-
Die Erfindung betrifft eine Vorrichtung zur Berechnung der Dosis einer magnetischen Stimulation.
-
Vorrichtungen der in diesem Dokument erörterten Art werden für Messungen, Forschungsmaßnahmen und Therapien verwendet, die an biologischem Gewebe durchgeführt werden, indem das Gewebe durch elektromagnetische Mittel stimuliert wird.
-
Unter Verwendung herkömmlicher Techniken ist es möglich, biologisches Gewebe wie beispielsweise das Gehirn, das periphere Nervensystem, Muskeln und das Herz dadurch zu stimulieren, dass ein elektrisches Feld in dem Gewebe induziert wird. Bei einer magnetischen Stimulation erfolgt die Induktion des elektrischen Felds mit Hilfe eines sich ändernden magnetischen Felds. Wie bekannt ist, erzeugt ein elektrisches Feld in einem leitenden Gewebe einen elektrischen Strom, der das Gewebe stimuliert. Unterschiedliche Typen von Vorrichtungskonstruktionen, die auf einer magnetischen Stimulation beruhen, werden beispielsweise in
US 4 940 453 A ,
US 5 047 005 A ,
US 5 061 234 A ,
US 5 066 272 A und
US 5 267 938 A beschrieben.
-
Aus der
EP 1 273 320 A1 ist beispielsweise eine Vorrichtung für transcraniale magnetische Stimulation mit einem magnetischen Stimulator mit einer Spule bekannt, wobei die Position einer Induktionsvorrichtung in Bezug auf einen zu untersuchenden Kopf mittels eines Trackings von an der Induktionsvorrichtung und/oder am Kopf angebrachten Marken bestimmt wird.
-
Die magnetische Stimulation bietet ein risiko- und schmerzfreies Verfahren, um das menschliche Gehirn, das periphere Nervensystem oder Muskeln zu stimulieren. Die Aktivierung der Zellen des Nervensystems durch den elektrischen Strom, der durch die magnetische Stimulation induziert wird, kann auf vielfältige Weise genutzt werden. Zum Beispiel löst die Stimulation bestimmter kortikaler Bereiche das Zusammenziehen der Muskeln aus, welche die Funktionen der Hand steuern, so dass die Geschwindigkeiten der Nervenweiterleitung von dem Gehirn bis zu den Muskeln gemessen werden können. Die Stimulation von bestimmten anderen Bereichen kann genutzt werden, um in die normale Funktion des Gehirns einzugreifen, beispielsweise während der Ausführung einer vorgegebenen Aufgabe, so dass es möglich ist, kortikale Bereiche, die mit der Steuerung unterschiedlicher Aufgaben verbunden sind, zu lokalisieren. Weiterhin kann die Stimulation bestimmter Regionen des Gehirns durch schnelle Impulsfolgen ebenfalls therapeutische Wirkungen haben; zum Beispiel ist berichtet worden, dass Patienten, die unter Depressionen leiden, eine Linderung durch die Stimulation der im vorderen Stirnlappen liegenden, kortikalen Bereiche erfahren. Darüber hinaus können magnetische Impulsfolgen genutzt werden, um die Reaktion des Kortex zu modulieren; es sind Forschungsberichte veröffentlicht worden, die darauf hinweisen, dass z. B. die Anwendung einer fokussierten Folge von Stimulationsimpulsen die Ansprechverzögerung verkürzen kann, die nach der Stimulationsimpulsfolge gemessen wird.
-
Das stimulierende magnetische Feld wird mit Hilfe einer Spule aufgebaut, die aus einem leitenden Drahtmaterial gewickelt ist und durch die ein starker Stromimpuls von kurzer Dauer geleitet wird. Als Folge erzeugt die Spule um sich herum ein magnetisches Feld, dessen Stärke in einem größeren Abstand von der Spule rasch abfällt. Dementsprechend wird auch die stimulierende Wirkung des sich mit der Zeit verändernden, magnetischen Felds auf lebendes Gewebe abgeschwächt. Die Richtcharakteristik des Felds um die Spule herum und darunter ist von der Form der Spule abhängig.
-
Die magnetische Stimulation ist dadurch gekennzeichnet, dass selbst eine kleine Abweichung von 5 bis 10 mm von dem Standort der Spule oder eine Schräglage von 10° in ihrer Ausrichtung die stimulierende Wirkung an der Zielstelle um bis zu 50% verändern kann. Die Stimulusamplitude kann gesteuert werden, indem man entweder die Amplitude oder die Wellenform des Stromimpulses, der in der Spule angelegt wird, variiert.
-
In einer Vielzahl von Anwendungen werden vorher festgelegte Regionen des Gehirns durch schnelle Folgen von Stimulationsimpulsen gereizt. Berichte über diese Art von Anwendungen lassen sich in wissenschaftlichen Publikationen finden. Zum Beispiel werden bei der Therapie von Depressionen die Stimuli im Allgemeinen mit einer Frequenz von 20 Impulsen pro Sekunde über einen Zeitraum von ungefähr einer Minute gegeben. Die Stimulusfolgen werden mehrmals pro Sequenz und über mehrere Tage verabreicht. In nahezu allen diesen Anwendungen ist es von größter Bedeutung, dass der stimulierende elektrische Strom in einer richtigen Region des Gehirns erzeugt wird, die speziell bei der Depressionstherapie der linke vordere Lappen des Gehirns. Die therapeutische oder sonstige Wirkung, welche durch die Stimulation erreicht wird, hängt von der Gesamtzahl der Impulse ab. Außerdem ist die Wirkung von der Frequenz der angewendeten Impulsfolge und der Gesamtdauer der Impulsfolge abhängig.
-
Sofern die Stimulation in der Form von schnellen Impulsfolgen und/oder mit einer hohen Intensität auf eine einzelne Region des Gehirns ausgeübt wird, können nachteilige Wirkungen, wie etwa in der Art eines epileptischen Anfalls, resultieren.
-
In herkömmlicher Weise wird die Stimulusintensität bestimmt, indem man die Wirkung des Stimulus mit einer solchen Reizschwellenintensität vergleicht, die für die Aktivierung des motorischen Rindenfelds in dem Bereich, der die Bewegung der Hand steuert, erforderlich ist. Die Reaktion dieses Bereichs ist als ein Zucken der Muskeln, die von dem kortikalen Bereich gesteuert werden, feststellbar. Eine derartige Stimulusintensität wird als der Schwellenreiz des motorischen Rindenfelds bezeichnet. Es muss angemerkt werden, dass keine sofort feststellbare Reaktion auf den Stimulus erreicht wird, wenn eine Stimulusintensität verwendet wird, die niedriger als diejenige des Schwellenreizes ist. Wenn eine Anzahl von unterschiedlichen kortikalen Bereichen stimuliert werden, wie beispielsweise der Stirnlappen als Ganzes, ist es in ähnlicher Weise möglich, dass Stimulusintensitäten angewendet werden können, die noch höher als der Schwellenreiz für die motorische Anregung sind, ohne irgendeine sofort feststellbare Reaktion auf den Stimulus zu verursachen. Falls jedoch die Stimulation mit Impulsfolgen angewendet wird, lässt sich eine temporäre oder langer anhaltende, modulierende Wirkung auf die Funktion des stimulierten kortikalen Bereichs feststellen.
-
Ein Problem, das die Nutzung herkömmlicher Verfahren und Ausrüstung behindert, besteht darin, dass diese eine präzise Beurteilung der Stimulusintensität beziehungsweise der Dosis in unterschiedlichen Teilen des Gehirns nicht gestatten. Es nicht einmal möglich, generell eine grobe Abschätzung in anderen Bereichen durchzuführen, es sei denn, wenn das motorische Rindenfeld so stimuliert wird, dass der Stimulus eine leicht feststellbare physiologische Reaktion hervorruft, sobald der Stimulus einen vorgegebenen Schwellenwert übersteigt.
-
Ein weiteres Problem wird durch die Tatsache verursacht, dass die Furchen des Kortex sich in unterschiedlichen Abständen von der Kopfhaut befinden können, wenn unterschiedliche Personen in Bezug auf die unterschiedlichen Regionen ihres Gehirns miteinander verglichen werden. Demzufolge sind herkömmliche Verfahren und Ausrüstung schlecht geeignet, um die Größenordnung des stimulierenden elektrischen Stroms in der gewünschten Zielregion abzuschätzen.
-
Ein drittes Problem, das die Verwendung von Techniken und Systemen nach dem Stand der Technik behindert, liegt darin, dass die Schwellenwertintensität der magnetischen Stimulation, die auf das motorische Rindenfeld angewendet wird, in erheblichem Umfang durch vielfältige, unkontrollierbare Faktoren wie beispielsweise Medikamente und den Grad der Aufmerksamkeit beeinträchtigt werden. Weiterhin kann ein Anspannen der Muskeln, die von der Zielregion gesteuert werden, vor deren Stimulation die Reizschwelle merklich senken. Daher kann ein bloßer Vergleich des Stimulus mit dem Schwellenreiz für die motorische Aktivierung ein verzerrtes Bild der effektiven Intensitat des Stimulus auf irgend einen anderen Bereich des Kortex liefern. Aus demselben Grund kann eine Zuordnung zwischen der Intensität eines angelegten elektromagnetischen Felds und seiner physiologischen Wirkung nicht hergestellt werden, wenn man das Feld auf die Gehirne von unterschiedlichen Testpersonen oder Patienten einwirken lässt.
-
Ein viertes Problem, welches herkömmliche Verfahren und Ausrustung behindert, liegt darin, dass, wenn die Spule während eines Tests oder einer therapeutischen Sitzung bewegt wird, die maximale Wirkung des Stimulus auf einen anderen Teil des Kortex verlagert wird, so dass auch die Reaktion von der ursprünglich beabsichtigten abweicht.
-
Es ist ein Ziel der Erfindung, die Unzulänglichkeiten des oben beschriebenen Stands der Technik zu beseitigen und eine Vorrichtung zur Durchführung eines Verfahrens bereitzustellen, der für die individuelle Beurteilung der summierten Wirkung der Stimulation eines kortikalen Bereichs einer zu stimulierenden Testperson geeignet ist. Diese Ziel wird erreicht, indem die angewendete Dosis der Stimulation präzise berechenbar ist und diese Informationen dann während einer laufenden Stimulationssitzung kumuliert werden können.
-
Erfindungsgemäß ist das von der Spule erzeugte elektromagnetische Feld, die Position und Ausrichtung der Spule in Bezug auf den Kopf ermittelbar und das elektrische Feld nach jedem Stimulusimpuls auf kortikale Bereiche, die anhand von anatomischen Bildern des Kopfes der Testperson ermittelt worden sind, berechenbar. Daraufhin ist die Stimulusdosis als eine kumulative elektrische Feldstärke berechenbar, die aus den Werten des elektrischen Felds summierbar sind, welches auf unterschiedliche Teile des Gehirns während einer Folge von Stimulusimpulsen angelegt worden ist. Zusätzlich ist eine effektive Dosis berechnenbar, wobei die Zeitspanne, während der die anzuwendende Dosis verabreicht wurde, und die Anzahl der pro Sekunde verabreichten Impulse berücksichtigt wird.
-
Vorteilhafter Weise wird elektromagnetische oder optische Sensortechniken vorgesehen, um die Position und die Ausrichtung der Spule in Bezug auf den Kopf zu ermitteln. Es ist jedoch auch möglich andere Verfahren zur Lokalisierung der Position zu verwenden.
-
Vorteilhafterweise kann der anatomische Aufbau des Kopfes der Testperson durch eine magnetische Bilderfassung ermittelt werden. Das elektrische Feld, das von der Spule induziert werden kann, ist vorteilhafterweise sehr exakt ermittelbar, indem man zuerst das magnetische Feld berechnet, das von der Spule erzeugt wird, worauf dann ein Modell für die Leitfähigkeit des Gewebes erzeugt werden kann, das den Kopf der Testperson, die stimuliert wird, repräsentiert, und anschließend das Modell in Berechnungen verwendet wird, die auf herkömmlichen mathematischen Verfahren beruhen, um das elektrische Feld zu ermitteln, das von dem sich zeitlich verändernden, magnetischen Feld durch die elektromagnetische Induktion in dem Gewebe erzeugt werden kann. Präzise Berechnungsmodelle dieser Art sind aus der Literatur des Fachgebiets bekannt.
-
Die erfindungsgemäße Vorrichtung ermöglicht eine erleichterte exakte und sogar im Voraus berechnete Beurteilung der Stimulusdosis, die unterschiedlichen Teilen des Gehirns zu verabreichen ist. Dieses Merkmal ist besonders wichtig, wenn der Stimulus in therapeutischer Form verabreicht werden soll, das heißt, in der gleichen Art und Weise wie jedes Medikament. überdies können die berechneten Werte für die kumulative Dosis und die effektive Dosis verwendet werden, um die therapeutische oder eine sonstige Wirkung zu beurteilen, die von der Stimulation erwartet wird.
-
Insbesondere ist die Vorrichtung gemäß der Erfindung durch die Angaben charakterisiert, die in dem kennzeichnenden Teil von Anspruch 1 dargelegt sind.
-
Die Erfindung liefert signifikante Vorteile.
-
Einer der Vorteile besteht in der exakten Anwendung einer gewünschten, kumulativen oder effektiven Dosis für einen bestimmten kortikalen Bereich, so wie beispielsweise in einer therapeutischen Sitzung benötigt.
-
Ein zweiter Vorteil liegt in der Möglichkeit der Überwachung der Sicherheitsmarge der Untersuchung während einer Untersuchungssitzung und in der Ermittlung der kumulativen Stimulusdosis, die auf den Kortex angewendet wird und die einen vorgegebenen Grenzwert nicht überschreiten soll, bei dem die magnetische Stimulation im Interesse der Sicherheit abgebrochen werden muss.
-
Ein dritter Vorteil liegt darin, dass die Beurteilung der kumulativen Dosis und der effektiven Dosis, die unterschiedliche Testpersonen erhalten, für die Förderung und Überwachung der Patientensicherheit bei einer magnetischen Stimulation und weiterhin für einen exakten Vergleich der Wirkungen einer magnetischen Stimulation zwischen unterschiedlichen Personen verwendet werden kann.
-
Auf diese Art und Weise können die Planung und die Echtzeitüberwachung der Verabreichung einer kumulativen Stimulusdosis oder einer effektiven Stimulusdosis helfen, die möglichen nachteiligen Wirkungen der magnetischen Stimulation zu minimieren.
-
Im Folgenden wird die Erfindung ausführlicher und unter Zuhilfenahme von exemplarischen Ausführungsformen untersucht, wobei auf die beigefügte Zeichnung, die eine bevorzugte Ausführungsform der Erfindung darstellt, Bezug genommen wird, in der die
-
das Layout einer Vorrichtung, die für die Berechnung der Dosis geeignet ist, zeigt.
-
In der Vorrichtung von sind die Position und die Ausrichtung der Spule 1 in Bezug auf den Kopf 5 mit Hilfe einer Standortbestimmungsvorrichtung 2 ermittelbar. Nachdem die Position und die Ausrichtung der Spule 1 sowie des Kopfes somit in eindeutiger Weise bekannt sind, kann auch die effektive Reichweite des elektromagnetischen Felds, das von der Spule 1 im Inneren des Kopfes erzeugt wird, bestimmt werden, nachdem der augenblickliche Wert des Stimulationsstroms, der an der Spule angelegt wird, bekannt ist. Es ist offensichtlich, dass zusätzliche Informationen erforderlich sind, die von einem dreidimensionalen Modell des elektromagnetischen Felds, das von der Spule als eine Funktion des Ansteuerungsstromes der Spule erzeugt wird, erhältlich sind. Die gemessenen Positionskoordinaten des Kopfes 5 und der Spule 1 werden an einen Rechner 3 geleitet, der das elektromagnetische Feld berechnet, welches in dem Kopf 5 erzeugt wird. Die Feldstärke und die Dosis, die während der Stimulationssitzung angewendet wird, sind dem Systembediener auf dem Bildschirm 4 anzeigbar. Die Dosis ist als eine Summe des angelegten elektrischen Felds bzw. des angelegten elektrischen Stroms an jedem gewünschten Punkt berechenbar. Bei der Berechnung der effektiven Dosis umfassen die Faktoren, die zu berücksichtigen sind, die Wiederholungsfrequenz der Folgen von Stimulusimpulsen und die möglichen Unterschiede zwischen den separaten Impulsen bezüglich der Größe des induzierten elektrischen Felds.
-
Der magnetische Stimulator 8, der die Spule 1 steuert, sendet Informationen an den Rechner 3 über die relative Intensität der angewendeten Stimulation. Dabei reicht es aus, das elektrische Feld zu kennen, das bei einer Stimulationsintensität ermittelt wird. Der Rechner 3 wird zusätzlich verwendet, um die Anzahl und die Anwendungsfrequenz der Stimulusimpulse zu überwachen. Mit dem Rechner sind ebenfalls die Intensität der Stimulation und den Anfangszeitpunkt der Stimulusimpulsfolgen, die von dem Stimulator 8 verabreicht werden, steuerbar. Dies ermöglicht es, die Verabreichung der Stimulusdosis und die Berechnung ihrer Wirkung in dem Gehirn zu automatisieren.
-
Es ist weiterhin möglich, die elektrische Feldstärke in dem Gehirn zu ermitteln und diese durch Farben oder Farbtöne in Bildern, die unter Verwendung der Magnet-Resonanz-Darstellung (MRI) aufgenommen worden sind, zu visualisieren. Nachdem das elektrische Feld getrennt für jeden Stimulusimpuls ermittelt ist, kann die kumulative Wirkung der Stimulusimpulse beurteilt werden, indem entweder die Wirkungen der Impulse summiert werden oder a priori vorhandene Informationen verwendet werden, die durch Experimente gewonnen worden sind. Aufgrund dieser Techniken kann die Stimulationsdosis während der gesamten Dauer der Stimulationssitzung in Echtzeit überwacht werden.
-
Ohne den Bereich der Erfindung zu verlassen, können Ausführungsformen, die sich von den oben beschriebenen Ausführungsformen unterscheiden, in Betracht gezogen werden.
-
In einer alternativen Anordnung sind diejenigen kortikalen Bereiche, die stimuliert werden sollen, zuerst durch den Bediener der Stimulationsvorrichtung 8 an dem Bildschirm 4 in den MRI-Bildern, die von dem Kopf des Patienten erstellt worden sind, definierbar. Danach ist eine gewünschte kumulative Dosis oder effektive Dosis und deren Verteilung in dem Gehirn durch den der Bediener im Voraus einstellbar. Mit Hilfe der Standortbestimmung der Spule in Echtzeit und interaktiver Rechnersoftware kann die Spule 1 vom Bediener in eine optimale Position gesteuert werden, worauf die Stimulation anfängt. Die Rechnersoftware überwacht Änderungen in der Position und der Ausrichtung der Spule 1 sowie Änderungen in den Amplituden der Stimulusimpulse und berechnet die Dosisverteilung in Echtzeit individuell für jeden Stimulusimpuls. Die Software kann eine Visualisierung umfassen und interaktiv den Bediener auffordern, die Spule 1 zu bewegen oder die Intensität der Stimulusimpulse zu verändern, so dass die gewünschte Dosis erreicht wird. Nachdem die gewünschte Dosis verabreicht worden ist, fordert der Rechner 3 den Bediener auf, die Stimulation auszuschalten, oder führt diese Schritte automatisch durch.
-
In einer noch weiteren Ausführungsform ist die Spule 1 des magnetischen Stimulators 8 mit einem (in dem Diagramm nicht dargestellten) Roboter verbunden, der von dem Rechner 3 gesteuert werden kann. Diese Anordnung ermöglicht es, die Verabreichung einer gewünschten Dosis zu automatisieren.
-
In einer darüber hinaus weiteren Ausführungsform der Erfindung trägt der Kopf 5 der Person, die getestet oder behandelt wird, einen Positionssensor, dessen Position und Ausrichtung von einem Standortbestimmungssystem 2 erfasst werden kann. Der Sensor kann zum Beispiel auf den Bügeln einer Brille befestigt werden. Danach wird dasselbe Standortbestimmungssystem verwendet, um die anatomischen Messpunkte des Kopfes in Bezug auf den Positionssensor zu lokalisieren. Die Messpunkte werden auf den MRI-Bildern identifiziert. Auf der Spule 1 ist ein zweiter Positionssensor montiert, der so eingestellt ist, dass er die Position und die Ausrichtung der Spule erfasst. Mit der Hilfe dieser Anordnung, wobei die Position und die Ausrichtung von Sensoren, die sowohl auf dem Kopf 5 als auch auf der Spule 1 befestigt sind, gleichzeitig gemessen werden, ist es möglich, die Position und die Ausrichtung der Spule 1 in Bezug auf den Kopf 5 und die vorher gewählten Positionskoordinatenpunkte des Kopfes zu ermitteln; anschließend können herkömmliche Koordinatenumwandlungstechniken verwendet werden, um jeden entsprechenden Punkt auf den MRI-Bildern des Kopfes zu identifizieren. Das Standortbestimmungssystem 2 kann auf der Verwendung von sichtbarem Licht, Infrarotlicht oder elektromagnetischen Feldern beruhen. Die Anzahl der Kopfbezugsmarken muss sich wenigstens auf drei belaufen, wobei diese auf unterschiedlichen Seiten des Kopfs liegen. In herkömmlicher Weise werden die Bezugsmarken so ausgewählt, dass sie die so genannten präaurikulären Punkte nasal vor dem linken und rechten Ohr und der Naseneinschnitt oder das Nasion sind. In dem Diagramm sind die Positionssensoren durch ihre Bezugsmarken 6 gekennzeichnet. Jeder Sensor muss mindestens drei Bezugsmarken 6 für seine eindeutige Identifizierung in einem dreidimensionalen Raum umfassen. Die Bezugsmarken können vollständig passiv sein wie beispielsweise einfache Reflektoren, die das Signal, das von der Antenne 7 des Standortbestimmungssystems 2 abgestrahlt wird, zurückspiegeln, oder die Bezugsmarken 6 können alternativ mit aktiven Messwertgebern ausgerüstet sein, die auf einem geeigneten Wellenlängenband der elektromagnetischen Strahlung arbeiten. Der Standort der Bezugsmarken kann z. B. auf der Übertragungsphase oder der verzögerten Erfassung zwischen den Bezugsmarken und der Antenne 7 des Standortbestimmungssystems beruhen.
-
Als eine alternative Anordnung zu den oben beschriebenen Anordnungen kann die Erfindung so realisiert werden, dass die Position der Spule 1 aus den Positionskoordinaten eines mechanischen Systems wie beispielsweise eines Roboters, der an die Spule angeschlossen ist, ermittelt werden kann. In einer ähnlichen Weise können auch die Positionskoordinaten des Kopfes erhalten werden, indem der Kopf 5 an vorher festgelegten Punkten durch Stützarme oder Ähnliches gehalten wird, wobei mechanische Mittel wie beispielsweise Roboterstellglieder für eine eindeutige Ermittlung der Position und der Ausrichtung des Kopfes 5 als auch der Spule 1 in Bezug zueinander verwendet werden können.
-
Die Berechnung der Dosiswirkung, die von einem elektrischen Feld in einem dreidimensionalen Raum hervorgerufen wird, ist nachstehend beschrieben:
Die Dosis der magnetischen Stimulation, die an einen gegebenen Punkt (X, Y, Z) des Gehirns angewendet wird, ist eine Funktion des elektrischen Felds E von Stimulusimpulsen, die auf den Punkt ausgeübt werden. Der Dosisbeitrag eines einzelnen Impulses wird wie folgt berechnet:
Dosis (an dem Punkt X, Y, Z) = ∫ f (E (X, Y, Z, t)) dt, wobei die Integration über die Zeitdauer des magnetischen Stimulusimpulses durchgeführt wird.
-
Die obenstehende Funktion f kann definiert werden als:
f = E, wenn E > ET ist, wobei ET ein Schwellenwert ist;
f = 0 in allen anderen Fällen.
-
Die kombinierte, effektive Dosis von mehreren Impulsen kann als die Summe der Stimuluswirkungen der einzelnen Impulse berechnet werden.
-
Der Schwellenwert ET kann so definiert werden, dass er z. B. die Hälfte einer solchen elektrischen Feldstärke ist, die wenn sie an das motorische Rindenfeld angelegt wird, im Durchschnitt eine feststellbare motorische Reaktion bei physiologisch normalen Testpersonen hervorruft. Im Allgemeinen liegt diese Schwellenfeldstärke bei einer Größe von 100 V/m. In Abhängigkeit von den Anforderungen der unterschiedlichen Anwendungen kann die Funktion f der Dosisberechnung anders gewählt werden (z. B. f = |E|2, wenn |E| > ET ist, wobei ET ein Schwellenwert ist; f = 0 in allen anderen Fällen), und bei bestimmten Anwendungen ist es ebenfalls möglich, die Wiederholungsfrequenz der transkranialen, magnetischen Stimulationsimpulse (TMS) als einen Parameter der Dosierfunktion einzuschließen. In Abhängigkeit von der Anwendung kann auch der Schwellenwert anders definiert werden.
-
Da das elektrische Feld E eine Vektorgröße ist, kann es zu einem vorgegebenen Zeitpunkt t in einer herkömmlichen Weise berechnet werden: E (X, Y, Z, t) = –δA (X, Y, Z, t)/δt – ∇V (X, Y, Z, t)
-
In der obenstehenden Gleichung wird das Vektorpotential A, das von der Spule erzeugt wird, berechnet, indem die Methoden verwendet werden, die in der Literatur über elektromagnetische Felder beschrieben sind. Für die Berechnung werden Informationen über die geometrischen Abmessungen, die Position und den Standort der Spule in Bezug auf den Punkt X, Y, Z sowie die Parameter des Stromimpulses, der durch die Spule geleitet wird, benötigt. Auch das elektrische Potential V wird berechnet, indem die Laplace-Gleichung ḻ2V = 0 unter Verwendung von Methoden gelöst wird, die aus der Fachliteratur bekannt sind. Die Geometrie der Leitfähigkeit des Kopfgewebes muss ebenfalls für die Berechnung bekannt sein. Die exaktesten Ergebnisse lassen sich erzielen, indem man Finite-Elemente-Verfahren in Verbindung mit Leitfähigkeitsdaten verwendet, die aus MRI-Bildern für die unterschiedlichen Bereiche des Kopfes der Testperson abgeleitet worden sind.
-
Zwar kann die effektive Dosis einer therapeutischen oder Forschungssitzung prinzipiell durch eine Summierung der Dosen berechnet werden, die von den einzelnen Impulsen einer Stimulusimpulsfolge (wie oben beschrieben) verabreicht worden sind, doch ist es auch notwendig, die Berechnung der effektiven Dosis zu verfeinern, indem man die Intervalle zwischen den einzelnen Impulsen der Impulsfolge in folgender Weise berücksichtigt: Effektive Dosis (an dem Punkt X, Y, Z) = Σ (F × ∫ f (E (X, Y, Z, t)) dt), wobei F ein Koeffizient ist, dessen Wert von der Wiederholungsfrequenz der Stimulusimpulse abhängt, und die Dosis über die Zeitdauer der Impulse in der Stimulusimpulsfolge integriert wird. Die Funktion f ist die gleiche wie oben. Der Wert von F steigt mit einer höheren Impulswiederholungsfrequenz. Nachforschungen in der Literatur über die magnetische Stimulation gestatten eine plausible Annahme, dass F = 1 für Impulswiederholungsfrequenzen von weniger als 1 Hz, F = 2 für eine Impulswiederholungsfrequenz von 10 Hz, F = 4 für eine Impulswiederholungsfrequenz von 20 Hz und F = 6 für eine Impulswiederholungsfrequenz von 30 Hz ist.