-
Stand der Technik
-
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs.
-
Aus der
DE 38 25 134 A1 ist bereits ein Brennstoffeinspritzventil bekannt, das ein elektromagnetisches Betätigungselement mit einer Magnetspule, mit einem Innenpol und mit einem äußeren Magnetkreisbauteil und einen bewegbaren Ventilschließkörper, der mit einem einem Ventilsitzkörper zugeordneten Ventilsitz zusammenwirkt, umfasst. Das Einspritzventil ist von einer Kunststoffumspritzung umgeben, wobei sich die Kunststoffumspritzung vor allen Dingen in axialer Richtung den als Innenpol dienenden Anschlussstutzen und die Magnetspule umgebend erstreckt. Mindestens in dem die Magnetspule umgebenden Bereich sind in der Kunststoffummantelung Magnetfeldlinien leitende ferromagnetische Füllstoffe eingebracht. Die Füllstoffe umgeben insofern die Magnetspule in Umfangsrichtung. Bei den Füllstoffen handelt es sich um feinkörnig zerkleinerte Teile von Metallen mit weichmagnetischen Eigenschaften. Die magnetisch im Kunststoff eingebetteten kleinen Metallpartikel haben eine mehr oder weniger globulare Form und sind für sich magnetisch isoliert und haben somit keinen metallischen Kontakt untereinander, so dass es zu keiner wirksamen Magnetfeldausbildung kommt. Dem positiven Aspekt eines dabei entstehenden sehr hohen elektrischen Widerstands steht dabei aber auch ein extrem hoher magnetischer Widerstand entgegen, der sich in einem deutlichen Kraftverlust niederschlägt und somit die in der Gesamtbilanz negativen Funktionseigenschaften bestimmt.
-
Bekannt ist des weiteren aus der
DE 103 32 348 A1 ein Brennstoffeinspritzventil, das sich durch einen relativ kompakten Aufbau auszeichnet. Der Magnetkreis wird bei diesem Ventil durch eine Magnetspule, einen festen Innenpol, einen bewegbaren Magnetanker sowie ein äußeres Magnetkreisbauteil in Form eines Magnettopfes gebildet. Für einen schlanken und kompakten Aufbau des Ventils sind mehrere dünnwandige Ventilhülsen verwendet, die sowohl als Anschlussstutzen als auch als Ventilsitzträger und Führungsabschnitt für den Magnetanker dienen. Die innerhalb des Magnetkreises verlaufende dünnwandige nichtmagnetische Hülse bildet einen Luftspalt, über den die Magnetfeldlinien vom äußeren Magnetkreisbauteil zum Magnetanker und Innenpol übergehen. Ein Brennstoffeinspritzventil vergleichbarer Bauart ist in der
1 nochmals dargestellt und nachfolgend zum besseren Verständnis der Erfindung näher erläutert.
-
Außerdem ist aus der
JP 2002-48031 A bereits ein Brennstoffeinspritzventil bekannt, das sich ebenfalls durch eine dünnwandige Hülsenlösung auszeichnet, wobei sich die tiefgezogene Ventilhülse über die gesamte Länge des Ventils erstreckt und im Magnetkreisbereich eine magnetische Trennstelle aufweist, in der das ansonsten martensitische Gefüge unterbrochen ist. Dieser nichtmagnetische Zwischenabschnitt ist dermaßen auf Höhe des Bereichs des Arbeitsluftspalts zwischen Magnetanker und Innenpol und in Bezug zur Magnetspule angeordnet, dass ein möglichst effektiver Magnetkreis geschaffen ist. Eine solche magnetische Trennung wird auch dazu verwendet, um den DFR (dynamic flow range) gegenüber den bekannten Ventilen mit herkömmlichen Elektromagnetkreisen zu erhöhen. Solche Konstruktionen sind dann aber wiederum mit erheblichen Mehrkosten in der Herstellung verbunden. Zudem führt das Einbringen einer solchen magnetischen Trennung mit einem nichtmagnetischen Hülsenabschnitt zu einer anderen geometrischen Auslegung gegenüber Ventilen ohne magnetische Trennung.
-
Vorteile der Erfindung
-
Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil einer besonders kompakten Bauweise. Das Ventil besitzt einen extrem kleinen Außendurchmesser, wie er für die Fachwelt auf dem Gebiet der Saugrohreinspritzventile für Brennkraftmaschinen bisher als unmöglich herstellbar bei höchster Funktionalität erschien. Aufgrund dieser sehr kleinen Dimensionierung ist es möglich, den Einbau des Brennstoffeinspritzventils viel flexibler als bisher denkbar zu gestalten. So können die erfindungsgemäßen Brennstoffeinspritzventile in verschiedenste Aufnahmebohrungen der unterschiedlichen Fahrzeughersteller mit zahlreichen „Extended Tip”-Varianten, also in der Länge variierenden Einspritzventilvarianten, ohne Änderungen der Ventilnadellänge oder der Ventilhülsenlänge aufgrund des modular aufgebauten Ventils sehr kompatibel eingebaut werden, ohne die damit bisher einhergehenden Verschlechterungen bezüglich DFR (dynamic flow range) und Geräuschentwicklung hinnehmen zu müssen. Der auf dem äußeren Magnetkreisbauteil sitzende und gegen die Wandung der Aufnahmebohrung am Saugrohr abdichtende Dichtring ist dabei leicht verschiebbar.
-
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Brennstoffeinspritzventils möglich.
-
In vorteilhafter Weise wurde die neue Geometrie des Brennstoffeinspritzventils vor allen Dingen unter den Randbedingungen bezüglich der Größen qmin, FF und Fmax festgelegt. Um die äußerst geringen Außenabmessungen des Magnetkreises bei voller Funktionalität realisieren zu können, wurde erfindungsgemäß der Außendurchmesser DA des Ankers auf 4,0 mm < DA < 5,0 mm festgelegt. Aus dem kleinen Außendurchmesser DA des Ankers kann eine besonders leichte Ventilnadel resultieren, so dass es in der Konsequenz im Betrieb des Brennstoffeinspritzventils zu deutlichen Geräuschreduzierungen gegenüber den bekannten Saugrohr-Einspritzventilen kommen kann.
-
Besonders vorteilhaft ist es, dass mit der erfindungsgemäßen Dimensionierung des Brennstoffeinspritzventils einhergehend auch der DFR (dynamic flow range) gegenüber den bei bekannten Einspritzventilen üblichen DFR deutlich erhöht werden kann.
-
Zeichnung
-
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen
-
1 ein elektromagnetisch betätigbares Ventil in Form eines Brennstoffeinspritzventils nach dem Stand der Technik,
-
2 eine erste Ausführung eines erfindungsgemäßen Ventils,
-
3 eine zweite Ausführung eines erfindungsgemäßen Ventils und
-
4 eine dritte Ausführung eines erfindungsgemäßen Ventils als besonders geeignete „Extended Tip”-Version des in 3 gezeigten Brennstoffeinspritzventils.
-
Beschreibung der Ausführungsbeispiele
-
In der 1 ist beispielhaft ein elektromagnetisch betätigbares Ventil in der Form eines Brennstoffeinspritzventils für Brennstoffeinspritzanlagen von gemischverdichtenden, fremdgezündeten Brennkraftmaschinen gemäß dem Stand der Technik zum besseren Verständnis der Erfindung dargestellt.
-
Das Ventil besitzt einen von einer Magnetspule 1 umgebenen, als Innenpol und teilweise als Brennstoffdurchfluss dienenden weitgehend rohrförmigen Kern 2. Die Magnetspule 1 ist von einem äußeren, hülsenförmigen und gestuft ausgeführten, z. B. ferromagnetischen Ventilmantel 5, der ein als Außenpol dienendes äußeres Magnetkreisbauteil darstellt, in Umfangsrichtung vollständig umgeben. Die Magnetspule 1, der Kern 2 und der Ventilmantel 5 bilden zusammen ein elektrisch erregbares Betätigungselement.
-
Während die in einem Spulenkörper 3 eingebettete Magnetspule 1 mit einer Wicklung 4 eine Ventilhülse 6 von außen umgibt, ist der Kern 2 in einer inneren, konzentrisch zu einer Ventillängsachse 10 verlaufenden Öffnung 11 der Ventilhülse 6 eingebracht. Die Ventilhülse 6 ist langgestreckt und dünnwandig ausgeführt. Die Öffnung 11 dient u. a. als Führungsöffnung für eine entlang der Ventillängsachse 10 axial bewegliche Ventilnadel 14. Die Ventilhülse 6 erstreckt sich in axialer Richtung z. B. über ca. die Hälfte der axialen Gesamterstreckung des Brennstoffeinspritzventils.
-
Neben dem Kern 2 und der Ventilnadel 14 ist in der Öffnung 11 des weiteren ein Ventilsitzkörper 15 angeordnet, der an der Ventilhülse 6 z. B. mittels einer Schweißnaht 8 befestigt ist. Der Ventilsitzkörper 15 weist eine feste Ventilsitzfläche 16 als Ventilsitz auf. Die Ventilnadel 14 wird beispielsweise von einem rohrförmigen Anker 17, einem ebenfalls rohrförmigen Nadelabschnitt 18 und einem kugelförmigen Ventilschließkörper 19 gebildet, wobei der Ventilschließkörper 19 z. B. mittels einer Schweißnaht fest mit dem Nadelabschnitt 18 verbunden ist. An der stromabwärtigen Stirnseite des Ventilsitzkörpers 15 ist eine z. B. topfförmige Spritzlochscheibe 21 angeordnet, deren umgebogener und umfangsmäßig umlaufender Halterand 20 entgegen der Strömungsrichtung nach oben gerichtet ist. Die feste Verbindung von Ventilsitzkörper 15 und Spritzlochscheibe 21 ist z. B. durch eine umlaufende dichte Schweißnaht realisiert. Im Nadelabschnitt 18 der Ventilnadel 14 sind eine oder mehrere Queröffnungen 22 vorgesehen, so dass den Anker 17 in einer inneren Längsbohrung 23 durchströmender Brennstoff nach außen treten und am Ventilschließkörper 19 z. B. an Abflachungen 24 entlang bis zur Ventilsitzfläche 16 strömen kann.
-
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung der Ventilnadel 14 und damit zum Öffnen entgegen der Federkraft einer an der Ventilnadel 14 angreifenden Rückstellfeder 25 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem inneren Kern 2, dem äußeren Ventilmantel 5 und dem Anker 17. Der Anker 17 ist mit dem dem Ventilschließkörper 19 abgewandten Ende auf den Kern 2 ausgerichtet. Anstelle des Kerns 2 kann z. B. auch ein als Innenpol dienendes Deckelteil, das den Magnetkreis schließt, vorgesehen sein.
-
Der kugelförmige Ventilschließkörper 19 wirkt mit der sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitzfläche 16 des Ventilsitzkörpers 15 zusammen, die in axialer Richtung stromabwärts einer Führungsöffnung im Ventilsitzkörper 15 ausgebildet ist. Die Spritzlochscheibe 21 besitzt wenigstens eine, beispielsweise vier durch Erodieren, Laserbohren oder Stanzen ausgeformte Abspritzöffnungen 27.
-
Die Einschubtiefe des Kerns 2 im Einspritzventil ist unter anderem entscheidend für den Hub der Ventilnadel 14. Dabei ist die eine Endstellung der Ventilnadel 14 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 19 an der Ventilsitzfläche 16 des Ventilsitzkörpers 15 festgelegt, während sich die andere Endstellung der Ventilnadel 14 bei erregter Magnetspule 1 durch die Anlage des Ankers 17 am stromabwärtigen Kernende ergibt. Die Hubeinstellung erfolgt durch ein axiales Verschieben des Kerns 2, der entsprechend der gewünschten Position nachfolgend fest mit der Ventilhülse 6 verbunden wird.
-
In eine konzentrisch zu der Ventillängsachse 10 verlaufende Strömungsbohrung 28 des Kerns 2, die der Zufuhr des Brennstoffs in Richtung der Ventilsitzfläche 16 dient, ist außer der Rückstellfeder 25 ein Einstellelement in der Form einer Einstellhülse 29 eingeschoben. Die Einstellhülse 29 dient zur Einstellung der Federvorspannung der an der Einstellhülse 29 anliegenden Rückstellfeder 25, die sich wiederum mit ihrer gegenüberliegenden Seite an der Ventilnadel 14 im Bereich des Ankers 17 abstützt, wobei auch eine Einstellung der dynamischen Abspritzmenge mit der Einstellhülse 29 erfolgt. Ein Brennstofffilter 32 ist oberhalb der Einstellhülse 29 in der Ventilhülse 6 angeordnet.
-
Das zulaufseitige Ende des Ventils wird von einem metallenen Brennstoffeinlassstutzen 41 gebildet, der von einer diesen stabilisierenden, schützenden und umgebenden Kunststoffumspritzung 42 umgeben ist. Eine konzentrisch zur Ventillängsachse 10 verlaufende Strömungsbohrung 43 eines Rohres 44 des Brennstoffeinlassstutzens 41 dient als Brennstoffeinlass. Die Kunststoffumspritzung 42 wird z. B. in der Weise aufgespritzt, dass der Kunststoff unmittelbar Teile der Ventilhülse 6 sowie des Ventilmantels 5 umgibt. Eine sichere Abdichtung wird dabei beispielsweise über eine Labyrinthdichtung 46 am Umfang des Ventilmantels 5 erzielt. Zur Kunststoffumspritzung 42 gehört auch ein mitangespritzter elektrischer Anschlussstecker 56.
-
2 zeigt ein erstes Ausführungsbeispiel eines erfindungsgemäßen Brennstoffeinspritzventils. Aus den 1 und 2 bzw. 3 nicht unmittelbar ersichtlich aufgrund nicht gleichen Maßstabs zeichnen sich die erfindungsgemäßen Brennstoffeinspritzventile durch einen sehr schlanken Aufbau, einen sehr geringen Außendurchmesser und eine insgesamt extrem kleine geometrische Auslegung aus. Die erfindungsgemäße Dimensionierung soll im Folgenden näher erläutert werden. Im vorliegenden Beispiel ist die Ventilhülse 6 über die gesamte Ventillänge verlaufend ausgebildet. Das äußere Magnetkreisbauteil 5 ist becherförmig ausgeführt und kann auch als Magnettopf bezeichnet werden. Das Magnetkreisbauteil 5 weist dabei einen Mantelabschnitt 60 sowie einen Bodenabschnitt 61 auf. Am stromaufwärtigen Ende des Mantelabschnitts 60 des äußeren Magnetkreisbauteils 5 ist z. B. eine Labyrinthdichtung 46 vorgesehen, mit der die Abdichtung gegenüber der das Magnetkreisbauteil 5 umgebenden Kunststoffumspritzung 42 erzielt wird. Der Bodenabschnitt 61 des Magnetkreisbauteils 5 zeichnet sich beispielsweise durch eine Faltung 62 aus, so dass eine doppelte Lage des umgelegten Magnetkreisbauteils 5 unterhalb der Magnetspule 1 vorliegt. Mit einem Stützring 64, der auf der Ventilhülse 6 aufgebracht ist, wird zum einen der gefaltete Bodenabschnitt 61 des Magnetkreisbauteils 5 in einer definierten Lage gehalten. Zum anderen wird mit dem Stützring 64 das untere Ende eine Ringnut 65 definiert, in die ein Dichtring 66 eingelegt ist. Das obere Ende der Ringnut 65 wird durch eine Unterkante der Kunststoffumspritzung 42 festgelegt. Durch eine geeignete Dimensionierung des Magnetkreises beträgt der Außendurchmesser DM des äußeren Magnetkreisbauteils 5 im Umfangsbereich der Magnetspule 1 nur <= 11 mm. Da in der vorliegenden Ausführung des Magnetkreisbauteils 5 der Mantelabschnitt 60 zylindrisch verläuft, besitzt das Magnetkreisbauteil 5 an keiner Stelle einen größeren Außendurchmesser als 11 mm. Auf dem Außenumfang des äußeren Magnetkreisbauteils 5 ist im Bereich des Mantelabschnitts 60 unmittelbar der Dichtring 66 aufgebracht, so dass das Brennstoffeinspritzventil sogar mit seinem radial außen auf dem Magnetkreis aufgeschobenen Dichtring 66 noch in Aufnahmebohrungen am Saugrohr mit einem Innendurchmesser von 14 mm einbringbar ist. Der Dichtring 66 kann im Umfangsbereich des äußeren Magnetkreisbauteils 5 an dessen größtem Außendurchmesser vorgesehen sein.
-
Um einen möglichst kleinen Außendurchmesser des Magnetkreises realisieren zu können, müssen entsprechend vor allen Dingen auch die innen liegenden Komponenten, wie der als Innenpol dienende Kern 2 und der Anker 17, sehr klein dimensioniert werden. Bei der Neudimensionierung des Magnetkreises wurde daher als minimal notwendige Größe für die Innendurchmesser von Kern 2 und Anker 17 von 2 mm festgelegt. Die Innendurchmesser der beiden Bauteile Kern 2 und Anker 17 legen den inneren Durchströmquerschnitt fest, wobei herausgefunden wurde, dass bei einem Innendurchmesser von 2 mm die Einstellung der dynamischen Einspritzmenge noch mit einer innen liegenden Rückstellfeder 25 möglich ist, ohne dass die Toleranz des Innendurchmessers der Rückstellfeder 25 die statische Durchflussmenge beeinflusst. Bei der Auslegung des Magnetkreises spielen verschiedene Größen und Parameter eine wesentliche Rolle. So ist es optimal, die minimale Abspritzmenge qmin möglichst immer weiter zu verkleinern. Dabei ist aber wiederum zu beachten, dass die Federkraft FF > 3 N zu halten ist, um die heute übliche und auch zukünftig geforderte Dichtheit von < 1,0 mm3/min zu garantieren. Eine Federkraft von FF > 3 N entspricht in der vorliegenden Auslegung bei einem Dichtdurchmesser von d = 2,8 mm der statischen magnetischen Kraft bei einer Spannung Umin von Fsm > 5,5 N.
-
Die maximale magnetische Kraft Fmax ist für die Auslegung eines Brennstoffeinspritzventils mit Elektromagnetantrieb ebenfalls eine wesentliche Größe. Ist Fmax zu klein, also z. B. < 10 N, kann dies einen so genannten „closed stuck” verursachen. Dies bedeutet, dass die maximale magnetische Kraft Fmax zu klein ist, um die hydraulische Klebekraft zwischen dem Ventilschließkörper 19 und der Ventilsitzfläche 16 zu überwinden. In diesem Falle würde das Brennstoffeinspritzventil trotz Bestromung nicht öffnen können.
-
Die neue Geometrie des Brennstoffeinspritzventils wurde deshalb vor allen Dingen unter den Randbedingungen bezüglich der Größen qmin, FF und Fmax festgelegt. Erfindungsgemäß wurde bei der Optimierung der Geometrie des Magnetkreises herausgefunden, dass der Außendurchmesser DA des Ankers 17 eine wesentliche Größe darstellt. Der optimale Außendurchmesser des Ankers 17 beträgt dabei 4,0 mm < DA < 5,0 mm. Daraus lässt sich die Dimensionierung des äußeren Magnetkreisbauteils 5 herleiten, wobei ein Außendurchmesser DM des Magnetkreisbauteils 5 von maximal 11 mm die volle Funktionalität des Magnetkreises sogar bei gegenüber bekannten Einspritzventilen deutlich erhöhter DFR (dynamic flow range) garantiert. Bei der Ausführung gemäß 2 mit einer durchgehenden dünnwandigen Ventilhülse 6 sieht die optimierte Dimensionierung eine Wanddicke t für die Ventilhülse 6 zumindest im Bereich des Arbeitsluftspalts, also im unteren Kernbereich und im oberen Ankerbereich, von 0,15 < t < 0,35 mm vor.
-
Die zuvor angestellten Geometrie- und Dimensionierungsbetrachtungen gelten auch analog für ein Brennstoffeinspritzventil in einer anderen Ausführung, wie es in 3 gezeigt ist. Dieses Brennstoffeinspritzventil gemäß 3 unterscheidet sich im wesentlichen von dem gemäß 2 im Bereich der Ventilhülse 6, des Kerns 2 und des äußeren Magnetkreisbauteils 5. Die Ventilhülse 6 ist hier kürzer ausgebildet und reicht vom abspritzseitigen Ende des Ventils nur bis in den Bereich der Magnetspule 1. Stromaufwärts der beweglichen Ventilnadel 14 mit dem Anker 17 ist die Ventilhülse 6 fest mit dem rohrförmigen Kern 2 verbunden. Dies bedeutet, dass eine Hubeinstellung über ein Verschieben des Kerns 2 innerhalb der Ventilhülse 6 hier nicht möglich ist. An seinem axial gegenüberliegenden Ende ist der Kern 2 wiederum an einem konzentrisch zur Ventillängsachse 10 verlaufenden Rohr 44 des Brennstoffeinlassstutzens 41 befestigt. Bei dieser Ausführung liegt insofern keine über die gesamte Ventillänge durchgehende dünnwandige Ventilhülse 6 vor. Bei der Ausgestaltung des äußeren Magnetkreisbauteils 5 wurde auf einen Bodenabschnitt verzichtet, so dass das Bauteil 5 eine Rohrform besitzt. Dies ist möglich, da die Ventilhülse 6 einen radial nach außen stehenden flanschartigen Kragen 68 besitzt, an dessen Außenumfang das Magnetkreisbauteil 5 anliegt und an ihm z. B. mittels einer umlaufenden Schweißnaht befestigt ist. Der Stützring 64 ist als flacher scheibenförmiger Flansch ausgeführt.
-
In 4 ist eine dritte Ausführung eines erfindungsgemäßen Ventils als besonders geeignete „Extended Tip”-Version des in 3 gezeigten Brennstoffeinspritzventils dargestellt. Anhand dieser Figur soll nochmals die bereits erwähnte und besonders vorteilhafte Möglichkeit des sehr flexiblen Einbaus des erfindungsgemäßen Brennstoffeinspritzventils in eine Aufnahmebohrung an einem Saugrohr unter Verwendung von aus anderen Einspritzventilen bereits bekannten Standardbauteilen (Ventilnadel, Anker, Ventilhülse) erläutert werden. Sehr viele Fahrzeug- bzw. Motorenhersteller gestalten die Aufnahmebohrungen für die Brennstoffeinspritzventile bei der Saugrohreinspritzung im Saugmodul in einer gestuften Ausführung. Dabei besitzen die dem Kanal des Ansaugrohrs zugewandten Endbereiche der Einspritzventilaufnahmebohrungen üblicherweise einen Durchmesser von ca. 11 mm. Diese gestuften Ausführungen der Aufnahmebohrungen haben sich aus mehreren Gründen durchgesetzt. Zum einen ist auf diese Weise für das Brennstoffeinspritzventil eine „Durchtauchsicherung” vorhanden, d. h. die Möglichkeit des Hineinrutschens des Brennstoffeinspritzventils in das Ansaugrohr ist ausgeschlossen. Durch die gestuften Aufnahmebohrungen werden zum anderen Verkippungen der Brennstoffeinspritzventile verringert bzw. vermieden. Des weiteren liegt eine verbesserte Strömungsführung im Saugrohr für die angesaugte Luft vor, da der nur ca. 11 mm Durchmesser aufweisende Endbereich der Aufnahmebohrung aufgrund eines kleineren Zirkulationsgebiets eine längere homogene Strömung der Luft im Bohrungsbereich erlaubt. Außerdem ist es aus Gestaltungs- und Stabilitätsgründen für das Saugmodul erforderlich, dass rund um die Aufnahmebohrungen eine Mindestgröße der sie umgebenden Stege am Saugrohr vorhanden ist, die bei einer Größe der Endbereiche der Aufnahmebohrung von ca. 11 mm Durchmesser viel eher gegeben ist.
-
Um in solche vorbeschriebenen gestuften Brennstoffeinspritzventil-Aufnahmebohrungen passende Brennstoffeinspritzventile einzubauen, war es bisher üblich, „Extended Tip”-Varianten der Brennstoffeinspritzventile bereitzustellen. Dazu mussten die Brennstoffeinspritzventile umkonstruiert werden, indem alle für die Vorverlagerung des Abspritzpunktes notwendigen Bauteile des Brennstoffeinspritzventils verlängert wurden.
-
In vorteilhafter Weise liegt mit der beschriebenen Erfindung ein Brennstoffeinspritzventil vor, dass unter Verzicht auf eine Verlängerung von Bauteilen trotzdem ohne Funktionsnachteile einen sehr tiefen Abspritzpunkt besitzt, indem das Brennstoffeinspritzventil mit seiner gesamten abspritzseitigen Funktionsgruppe inkl. Magnetkreis in einem gestuften Endbereich der Aufnahmebohrung verschwinden kann. Wie 4 zu entnehmen ist, kann der Dichtring 66 in seiner axialen Position variabel auf dem Magnetkreisbauteil 5 angebracht werden. Da in der vorliegenden Ausführung des Magnetkreisbauteils 5 der Mantelabschnitt 60 zylindrisch verläuft, besitzt das Magnetkreisbauteil 5 an keiner Stelle einen größeren Außendurchmesser als 11 mm. Auf dem Außenumfang des äußeren Magnetkreisbauteils 5 ist im Bereich des Mantelabschnitts 60 unmittelbar der Dichtring 66 aufgebracht, wobei das Brennstoffeinspritzventil sogar bis zu dem Stützring 64 am Dichtring 66 noch in gestufte Endbereiche der Aufnahmebohrungen am Saugrohr mit einem Innendurchmesser von 11 mm einbringbar ist.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- DE 3825134 A1 [0002]
- DE 10332348 A1 [0003]
- JP 2002-48031 A [0004]