CN201654137U - Charge transfer type capacitance measuring device - Google Patents
Charge transfer type capacitance measuring device Download PDFInfo
- Publication number
- CN201654137U CN201654137U CN2009202499521U CN200920249952U CN201654137U CN 201654137 U CN201654137 U CN 201654137U CN 2009202499521 U CN2009202499521 U CN 2009202499521U CN 200920249952 U CN200920249952 U CN 200920249952U CN 201654137 U CN201654137 U CN 201654137U
- Authority
- CN
- China
- Prior art keywords
- capacitance
- reference voltage
- measured
- measuring device
- transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 48
- 239000003990 capacitor Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
Abstract
Description
技术领域technical field
本实用新型是有关于一种测量电容值的测量装置,特别是有关于一种以电荷转移来测量待测电容的测量装置装置(例如:数位电表)。 The utility model relates to a measuring device for measuring capacitance, in particular to a measuring device (for example, a digital electric meter) for measuring the capacitance to be measured by charge transfer. the
背景技术Background technique
本实用新型是在提供一个简易、快速的电容测量架构。一般电容测量的架构,往往控制程序复杂,设计不易,且需要使用到模拟/数字转移器(A/D converter),因而花费许多电路成本,例如美国专利号第5136251、6275047及6624640等,都已揭露使用上述的方法来测量电容值。另外,例如中国台湾第453443号公告专利所揭露的电容测量方法,虽然可以避免使用到模拟/数字转移器,而使得其电路设计的成本较低,但是其测量方式需要多个完全匹配的电流源;然而,在集成电路(IC)中制造的电流源,很难做到完全匹配,并且容易因此造成测量的误差。对于上述的问题,本实用新型的测量装置不仅可大幅缩减电路成本,且透过可变电阻的调校,可以得到一精准的电容测量值。 The utility model is to provide a simple and fast capacitance measurement framework. The structure of general capacitance measurement often has complex control procedures, difficult design, and requires the use of analog/digital converters (A/D converters), which cost a lot of circuit costs. For example, US Patent Nos. It is disclosed that the capacitance value is measured using the method described above. In addition, for example, the capacitance measurement method disclosed in Taiwan Patent No. 453443, although the use of analog/digital converters can be avoided, so that the cost of its circuit design is low, but its measurement method requires multiple fully matched current sources ; However, the current source manufactured in the integrated circuit (IC) is difficult to be completely matched, and it is easy to cause measurement errors. For the above problems, the measuring device of the present invention can not only greatly reduce the circuit cost, but also can obtain an accurate capacitance measurement value through the adjustment of the variable resistor. the
实用新型内容Utility model content
鉴于上述的实用新型背景中,为了得到一精准的电容测量值,本实用新型提供一种配置有电容测量装置的数字电表或万用电表。因此,本实用新型的一主要目的在于提供一种电容测量装置,可以通过电荷转移来测量待测电容,以获得一精确的电容测量值。 In view of the above background of the utility model, in order to obtain an accurate capacitance measurement value, the utility model provides a digital electric meter or a multimeter equipped with a capacitance measuring device. Therefore, a main purpose of the present invention is to provide a capacitance measuring device, which can measure the capacitance to be measured by charge transfer, so as to obtain an accurate capacitance measurement value. the
本实用新型的另一主要目的在于提供一种电容测量装置,可通过电荷转移来测量待测电容的电路,可以简化电容值测量的架构。 Another main purpose of the present invention is to provide a capacitance measuring device, which can measure the circuit of the capacitance to be measured through charge transfer, and can simplify the structure of capacitance value measurement. the
本实用新型的再一主要目的在于提供一种电容测量装置,可将其整合于一集成电路的芯片中,可以降低成本并提高电容测量装置的可靠度。 Another main purpose of the present invention is to provide a capacitance measuring device, which can be integrated into an integrated circuit chip, which can reduce the cost and improve the reliability of the capacitance measuring device. the
依据上述的目的,本实用新型提供了一种电荷转移式的电容测量装 置,包括:一参考电压装置,是用以提供一第一参考电压、一第二参考电压及一第三参考电压;一分压装置,其一端与第一参考电压连接,用以提供一第四参考电压(Vstop);一第一比较装置,其一输入端与一待测电容(Cx)连接,而其另一输入端则与第四参考电压连接;一第二比较装置,其一输入端与一转移电容(Ct)连接;一第一开关装置,其一端与待测电容(Cx)连接,而其另一端则与转移电容(Ct)连接;一第二开关装置,其一端与第二参考电压及第三参考电压连接,而其另一端则与第二比较装置的另一输入端连接;一计数装置,其一端与第一比较装置的输出端连接;以及一控制装置,是与第一开关装置、第二开关装置、计数装置及第二比较装置的输出端连接;其中,该转移电容Ct的电容值小于该待测电容Cx的电容值。 According to the above purpose, the utility model provides a charge-transfer type capacitance measuring device, comprising: a reference voltage device, which is used to provide a first reference voltage, a second reference voltage and a third reference voltage; A voltage divider, one end of which is connected to the first reference voltage to provide a fourth reference voltage (V stop ); a first comparison device, one of its input ends is connected to a capacitor to be measured (C x ), and its other An input terminal is then connected with the fourth reference voltage; a second comparison device, one input terminal thereof is connected with a transfer capacitor (C t ); a first switching device, one terminal thereof is connected with the capacitance to be measured (C x ), and The other end is connected to the transfer capacitor (C t ); a second switching device, one end of which is connected to the second reference voltage and the third reference voltage, and the other end is connected to the other input end of the second comparison device; A counting device, one end of which is connected to the output end of the first comparison device; and a control device, which is connected to the output ends of the first switching device, the second switching device, the counting device and the second comparison device; wherein, the transfer capacitor The capacitance value of C t is smaller than the capacitance value of the capacitor C x to be measured.
本实用新型取得的有益效果是: The beneficial effect that the utility model obtains is:
1)、本实用新型提供的电容测量装置,不仅可大幅缩减电路成本,且透过可变电阻的调校,可以得到一精准的电容测量值。 1) The capacitance measurement device provided by the utility model can not only greatly reduce the circuit cost, but also obtain an accurate capacitance measurement value through the adjustment of the variable resistor. the
2)、本实用新型提供的电容测量装置,可通过电荷转移来测量待测电容,可以简化电容值测量的架构。 2) The capacitance measuring device provided by the utility model can measure the capacitance to be measured through charge transfer, which can simplify the structure of capacitance value measurement. the
3)、本实用新型提供的电容测量装置,可将其整合于一集成电路的芯片中,可以降低成本并提高电容测量装置的可靠度。 3) The capacitance measuring device provided by the utility model can be integrated into an integrated circuit chip, which can reduce the cost and improve the reliability of the capacitance measuring device. the
附图说明Description of drawings
图1是本实用新型的电容测量装置的功能方块示意图; Fig. 1 is the functional block diagram of the capacitance measuring device of the present utility model;
图2是本实用新型的电容测量装置的实施例的示意图; Fig. 2 is the schematic diagram of the embodiment of capacitance measuring device of the present utility model;
图3是本实用新型的电容测量装置的流程图; Fig. 3 is the flow chart of capacitance measuring device of the present utility model;
图4是本实用新型分别在充电阶段与电荷转移阶段的开关组态示意图; Fig. 4 is a schematic diagram of the switch configuration of the utility model in the charging stage and the charge transfer stage respectively;
图5是本实用新型的电容Ct与待测电容Cx的电位变化示意图; Fig. 5 is the electric potential change schematic diagram of capacitance C t of the present utility model and capacitance C to be measured;
图6是本实用新型的测量装置的示意图。 Fig. 6 is a schematic diagram of the measuring device of the present invention. the
【主要元件符号说明】 【Description of main component symbols】
10 测量装置 10 Measuring device
20 外壳 20 Shell
22 测试探针 22 Test Probes
24 测试探针 24 Test Probes
26 待测信号 26 Signal to be tested
28 操作接口 28 Operation interface
30 显示器 30 Display
32 旋钮 32 Knob
34 电压/频率测量切换开关 34 Voltage/frequency measurement switch
36 频率切换开关 36 Frequency switch
100 参考电压产生装置 100 Reference voltage generating device
200 分压装置 200 Pressure divider
300 第一比较装置 300 The first comparison device
400 第二比较装置 400 Second comparison device
500 第一开关装置 500 First switchgear
600 第二开关装置 600 Second switch device
700 控制装置 700 control device
800 计数装置 800 Counting device
900 显示装置 900 display device
具体实施方式Detailed ways
本实用新型在此所探讨的方向为一种电容值测量的装置,为了能彻底地了解本实用新型,将在下列的描述中提出详尽的步骤及其电路的组成。显然地,本实用新型的施行并未限定于电容值测量装置的技艺者所熟习的特殊细节。另一方面,众所周知的电容值测量装置或测量步骤等,并未描述于细节中,以避免造成本实用新型不必要的限制。本实用新型的较佳实施例会详细描述如下,然而除了这些详细描述之外,本实用新型还可以广泛地施行在其它的实施例中,且本实用新型的范围不受限定,其以之后的权利要求范围为准。 The direction of the utility model discussed here is a device for measuring capacitance value. In order to thoroughly understand the utility model, detailed steps and circuit components will be provided in the following description. Clearly, the practice of the invention is not limited to specific details familiar to those skilled in capacitance measuring devices. On the other hand, well-known capacitance measurement devices or measurement steps are not described in detail to avoid unnecessary limitations of the present invention. The preferred embodiments of the present utility model will be described in detail as follows, but in addition to these detailed descriptions, the present utility model can also be widely implemented in other embodiments, and the scope of the present utility model is not limited, and it is with the following rights The required range shall prevail. the
首先,请参考图1,是本实用新型的电容测量装置的功能方块示意图。如图1所示,本实用新型的电容测量装置的相关电路则包括以下几个主要 部分:一个用来提供第一参考电压(Vr1),第二参考电压(Vr2)与第三参考电压(Vr3)的参考电压产生装置100;一个与第一参考电压(Vr1)相连接并以分压调整出另一个参考电位(Vstop)的分压装置200;第一开关装置500,其一端与待测电容Cx相连接;一个用以将电荷转移至待测电容Cx的转移电容Ct,其一端是与第一开关装置500连接,其中转移电容Ct的电容值远小于待测电容Cx;第二开关装置600,其第一输入端与第二输入端分别与第二参考电压(Vr2)及第三参考电压(Vr3)连接;第一比较装置300,其第一输入端与第二输入端分别与待测电容Cx及分压装置200连接;第二比较装置400,其第一输入端与第二输入端分别与第一开关装置500及第二开关装置600连接;一个计数装置800,与第一比较装置300的输出端连接,用以累加并计算电容的数值;一个控制装置700,与第一开关装置500、第二开关装置600及计数装置800相连接,用以控制第一开关装置500、第二开关装置600及计数装置800;一个显示装置900,是与计数装置800连接,用以显示计数装置800的数值。 First, please refer to FIG. 1 , which is a functional block diagram of the capacitance measuring device of the present invention. As shown in Figure 1, the relevant circuit of the capacitance measuring device of the present invention includes the following main parts: one is used to provide the first reference voltage (Vr1), the second reference voltage (Vr2) and the third reference voltage (Vr3 )
接着,为了进一步说明本实用新型的电容值测量装置的详细运作过程,请继续参考图2。图2是本实用新型相应图1中的分压装置、开关装置1与开关装置2的实际电路。如图2所示,分压装置200包含电阻R1、R2及可变电阻R3,很明显地,依据电路分压原理,参考电压Vstop(又可称为第四参考电压)的大小可以由R1及R2的比例决定,并可由可变电阻R3来做微调。接着,第一开关装置500包含开关s1、s2与电阻R4、R5,而与电阻R5连接的Vs则为一个电压源。如图1及图2所示,开关s1、s2是由控制装置700来控制;第二开关装置600则包含开关s3、s4,同样的,开关s3、s4由控制装置所控制。此外,在图1及图2中所示的各个电位的绝对值大小有如下的关系:|Vs|>|Vr3|>|Vr2|>|Vr1|>|Vstop|。 Next, in order to further describe the detailed operation process of the capacitance measuring device of the present invention, please continue to refer to FIG. 2 . FIG. 2 is the actual circuit of the utility model corresponding to the voltage dividing device,
再接着请参考图3,是本实用新型的电容测量装置的流程图。如图3所示,当开始进行测量时,测量装置会先进入电容充电阶段(ChargePhase),如步骤310所示,此时控制装置700会驱使第一开关装置500中的开关s2与第二开关装置600中的开关s3为导通(ON)状态,并同时驱使第一开关装置500中的开关s1与第二开关装置600中的开关s4为不导通(OFF)状态,其电路的连接图如图4(a)所示。此时,电压源Vs会透过 电阻R5对转移电容Ct进行充电;当转移电容Ct的电位在电容充电阶段被电压源Vs充电至大于第三参考电压Vr3时,则依据图2的电路图,其第二比较装置400的输出状态会改变,并将此状态的改变传回控制装置700,此时控制装置700会驱使开关s2为不导通(OFF)状态,故电压源Vs对转移电容Ct的充电动作便会停止,此时转移电容Ct的电位会维持在第三参考电压Vr3的大小。 Then please refer to FIG. 3 , which is a flowchart of the capacitance measuring device of the present invention. As shown in Figure 3, when starting to measure, the measuring device will first enter the capacitor charging phase (ChargePhase), as shown in
请再继续参考图3,当在电容充电阶段(Charge Phase)结束时,接着进入电荷转换阶段(Transfer Phase),如步骤320所示,此时控制装置700会驱使开关s1与s4为导通(ON)状态,并驱使开关s2与s3为不导通(OFF)状态,其电路的连接图如图4(b)所示。此时转移电容Ct的电荷会透过电阻R4转移至待测电容Cx,在电位转移的过程中,转移电容Ct的电位会依据电阻R4的电阻值形成一放电的逐渐下降的曲线,相应地,待测电容Cx的电位则会被充电而缓慢上升,直到当转移电容Ct的电位下降至低于第二参考电压Vr2时,则第二比较装置400的输出状态会再次改变,并将此状态的改变传回控制装置700,此时控制装置700会驱使开关s1为不导通(OFF)状态,故转移电容Ct中的电荷转移动作便会停止,此时转移电容Ct的电位会维持在第二参考电压Vr2的大小,而做完一次电荷的转移,计数装置800的数值则自动计数一次(或加1),如步骤330所示。 Please continue to refer to FIG. 3, when the capacitor charging phase (Charge Phase) ends, then enters the charge conversion phase (Transfer Phase), as shown in
再如图3所示,若当电容测量装置判断出待测电容Cx的电位低于第四参考电压Vstop时,如步骤340所示,则电容测量装置会重复进行电容充电阶段(Charge Phase)与电荷转换阶段(Transfer Phase)的步骤,同时计数装置800也不断地累加,直到待测电容Cx的电位高于第四参考电压Vstop为止,此时计数装置800的数值即为待测电容Cx的电容值。上述的步骤340是由图1及图2中的第一比较装置300来执行。例如,当待测电容Cx的电位小于第四参考电压Vstop时,则第一比较装置300的状态不会改变,故计数装置800的数值则自动计数。 As shown in FIG. 3 again, if the electric potential of the capacitor Cx to be measured is determined to be lower than the fourth reference voltage V stop when the capacitance measuring device judges that the electric potential of the capacitor Cx to be measured is lower than the fourth reference voltage V stop, as shown in
此外,要强调的是,当在进行图3的过程中,必须先将待测物放电至0V,如此才能精确的测量到待测电容的电容值。 In addition, it should be emphasized that during the process of Figure 3, the object under test must be discharged to 0V first, so that the capacitance value of the capacitor under test can be accurately measured. the
请参考图5,是本实用新型的转移电容Ct与待测电容Cx在电容充电阶段与电荷转换阶段的电位随时间变化的示意图。如图5所示,图中的 T1为电容充电阶段(Charge Phase)的长度,T2则为电荷转换阶段(TransferPhase)的长度。由图5可看出转移电容Ct的电位不断地在第二参考电压Vr2与第三参考电压Vr3之间做变化,而待测电容Cx的电位则由0V缓慢地上升。若在做了N次的电荷转换阶段(Transfer Phase)的周期后,待测电容Cx的电位逐次累积上升到Vstop,则由电荷守恒定律,有如下的数学关系: Please refer to FIG. 5 , which is a schematic diagram of the potential variation with time of the transfer capacitor C t and the measured capacitor C x in the capacitor charging stage and the charge conversion stage of the present invention. As shown in Figure 5, T1 in the figure is the length of the capacitor charging phase (Charge Phase), and T2 is the length of the charge conversion phase (Transfer Phase). It can be seen from FIG. 5 that the potential of the transfer capacitor C t is constantly changing between the second reference voltage Vr2 and the third reference voltage Vr3 , while the potential of the capacitor C x to be measured is slowly rising from 0V. If after N cycles of the transfer phase, the potential of the capacitor C x to be measured increases gradually to V stop , then the law of conservation of charge has the following mathematical relationship:
Cx×Vstop=Ct×(Vr3-Vr2)×N-----(1) C x ×V stop =C t ×(Vr3-Vr2)×N-----(1)
==>Cx=Ct×(Vr3-Vr2)/Vstop×N ----(2) ==>C x =C t ×(Vr3-Vr2)/Vstop×N ----(2)
在方程式(2)中,由于转移电容Ct、第二参考电压Vr3与第三参考电压Vr2皆为固定值,而第四参考电压Vstop除了在做校正时,需透过可变电阻R3做微调,否则其亦为一固定值,因此方程式(2)中的Ct×(Vr3-Vr2)/Vstop为一常数,由此可推知,待测电容Cx与N成正比,且为一线性关系。故待测电容Cx可以依据做了N次的电荷转换阶段来获得待测电容Cx的电容值,以达到测量待测电容Cx的电容值的目的。 In equation (2), since the transfer capacitance C t , the second reference voltage Vr3 and the third reference voltage Vr2 are all fixed values, the fourth reference voltage V stop needs to be adjusted through the variable resistor R3 except for calibration. Fine-tuning, otherwise it is a fixed value, so C t × (Vr3-Vr2)/V stop in equation (2) is a constant, it can be deduced that the capacitance C x to be measured is proportional to N, and is a linear relationship. Therefore, the capacitance of the capacitance C x to be measured can be obtained by performing N times of charge conversion stages to obtain the capacitance value of the capacitance C x to be measured, so as to achieve the purpose of measuring the capacitance of the capacitance C x to be measured.
本实用新型的电路建构完成之后,需要经过一次校正及比对,以使最后计数装置得到的数值N能与实际的电容值相符。校正的目的,是要透过调整第四参考电压Vstop的大小来使方程式(2)成立。当我们选定适当的转移电容Ct、第二参考电压Vr2及第三参考电压Vr3后,由于其本身皆会有一定的误差,另外第一比较装置与第二比较装置的偏移量(即offset)也会造成一定的误差。而以上误差皆可透过调整第四参考电压Vstop的大小来做校正。校正的方式可通过另一个校正装置(例如:校正器,Calibrator)送出一个已知的电容值,并将此已知的电容值的信号输入至待测电容Cx的位置,然后通过调整可变电阻R3,来调整第四参考电压Vstop的大小;当第四参考电压Vstop的大小改变,计数装置所累加的的数值N亦会改变,最后调整到N与该已知电容值一致即可。举例而言,若转移电容Ct的电容值为1uF,第三参考电压Vr3为2.3V,第二参考电压Vr2为1.5V,当由校正器送出一个10000uF的电容值来做校正时,若要使N=10000,则由方程式(2)可知,而在做校正时,须将第四参考电压Vstop调整到0.8V。而当第四参考电压Vstop调整完且固定为0.8V之后,下次再输入一个5000uF的待测电容Cx,同样由方程式(2)便可得到N=5000的电容值。 After the circuit construction of the present invention is completed, it needs to go through a calibration and comparison, so that the value N obtained by the final counting device can be consistent with the actual capacitance value. The purpose of the calibration is to make equation (2) valid by adjusting the magnitude of the fourth reference voltage V stop . After we select the appropriate transfer capacitance C t , the second reference voltage Vr2 and the third reference voltage Vr3, since they all have certain errors, the offset between the first comparison device and the second comparison device (i.e. offset) will also cause certain errors. The above errors can be corrected by adjusting the magnitude of the fourth reference voltage V stop . The correction method can send a known capacitance value through another correction device (for example: calibrator, Calibrator), and input the signal of this known capacitance value to the position of the capacitance C x to be measured, and then adjust the variable Resistor R3 to adjust the size of the fourth reference voltage V stop ; when the size of the fourth reference voltage V stop changes, the value N accumulated by the counting device will also change, and finally adjust until N is consistent with the known capacitance value . For example, if the capacitance value of the transfer capacitor C t is 1uF, the third reference voltage Vr3 is 2.3V, and the second reference voltage Vr2 is 1.5V, when the calibrator sends a capacitance value of 10000uF for calibration, if If N=10000, it can be known from the equation (2), and the fourth reference voltage V stop must be adjusted to 0.8V when performing calibration. After the fourth reference voltage V stop is adjusted and fixed at 0.8V, a 5000uF capacitance Cx to be tested is input next time, and the capacitance value N=5000 can be obtained from equation (2).
接着,请参考图6,是本实用新型的测量装置的示意图。此测量装置10,是一电表、数字或万用电表,具有一外壳20,且在外壳20的底部设有一对测试探针22/24,以测量一待测信号26。除此之外,外壳20上具有一操作接口28及一显示器30,操作接口28上设有一旋钮32,可经旋转以选择不同的测量功能或模式,例如:测量电压值、测量电流值、测量电阻值或测量电容值,使测量结果显示于显示器30上。此外,操作接口28上还具有一电压/频率测量切换开关34及一频率切换开关36,电压/频率测量切换开关34是可供使用者切换电压测量或频率测量,而频率切换开关36亦可供使用者选择或切换至不同的频率,使测量装置10提供不同频率的滤波功能。因此,当测量装置10中的电容测量装置的电路以图1来取代时,则测量装置10即可以利用一个比待测电容Cx小的转移电容Ct,通过充电阶段与电荷转移阶段来逐次将转移电容Ct的电荷转移至待测电容Cx,在做电荷转移的过程中,待测电容Cx的电位会不断的变化,当待测电容Cx的电位与一设定的电压(例如:第四参考电压Vstop)相同时,即可经由充电阶段与电荷转移阶段的次数来得到待测电容Cx的电容值。由于,转移电容Ct的电容值小于待测电容Cx的电容值,同时由方程式(2)所显示的待测电容Cx与N成线性关系,故本实用新型的测量装置在执行待测电容Cx的测量时,可以获得一准确的测量电容值。再者,由于本实用新型的电容测量装置中的所有电路元件,均能整合于一颗集成电路所形成的芯片(chip)中,故可以降低成本与测量装置的体积并增加测量装置的可靠度。同时,当测量装置已经整合成一颗集成电路所形成的芯片(chip)时,本实用新型的电容测量装置可以完全配置于测量装置的芯片(chip)中。 Next, please refer to FIG. 6 , which is a schematic diagram of the measuring device of the present invention. The measuring
显然地,依照上面实施例中的描述,本实用新型可能有许多的修正与差异。因此需要在其附加的权利要求项的范围内加以理解,除了上述详细的描述外,本实用新型还可以广泛地在其它的实施例中施行。上述仅为本实用新型的较佳实施例而已,并非用以限定本实用新型的权利要求范围;凡其它未脱离本实用新型所揭示的精神下所完成的等效改变或修饰,均应包含在下述权利要求范围内。 Apparently, according to the descriptions in the above embodiments, the present utility model may have many modifications and differences. It is therefore to be understood within the scope of the appended claims that the invention may be practiced broadly in other embodiments than those detailed above. The above is only a preferred embodiment of the utility model, and is not intended to limit the scope of claims of the utility model; all other equivalent changes or modifications that do not deviate from the spirit disclosed in the utility model should be included in the following within the scope of the preceding claims. the
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009202499521U CN201654137U (en) | 2009-10-29 | 2009-10-29 | Charge transfer type capacitance measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009202499521U CN201654137U (en) | 2009-10-29 | 2009-10-29 | Charge transfer type capacitance measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN201654137U true CN201654137U (en) | 2010-11-24 |
Family
ID=43119381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009202499521U Expired - Lifetime CN201654137U (en) | 2009-10-29 | 2009-10-29 | Charge transfer type capacitance measuring device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN201654137U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104272097A (en) * | 2012-05-04 | 2015-01-07 | 罗伯特·博世有限公司 | Circuit arrangement for measuring a sensor element capacitance |
-
2009
- 2009-10-29 CN CN2009202499521U patent/CN201654137U/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104272097A (en) * | 2012-05-04 | 2015-01-07 | 罗伯特·博世有限公司 | Circuit arrangement for measuring a sensor element capacitance |
KR20150007295A (en) * | 2012-05-04 | 2015-01-20 | 로베르트 보쉬 게엠베하 | Circuit arrangement for measuring a sensor element capacitance |
CN104272097B (en) * | 2012-05-04 | 2017-04-05 | 罗伯特·博世有限公司 | For the circuit system of measurement sensor component capacitance |
US9618471B2 (en) | 2012-05-04 | 2017-04-11 | Robert Bosch Gmbh | Circuit system for measuring a sensor element capacitance |
KR102023377B1 (en) | 2012-05-04 | 2019-09-20 | 로베르트 보쉬 게엠베하 | Circuit arrangement for measuring a sensor element capacitance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7812619B2 (en) | Capacitance measuring apparatus and capacitance measuring method | |
US20130166238A1 (en) | Circuit for measuring capacitance and parasitic resistance of a capacitor | |
US20110187389A1 (en) | Capacitance measuring circuit for touch sensor | |
CN101315398B (en) | Capacitance measuring device and method | |
CN109643139B (en) | Impedance adjusting circuit, chip and reference voltage generating circuit | |
CN204462255U (en) | Apparatus for measuring capacitance capacity | |
TW200919983A (en) | Method and systems for calibrating RC apparatus | |
CN108226646B (en) | Sensitive resistance measuring device and measuring method | |
CN110044510B (en) | IGBT module temperature measurement circuit, temperature measurement method and computer readable storage medium | |
CN105158581A (en) | High-capacity capacitor capacity measurement circuit | |
CN102253289B (en) | Electric capacity measuring device for touch control device | |
CN201057533Y (en) | Multimeter with accurate capacitance measuring function | |
CN201654137U (en) | Charge transfer type capacitance measuring device | |
WO2020155068A1 (en) | Current measuring device, method, and apparatus | |
CN103412194B (en) | Capacitance measuring and calculating circuit | |
CN104811198B (en) | The calibration of BST capacitor control circuit | |
JP4451731B2 (en) | Method and apparatus for determining ratio between RC time constant and target value of integrated circuit | |
CN204925248U (en) | Measure circuit of adjustable resistance resistance | |
CN110672900A (en) | Low power digital multifunction meter | |
CN108885247A (en) | Apparatus and method for calibrating DC voltage function | |
CN208383985U (en) | A kind of resistance measuring circuit | |
CN113970671B (en) | Capacitance detection circuit, detection method and electronic equipment | |
CN211528517U (en) | Low-power digital multifunctional meter | |
CN101330284A (en) | Time constant correction device and related method thereof | |
CN203811689U (en) | A Simple Capacitance Measuring Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20101124 |
|
CX01 | Expiry of patent term |