Nothing Special   »   [go: up one dir, main page]

CN1210689C - 子带域中改进的频谱平移/折叠的方法和设备 - Google Patents

子带域中改进的频谱平移/折叠的方法和设备 Download PDF

Info

Publication number
CN1210689C
CN1210689C CNB018099785A CN01809978A CN1210689C CN 1210689 C CN1210689 C CN 1210689C CN B018099785 A CNB018099785 A CN B018099785A CN 01809978 A CN01809978 A CN 01809978A CN 1210689 C CN1210689 C CN 1210689C
Authority
CN
China
Prior art keywords
channel
signal
frequency
multiple subband
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB018099785A
Other languages
English (en)
Other versions
CN1430777A (zh
Inventor
拉斯·古斯塔夫·里尔耶尔德
珀·埃克斯特兰德
弗雷德里克·汉
克里斯托佛·克迂尔灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby International AB
Original Assignee
Coding Technologies Sweden AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=20279807&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1210689(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Coding Technologies Sweden AB filed Critical Coding Technologies Sweden AB
Publication of CN1430777A publication Critical patent/CN1430777A/zh
Application granted granted Critical
Publication of CN1210689C publication Critical patent/CN1210689C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • G10L19/0208Subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/0017Lossless audio signal coding; Perfect reconstruction of coded audio signal by transmission of coding error
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • G10L19/265Pre-filtering, e.g. high frequency emphasis prior to encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Optical Communication System (AREA)
  • Golf Clubs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Machine Translation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明涉及一种利用频率平移或折叠或二者组合改进高频重建(HFR)技术的新方法和设备。本发明可应用于音频信源编码系统,和大大减小计算的复杂性。这是借助于子带域中的频率平移或折叠实现的,最好是,它与相同域中的频谱包络调整相结合。还提出不和谐防护频带滤波的概念。本发明提供一种可应用于语音和自然音频编码的低复杂性,中级质量HFR方法。

Description

子带域中改进的频谱平移/折叠的方法和设备
技术领域
本发明涉及一种改进高频重建(HFR)技术的新方法和设备,可应用于音频信源编码系统。利用这种新方法可以大大减小计算复杂性。这是借助于子带域中频率平移和折叠而实现的,最好是,它与频谱包络调整过程相结合。通过不和谐防护带滤波的概念,本发明还改进感觉音频质量。本发明给出低复杂性,中等质量HFR方法并且涉及PCT专利频谱带复制(SBR)[WO 98/57436]。
背景技术
某个频率之上的原始音频信息被高斯噪声或人为低频带信息所代替的方案统称为高频重建(HFR)方法。除了噪声插入或诸如整流的非线性之外,现有技术的HFR方法一般利用所谓的拷贝技术,用于产生高频带信号。这些技术主要采用宽带线性频率偏移,即,平移,或频率倒置线性偏移,即,折叠。现有技术的HFR方法主要是为了改进语音编解码器的性能。然而,利用感觉准确的方法,高频带再生中的最近发展已使HFR方法成功地应用于自然音频编解码器,编码音乐或其他复杂的节目材料,PCT专利[WO 98/57436]。在某些条件下,简单的拷贝技术在编码复杂节目材料时也是适用的。这些技术在中级质量应用中已产生合理的结果,特别是用于编解码器装置,其中对于整个系统的计算复杂性有严格的约束。
人类话音和大多数乐器产生准稳定的音调信号,这些信号从振荡系统发出。根据傅里叶理论,任何周期性信号可以表示成频率为f,2f,3f,4f,5f等的正弦波之和,其中f是基频。这些频率形成一个调和级数。音调亲合性是指感觉音调或谐波之间的关系。在自然声音再现中,这种音调亲合性是受不同类型话音或所用乐器的控制和确定。总的HFR技术思想是根据现有低频带建立的信息代替原始高频信息,和随后给这个信息加上频谱包络调整。现有技术HFR方法建立高频带信号,其中音调亲合性往往是不可控制和受损的。这些方法产生非谐波频率分量,它给复杂节目材料造成感觉的假象。这种假象在编码文献中称之为“刺耳”发声,听众的感觉到的是声音失真。
与和谐(悦耳)相反,感觉的不和谐(刺耳)出现在相邻音调或泛音发生干扰的时候。各种研究人员解释了不和谐理论,其中包括Plomp和Levelt[“Tonal Consonance and Critical Bandwidth”R.Plomp,W.J.M.Levelt,JASA,Vol.38,1965],该理论指出,若频率之差约在两个泛音所在临界频带带宽的5至50%以内,则认为这两个泛音是不和谐的。频率变换到临界频带所用的标度称之为巴克(Bark)标度。一个巴克相当于一个临界频带的频率距离。例如,以下的函数关系式可用于频率(f)到巴克标度(z)的转换:
Plomp指出,若两个泛音的频率之差约小于所在临界频带的5%,或相当地,若两个泛音的频率间隔小于0.05巴克,则人类听觉系统不能辨别这两个泛音。另一方面,若两个泛音的频率间隔大于0.5巴克,则感觉到这两个泛音为分开的音调。
不和谐理论部分地解释为什么现有技术的方法给出不满意的结果。一组和谐泛音的频率上移可能变成不和谐泛音。此外,在平移频带样本与低频带之间的交叉区,泛音能够发生干扰,按照不和谐规则,因为这些泛音可能不在可接受的偏差范围内。
WO 98/57436公开一种借助于置换因子M的乘法操作完成频率置换。分析滤波器组的相邻频道被频率平移到合成滤波器组频道,在置换因子M等于3的情况下,合成滤波器组频道之间隔开两个中间重建范围频道,而在置换因子M等于2的情况下,合成滤波器组频道之间隔开一个中间重建范围频道。或者,可以组合不同分析器频道的幅度和相位信息。幅度信号是这样连接的,分析滤波器组中相邻频道的幅度被频率平移到与相邻合成频道相关的子带信号幅度。利用置换因子M,相同频道的子带信号相位接受频率置换。
发明内容
本发明的目的是提供一种利用高频频谱重建得到包络调整和频率平移信号的概念和利用高频频谱重建用于解码的概念,它导致更好质量的重建。
本发明提供一种利用有分析部分和合成部分的数字滤波器组得到包络调整和频率平移信号的方法,其中利用从低频带信号导出的源区频道中的复子带信号,在重建范围内频道中高频频谱重建复子带信号,重建范围包含的频道频率高于源区频道中的频率,该方法包括以下步骤:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
利用源区频道中一些相邻的频率平移复子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率平移到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率平移到指数为j+1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中一些相邻的复子带信号,以得到包络调整和频率平移的信号。
本发明还提供一种利用有分析部分和合成部分的数字滤波器组得到包络调整和频率折叠信号的方法,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内频道中高频频谱重建复子带信号,重建范围包含的频道频率高于源区频道中的频率,该方法包括以下步骤:
借助于分析部分滤波低频带信号以得到源区频道中的复子带信号;
利用源区频道中一些相邻的频率折叠复共轭子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率折叠到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率折叠到指数为j-1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中一些相邻的复子带信号,以得到包络调整和频率折叠的信号。
本发明还提供一种利用有分析部分和合成部分的数字滤波器组得到包络调整和频率平移信号的设备,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,包括:
滤波装置,借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
计算装置,利用源区频道中一些相邻的频率平移复子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率平移到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率平移到指数为j+1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到频谱包络调整和频率平移输出信号的滤波装置。
本发明还提供一种利用有分析部分和合成部分的数字滤波器组得到包络调整和频率折叠信号的设备,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,包括:
滤波装置,借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
计算装置,利用源区频道中一些相邻的频率折叠复共轭子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率折叠到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率折叠到指数为j-1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到包络调整和频率折叠的信号的滤波装置。
本发明还提供一种用于解码编码信号的解码器,该编码信号包含编码的低频带音频信号,包括:
分路器,用于从编码信号中分出编码的低频带音频信号;
音频解码器,用于音频解码编码的低频带音频信号以得到音频解码信号;
利用有分析部分和合成部分的数字滤波器组得到包络调整和频率平移信号的装置,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,该装置包含:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号的滤波装置;
计算装置,利用源区频道中一些相邻的频率平移复子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率平移到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率平移到指数为j+1的重建范围频道中的复子带信号,和
滤波装置,借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到频谱包络调整和频率平移输出信号,其中音频解码信号被用作低频带信号,
其中包络调整和频率平移的信号是低频带音频信号的高频重建版本。
本发明还提供一种用于解码编码信号的解码器,该编码信号包含编码的低频带音频信号,包括:
分路器,用于从编码信号中分出编码的低频带音频信号;
音频解码器,用于音频解码编码的低频带音频信号,以得到音频解码信号;
利用有分析部分和合成部分的数字滤波器组得到包络调整和频率折叠信号的装置,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,该装置包含:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号的滤波装置;
计算装置,利用源区频道中一些相邻的频率折叠复共轭子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率折叠到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率折叠到指数为j-1的重建范围频道中的复子带信号,和
滤波装置,借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到包络调整和频率折叠的信号,其中音频解码信号被用作低频带信号,
其中包络调整和频率折叠的信号是低频带音频信号的高频重建版本。
本发明还提供一种用于解码编码信号的方法,该编码信号包含编码的低频带音频信号,该方法包括下列步骤:
从编码信号中分出编码的低频带音频信号;
音频解码编码的低频带音频信号以得到音频解码信号;
利用有分析部分和合成部分的数字滤波器组得到包络调整和频率平移信号,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,包含步骤:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
利用源区频道中一些相邻的频率平移复子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率平移到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率平移到指数为j+1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到包络调整和频率平移的信号,其中音频解码信号被用作低频带信号,
其中包络调整和频率平移的信号是低频带音频信号的高频重建版本。
本发明还提供一种用于解码编码信号的方法,该编码信号包含编码的低频带音频信号,该方法包括下列步骤:
从编码信号中分出编码的低频带音频信号;
音频解码编码的低频带音频信号以得到音频解码信号;
利用有分析部分和合成部分的数字滤波器组得到包络调整和频率折叠信号,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,包含:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
利用源区频道中一些相邻的频率折叠复共轭子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率折叠到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率折叠到指数为j-1的重建范围频道中的复子带信号,和
借助于合成部分,滤波重建范围内频道中的相邻复子带信号,以得到包络调整和频率折叠的信号,其中音频解码信号被用作低频带信号,
其中包络调整和频率折叠的信号是低频带音频信号的高频重建版本。
本发明提供一种改进信源编码系统中平移或折叠技术的新方法和设备。其目的包括大大减小计算复杂性和减小感觉假象。本发明展示一种分抽样数字滤波器组作为频率平移或折叠装置的新实施方案,还提供低频带与平移或折叠频带之间改进的交叉准确度。此外,本发明指出避免感觉不和谐的交叉区得益于被滤波。滤波区称之为不和谐的防护带,利用分抽样滤波器组,本发明能够以不复杂和准确的方式减小不和谐泛音。
新滤波器组基的平移或折叠过程可以有利地与频谱包络调整过程相结合。于是,用于包络调整的滤波器组也可用于频率平移或折叠过程,所以,不需要使用分开的滤波器组或频谱包络调整过程。本发明以低计算代价提供唯一和灵活的滤波器组基设计,因此,建立一种非常有效的平移/折叠/包络调整系统。
此外,本发明有利地与PCT专利[SE00/00159]中描述的自适应噪声背景相加方法进行组合。这个组合可以改进困难节目材料条件下的感觉质量。
我们提出的子带域基平移或折叠技术包括以下步骤:
-通过数字滤波器组的分析部分,滤波低频带信号以得到一组子带信号;
-在数字滤波器组的合成部分,从相邻的低频带频道到相邻的高频带频道修补一些子带信号;
-按照所需的频谱包络,调整修补的子带信号;和
-通过数字滤波器组的合成部分,滤波调整的子带信号,以非常有效的方法得到包络调整和频率平移或折叠的信号。
本发明引人注目的应用涉及改进各种类型的中级质量编解码器的应用,例如,MPEG 2 Layer III,MPEG 2/4 AAC,Dolby AC-3,NTT Twin VQ,AT&T/Lucent PAC,等等,其中这些编解码器用在低比特率。本发明在各种语音编解码器中也是非常有用的,例如,G.729 MPEG-4 CELP和`HVXC等,可以改进感觉质量。上述的编解码器在多媒体,电话工业,互联网以及专业多媒体应用中得到广泛的使用。
附图说明
参照附图,借助于几个具体例子描述本发明,这些例子不限制本发明的范围或精神,其中:
图1表示按照本发明在编码系统中结合滤波器组基的平移或折叠;
图2表示最大抽取滤波器组的基本结构;
图3表示按照本发明的频谱平移;
图4表示按照本发明的频谱折叠;和
图5表示按照本发明利用防护频带的频谱平移。
具体实施方式
数字滤波器组基的平移和折叠
现在描述新滤波器组基的平移或折叠技术。利用滤波器组的分析部分,把所考虑的信号分解成一系列子带信号。通过分析和合成子带频道的重新连接,于是,这些子带信号被修补以实现频谱平移或折叠或二者的组合。
图2表示最大抽取滤波器组分析/合成系统的基本结构。分析滤波器组201把输入信号分割成几个子带信号。合成滤波器组202组合子带样本以重建原始信号。利用最大抽取滤波器组的实施方案可以大大减小计算成本,应当理解,实现本发明可以利用几种类型的滤波器组或变换,包括余弦或复指数调制的滤波器组,子波变换的滤波器组解释,其他非相等带宽滤波器组或变换,以及多维滤波器组或变换。
在以下典型而非限制性的描述中,我们假设,L频道滤波器组把输入信号x(n)分割成L个子带信号。利用抽样频率fS,输入信号的频带限制到频率fC。最大抽取滤波器组的分析滤波器(图2)标记为Hk(z)203,其中k=0,1,...,L-1。在传输通过抽取器204之后,子带信号νk(n)被最大地抽取,每个信号的抽样频率为fS/L。在内插205和滤波206之后,具有合成滤波器Fk(z)的合成部分重新组合子带信号以产生
Figure C0180997800201
此外,本发明还完成 的频谱重建,给出增强的信号y(n)。
重建范围起始频道标记为M,它是由以下的公式确定
M = floor { f C f S 2 L } - - - ( 2 )
源区频道的数目标记为S(1≤S≤M)。按照本发明,通过 的平移并结合包络调整,利用修补子带信号完成频谱重建,
            νM+k(n)=eM+k(n)νM-S-P+k(n)             (3)
其中k∈[0,S-1],(-1)S+P=1,即,S+P是偶数,P是整数偏移
(0≤P≤M-S)和eM+k(n)是包络校正。按照本发明,通过 的折叠,利用修补子带信号完成频谱重建,
            νM+k(n)=eM+k(n)ν* M-P-S-k(n)           (4)
其中k∈[0,S-1],(-1)S+P=-1,即,S+P是奇整数,P是整数偏移(1-S≤P≤M-2S+1)和eM+k(n)是包络校正。算符[*]表示复共轭。通常,在达到预期的高频带宽量之前,重复修补过程。
应当注意,通过利用子带域基的平移和折叠,实现低频带与平移或折叠频带样本之间改进的交叉准确度,因为所有信号是通过有匹配频率响应的滤波器组频道进行滤波。
若x(n)的频率fC太高,或相当地,若fS太低,不允许实现有效的频谱重建,即,M+S>L,则在分析滤波之后可以增大子带频道的数目。利用QL频道合成滤波器组滤波子带信号,其中仅利用L个低频带频道,和上抽样因子Q是这样选取的,使QL是整数值,它导致抽样频率为QfS的输出信号。因此,扩展滤波器组起的作用是,它似乎是后面有上抽样器的L频道滤波器组。在此情况下,由于没有利用L(Q-1)个高频带滤波器(馈入零),音频带宽不发生变化,该滤波器组仅仅重建
Figure C0180997800206
的上抽样版本。然而,若修补L个子带信号到高频带频道,则按照公式(3)或(4),
Figure C0180997800207
的带宽就增大。利用这种方案,上抽样过程与合成滤波相结合。应当注意,可以利用任何规模的合成滤波器组,导致输出信号有不同的抽样率。
参照图3,考虑16频道分析滤波器组中的子带频道。输入信号x(n)的频率范围高达Nyquist频率(fC=fS/2)。在第一次迭代中,16个子带扩展到23个子带,利用以下参数:M=16,S=7,和P=1完成按照公式(3)的频率平移。这个操作表示在图中从点a到点b的子带修补。在下一次迭代中,23个子带扩展到28个子带,公式(3)中使用新的参数:M=23,S=5,和P=3。这个操作表示在图中是从点b到点c的子带修补。然后,可以利用28频道滤波器组合成如此产生的子带。这就产生抽样频率为28/16 fS=1.75fS的临界抽样输出信号。也可以利用32频道滤波器组合成子带信号,其中4个最高频道中馈入零,在图中用虚线表示,从而产生抽样频率为2fS的输出信号。
利用相同的分析滤波器组和相同频率范围的输入信号,图4表示按照公式(4)在两次迭代中利用频率折叠的修补。在第一次迭代中,M=16,S=8,和P=-7,16个子带扩展到24个。在第二次迭代中,M=24,S=8,和P=-7,子带数目从24个扩展32个。利用32频道滤波器组合成这些子带。在抽样频率为2fS的输出信号中,这种修补产生两个重建的频带,一个频带是由于子带信号修补到频道16至23,它是频道8至15提取的带通信号的折叠版本;而另一个频带是由于修补到频道24至31,它是相同带通信号的平移版本。
高频重建中的防护频带
由于相邻频带的干扰,即,平移频带样本与低频带交叉区附近泛音之间的干扰,感觉不和谐可能在平移或折叠过程中得到发展。这种类型不和谐在谐波丰富,多音调节目材料中是很普遍的。为了减小不和谐,可以插入防护频带,且这些防护频带最好是由零能量的小频带组成,即,低频带信号与复制频谱带之间交叉区的滤波是利用带阻或陷波滤波器。若利用防护频带减小不和谐,则感觉到较少的感知退化。防护频带的带宽最好是在0.5巴克左右。若小于0.5巴克,则可能产生不和谐;若大于0.5巴克,则可能产生梳状滤波器的声音特征。
在滤波器组基的平移或折叠中,可以插入防护频带,且这些防护频带最好是由设置成零的一个或几个子带频道组成。利用防护频带,公式(3)和公式(4)分别改变成公式(5)和公式(6):
   νM+D+k(n)=eM+D+k(n)νM-S-P+k(n)              (5)
   νM+D+k(n)=eM+D+k(n)ν* M-P-S-k(n)             (6)
D是小的整数,它代表用作防护频带的滤波器组中频道数目。在公式(5)中,P+S+D应当为偶整数;而在公式(6)中,P+S+D应当为奇整数。P的取值与以前的值相同。图5表示利用公式(5)修补32频道滤波器组的情况。输入信号的频率范围高达fC=5/16fS,在第一次迭代中,使M=20。信源频道的数目选取为S=4和P=2。此外,D的选取最好是使防护频带的带宽为0.5巴克。此处,D=2,使防护频带的带宽为fS/32Hz。在第二次迭代中,参数的选取为M=26,S=4,D=2和P=0。在图5中,防护频带是用虚线连接的子带表示。
为了使频谱包络连续,利用随机白噪声信号,即,利用白噪声代替零馈入到子带中,可以部分地重建不和谐防护频带。较好的方法是利用PCT专利申请[SE00/00159]中描述的自适应噪声背景相加(ANA)方法。这个方法估算原始信号中高频带的噪声背景,并以明确的方式把合成噪声加到解码器中的重建高频带。
实际方案
利用任意的编解码器,本发明可以在各种存储或传输音频信号的系统中实施。图1表示音频编码系统的解码器。分路器101从比特流中分出包络数据和其他HFR有关的控制信号,并馈入相关部分到任意的低频带解码器102。低频带解码器102产生馈入到分析滤波器组104的数字信号。包络数据在包络解码器103中被解码,形成的频谱包络信息与来自分析滤波器组的子带样本一起馈入到与平移或折叠结合的包络调整滤波器组单元105。按照本发明,这个单元105平移或折叠低频带信号以形成宽带信号,并加上发射的频谱包络。然后,处理后的子带样本馈入到合成滤波器组106,合成滤波器组106可以与分析滤波器组104有不同的规模。最后,数字宽带输出信号被DAC107转换成模拟输出信号。
上述的实施例仅仅说明利用滤波器组基频率平移或折叠方法改进高频重建(HFR)技术的本发明原理。应当明白,对于本领域其他专业人员,对此处描述的装置和细节作各种改动和变化是显而易见的。所以,本发明的内容仅仅受专利申请的权利要求书范围所限制,而不受描述和解释实施例所提供的具体细节所限制。

Claims (21)

1.一种利用有分析部分和合成部分的数字滤波器组得到包络调整和频率平移信号的方法,其中利用从低频带信号导出的源区频道中的复子带信号,在重建范围内频道中高频频谱重建复子带信号,重建范围包含的频道频率高于源区频道中的频率,该方法包括以下步骤:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
利用源区频道中一些相邻的频率平移复子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率平移到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率平移到指数为j+1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中一些相邻的复子带信号,以得到包络调整和频率平移的信号。
2.按照权利要求1的方法,其中在计算步骤利用以下的公式:
vM+k(n)=eM+k(n)vM-S-P+k(n)
其中M表示合成部分(202)中频道的编号,该频道是重建范围的起始频道,
其中S表示源区频道的数目,S是大于或等于1且小于或等于M的整数,
其中P是大于或等于0且小于或等于M-S的整数偏移,
其中vi表示合成部分中频道i的带通信号v,
其中ei表示合成部分中频道i的包络校正以得到所需的频谱包络,
其中n是时间指数,
其中k是零与S-1之间的整数指数,和
其中S和P是这样选取的,使S与P之和是偶数。
3.按照权利要求1的方法,其中数字滤波器组是利用低通原型滤波器的余弦或正弦调制得到的。
4.按照权利要求1的方法,其中数字滤波器组是利用低通原型滤波器的复指数调制得到的。
5.按照权利要求1的方法,
其中数字滤波器组是利用低通原型滤波器的余弦或正弦调制得到的,和
其中低通原型滤波器是这样设计的,使数字滤波器组中频道的过渡频带仅与相邻频道的通带重叠。
6.按照权利要求1的方法,其中合成部分包含不和谐防护频带,不和谐防护频带位于源区频道与重建范围频道之间。
7.按照权利要求1的方法,
其中合成部分包含不和谐防护频带,不和谐防护频带位于源区频道与重建范围频道之间,
其中在计算步骤利用以下的公式:
vM+D+k(n)=eM+D+k(n)vM-S-P+k(n)
其中M表示合成部分的频道编号,该频道是重建范围的起始频道,
其中S表示源区频道的数目,S是大于或等于1且小于或等于M的整数,
其中P是大于或等于0且小于或等于M-S的整数偏移,
其中vi表示合成部分的频道i的带通信号v,
其中ei表示合成部分的频道i的包络校正以得到所需的频谱包络,
其中n是时间指数,
其中k是零与S-1之间的整数指数,
其中D是代表用作不和谐防护频带的一些滤波器组频道的整数,和
其中P,S,D是这样选取的,使P,S与D之和是偶整数。
8.按照权利要求1的方法,
其中合成部分包含不和谐防护频带,不和谐防护频带位于源区频道与重建范围频道之间,和
其中不和谐防护频带的一个或几个频道中馈入零或高斯噪声,从而衰减不和谐有关的假象。
9.按照权利要求1的方法,
其中合成部分包含不和谐防护频带,不和谐防护频带位于源区频道与重建范围频道之间,和
其中不和谐防护频带的带宽约为半个巴克。
10.按照权利要求1的方法,其中计算步骤实施第一迭代步骤,和
其中该方法还包括另一个计算步骤,实施第二迭代步骤,其中在第二迭代步骤,源区频道包含第一迭代步骤中的重建安排频道。
11.一种利用有分析部分和合成部分的数字滤波器组得到包络调整和频率折叠信号的方法,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内频道中高频频谱重建复子带信号,重建范围包含的频道频率高于源区频道中的频率,该方法包括以下步骤:
借助于分析部分滤波低频带信号以得到源区频道中的复子带信号;
利用源区频道中一些相邻的频率折叠复共轭子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率折叠到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率折叠到指数为j-1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中一些相邻的复子带信号,以得到包络调整和频率折叠的信号。
12.按照权利要求11的方法,其中在计算步骤利用以下的公式:
vM+k(n)=eM+k(n)v* M-P-S+k(n),
其中M表示合成部分中频道的编号,该频道是重建范围的起始频道,
其中S表示源区频道的数目,S是大于或等于1且小于或等于M的整数,
其中P是大于或等于1-S且小于或等于M-2S+1的整数偏移,
其中vi表示合成部分中频道i的带通信号v,
其中ei表示合成部分中频道i的包络校正以得到所需的频谱包络,
其中*表示复共轭,
其中n是时间指数,
其中k是零与S-1之间的整数指数,和
其中S和P是这样选取的,使S与P之和是奇整数。
13.按照权利要求11的方法,其中合成部分包含不和谐防护频带,不和谐防护频带位于源区频道与重建范围频道之间。
14.按照权利要求13的方法,其中在计算步骤利用以下的公式:
vM+D+k(n)=eM+D+k(n)v* M-P-S-k(n),
其中M表示合成部分中频道的编号,该频道是重建范围的起始频道,
其中S表示源区频道的数目,S是大于或等于1且小于或等于M的整数,
其中P是大于或等于0且小于或等于M-S的整数偏移,
其中vi表示合成部分中频道i的带通信号v,
其中ei表示合成部分中频道i的包络校正以得到所需的频谱包络,
其中n是时间指数,
其中k是零与S-1之间的整数指数,
其中*表示复共轭,
其中D是代表用作不和谐防护频带的一些滤波器组频道的整数,且其中P,S,D是这样选取的,使P,S与D之和是奇整数。
15.一种利用有分析部分和合成部分的数字滤波器组得到包络调整和频率平移信号的设备,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,包括:
滤波装置,借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
计算装置,利用源区频道中一些相邻的频率平移复子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率平移到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率平移到指数为j+1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到频谱包络调整和频率平移输出信号的滤波装置。
16.一种利用有分析部分和合成部分的数字滤波器组得到包络调整和频率折叠信号的设备,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,包括:
滤波装置,借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
计算装置,利用源区频道中一些相邻的频率折叠复共轭子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率折叠到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率折叠到指数为j-1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到包络调整和频率折叠的信号的滤波装置。
17.一种用于解码编码信号的解码器,该编码信号包含编码的低频带音频信号,包括:
分路器,用于从编码信号中分出编码的低频带音频信号;
音频解码器,用于音频解码编码的低频带音频信号以得到音频解码信号;
利用有分析部分和合成部分的数字滤波器组得到包络调整和频率平移信号的装置,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,该装置包含:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号的滤波装置;
计算装置,利用源区频道中一些相邻的频率平移复子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率平移到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率平移到指数为j+1的重建范围频道中的复子带信号,和
滤波装置,借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到频谱包络调整和频率平移输出信号,其中音频解码信号被用作低频带信号,
其中包络调整和频率平移的信号是低频带音频信号的高频重建版本。
18.一种用于解码编码信号的解码器,该编码信号包含编码的低频带音频信号,包括:
分路器,用于从编码信号中分出编码的低频带音频信号;
音频解码器,用于音频解码编码的低频带音频信号,以得到音频解码信号;
利用有分析部分和合成部分的数字滤波器组得到包络调整和频率折叠信号的装置,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,该装置包含:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号的滤波装置;
计算装置,利用源区频道中一些相邻的频率折叠复共轭子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率折叠到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率折叠到指数为j-1的重建范围频道中的复子带信号,和
滤波装置,借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到包络调整和频率折叠的信号,其中音频解码信号被用作低频带信号,
其中包络调整和频率折叠的信号是低频带音频信号的高频重建版本。
19.按照权利要求17的解码器,其中编码信号还包含包络数据,
其中分路器还安排成从编码信号中分出包络数据,
其中解码器还包含包络解码器,用于解码包络数据以得到频谱包络信息,
其中频谱包络信息被馈入到该设备,用于得到包络调整和频率平移信号,用作得到预定频谱包络的包络校正。
20.一种用于解码编码信号的方法,该编码信号包含编码的低频带音频信号,该方法包括下列步骤:
从编码信号中分出编码的低频带音频信号;
音频解码编码的低频带音频信号以得到音频解码信号;
利用有分析部分和合成部分的数字滤波器组得到包络调整和频率平移信号,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,包含步骤:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
利用源区频道中一些相邻的频率平移复子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率平移到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率平移到指数为j+1的重建范围频道中的复子带信号,和
借助于合成部分滤波重建范围内频道中的相邻复子带信号,以得到包络调整和频率平移的信号,其中音频解码信号被用作低频带信号,
其中包络调整和频率平移的信号是低频带音频信号的高频重建版本。
21.一种用于解码编码信号的方法,该编码信号包含编码的低频带音频信号,该方法包括下列步骤:
从编码信号中分出编码的低频带音频信号;
音频解码编码的低频带音频信号以得到音频解码信号;
利用有分析部分和合成部分的数字滤波器组得到包络调整和频率折叠信号,其中利用从低频带信号导出的源区频道中复子带信号,在重建范围内高频频谱重建频道中的复子带信号,重建范围包含的频道频率高于源区频道中的频率,包含:
借助于分析部分滤波低频带信号,以得到源区频道中的复子带信号;
利用源区频道中一些相邻的频率折叠复共轭子带信号和用于得到预定频谱包络的包络校正,计算重建范围内频道中一些相邻的复子带信号;
其中指数为i的源区频道中的复子带信号被频率折叠到指数为j的重建范围频道中的复子带信号,且其中指数为i+1的源区频道中的复子带信号被频率折叠到指数为j-1的重建范围频道中的复子带信号,和
借助于合成部分,滤波重建范围内频道中的相邻复子带信号,以得到包络调整和频率折叠的信号,其中音频解码信号被用作低频带信号,
其中包络调整和频率折叠的信号是低频带音频信号的高频重建版本。
CNB018099785A 2000-05-23 2001-05-23 子带域中改进的频谱平移/折叠的方法和设备 Expired - Lifetime CN1210689C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE00019265 2000-05-23
SE0001926A SE0001926D0 (sv) 2000-05-23 2000-05-23 Improved spectral translation/folding in the subband domain

Publications (2)

Publication Number Publication Date
CN1430777A CN1430777A (zh) 2003-07-16
CN1210689C true CN1210689C (zh) 2005-07-13

Family

ID=20279807

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018099785A Expired - Lifetime CN1210689C (zh) 2000-05-23 2001-05-23 子带域中改进的频谱平移/折叠的方法和设备

Country Status (12)

Country Link
US (17) US7483758B2 (zh)
EP (1) EP1285436B1 (zh)
JP (2) JP4289815B2 (zh)
CN (1) CN1210689C (zh)
AT (1) ATE250272T1 (zh)
AU (1) AU2001262836A1 (zh)
BR (1) BRPI0111362B1 (zh)
DE (1) DE60100813T2 (zh)
HK (1) HK1067954A1 (zh)
RU (1) RU2251795C2 (zh)
SE (2) SE0001926D0 (zh)
WO (1) WO2001091111A1 (zh)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0001926D0 (sv) 2000-05-23 2000-05-23 Lars Liljeryd Improved spectral translation/folding in the subband domain
AUPR433901A0 (en) * 2001-04-10 2001-05-17 Lake Technology Limited High frequency signal construction method
CN1279512C (zh) * 2001-11-29 2006-10-11 编码技术股份公司 用于改善高频重建的方法和装置
US20030187663A1 (en) 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
US7447631B2 (en) 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling
TWI288915B (en) * 2002-06-17 2007-10-21 Dolby Lab Licensing Corp Improved audio coding system using characteristics of a decoded signal to adapt synthesized spectral components
US7519530B2 (en) 2003-01-09 2009-04-14 Nokia Corporation Audio signal processing
US7318027B2 (en) 2003-02-06 2008-01-08 Dolby Laboratories Licensing Corporation Conversion of synthesized spectral components for encoding and low-complexity transcoding
DE60327052D1 (de) * 2003-05-06 2009-05-20 Harman Becker Automotive Sys Verarbeitungssystem für Stereo Audiosignale
US7318035B2 (en) 2003-05-08 2008-01-08 Dolby Laboratories Licensing Corporation Audio coding systems and methods using spectral component coupling and spectral component regeneration
WO2005043511A1 (en) * 2003-10-30 2005-05-12 Koninklijke Philips Electronics N.V. Audio signal encoding or decoding
ATE453156T1 (de) * 2004-06-10 2010-01-15 Panasonic Corp System und verfahren für laufzeit-rekonfiguration
EP1691348A1 (en) * 2005-02-14 2006-08-16 Ecole Polytechnique Federale De Lausanne Parametric joint-coding of audio sources
US8086451B2 (en) * 2005-04-20 2011-12-27 Qnx Software Systems Co. System for improving speech intelligibility through high frequency compression
EP1722360B1 (en) * 2005-05-13 2014-03-19 Harman Becker Automotive Systems GmbH Audio enhancement system and method
JP4701392B2 (ja) * 2005-07-20 2011-06-15 国立大学法人九州工業大学 高域信号補間方法及び高域信号補間装置
DE202005012816U1 (de) * 2005-08-08 2006-05-04 Jünger Audio-Studiotechnik GmbH Elektronisches Gerät zur Aussteuerung von Audiosignalen sowie entsprechendes computerlesbares Speichermedium
WO2007029796A1 (ja) * 2005-09-08 2007-03-15 Pioneer Corporation 帯域拡張装置、帯域拡張方法および帯域拡張プログラム
JP5089394B2 (ja) * 2005-09-30 2012-12-05 パナソニック株式会社 音声符号化装置および音声符号化方法
US7953605B2 (en) * 2005-10-07 2011-05-31 Deepen Sinha Method and apparatus for audio encoding and decoding using wideband psychoacoustic modeling and bandwidth extension
CN101317217B (zh) * 2005-11-30 2012-07-18 松下电器产业株式会社 子带编码装置和子带编码方法
HUE045751T2 (hu) 2006-01-27 2020-01-28 Dolby Int Ab Hatékony szûrés összetett modulált szûrõbankkal
JP4181185B2 (ja) * 2006-04-27 2008-11-12 富士通メディアデバイス株式会社 フィルタおよび分波器
US9159333B2 (en) 2006-06-21 2015-10-13 Samsung Electronics Co., Ltd. Method and apparatus for adaptively encoding and decoding high frequency band
US8417532B2 (en) 2006-10-18 2013-04-09 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
US8036903B2 (en) 2006-10-18 2011-10-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Analysis filterbank, synthesis filterbank, encoder, de-coder, mixer and conferencing system
US8126721B2 (en) 2006-10-18 2012-02-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
US8041578B2 (en) 2006-10-18 2011-10-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Encoding an information signal
USRE50158E1 (en) 2006-10-25 2024-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
US8438015B2 (en) 2006-10-25 2013-05-07 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples
KR101290622B1 (ko) * 2007-11-02 2013-07-29 후아웨이 테크놀러지 컴퍼니 리미티드 오디오 복호화 방법 및 장치
KR100970446B1 (ko) * 2007-11-21 2010-07-16 한국전자통신연구원 주파수 확장을 위한 가변 잡음레벨 결정 장치 및 그 방법
US8688441B2 (en) * 2007-11-29 2014-04-01 Motorola Mobility Llc Method and apparatus to facilitate provision and use of an energy value to determine a spectral envelope shape for out-of-signal bandwidth content
JP5400059B2 (ja) 2007-12-18 2014-01-29 エルジー エレクトロニクス インコーポレイティド オーディオ信号処理方法及び装置
DE102008015702B4 (de) * 2008-01-31 2010-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Bandbreitenerweiterung eines Audiosignals
US8433582B2 (en) * 2008-02-01 2013-04-30 Motorola Mobility Llc Method and apparatus for estimating high-band energy in a bandwidth extension system
US20090201983A1 (en) 2008-02-07 2009-08-13 Motorola, Inc. Method and apparatus for estimating high-band energy in a bandwidth extension system
EP2251861B1 (en) * 2008-03-14 2017-11-22 Panasonic Intellectual Property Corporation of America Encoding device and method thereof
JP5326311B2 (ja) * 2008-03-19 2013-10-30 沖電気工業株式会社 音声帯域拡張装置、方法及びプログラム、並びに、音声通信装置
JP2009300707A (ja) * 2008-06-13 2009-12-24 Sony Corp 情報処理装置および方法、並びにプログラム
RU2491658C2 (ru) * 2008-07-11 2013-08-27 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. Синтезатор аудиосигнала и кодирующее устройство аудиосигнала
EP2346029B1 (en) * 2008-07-11 2013-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder, method for encoding an audio signal and corresponding computer program
EP2301028B1 (en) * 2008-07-11 2012-12-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. An apparatus and a method for calculating a number of spectral envelopes
EP2352147B9 (en) * 2008-07-11 2014-04-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. An apparatus and a method for encoding an audio signal
US8463412B2 (en) * 2008-08-21 2013-06-11 Motorola Mobility Llc Method and apparatus to facilitate determining signal bounding frequencies
JP2010079275A (ja) * 2008-08-29 2010-04-08 Sony Corp 周波数帯域拡大装置及び方法、符号化装置及び方法、復号化装置及び方法、並びにプログラム
EP2224433B1 (en) * 2008-09-25 2020-05-27 Lg Electronics Inc. An apparatus for processing an audio signal and method thereof
EP2184929B1 (en) 2008-11-10 2013-04-03 Oticon A/S N band FM demodulation to aid cochlear hearing impaired persons
HUE064775T2 (hu) * 2008-12-15 2024-04-28 Fraunhofer Ges Forschung Audió sávszélesség kiterjesztés dekódoló, megfelelõ eljárás és számítógépi program
EP3992966B1 (en) 2009-01-16 2022-11-23 Dolby International AB Cross product enhanced harmonic transposition
CA3076203C (en) 2009-01-28 2021-03-16 Dolby International Ab Improved harmonic transposition
ES2906255T3 (es) 2009-01-28 2022-04-13 Dolby Int Ab Transposición armónica mejorada
US8463599B2 (en) * 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
BR122019023924B1 (pt) 2009-03-17 2021-06-01 Dolby International Ab Sistema codificador, sistema decodificador, método para codificar um sinal estéreo para um sinal de fluxo de bits e método para decodificar um sinal de fluxo de bits para um sinal estéreo
JP5267257B2 (ja) * 2009-03-23 2013-08-21 沖電気工業株式会社 音声ミキシング装置、方法及びプログラム、並びに、音声会議システム
ATE526662T1 (de) 2009-03-26 2011-10-15 Fraunhofer Ges Forschung Vorrichtung und verfahren zur änderung eines audiosignals
EP2239732A1 (en) 2009-04-09 2010-10-13 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Apparatus and method for generating a synthesis audio signal and for encoding an audio signal
RU2452044C1 (ru) 2009-04-02 2012-05-27 Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. Устройство, способ и носитель с программным кодом для генерирования представления сигнала с расширенным диапазоном частот на основе представления входного сигнала с использованием сочетания гармонического расширения диапазона частот и негармонического расширения диапазона частот
JP4932917B2 (ja) * 2009-04-03 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 音声復号装置、音声復号方法、及び音声復号プログラム
CO6440537A2 (es) * 2009-04-09 2012-05-15 Fraunhofer Ges Forschung Aparato y metodo para generar una señal de audio de sintesis y para codificar una señal de audio
TWI675367B (zh) 2009-05-27 2019-10-21 瑞典商杜比國際公司 從訊號的低頻成份產生該訊號之高頻成份的系統與方法,及其機上盒、電腦程式產品、軟體程式及儲存媒體
US11657788B2 (en) 2009-05-27 2023-05-23 Dolby International Ab Efficient combined harmonic transposition
PL2535892T3 (pl) * 2009-06-24 2015-03-31 Fraunhofer Ges Forschung Dekoder sygnału audio, sposób dekodowania sygnału audio i program komputerowy wykorzystujący kaskadowe etapy przetwarzania obiektów audio
CN103559891B (zh) 2009-09-18 2016-05-11 杜比国际公司 改进的谐波转置
JP5754899B2 (ja) * 2009-10-07 2015-07-29 ソニー株式会社 復号装置および方法、並びにプログラム
US9105300B2 (en) 2009-10-19 2015-08-11 Dolby International Ab Metadata time marking information for indicating a section of an audio object
EP4276823B1 (en) * 2009-10-21 2024-07-17 Dolby International AB Oversampling in a combined transposer filter bank
US9117458B2 (en) * 2009-11-12 2015-08-25 Lg Electronics Inc. Apparatus for processing an audio signal and method thereof
MY152376A (en) 2010-03-09 2014-09-15 Fraunhofer Ges Forschung Improved magnitude response and temporal alignment in phase vocoder based bandwidth extension for audio signals
PL2545553T3 (pl) 2010-03-09 2015-01-30 Fraunhofer Ges Forschung Urządzenie i sposób do przetwarzania sygnału audio z użyciem zrównania granicy obszaru
MX2012010350A (es) * 2010-03-09 2012-10-05 Fraunhofer Ges Forschung Aparato y metodo para manejar episodios de sonido de transitorios en señales de audio al cambiar el tono o velocidad de repeticion.
JP5609737B2 (ja) * 2010-04-13 2014-10-22 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
ES2719102T3 (es) * 2010-04-16 2019-07-08 Fraunhofer Ges Forschung Aparato, procedimiento y programa informático para generar una señal de banda ancha que utiliza extensión de ancho de banda guiada y extensión de ancho de banda ciega
US8958510B1 (en) * 2010-06-10 2015-02-17 Fredric J. Harris Selectable bandwidth filter
US8762158B2 (en) * 2010-08-06 2014-06-24 Samsung Electronics Co., Ltd. Decoding method and decoding apparatus therefor
AU2011288406B2 (en) 2010-08-12 2014-07-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Resampling output signals of QMF based audio codecs
US8759661B2 (en) 2010-08-31 2014-06-24 Sonivox, L.P. System and method for audio synthesizer utilizing frequency aperture arrays
US8653354B1 (en) * 2011-08-02 2014-02-18 Sonivoz, L.P. Audio synthesizing systems and methods
CN110706715B (zh) 2012-03-29 2022-05-24 华为技术有限公司 信号编码和解码的方法和设备
KR101897455B1 (ko) * 2012-04-16 2018-10-04 삼성전자주식회사 음질 향상 장치 및 방법
US9173041B2 (en) 2012-05-31 2015-10-27 Purdue Research Foundation Enhancing perception of frequency-lowered speech
EP2682941A1 (de) * 2012-07-02 2014-01-08 Technische Universität Ilmenau Vorrichtung, Verfahren und Computerprogramm für frei wählbare Frequenzverschiebungen in der Subband-Domäne
BR122020017853B1 (pt) 2013-04-05 2023-03-14 Dolby International Ab Sistema e aparelho para codificar um sinal de voz em um fluxo de bits, e método e aparelho para decodificar sinal de áudio
EP2830065A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decoding an encoded audio signal using a cross-over filter around a transition frequency
TWI774136B (zh) 2013-09-12 2022-08-11 瑞典商杜比國際公司 多聲道音訊系統中之解碼方法、解碼裝置、包含用於執行解碼方法的指令之非暫態電腦可讀取的媒體之電腦程式產品、包含解碼裝置的音訊系統
KR101890216B1 (ko) 2014-03-25 2018-08-22 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 동적 범위 제어에서 효율적인 이득 코딩을 갖는 오디오 인코더 디바이스 및 오디오 디코더 디바이스
US9306606B2 (en) * 2014-06-10 2016-04-05 The Boeing Company Nonlinear filtering using polyphase filter banks
WO2016142002A1 (en) 2015-03-09 2016-09-15 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Audio encoder, audio decoder, method for encoding an audio signal and method for decoding an encoded audio signal
TWI752166B (zh) * 2017-03-23 2022-01-11 瑞典商都比國際公司 用於音訊信號之高頻重建的諧波轉置器的回溯相容整合
SG11202010367YA (en) * 2018-04-25 2020-11-27 Dolby Int Ab Integration of high frequency reconstruction techniques with reduced post-processing delay
IL313391A (en) 2018-04-25 2024-08-01 Dolby Int Ab Combining high-frequency audio reconstruction techniques
CN114079603B (zh) * 2020-08-13 2023-08-22 华为技术有限公司 一种信号折叠方法及设备

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914554A (en) * 1973-05-18 1975-10-21 Bell Telephone Labor Inc Communication system employing spectrum folding
US4166924A (en) 1977-05-12 1979-09-04 Bell Telephone Laboratories, Incorporated Removing reverberative echo components in speech signals
FR2412987A1 (fr) 1977-12-23 1979-07-20 Ibm France Procede de compression de donnees relatives au signal vocal et dispositif mettant en oeuvre ledit procede
US4255620A (en) * 1978-01-09 1981-03-10 Vbc, Inc. Method and apparatus for bandwidth reduction
US4330689A (en) 1980-01-28 1982-05-18 The United States Of America As Represented By The Secretary Of The Navy Multirate digital voice communication processor
US4374304A (en) * 1980-09-26 1983-02-15 Bell Telephone Laboratories, Incorporated Spectrum division/multiplication communication arrangement for speech signals
EP0070948B1 (fr) 1981-07-28 1985-07-10 International Business Machines Corporation Procédé de codage de la voix et dispositif de mise en oeuvre dudit procédé
US4667340A (en) 1983-04-13 1987-05-19 Texas Instruments Incorporated Voice messaging system with pitch-congruent baseband coding
US4672670A (en) 1983-07-26 1987-06-09 Advanced Micro Devices, Inc. Apparatus and methods for coding, decoding, analyzing and synthesizing a signal
US4700362A (en) 1983-10-07 1987-10-13 Dolby Laboratories Licensing Corporation A-D encoder and D-A decoder system
IL73030A (en) * 1984-09-19 1989-07-31 Yaacov Kaufman Joint and method utilising its assembly
US4790016A (en) 1985-11-14 1988-12-06 Gte Laboratories Incorporated Adaptive method and apparatus for coding speech
WO1986003873A1 (en) * 1984-12-20 1986-07-03 Gte Laboratories Incorporated Method and apparatus for encoding speech
FR2577084B1 (fr) * 1985-02-01 1987-03-20 Trt Telecom Radio Electr Systeme de bancs de filtres d'analyse et de synthese d'un signal
CA1220282A (en) 1985-04-03 1987-04-07 Northern Telecom Limited Transmission of wideband speech signals
EP0243562B1 (en) 1986-04-30 1992-01-29 International Business Machines Corporation Improved voice coding process and device for implementing said process
US4776014A (en) 1986-09-02 1988-10-04 General Electric Company Method for pitch-aligned high-frequency regeneration in RELP vocoders
US4771465A (en) 1986-09-11 1988-09-13 American Telephone And Telegraph Company, At&T Bell Laboratories Digital speech sinusoidal vocoder with transmission of only subset of harmonics
JPS6385699A (ja) * 1986-09-30 1988-04-16 沖電気工業株式会社 帯域分割型音声合成器
US5054072A (en) 1987-04-02 1991-10-01 Massachusetts Institute Of Technology Coding of acoustic waveforms
US5285520A (en) 1988-03-02 1994-02-08 Kokusai Denshin Denwa Kabushiki Kaisha Predictive coding apparatus
US5127054A (en) * 1988-04-29 1992-06-30 Motorola, Inc. Speech quality improvement for voice coders and synthesizers
EP0392126B1 (en) 1989-04-11 1994-07-20 International Business Machines Corporation Fast pitch tracking process for LTP-based speech coders
US5261027A (en) 1989-06-28 1993-11-09 Fujitsu Limited Code excited linear prediction speech coding system
US4974187A (en) 1989-08-02 1990-11-27 Aware, Inc. Modular digital signal processing system
US5040217A (en) 1989-10-18 1991-08-13 At&T Bell Laboratories Perceptual coding of audio signals
US4969040A (en) 1989-10-26 1990-11-06 Bell Communications Research, Inc. Apparatus and method for differential sub-band coding of video signals
US5235671A (en) * 1990-10-15 1993-08-10 Gte Laboratories Incorporated Dynamic bit allocation subband excited transform coding method and apparatus
US5293449A (en) 1990-11-23 1994-03-08 Comsat Corporation Analysis-by-synthesis 2,4 kbps linear predictive speech codec
JP3158458B2 (ja) 1991-01-31 2001-04-23 日本電気株式会社 階層表現された信号の符号化方式
GB9104186D0 (en) 1991-02-28 1991-04-17 British Aerospace Apparatus for and method of digital signal processing
US5235420A (en) 1991-03-22 1993-08-10 Bell Communications Research, Inc. Multilayer universal video coder
GB2257606B (en) 1991-06-28 1995-01-18 Sony Corp Recording and/or reproducing apparatuses and signal processing methods for compressed data
JPH05191885A (ja) 1992-01-10 1993-07-30 Clarion Co Ltd 音響信号イコライザ回路
US5765127A (en) 1992-03-18 1998-06-09 Sony Corp High efficiency encoding method
IT1257065B (it) 1992-07-31 1996-01-05 Sip Codificatore a basso ritardo per segnali audio, utilizzante tecniche di analisi per sintesi.
JPH0685607A (ja) 1992-08-31 1994-03-25 Alpine Electron Inc 高域成分復元装置
JP2779886B2 (ja) 1992-10-05 1998-07-23 日本電信電話株式会社 広帯域音声信号復元方法
JP3191457B2 (ja) 1992-10-31 2001-07-23 ソニー株式会社 高能率符号化装置、ノイズスペクトル変更装置及び方法
CA2106440C (en) 1992-11-30 1997-11-18 Jelena Kovacevic Method and apparatus for reducing correlated errors in subband coding systems with quantizers
JP3496230B2 (ja) 1993-03-16 2004-02-09 パイオニア株式会社 音場制御システム
US5581653A (en) * 1993-08-31 1996-12-03 Dolby Laboratories Licensing Corporation Low bit-rate high-resolution spectral envelope coding for audio encoder and decoder
JPH07160299A (ja) 1993-12-06 1995-06-23 Hitachi Denshi Ltd 音声信号帯域圧縮伸張装置並びに音声信号の帯域圧縮伝送方式及び再生方式
JP2616549B2 (ja) 1993-12-10 1997-06-04 日本電気株式会社 音声復号装置
US5684920A (en) 1994-03-17 1997-11-04 Nippon Telegraph And Telephone Acoustic signal transform coding method and decoding method having a high efficiency envelope flattening method therein
US5711934A (en) * 1994-04-11 1998-01-27 Abbott Laboratories Process for the continuous milling of aerosol pharmaceutical formulations in aerosol propellants
US5787387A (en) 1994-07-11 1998-07-28 Voxware, Inc. Harmonic adaptive speech coding method and system
FR2729024A1 (fr) 1994-12-30 1996-07-05 Matra Communication Annuleur d'echo acoustique avec filtrage en sous-bandes
US5701390A (en) 1995-02-22 1997-12-23 Digital Voice Systems, Inc. Synthesis of MBE-based coded speech using regenerated phase information
JP2956548B2 (ja) 1995-10-05 1999-10-04 松下電器産業株式会社 音声帯域拡大装置
US5915235A (en) 1995-04-28 1999-06-22 Dejaco; Andrew P. Adaptive equalizer preprocessor for mobile telephone speech coder to modify nonideal frequency response of acoustic transducer
US5692050A (en) * 1995-06-15 1997-11-25 Binaura Corporation Method and apparatus for spatially enhancing stereo and monophonic signals
JPH0946233A (ja) 1995-07-31 1997-02-14 Kokusai Electric Co Ltd 音声符号化方法とその装置、音声復号方法とその装置
JPH0955778A (ja) 1995-08-15 1997-02-25 Fujitsu Ltd 音声信号の広帯域化装置
JP3301473B2 (ja) 1995-09-27 2002-07-15 日本電信電話株式会社 広帯域音声信号復元方法
US5867819A (en) 1995-09-29 1999-02-02 Nippon Steel Corporation Audio decoder
US5687191A (en) 1995-12-06 1997-11-11 Solana Technology Development Corporation Post-compression hidden data transport
US5781888A (en) 1996-01-16 1998-07-14 Lucent Technologies Inc. Perceptual noise shaping in the time domain via LPC prediction in the frequency domain
US5822370A (en) 1996-04-16 1998-10-13 Aura Systems, Inc. Compression/decompression for preservation of high fidelity speech quality at low bandwidth
US5848164A (en) 1996-04-30 1998-12-08 The Board Of Trustees Of The Leland Stanford Junior University System and method for effects processing on audio subband data
CA2184541A1 (en) 1996-08-30 1998-03-01 Tet Hin Yeap Method and apparatus for wavelet modulation of signals for transmission and/or storage
US5875122A (en) 1996-12-17 1999-02-23 Intel Corporation Integrated systolic architecture for decomposition and reconstruction of signals using wavelet transforms
JPH10334604A (ja) * 1997-05-27 1998-12-18 Hitachi Ltd 圧縮データ再生装置
SE512719C2 (sv) * 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
US6144937A (en) 1997-07-23 2000-11-07 Texas Instruments Incorporated Noise suppression of speech by signal processing including applying a transform to time domain input sequences of digital signals representing audio information
US5913191A (en) * 1997-10-17 1999-06-15 Dolby Laboratories Licensing Corporation Frame-based audio coding with additional filterbank to suppress aliasing artifacts at frame boundaries
KR100474826B1 (ko) 1998-05-09 2005-05-16 삼성전자주식회사 음성부호화기에서의주파수이동법을이용한다중밴드의유성화도결정방법및그장치
GB2344036B (en) 1998-11-23 2004-01-21 Mitel Corp Single-sided subband filters
SE9903553D0 (sv) * 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
JP2003505967A (ja) 1999-07-27 2003-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フィルタリング装置
US7742927B2 (en) 2000-04-18 2010-06-22 France Telecom Spectral enhancing method and device
FR2807897B1 (fr) * 2000-04-18 2003-07-18 France Telecom Methode et dispositif d'enrichissement spectral
SE0001926D0 (sv) * 2000-05-23 2000-05-23 Lars Liljeryd Improved spectral translation/folding in the subband domain
EP1211636A1 (en) 2000-11-29 2002-06-05 STMicroelectronics S.r.l. Filtering device and method for reducing noise in electrical signals, in particular acoustic signals and images

Also Published As

Publication number Publication date
EP1285436B1 (en) 2003-09-17
SE0001926D0 (sv) 2000-05-23
US20170178642A1 (en) 2017-06-22
DE60100813T2 (de) 2004-07-15
US10699724B2 (en) 2020-06-30
US10008213B2 (en) 2018-06-26
US20170178644A1 (en) 2017-06-22
US20090041111A1 (en) 2009-02-12
BR0111362A (pt) 2003-05-20
US20130339037A1 (en) 2013-12-19
JP2003534577A (ja) 2003-11-18
US8412365B2 (en) 2013-04-02
RU2251795C2 (ru) 2005-05-10
US20180277128A1 (en) 2018-09-27
US20100211399A1 (en) 2010-08-19
US9548059B2 (en) 2017-01-17
US9697841B2 (en) 2017-07-04
US9786290B2 (en) 2017-10-10
US7680552B2 (en) 2010-03-16
US20170178645A1 (en) 2017-06-22
US20170178643A1 (en) 2017-06-22
US9691400B1 (en) 2017-06-27
US8543232B2 (en) 2013-09-24
US9691401B1 (en) 2017-06-27
US20040131203A1 (en) 2004-07-08
AU2001262836A1 (en) 2001-12-03
DE60100813D1 (de) 2003-10-23
US10311882B2 (en) 2019-06-04
US20170178640A1 (en) 2017-06-22
US9691403B1 (en) 2017-06-27
CN1430777A (zh) 2003-07-16
US9691402B1 (en) 2017-06-27
SE0203468D0 (sv) 2002-11-22
US20200388294A1 (en) 2020-12-10
US9245534B2 (en) 2016-01-26
SE0203468L (sv) 2002-11-22
JP2009122699A (ja) 2009-06-04
US20170178641A1 (en) 2017-06-22
US20190189140A1 (en) 2019-06-20
SE523883C2 (sv) 2004-05-25
US20160093310A1 (en) 2016-03-31
US20170345432A1 (en) 2017-11-30
HK1067954A1 (en) 2005-04-22
US20170084283A1 (en) 2017-03-23
US20120213378A1 (en) 2012-08-23
WO2001091111A1 (en) 2001-11-29
US7483758B2 (en) 2009-01-27
US9691399B1 (en) 2017-06-27
JP4289815B2 (ja) 2009-07-01
EP1285436A1 (en) 2003-02-26
JP5090390B2 (ja) 2012-12-05
ATE250272T1 (de) 2003-10-15
BRPI0111362B1 (pt) 2015-12-08

Similar Documents

Publication Publication Date Title
CN1210689C (zh) 子带域中改进的频谱平移/折叠的方法和设备
CA2608030C (en) Scalable compressed audio bit stream and codec using a hierarchical filterbank and multichannel joint coding
CN1181467C (zh) 利用自适应噪声本底相加和噪声替换限制,增强信源编码和解码的方法和系统
KR101238239B1 (ko) 인코더
EP3244407B1 (en) Apparatus and method for modifying a parameterized representation
Ravelli et al. Union of MDCT bases for audio coding
CN1527995A (zh) 编码设备和解码设备
CN101061535A (zh) 用于人工扩展语音信号的带宽的方法和装置
AU2011205144B2 (en) Scalable compressed audio bit stream and codec using a hierarchical filterbank and multichannel joint coding
CN1471236A (zh) 用于感知音频编码的信号自适应多分辨率滤波器组
AU2011221401B2 (en) Scalable compressed audio bit stream and codec using a hierarchical filterbank and multichannel joint coding
Sathidevi et al. Low complexity scalable perceptual audio coder using an optimum wavelet packet basis representation and vector quantization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1067954

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: DUBI SWEDEN STOCK CO., LTD.

Free format text: FORMER NAME: ENCODING TECHNOLOGY STOCK CO., LTD.

CP03 Change of name, title or address

Address after: Stockholm

Patentee after: Dolby Sweden AG

Address before: Stockholm

Patentee before: Coding Technologies Sweden AB

C56 Change in the name or address of the patentee

Owner name: DOLBY INTERNATIONAL COMPANY

Free format text: FORMER NAME: DOLBY SWEDEN AB COMPANY

CP03 Change of name, title or address

Address after: Amsterdam

Patentee after: Dolby International AB

Address before: Stockholm

Patentee before: Dolby Sweden AG

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20030716

Assignee: Guangzhou Huaduo Network Technology Co., Ltd.

Assignor: Via licensing company

Contract record no.: 2014990000616

Denomination of invention: Improved spectral translation/folding in subband domain

Granted publication date: 20050713

License type: Common License

Record date: 20140804

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
CX01 Expiry of patent term

Granted publication date: 20050713

CX01 Expiry of patent term