシ化合物を得る方法
JP2005179267A (ja) * 2003-12-19 2005-07-07 Teijin Chem Ltd 廃芳香族ポリカーボネート樹脂から芳香族ジヒドロキシ化合物を得る方法
JP4550407B2 (ja) * 2003-12-19 2010-09-22 帝人化成株式会社 廃芳香族ポリカーボネート樹脂から芳香族ジヒドロキシ化合物のアルカリ水溶液を得る方法
JP4571413B2 (ja) * 2004-01-19 2010-10-27 帝人化成株式会社 廃芳香族ポリカーボネート樹脂から芳香族ジヒドロキシ化合物のアルカリ水溶液を得る方法
JP4571414B2 (ja) * 2004-01-20 2010-10-27 帝人化成株式会社 廃芳香族ポリカーボネート樹脂の分解により得られた芳香族ジヒドロキシ化合物のアルカリ水溶液の貯蔵方法
JP2005239562A (ja) * 2004-02-24 2005-09-08 Teijin Chem Ltd 廃光ディスクから芳香族ヒドロキシ化合物を得る方法
JP4575046B2 (ja) * 2004-06-25 2010-11-04 帝人化成株式会社 芳香族ジヒドロキシ化合物金属塩水溶液を得る方法
JP4558435B2 (ja) * 2004-10-07 2010-10-06 帝人化成株式会社 芳香族ジヒドロキシ化合物のアルカリ水溶液を得る方法および有機溶媒を回収する方法
JP4606844B2 (ja) * 2004-11-08 2011-01-05 帝人化成株式会社 廃芳香族ポリカーボネートから精製された芳香族ジヒドロキシ化合物のアルカリ金属塩水溶液を得る方法
US7098299B1 (en) 2005-03-16 2006-08-29 United Resource Recovery Corporation Separation of contaminants from polyester materials
JP4679577B2 (ja) * 2005-04-20 2011-04-27 帝人化成株式会社 廃芳香族ポリカーボネートから芳香族ジヒドロキシ化合物のアルカリ金属塩水溶液を得る方法
WO2015068628A1 (ja) 2013-11-11 2015-05-14 田岡化学工業株式会社 フルオレン構造を含む樹脂からビスフェノールフルオレン類を回収する方法
US20170044355A1 (en) 2014-04-25 2017-02-16 Ineos Styrolution Group Gmbh Polymer blend for metal plating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2364387A (en) * 1941-07-23 1944-12-05 Du Pont Production of polymer
US3008980A (en) * 1957-05-29 1961-11-14 Chemische Werke Witten Gmbh Method for utilizing waste polyethylene terephthalate materials
DE1234026B (de) * 1961-08-23 1967-02-09 Wolfen Filmfab Veb Verfahren zur Herstellung hochmolekularer Polycarbonate
DE1191956B (de) * 1962-08-13 1965-04-29 Bayer Ag Verfahren zum Eindampfen von Loesungen von Kunststoffen in organischen Loesungsmitteln
US3728287A (en) * 1971-10-18 1973-04-17 Eastman Kodak Co Hydrolyzing polyester
US4040991A (en) * 1973-12-10 1977-08-09 Mcdonnell Douglas Corporation Polyurethane foam reconstitution
DE2442387C3 (de) * 1974-09-04 1981-09-10 Bayer Ag, 5090 Leverkusen Verfahren zur kontinuierlichen hydrolytischen Aufspaltung von hydrolysierbaren Kunststoffabfällen
US4136967A (en) * 1974-09-04 1979-01-30 Bayer Aktiengesellschaft Screw machine for the continuous degradation of plastics

Also Published As

Publication number Publication date
DE2860074D1 (en) 1980-11-13
IT1106890B (it) 1985-11-18
JPS5448869A (en) 1979-04-17
JPS6051499B2 (ja) 1985-11-14
IT7850772A0 (it) 1978-08-18
US4212774A (en) 1980-07-15
EP0000904A1 (de) 1979-03-07
DE2737693A1 (de) 1979-02-22

Similar Documents

Publication Publication Date Title
EP0000904B1 (de) Wiedergewinnung hochwertiger Polycarbonate aus Polycarbonat-Abfällen
EP0025937B1 (de) Thermoplastische Polycarbonate, Verfahren zu ihrer Herstellung, Bis-halogen-kohlensäureester von Hexahydro-furo(3,2-b) furan-3,6-diolen, sowie Polycarbonatmassen
DE69022567T2 (de) Polycarbonat-polydimethylsiloxan copolymer und herstellungsverfahren.
DE60110776T2 (de) Herstellungsverfahren für polycarbonate
DE2211956A1 (de) Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
DE2613534A1 (de) Verfahren zur herstellung eines verzweigten polycarbonats
DE3002762A1 (de) Verfahren zur herstellung von heterocyclisch-aromatischen oligocarbonaten mit diphenolcarbonat-endgruppen und ihre verwendung zur herstellung von thermoplastischen, hochmolekularen heterocyclisch-aromatischen copolycarbonaten
EP0013904B1 (de) Verfahren zur Herstellung von Polycarbonaten
DE2116974A1 (de) Modifizierte Polycarbonate mit sehr gutem Fließverhalten
DE2712435C2 (de)
DE2721596A1 (de) Flammhemmendes polycarbonat mit verbesserter kritischer dicke und verfahren zu seiner herstellung
DE3035204A1 (de) Tetraphenol-verbindungen und diese enthaltende massen
DE69432091T2 (de) Verfahren zur Herstellung von Polycarbonatoligomeren
DE68927880T2 (de) Verzweigte polycarbonate und verfahren zu ihrer herstellung
DE2410716B2 (de) Verfahren zur herstellung aromatischer polycarbonate nach der methode der phasengrenzflaechenkondensation
EP0075772B1 (de) Verfahren zur Isolierung von Polycarbonaten auf Basis von 4,4-Dihydroxidiphenylsulfonen
DE3308691A1 (de) Willkuerlich verzweigtes polycarbonat aus einem bisphenol und einem polyolchlorformiat und verfahren zu seiner herstellung
EP0065728B1 (de) Neue Copolyestercarbonate und deren Abmischung mit bekannten Polycarbonaten zu thermoplastischen Formmassen
DE2602366A1 (de) Rueckgewinnung von diphenylolalkanen aus der bei der herstellung von polycarbonaten entstehenden alkalischen phase
DE3689013T2 (de) Verzweigte 2,4,6-tris(4'-hydroxyaryl)-amino-s-Triazine enthaltende Polycarbonate.
DE69423178T2 (de) Verzweigte Copolyestercarbonate
EP0025928B1 (de) Verfahren zur Herstellung von aromatischen Polycarbonaten nach dem Phasengrenzflächenverfahren
DE2726376C2 (de)
DE2726417A1 (de) Verfahren zur herstellung von kohlensaeure-bis-diphenolestern von ueber carbonat-gruppen-verlaengerten polyesterdiolen und ihre verwendung zur herstellung von hochmolekularen, segmentierten, thermoplastisch verarbeitbaren polyester- polycarbonaten
DE3330129A1 (de) Aromatische polycarbonate mit hohem molekulargewicht mit verbesserter verarbeitbarkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): DE FR NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR NL

REF Corresponds to:

Ref document number: 2860074

Country of ref document: DE

Date of ref document: 19801113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930811

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930831

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940714

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950428

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT