Nothing Special   »   [go: up one dir, main page]

EP0072496B1 - Verfahren zur adsorptiven Zerlegung eines Gasgemisches - Google Patents

Verfahren zur adsorptiven Zerlegung eines Gasgemisches Download PDF

Info

Publication number
EP0072496B1
EP0072496B1 EP82107050A EP82107050A EP0072496B1 EP 0072496 B1 EP0072496 B1 EP 0072496B1 EP 82107050 A EP82107050 A EP 82107050A EP 82107050 A EP82107050 A EP 82107050A EP 0072496 B1 EP0072496 B1 EP 0072496B1
Authority
EP
European Patent Office
Prior art keywords
adsorption
beds
gas mixture
adsorption beds
product fractions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82107050A
Other languages
English (en)
French (fr)
Other versions
EP0072496A1 (de
Inventor
Gerhard Dr.Ing. Linde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Normalair Garrett Holdings Ltd
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0072496A1 publication Critical patent/EP0072496A1/de
Application granted granted Critical
Publication of EP0072496B1 publication Critical patent/EP0072496B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/116Molecular sieves other than zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/11Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Definitions

  • the invention relates to a method for the adsorptive separation of a gas mixture consisting of at least two components into at least two product fractions each consisting of at least one component.
  • Such a method in application to a gas mixture consisting essentially of two components is known from DE-OS 24 41 447. It describes the separation of air into a production fraction consisting almost entirely of nitrogen and an oxygen-enriched fraction. Molecular sieve cokes which have a strong adsorption capacity for oxygen are used as adsorbents. During the adsorption phase, a product fraction enriched with nitrogen to an extent of more than 99 vol. The gas fraction obtained during the desorption is enriched with oxygen to approximately 35% by volume. The process is operated with at least two adsorbers in cyclical exchange. The result must be regarded as an essential feature of the known method that only one of the components contained in the gas mixture to be broken down, namely the air, namely nitrogen, is obtained in a highly enriched manner.
  • the invention has for its object to provide a method of the type mentioned and a device that make it possible to break down two-component and multi-component mixtures in terms of apparatus and process engineering as economically as possible into the desired number of highly enriched product fractions of different compositions.
  • the object is achieved in that the mixture is divided into a number of partial streams corresponding to the number of product fractions and each partial stream is introduced into an adsorption bed assigned to it during an adsorption phase, the type and nature of the adsorbent being chosen such that during the adsorption phase a different component or group of components is preferably retained in each of the adsorption beds and at the same time a different one of the desired product fractions flows out.
  • a gas mixture can be broken down into several highly enriched product fractions in a single adsorption stage.
  • every single desired component from a gas mixture can be broken down in a highly enriched form without having to connect two or more adsorption stages for this purpose.
  • highly enriched product fractions which, for example, consist of two desired components, the further separation of which is not necessary.
  • the adsorbents are to be selected so that at least one other of the components is preferably retained in each adsorption bed.
  • mixed beds can be used which contain two adsorbents which are selective for each of the components.
  • the method according to the invention is expediently carried out in such a way that at least two equal, cyclically switchable systems of adsorption beds are used, one system containing a number of adsorption beds connected in parallel in terms of flow in accordance with the number of product fractions. At least one of the systems of adsorption beds connected in parallel is in the adsorption phase, at least one other in the desorption phase.
  • a device for the adsorptive separation of a gas mixture consisting of at least two components into at least two product fractions, each consisting of at least one component, in at least one adsorber having an adsorption bed, which has a gas supply line, a product line and a desorbate line, the lines being each equipped with valves , is characterized by at least two cyclically switchable adsorbers, in each of which a system of adsorption beds is arranged, which contains a number of flow-parallel adsorption beds corresponding to the number of product fractions.
  • the adsorption beds advantageously have different adsorbents.
  • Each of these systems is thus enclosed by a single adsorber container, which gives a particularly favorable form of investment in terms of production costs.
  • the adsorption beds of a system at least partially have a different bed height.
  • the bed height of the adsorption beds measured in the direction of flow depends on the amounts of the components to be retained there in the gas mixture.
  • such a system will be operated in such a way that the maximum desired loading is achieved in the adsorption beds at the same time, without any breakdown of a component retained in an adsorption bed.
  • a particular application of the method according to the invention is the separation of air.
  • a preferably nitrogen-retaining zeolitic molecular sieve is provided as the adsorbent in an adsorption bed and a carbon molecular sieve, which is preferably oxygen-retaining, is provided in the other adsorption bed.
  • the method according to the invention is not only applicable to the separation of air, but can also be applied, for example, to the separation of certain hydrocarbons from hydrocarbon mixtures containing them.
  • FIGS. 1 and 2 The method according to the invention is explained in more detail below on the basis of two exemplary embodiments schematically illustrated in FIGS. 1 and 2.
  • FIG. 1 Only one adsorber 1 is shown in FIG. To carry out the process according to the invention, it is self-evident for a person skilled in the art that at least two such adsorbers are present, with at least one adsorber always being in the adsorption phase and at the same time at least one other adsorber in the desorption phase.
  • the adsorbers are double-flow, i.e.
  • two adsorption beds 1a, 1b with different adsorbents are arranged, which are separated from one another by a region 1c.
  • a preferably nitrogen-retaining zeolitic molecular sieve for example of the 5A or 13X type, is provided as the adsorbent in the lower adsorption bed 1b, and a preferably oxygen-retaining carbon molecular sieve is provided in the adsorption bed 1a.
  • the bed height of the adsorbents corresponds to the product quantities to be obtained, which in the case of air leads to the bed height of the carbon molecular sieve is larger than that of the zeolitic molecular sieve.
  • the subsequent desorption takes place at reduced pressure, for example 1 bar.
  • the resulting desorbate fractions in the present example 6,500 Nm 3 / h, still contain about 23% O 2 and are withdrawn together via a desorbate line 8 with valve 9 from the area 1 c between the adsorption beds 1 a, 1 b. These fractions can then be blown off into the atmosphere in the event of air separation.
  • Figure 2 shows a plant for the decomposition of purge gas from the ammonia synthesis. Via a line 13 with valve 14, 10,000 Nm 3 / h of purge gas from the NH 3 synthesis pass under a pressure of approx. 40 bar into an adsorption system with at least two adsorbers 15 and 16 working in a pressure change.
  • the purge gas has the following composition:
  • the contaminants of the hydrogen - nitrogen, argon and methane - are to be retained in the adsorbers 15 and 16, for which purpose the adsorbers are each loaded with a zeolitic molecular sieve, for example of the 5A type.
  • zeolitic molecular sieve for example of the 5A type.
  • an adsorber can be removed from the system from time to time, which then consists of at least three adsorbers.
  • the desorbate from line 22 is fed via a valve 25 to a further PSA system consisting of the adsorbers 26 and 27, specifically in the middle of the adsorber 26.
  • the adsorbers 26 and 27 are double-flow, the upper adsorption bed (26a, 27a) with a nitrogen and methane-retaining zeolitic molecular sieve, e.g. of type 5A or 13X, and the lower adsorption bed (26b, 27b) are loaded with a mixed bed of an argon-retaining modified carbon molecular sieve and methane-retaining activated carbon.
  • the (desorbate) gas introduced can be broken down according to the invention.
  • the desorbate gas enters the region 26c between the two adsorption beds 26a and 26b of the adsorber 26 under a pressure of 8 bar and divides into two partial flows flowing through the adsorption beds 26a and 26b in the opposite direction, so that via line 29 with valve 28 600 Nm 3 / h H 2 and 400 Nm 3 / h Ar and via line 31 with valve 30 600 Nm 3 / h H 2 and 1,050 Nm 3 / h N 2 under a pressure of approx. 7.5 bar.
  • the desorbate fractions released in the process are removed from the respective region 27c or 26c together via a desorbate line 35 with valve 34 or, if adsorbers 27 are in the adsorption and adsorber 26 in the desorption phase, via the desorbate line 33 with valve 32 deducted between the adsorption beds.
  • These desorbate fractions are composed of 100 Nm 3 / h H 2 , 1050 Nm 3 / h N 2 , 400 Nm 3 / h Ar and 800 Nm 3 / h CH 4 and can be used as heating gas.
  • the product fraction of hydrogen and argon withdrawing via line 29 is passed to a subsequent PSA plant with two adsorbers 40 and 41, each of which is loaded with a modified carbon molecular sieve.
  • This is to be separated gas is passed through valve 42 into adsorber 40 in which the argon is adsorbed so that drawn off via line 43 with valve 44 / h pure from the top of adsorber 40 580 m 3 of hydrogen at a pressure of 7 bar and Ammonia synthesis can be traced.
  • the adsorber 41 desorbs which was previously in the adsorption phase with valves 42 and 44 closed and valves 45 and 46 open, at reduced pressure, for example 1.2 bar, so that 400 Nm 3 / h argon are still present via a desorbate line 47 with valve 48 open is contaminated with 20 Nm 3 / h of hydrogen.
  • the argon contaminated with hydrogen is withdrawn from the adsorber 40, which is then in the desorption phase, via the open valve 49 and desorbate line 50.
  • product gas which can be used for ammonia synthesis and a product gas from which pure hydrogen can be obtained after further decomposition, as well as heating gas, can thus be obtained simultaneously as desorbate fraction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur adsorptiven Zerlegung eines aus mindestens zwei Komponenten bestehenden Gasgemisches in mindestens zwei, jeweils aus mindestens einer Komponente bestehende Produktfraktionen.
  • Ein derartiges Verfahren in Anwendung auf ein im wesentlichen aus zwei Komponenten bestehendes Gasgemisch ist aus der DE-OS 24 41 447 bekannt. Dort ist die Zerlegung von Luft in eine nahezu vollständig aus Stickstoff bestehende und eine an Sauerstoff angereicherte Produktionsfraktion beschrieben. Als Adsorptionsmittel werden Molekularsiebkokse verwendet, die ein starkes Adsorptionsvermögen für Sauerstoff besitzen. Während der Adsorptionsphase wird demnach aus dem mit Molekularsiebkoks beschickten Adsorptionsbett eine zu über 99 Vol.% mit Stickstoff angereicherte Produktfraktion abgezogen, wobei die Adsorption bei überatmosphärischem Druck und die Desorption durch Evakuieren erfolgen. Die bei der Desorption gewonnene Gasfraktion ist zu ungefähr 35 Vol.% mit Sauerstoff angereichert. Das Verfahren wird mit mindestens zwei Adsorbern in zyklischer Vertauschung betrieben. Als wesentliches Merkmal des bekannten Verfahrens muss im Ergebnis angesehen werden, dass nur eine der in dem zu zerlegenden Gasgemisch, nämlich der Luft, enthaltenen Komponenten, nämlich der Stickstoff, hoch angereichert erhalten wird.
  • Mit ähnlichen Verfahren wurden bisher nicht nur Luft, sondern auch andere Gasgemische zerlegt. Beispielsweise ist es möglich, verschiedene Kohlenwasserstoffgemische durch selektive Adsorption einzelner Komponenten an zeolithischen Molekularsieben zu zerlegen. Auch hier werden die unterschiedlichen Selektivitäten verschiedener Molekularsiebtypen für jeweils andere Kohlenwasserstoffe ausgenutzt. Es werden beispielsweise die leichtesten n-Paraffine, nämlich Methan und Äthan, selektiv von zeolithischem Molekularsieb des Typs 4A, C3- und höhere n-Paraffine vom Molekularsieb des Typs 5A und C4-und höhere i-Paraffine von Molekularsieben der Typen 10X und 13X selektiv zurückgehalten. Bei der Verwendung der genannten Molekularsiebtypen zur Zerlegung von Kohlenwasserstoffgemischen, die mehr als zwei wertvolle Komponenten enthalten, konnte bisher in einem Adsorptionsschritt lediglich eine Komponente in hoch angereicherter Form gewonnen werden. Zur weiteren Auftrennung war es erforderlich, das zunächst adsorbierte Komponentengemisch einer zweiten Adsorptionsstufe zuzuführen. Da jede dieser aufeinanderfolgenden Adsorptionsstufen für sich in zyklischer Vertauschung betrieben wird, ist mit der Hintereinanderschaltung mehrerer Stufen ein entsprechender apparativer und verfahrenstechnischer Aufwand verbunden.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfähren der eingangs erwähnten Art und eine Vorrichtung bereitzustellen, die es ermöglichen, Zwei- und Mehrkomponentengemische auf in apparativer und verfahrenstechnischer Hinsicht möglichst wirtschaftliche Weise in die jeweils gewünschte Anzahl hoch angereicherter Produktfraktionen unterschiedlicher Zusammensetzung zu zerlegen.
  • Die Aufgabe wird dadurch gelöst, dass das Gemisch in eine der Zahl der Produkfraktionen entsprechende Anzahl von Teilströmen aufgeteilt und jeder Teilstrom während einer Adsorptionsphase in ein ihm zugeordnetes Adsorptionsbett eingeführt wird, wobei Art und Beschaffenheit der Adsorptionsmittel jeweils so gewählt sind, dass während der Adsorptionsphase in jedem der Adsorptionsbetten eine andere Komponente oder Gruppe von Komponenten bevorzugt zurückgehalten wird und gleichzeitig jeweils eine andere der gewünschten Produktfraktionen abströmt.
  • Mit Hilfe des erfindungsgemässen Verfahrens kann ein Gasgemisch in einer einzigen Adsorptionsstufe in mehrere hoch angereicherte Produktfraktionen zerlegt werden. So ist es beispielsweise möglich, jede einzelne gewünschte Komponente aus einem zu zerlegenden Gasgemisch im hoch angereicherter Form zu gewinnen, ohne dass zu diesem Zweck zwei oder mehrere Adsorptionsstufen hintereinander geschaltet werden müssen. Es gelingt auch, hoch angereicherte Produktfraktionen zu erhalten, die beispielsweise aus zwei gewünschten Komponenten bestehen, deren weitere Auftrennung nicht erforderlich ist. Die Adsorptionsmittel sind dabei so zu wählen, dass in jedem Adsorptionsbett mindestens eine andere der Komponenten bevorzugt zurückgehalten wird. Für den beim Verfahren gemäss der Erfindung eingeschlossenen Fall, dass in einem oder allen Adsorptionsbetten etwa jeweils zwei Komponenten bevorzugt zurückgehalten sind, können Mischbetten verwendet werden, die zwei für jeweils eine der Komponenten selektive Adsorptionsmittel enthalten.
  • Das Verfahren gemäss der Erfindung wird zweckmässig so durchgeführt, dass mindestens zwei gleichberechtigte, zyklisch umschaltbare Systeme von Adsorptionsbetten verwendet werden, wobei ein System eine der Zahl der Produktfraktionen entsprechende Anzahl strömungsmässig parallel geschalteter Adsorptionsbetten enthält. Mindestens eines der Systeme parallel geschalteter Adsorptionsbetten befindet sich jeweils in der Adsorptionsphase, mindestens ein anderes in der Desorptionsphase.
  • Im allgemeinen wird es zweckmässig sein, die Adsorberanlage im Druckwechselverfahren zu betreiben, da bei diesem Verfahren zusätzliche Heizmittel und Spülgasleitungen entfallen.
  • Gemäss der Erfindung ist demnach nicht ausgeschlossen, dass mehr als nur zwei zyklisch umschältbare Systeme von Adsorptionsbetten verwendet werden und anstelle einer einzigen Desorptionsphase beispielsweise zwei durchgeführt werden, wobei zuerst im wesentlichen das im Lückenvolumen befindliche Gasgemisch, das auch Anteile an nichtadsorbierbaren Komponenten aufweisen und dessen Zusammensetzung der des unzerlegten Gasgemisches sehr nahe kommen kann, und erst danach das eigentliche Desorbat abgezogen werden.
  • Eine Vorrichtung zur adsorptiven Zerlegung eines aus mindestens zwei Komponenten bestehenden Gasgemisches in mindestens zwei, jeweils aus mindestens einer Komponente bestehenden Produktfraktion in mindestens einem ein Adsorptionsbett aufweisenden Adsorber, der eine Gaszuführungsleitung, eine Produktleitung sowie eine Desorbatleitung aufweist, wobei die Leitungen jeweils mit Ventilen ausgestattet sind, ist durch mindestens zwei zyklisch umschaltbare Adsorber gekennzeichnet, in denen jeweils ein System von Adsorptionsbetten angeordnet ist, das eine der Zahl der Produktfraktionen entsprechende Anzahl strömungsmässig parallel geschalteter Adsorptionsbetten enthält. Vorteilhaft weisen die Adsorptionsbetten verschiedene Adsorptionsmittel auf. Jedes dieser Systeme ist somit von einem einzigen Adsorberbehälter umschlossen, womit eine hinsichtlich der Herstellungskosten besonders günstige Anlageform gegeben ist. Selbstverständlich ist es so auch möglich, ein System von mehr als zwei Adsorptionsbetten in einem einzigen Adsorberbehälter unterzubringen, wobei die einzelnen Adsorptionsbetten jeweils strömungsmässig voneinander getrennt werden müssen. Dies kann durch Trennwände geschehen, die sich über den Behälterquerschnitt erstrecken und mit den Behälterwänden dicht verbunden sind.
  • Um das Durchbrechen einer zurückgehaltenen Komponente zu verhindern, hat es sich als zweckmässig erwiesen, wenn die Adsorptionsbetten eines Systems zumindest teilweise eine unterschiedliche Schütthöhe aufweisen. Die in Strömungsrichtung gemessene Schütthöhe der Adsorptionsbetten richtet sich dabei nach den Mengen der dort jeweils zurückzuhaltenden Komponenten im Gasgemisch. Im allgemeinen wird eine derartige Anlage so betrieben werden, dass in den Adsorptionsbetten gleichzeitig die maximal erwünschte Beladung erreicht wird, ohne dass dabei ein Durchbruch einer in einem Adsorptionsbett zurückgehaltenen Komponente erfolgt.
  • Im Falle der Gewinnung zweier Produktströme ist es zweckmässig, dass in jedem der Adsorber zwei axial hintereinander angeordnete Adsorptionsbetten vorgesehen sind, dass eine Gaszuführungsleitung in den Bereich zwischen den Adsorptionsbetten führt und Produktgasleitungen aus den Endbereichen des Adsorbers hinausführen. In diesem Falle wird das zu zerlegende Gasgemisch zwischen beiden Adsorptionsbetten eingeführt und in jedem der beiden Adsorptionsbetten eine andere Komponente bevorzugt zurückgehalten. Somit erübrigt sich eine Trennwand zwischen den beiden Adsorptionsbetten, da eine Aufteilung des Gasgemisches in zwei in entgegengesetzter Richtung zu den Enden des Adsorberbehälters hin fliessende Teilströme von selbst erfolgt.
  • Eine besondere Anwendungsform des erfindungsgemässen Verfahrens besteht in der Zerlegung von Luft. Als Adsorptionsmittel in einem Adsorptionsbett ist dabei ein bevorzugt Stickstoff zurückhaltendes zeolithisches Molekularsieb und in dem anderen Adsorptionsbett ein bevorzugt Sauerstoff zurückhaltendes Kohlenstoff-Molekularsieb vorgesehen. Damit wird es möglich, in Verbesserung des eingangs erwähnten bekannten Verfahrens, Luft in der Weise zu zerlegen, dass gleichzeitig nahezu reiner Stickstoff und sehr hoch angereicherter Sauerstoff gewonnen werden.
  • Bei der Gewinnung zweier Produktströme, wie Stickstoff und Sauerstoff im Falle der Luft als zu zerlegendes Gasgemisch, hat es sich als zweckmässig erwiesen, wenn eine aus dem Bereich zwischen den Adsorptionsbetten herausführende Desorbatleitung vorgesehen ist. Dann kann nämlich so vorgegangen werden, dass während der Desorption bei vermindertem Druck beide Desorbatfraktionen gemeinsam zwischen beiden Adsorptionsbetten abgezogen werden. Diese wenig wertvollen Fraktionen können in die Atmosphäre abgeblasen werden.
  • Das erfindungsgemässe Verfahren ist jedoch nicht nur auf die Zerlegung von Luft anwendbar, sondern lässt sich auch beispielsweise auf die Abtrennung bestimmter Kohlenwasserstoffe aus diese enthaltenden Kohlenwasserstoffgemischen anwenden.
  • Im folgenden wird das erfindungsgemässe Verfahren anhand zweier in den Figuren 1 und 2 schematisch dargestellten Ausführungsbeispielen näher erläutert.
  • Dabei zeigt:
    • Figur 1 einen doppelflutigen Adsorber für eine PSA-Anlage zur Luftzerlegung
    • Figur 2 doppelflutige Adsorber zur Zerlegung von Purgegas aus der Ammoniak-Synthese.
  • In der Figur 1 ist nur ein Adsorber 1 dargestellt. Für die Durchführung des erfindungsgemässen Verfahren ist es für einen Fachmann selbstverständlich, dass mindestens zwei derartige Adsorber vorhanden sind, wobei sich immer mindestens ein Adsorber in der Adsorptions- und gleichzeitig mindestens ein anderer Adsorber in der Desorptionsphase befindet.
  • Erfindungsgemäss sind die Adsorber doppelflutig ausgebildet, d.h. in dem Adsorber 1 sind zwei Adsorptionsbetten 1a, 1b mit unterschiedlichen Adsorptionsmitteln angeordnet, die durch einen Bereich 1 c voneinander getrennt sind.
  • In diesen doppelflutigen Adsorber 1 treten über eine Gaszuführungsleitung 2 mit Ventil 3 1000ONm3/h verdichtete Luft unter einem Druck von z.B. 4 bar ein, und zwar in den Bereich 1 c zwischen den Adsorptionsbetten 1 a, 1 b. Als Adsorptionsmittel in dem unteren Adsorptionsbett 1 b ist ein bevorzugt Stickstoff zurückhaltendes zeolithisches Molekularsieb, beispielsweise vom Typ 5A oder 13X, und in dem Adsorptionsbett 1 a ein bevorzugt Sauerstoff zurückhaltendes Kohlenstoff- Molekularsieb vorgesehen. Die Schütthöhe der Adsorptionsmittel entsprechen dabei den zu gewinnenden Produktmengen, was im Falle der Luft dazu führt, dass die Schütthöhe des Kohlenstoff-Molekularsiebes grösser ist als die des zeolithischen Molekularsiebs.
  • Die Aufteilung der eingetretenen Luft in zwei in entgegengesezter Richtung die Adsorptionsbetten 1 a und 1 b durchfliessenden Teilströme erfolgt von selbst, so dass über eine Produktleitung 4 mit Ventil 5 500 Nm3/h hoch angereicherten Sauerstoffs (ca. 95% Reinheit) unter einem Druck von 4 bar und über eine Produktleitung 6 mit Ventil 7 3 000 Nm3/h reiner Stickstoff mit einem Druck von 4 bar (ca. 99% Reinheit) abgezogen werden kann.
  • In Verbesserung des eingangs erwähnten bekannten Verfahrens wird auf diese Weise gleichzeitig nahezu reiner Stickstoff und sehr hoch angereicherter Sauerstoff gewonnen, wobei ausserdem erhebliche Investitionseinsparungen erreicht werden. So ist nur ein Luftverdichter erforderlich, die Anzahl der Schaltventile reduziert sich ebenso wie die Anzahl der gewölbten Böden für die Adsorberbehälter.
  • Die anschliessende Desorption, während der sich der andere Adsorber in der Adsorptionsphase befindet, erfolgt bei vermindertem Druck, z.B. 1 bar. Die dabei freiwerdenden Desorbatfraktionen, im vorliegenden Beispiel 6 500 Nm3/h, enthalten noch ca. 23% O2 und werden gemeinsam über eine Desorbatleitung 8 mit Ventil 9 aus dem Bereich 1 c zwischen den Adsorptionsbetten 1 a, 1 b abgezogen. Diese Fraktionen können dann im Falle der Luftzerlegung in die Atmosphäre abgeblasen werden.
  • Bei der Trennung bestimmter Kohlenwasserstoffe voneinander dagegen empfiehlt es sich, die an sich wertvollen Desorbatfraktionen dem in die Adsorptionsanlage eintretenden Gasgemisch zuzumischen und erneut einer Adsorption zu unterwerfen.
  • Figur 2 zeigt eine Anlage zur Zerlegung von Purgegas aus der Ammoniak-Synthese. Über eine Leitung 13 mit Ventil 14 gelangen 10 000 Nm3/h Purgegas aus der NH3-Synthese unter einem Druck von ca. 40 bar in eine im Druckwechsel arbeitende Adsorbtionsanlage mit mindestens zwei Adsorbern 15 und 16. Das Purgegas hat dabei folgende Zusammensetzung:
    Figure imgb0001
  • In den Adsorbern 15 bzw. 16 sollen die Verunreinigungen des Wasserstoffs - Stickstoff, Argon und Methan - zurückgehalten werden, wozu die Adsorber jeweils mit einem zeolitischen Molekularsieb, z.B. vom Typ 5A beschickt sind. Beim Durchströmen des Purgegases durch Adsorber 15 werden diese Verunreinigungen absorbiert und über Leitung 17 mit Ventil 18 5.000 Nm3/h reiner Wasserstoff abgeführt. Währenddessen desorbiert Adsorber 16, der sich zuvor bei geöffneten Ventilen 19 und 20 und geschlossenen Ventilen 14 und 18 in der Adsorptionsphase befunden hat, bei vermindertem Druck, beispielsweise 8 bar. Über eine Desorbatleitung 22 mit Ventil 21 werden dabei aus dem Adsorber 16 1.300-m3/h H2, 2.100 Nm3/h N2, 800 Nm3/h Ar und 800 Nm3/h CH4 abgezogen. Während der anschliessenden Adsorbtionsphase von Adsorber 16 befindet sich Adsorber 15 in der Desorptionsphase, d.h. bei geschlossenen Ventilen 14 und 18 werden über eine Leitung 24 und geöffnetem Ventil 23 die genannten Mengen der Desorbatfraktion abgezogen.
  • Zur vollständigen Regenerierung der Adsorber kann dabei von Zeit zu Zeit ein Adsorber aus der Anlage, die dann aus mindestens drei Adsorbern besteht, herausgenommen werden.
  • Das Desorbat aus Leitung 22 wird über ein Ventil 25 zu einer aus den Adsorbern 26 und 27 bestehenden weiteren PSA-Anlage geführt, und zwar in die Mitte des Adsorbers 26.
  • Die Adsorber 26 und 27 sind doppelflutig ausgebildet, wobei jeweils das obere Adsorptionsbett (26a, 27a) mit einem Stickstoff- und Methan- zurückhaltenden zeolithischen Molekularsieb, z.B. vom Typ 5A oder 13X, und das untere Adsorptionsbett (26b, 27b) mit einem Mischbett aus einem Argon zurückhaltenden modifizierten Kohlenstoffmolekularsieb und Methan zurückhaltender Aktivkohle beschickt sind. Dadurch kann gemäss der Erfindung das herangeführte (Desorbat-) Gas zerlegt werden.
  • Das Desorbatgas tritt unter einem Druck von 8 bar in den Bereich 26c zwischen den beiden Adsorptionsbetten 26a und 26b des Adsorbers 26 ein und teilt sich in zwei in entgegengesetzter Richtung die Adsorptionsbetten 26a und 26b durchfliessende Teilströme auf, so dass über Leitung 29 mit Ventil 28 600 Nm3/h H2 und 400 Nm3/h Ar und über Leitung 31 mit Ventil 30 600 Nm3/h H2 und 1.050 Nm3/h N2 unter einem Druck von ca. 7,5 bar abströmen.
  • Währenddessen desorbiert der Adsorber 27, nachdem er sich zuvor bei geschlossenen Ventilen 25, 28 und 30 und geöffneten Ventilen 36, 37 und 38 in der Adsorptionsphase befunden hat, bei vermindertem Druck, z.B. 1,5 bar. Die dabei frei werdenden Desorbatfraktionen werden gemeinsam über eine Desorbatleitung 35 mit Ventil 34 bzw., wenn Adsorber 27 sich in der Adsorptions- und Adsorber 26 sich in der Desorptionsphase befinden, über die Desorbatleitung 33 mit Ventil 32, aus dem jeweiligen Bereich 27c bzw. 26c zwischen den Adsorptionsbetten abgezogen. Diese Desorbatfraktionen setzen sich aus 100 Nm3/h H2, 1050 Nm3/h N2, 400 Nm3/h Ar und 800 Nm3/h CH4 zusammen und können als Heizgas weiterverwendet werden.
  • Die über Leitung 29 abziehende Produktfraktion aus Wasserstoff und Argon gelangt zur weiteren Zerlegung in eine anschliessende PSA-Anlage mit zwei Adsorbern 40 und 41, die jeweils mit einem modifizierten Kohlenstoffmolekularsieb beschickt sind. Das zu zerlegende Gas wird über Ventil 42 in den Adsorber 40 geführt, in dem das Argon adsorbiert wird, so dass über Leitung 43 mit Ventil 44 vom Kopf des Adsorbers 40 580 Nm3/h reiner Wasserstoff mit einem Druck von 7 bar abgezogen und zur Ammoniaksynthese zurückgeführt werden können.
  • Währenddessen desorbiert der Adsorber 41, der sich zuvor bei geschlossenen Ventilen 42 und 44 und geöffneten Ventilen 45 und 46 in der Adsorptionsphase befunden hat, bei vermindertem Druck, z.B. 1,2 bar, so dass über eine Desorbatleitung 47 mit geöffnetem Ventil 48 400 Nm3/h Argon, das noch mit 20 Nm3/h Wasserstoff verunreinigt ist, abgeführt werden. Während der anschliessenden Adsorptionsphase von Adsorber 41 wird das mit Wasserstoff verunreinigte Argon aus dem sich dann in der Desorptionsphase befindenden Adsorber 40 über das geöffnete Ventil 49 und Desorbatleitung 50 abgezogen.
  • Durch das erfindungsgemässe Verfahren kann somit gleichzeitig zur Ammoniaksynthese verwendbares Produktgas und ein Produktgas, aus dem nach weiterer Zerlegung reiner Wasserstoff gewonnen werden kann, sowie als Desorbatfraktion Heizgas gewonnen werden.

Claims (9)

1. Verfahren zur adsorptiven Zerlegung eines aus mindestens zwei Komponenten bestehenden Gasgemisches in mindestens zwei, jeweils aus mindestens einer Komponente bestehende Produktfraktionen, dadurch gekennzeichnet, dass das Gasgemisch in eine der Zahl der Produktfraktionen entsprechende Anzahl von Teilströmen aufgeteilt und jeder Teilstrom während einer adsorptiven Phase in ein ihm zugeordnetes Adsorptionsbett eingeführt wird, wobei Art und Beschaffenheit der Adsorptionsmittel jeweils so gewählt sind, dass während der Adsorptionsphase in jedem der Adsorptionsbetten eine andere Komponente oder Gruppe von Komponenten bevorzugt zurückgehalten wird und gleichzeitig jeweils eine andere der gewünschten Produktfraktionen abströmt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet dass mindestens zwei gleichberechtigte zyklisch umschaltbare Systeme von Adsorptionsmitteln verwendet werden, wobei ein System eine der Zahl der Produktfraktionen entsprechende Anzahl strömungsmässig parallel geschalteter Adsorptionsbetten enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als zu zerlegendes Gasgemisch Luft eingeführt und als Adsorptionsmittel für ein Adsorptionsbett ein bevorzugt Stickstoff zurückhaltendes zeolithisches Molekularsieb und für ein anderes Adsorptionsbett ein bevorzugt Sauerstoff zurückhaltendes Kohlenstoffmolekularsieb verwendet wird.
4. Vorrichtung zur adsorptiven Zerlegung eines aus mindestens zwei Komponenten bestehenden Gasgemisches in mindestens zwei, jeweils aus mindestens einer Komponente bestehenden Produktfraktion in mindestens einem ein Adsorptionsbett aufweisenden Adsorber, der eine Gaszuführungsleitung, eine Produktleitung sowie eine Desorbatleitung aufweist, wobei die Leitungen jeweils mit Ventilen ausgestattet sind, gekennzeichnet durch mindestens zwei zyklisch umschaltbare Adsorber, in denen jeweils ein System von Adsorptionsbetten angeordnet ist, das eine der Zahl der Produktfraktionen entsprechende Anzahl strömungsmässig parallel geschalteter Adsorptionsbetten enthält.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass in den Adsorptionsbetten eines Systems verschiedene Adsorptionsmittel vorgesehen sind.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Adsorptionsbetten eines Systems zumindest teilweise eine unterschiedliche Schütthöhe aufweisen.
7. Vorrichtung nach Anspruch 4 bis 6 zur Gewinnung zweier Produktströme, dadurch gekennzeichnet, dass in jedem der Adsorber zwei axial hintereinander angeordnete Adsorptionsbetten (1 a, 1 b) vorgesehen sind, dass eine Caszuführungsleitung (2) in dem Bereich (1 c) zwischen den Adsorptionsbetten (1 a, 1 b) führt und Produktgasleitungen (4, 6) aus den Endbereichen der Adsorber hinausführen.
8. Vorrichtung nach Anspruch 7 zur Zerlegung von Luft, dadurch gekennzeichnet, dass als Adsorptionsmittel in einem Adsorptionsbett (1 b) ein bevorzugt Stickstoff zurückhaltendes zeolithisches Molekularsieb und in dem anderen Adsorptionsbett (1 a) ein bevorzugt Sauerstoff zurückhaltendes Kohlenstoffmolekularsieb vorgesehen ist.
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass eine aus dem Bereich (1 c) zwischen den Adsorptionsbetten (1 a, 1 b) herausführende Desorptionsgasleitung (8) vorgesehen ist.
EP82107050A 1981-08-18 1982-08-04 Verfahren zur adsorptiven Zerlegung eines Gasgemisches Expired EP0072496B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813132572 DE3132572A1 (de) 1981-08-18 1981-08-18 Verfahren zur adsorptiven zerlegung eines gasgemisches
DE3132572 1981-08-18

Publications (2)

Publication Number Publication Date
EP0072496A1 EP0072496A1 (de) 1983-02-23
EP0072496B1 true EP0072496B1 (de) 1985-12-18

Family

ID=6139545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82107050A Expired EP0072496B1 (de) 1981-08-18 1982-08-04 Verfahren zur adsorptiven Zerlegung eines Gasgemisches

Country Status (3)

Country Link
US (1) US4448592A (de)
EP (1) EP0072496B1 (de)
DE (2) DE3132572A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681602A (en) * 1984-12-24 1987-07-21 The Boeing Company Integrated system for generating inert gas and breathing gas on aircraft
WO1986005119A1 (en) * 1985-02-28 1986-09-12 Guild Associates, Inc. Pressure swing cycles for gas separations
US4744803A (en) * 1985-08-19 1988-05-17 The Ohio State University Research Foundation Complementary pressure swing adsorption
GB8528249D0 (en) * 1985-11-15 1985-12-18 Normalair Garrett Ltd Molecular sieve bed containers
US4813979A (en) * 1988-02-02 1989-03-21 The United States Of America As Represented By The Secretary Of The Air Force Secondary oxygen purifier for molecular sieve oxygen concentrator
US4880443A (en) * 1988-12-22 1989-11-14 The United States Of America As Represented By The Secretary Of The Air Force Molecular sieve oxygen concentrator with secondary oxygen purifier
US5071449A (en) * 1990-11-19 1991-12-10 Air Products And Chemicals, Inc. Gas separation by rapid pressure swing adsorption
US5203887A (en) * 1991-12-11 1993-04-20 Praxair Technology, Inc. Adsorbent beds for pressure swing adsorption operations
US5226933A (en) * 1992-03-31 1993-07-13 Ohio State University Pressure swing adsorption system to purify oxygen
JP2534614B2 (ja) * 1993-06-03 1996-09-18 テイサン株式会社 ガス精製装置
US5672196A (en) * 1995-08-01 1997-09-30 The Boc Group, Inc. Process and apparatus for the separation of gases
US5681370A (en) * 1995-11-17 1997-10-28 Mcmahon; James P. Air dryer system
SE517561C2 (sv) * 1996-03-04 2002-06-18 Aga Ab Förfarande och anordning för framställning av en gas genom separation från en gasblandning
US5766310A (en) * 1996-07-19 1998-06-16 Litton Systems Incorporated Single stage secondary high purity oxygen concentrator
GB9710664D0 (en) * 1997-05-23 1997-07-16 Boc Group Plc Separation of a gas
DE19727743A1 (de) * 1997-06-30 1999-01-14 Sgi Prozes Technik Gmbh Adsorber, insbesondere zur Trennung von Sauerstoff und Stickstoff
US6475265B1 (en) * 1998-10-22 2002-11-05 Praxair Technology, Inc. Pressure swing adsorption method for production of an oxygen-enriched gas
US6156100A (en) * 1999-02-01 2000-12-05 Fantom Technologies, Inc. Method and apparatus for concentrating a gas using a single stage adsorption zone
US6217635B1 (en) 1998-11-09 2001-04-17 Fantom Technologies Inc. Method and apparatus for concentrating a gas using a single stage adsorption chamber
US6364937B1 (en) 2000-05-10 2002-04-02 Mcmahon James P. Humidity control system
JP3891773B2 (ja) * 2000-10-20 2007-03-14 大陽日酸株式会社 ガスの分離精製方法及びその装置
US6500235B2 (en) * 2000-12-29 2002-12-31 Praxair Technology, Inc. Pressure swing adsorption process for high recovery of high purity gas
US6511526B2 (en) 2001-01-12 2003-01-28 Vbox, Incorporated Pressure swing adsorption gas separation method and apparatus
JP3902416B2 (ja) * 2001-04-16 2007-04-04 大陽日酸株式会社 ガス分離方法
US7954490B2 (en) 2005-02-09 2011-06-07 Vbox, Incorporated Method of providing ambulatory oxygen
US8177886B2 (en) * 2009-05-07 2012-05-15 General Electric Company Use of oxygen concentrators for separating N2 from blast furnace gas
EP2456540A4 (de) 2009-07-22 2013-10-09 Vbox Inc Vorrichtung zur trennung von sauerstoff aus umgebungsluft
RU2660006C1 (ru) * 2014-11-06 2018-07-04 Эксонмобил Апстрим Рисерч Компани Адсорбция загрязнителей из газового потока

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2080578A (en) * 1934-01-20 1937-05-18 Union Carbide & Carbon Corp Apparatus for treating gases
US2428885A (en) * 1943-06-25 1947-10-14 Chemical Developments Corp Method of ventilation including the removal of solvent vapor by adsorption
US2739664A (en) * 1953-07-10 1956-03-27 Asbury S Parks Methods of and means for dehydrating and processing streams
US2918140A (en) * 1958-06-20 1959-12-22 Sun Oil Co Treatment of gas mixtures
US3102013A (en) * 1960-08-02 1963-08-27 Exxon Research Engineering Co Heatless fractionation utilizing zones in series and parallel
US3149934A (en) * 1961-07-13 1964-09-22 Exxon Research Engineering Co Cyclic adsorption process
DE2110832A1 (de) * 1970-03-11 1971-11-04 Al E & C Ltd Verfahren und Vorrichtung zur zyklischen Gasreinigung
US4011065A (en) * 1974-01-09 1977-03-08 Bergwerksverband Gmbh Process for the enrichment of gases
DE2441447C3 (de) * 1974-08-29 1980-05-22 Bergwerksverband Gmbh, 4300 Essen Verfahren zur adsorptiven Trennung von neben Stickstoff wenigstens Sauerstoff enthaltenden Gasgemischen
US4026680A (en) * 1974-10-30 1977-05-31 Union Carbide Corporation Air separation by adsorption
US3986849A (en) * 1975-11-07 1976-10-19 Union Carbide Corporation Selective adsorption process
DE2840357A1 (de) * 1978-09-16 1980-04-03 Linde Ag Adiabatisches adsorptionsverfahren zur gasreinigung oder-trennung
DE2851847A1 (de) * 1978-11-30 1980-06-12 Linde Ag Verfahren zum betrieb einer zyklisch arbeitenden druckwechsel-adsorptionsanlage
US4386945A (en) * 1982-02-01 1983-06-07 Litton Systems, Inc. Process and compound bed means for evolving a first component enriched gas

Also Published As

Publication number Publication date
DE3268025D1 (en) 1986-01-30
DE3132572A1 (de) 1983-03-10
EP0072496A1 (de) 1983-02-23
US4448592A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
EP0072496B1 (de) Verfahren zur adsorptiven Zerlegung eines Gasgemisches
DE60221619T2 (de) Verfahren zur Reinigung von Synthesegas
EP0053837B1 (de) Adsorptionsverfahren und Anlage zur Durchführung des Verfahrens
DE60217429T3 (de) Verfahren zur Verminderung des Kohlendioxidgehaltes in einer Gasmischung
DE3327091C2 (de)
DE69126397T2 (de) Doppeladsorptionsverfahren
DE60203551T3 (de) Herstellung von hochreinem Sauerstoff durch Druckwechseladsorption
EP0146124B1 (de) Druckwechseladsorptionsverfahren
EP0083433B1 (de) Adsorptionsverfahren zur Trennung von Kohlenwasserstoffen
EP0291975B1 (de) Verfahren zur Heliumanreicherung
DE1419704A1 (de) Verfahren zur Entfernung geringer Mengen gasfoermiger Verunreinigungen aus Gasen
EP0291976B1 (de) Verfahren zur Heliumgewinnung
EP0009217A1 (de) Adiabatisches Adsorptionsverfahren zur Gasreinigung oder -trennung
DE2724763A1 (de) Verfahren zum reinigen und zerlegen eines gasgemisches
DE3132758A1 (de) Absorptionsverfahren
EP0103070A2 (de) Verfahren und Vorrichtung zur Trennung von Gasen mit Adsorbentien
DE3702190A1 (de) Adsorptionsverfahren
DE2624346C2 (de)
EP0015413B1 (de) Druckwechseladsorptionsverfahren zur Zerlegung oder Reinigung von Gasgemischen
DE3207089C2 (de)
DE3338494A1 (de) Adsorptionsverfahren
DE2702784C2 (de) Verfahren zum Zerlegen eines Gasgemisches
DE19837845C2 (de) Auftrennung von SF6/N2-Gemischen und SF6/Luft-Gemischen
EP0146646A1 (de) Verfahren zur Abtrennung und Gewinnung von relativ stark an Adsorptionsmitteln adsorbierbaren Gasen aus ansonsten im wesentlichen nur schwächer adsorbierbare Gase enthaltenden Gasgemischen
DE60110540T2 (de) Druckwechseladsorptionsverfahren in sehr grossem Masstab

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19830216

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT

BECA Be: change of holder's address

Free format text: 851218 *NORMALAIR-GARRETT (HOLDINGS) LTDYEOVIL SOMERSET BA20 Y2D GB

BECH Be: change of holder

Free format text: 851218 *NORMALAIR-GARRETT (HOLDINGS) LTD

REF Corresponds to:

Ref document number: 3268025

Country of ref document: DE

Date of ref document: 19860130

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;NORMALAIR - GARRETT CHOLDINGSJ LIMITED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900724

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900807

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900904

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900927

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910831

BERE Be: lapsed

Owner name: NORMALAIR-GARRETT (HOLDINGS) LTD

Effective date: 19910831

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST