Nothing Special   »   [go: up one dir, main page]

CN1271184A - 结构稳定的可熔电池隔膜及其制造方法 - Google Patents

结构稳定的可熔电池隔膜及其制造方法 Download PDF

Info

Publication number
CN1271184A
CN1271184A CN00106839A CN00106839A CN1271184A CN 1271184 A CN1271184 A CN 1271184A CN 00106839 A CN00106839 A CN 00106839A CN 00106839 A CN00106839 A CN 00106839A CN 1271184 A CN1271184 A CN 1271184A
Authority
CN
China
Prior art keywords
film
polymer film
battery diaphragm
polyethylene
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00106839A
Other languages
English (en)
Inventor
R·W·考尔
P·C·库克
S·E·赫克斯
K·V·恩格因
俞维清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIKAD CO
Original Assignee
SIKAD CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIKAD CO filed Critical SIKAD CO
Publication of CN1271184A publication Critical patent/CN1271184A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/9125
    • B29C48/913
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/335Multiple annular extrusion nozzles in coaxial arrangement, e.g. for making multi-layered tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

本文公开了一种可熔、结构稳定的电池隔膜。该电池隔膜是通过将聚合物挤塑成圆筒形聚合物膜料坯,并用低温流体对膜的两表面进行骤冷,然后对聚合物膜进行加工而赋予其微孔度而制成的。最优选的是,该聚合物膜包括至少一层聚乙烯层和一层聚丙烯层。

Description

结构稳定的可熔电池隔膜及其制造方法
本发明涉及电池隔膜,更具体地说,本发明涉及高电阻曲线延续到180℃或180℃以上的电池隔膜。
电池隔膜可通过各种技术例如抽提法或多步退火/拉伸法而制得。后一种方法是由Celanese Plastics Company(Summit,New Jersey)于七十年代初发现的,该法包括在提高熔融聚合物应力的条件下先将结晶聚合物(如聚丙烯)挤塑成薄膜,然后,使薄膜在无张力或低张力状态下经退火而获得必要的结晶结构的步骤。对由此制得的前体沿纵向进行拉伸以产生一种狭缝状空隙的网状结构。该形变过程除了可用来控制整体空隙尺寸外,还可用来控制孔尺寸大小和孔尺寸分布以及总孔隙率。参见Bierenbaum,H.S.,Isaacson,R.B.,Druin,M.L.and Plovan,S.G.,微孔聚合物膜(Microporous Polymer Films),I&EC产品研究和开发(PRODUCT RESEARCH AND DEVELOPMENT),Vol.13,pp.2-9,March,1974。
随着电池设计技术要求的更加完善,电池隔膜在各种不同的温度范围的特性也已经得到改进。具有适宜的“可封闭”特性的可熔隔膜是特别理想的,这方面可从最近的文献中明显地看出。
Lundquist等人的美国专利4650730公开了一种用作电池隔膜的多层聚合物片材,一般来说,该片材包括微孔片材(未填充的)形态的第一层和经填充的微孔片材的第二层。该微孔复合片材是由各微孔片材经抽提操作后再层合在一起而形成的,这种微孔复合结构在高温下会变成无孔状态。参见第11栏,实施例11。权利要求书规定了每层厚度小于10密耳,也规定了各种孔尺寸以及填料用量,还可参见Lundquist等人的美国专利4731304。
Rein等人的美国专利5281491公开了可用作“可封闭”电池隔膜的多层未填充的片材产品。该产品是由共挤塑(吹塑薄膜)后再经抽提而制得的。参见第6-8栏,实施例1-6。在第10栏中要注意的是单轴拉伸可使产品具有孔隙度。
Troffkin等人的美国专利5240655还介绍了另一种可用来制造多层电池隔膜的方法。所述方法包括首先进行共挤塑,接着进行冷(液态氮)拉伸,再进行热拉伸,以及进行退火的步骤。
Kurauchi等人的日本专利申请98394和98395介绍了一种多孔薄膜。该两篇文献都涉及以共挤塑法制造这类薄膜的可能性,然而,值得指出的是薄膜层合是优选的,随后对薄膜进行热处理和两步拉伸而赋予薄膜以孔隙度。
Yu等人的美国专利5667911介绍了一种制造无缝、交叉堆叠的电池隔膜的方法。所述方法包括挤塑成管形薄膜、将管形薄膜压扁、进行退火、冷拉伸、热拉伸以及热定型以形成微孔膜。然后在该膜上开出螺旋状缝,接着再进行层合。
Yu等人的美国专利5565281介绍了一种不同于5667911专利的制造具有高刺穿强度的薄的双层可封闭电池隔离膜的方法。在专利说明书和权利要求书中有具体的参数。还可参见涉及制造薄的、由两层外层聚丙烯膜中间夹有微孔聚乙烯膜构成的三层薄膜的美国专利5691077。注意表8.第9栏。
英国专利申请公开2298817公开了一种通过成形无孔层合材、对该层合材进行拉伸而赋予其空隙度,接着进行热处理而制得的多孔薄膜。参见第9页及下文。开始可按实施例1(第13页和下文)所述,通过共挤塑来制造该层合材。日本专利公开8-250097中公开了一种制造A/B/A三层薄膜的类似方法,注意实施例。还可参见欧洲专利申请公开0794583中第5页第48行及其下文,注意图1(c)。
日本专利申请8-266398和8-293612及日本专利公开10-154499公开了其它类型的三层膜。
从上述专利可知,电池隔膜的制造方法特别是多层隔膜的制造方法已经有了不断的改进。早期的方法先分别制成几层多孔结构,然后将它们层合成完整的结构的步骤。其后,又开发出将分别制备的无孔薄膜层合在一起,并对其作进一步加工而赋予该多层无孔结构孔隙度的方法。最近,采用共挤塑将多层膜挤塑成单个的、可加工成多孔性结构的无孔结构,从而使制造产品所需的加工步骤减至最少。
同样,也希望改进电池隔膜的热性质,特别是有关高性能产品市场所需的“可封闭”性能。理想的是,设计用于热封闭膜的阻抗在120-130℃左右的第一温度阈范围应随温度上升而增加,而且在温度快速升高时,只要可能,阻抗保持继续增加直到或超过聚合物的结晶相熔点。在该技术领域中一些最新文献已认识到这种理想的特性。
Asahi Chemical Industry Co.Ltd.在日本专利申请公开的说明书3-203160公开了一种耐温电池隔膜,该隔膜达最大阻抗的温度为阻抗开始上升到是室温(R25)下阻抗值的10倍时的温度还至少高约10℃。多孔膜可通过对高分子量聚乙烯进行抽提而制得,据报导,以每分钟2℃的加热速率扫描测得的最大阻抗温度可达到较阻抗开始上升时温度高约25℃。
Nishiyama等人的美国专利5480745公开了共挤塑的多孔双层薄膜,其中一层是聚丙烯、一层是聚乙烯与聚丙烯的混合物。据报导,该膜在约130℃时阻抗上升,在约170℃时阻抗下降。
已经发现,根据本发明在赋予隔膜孔隙度之前对熔融薄膜进行快速骤冷可制得电阻特性随温度上升而提高的隔膜。
根据本发明提供的电池隔膜是由通常在以每分钟60℃的加热速率扫描、至少约185℃时测得的电阻能保持高于约每平方厘米10000欧姆的微孔聚烯烃膜构成的。一般来说,这种隔膜在以每分钟2℃的加热速率扫描、至少约185℃时测得的电阻能保持高于约每平方厘米10000欧姆。而根据本发明的优选隔膜在约130℃至至少185℃时,以每分钟60℃或2℃的加热速率扫描测定的电阻高于约每平方厘米10000欧姆,最优选的是,上述以每分钟2℃或60℃的扫描速率测定的高电阻能保持到195℃或更高的温度,如200℃或高于200℃。
根据本发明的隔膜可由包括高密度聚乙烯、全同立构聚丙烯或它们相结合在内的各种聚合物制得。其它聚丙烯和聚乙烯(如超高分子量聚乙烯)也是可采用的。在最优选的实施方案中,采用的是具有至少一层聚丙烯和至少一层聚乙烯的多层膜。三层膜是特别优选的。
本发明的另一方面是提供一种制造电池隔膜的方法,该方法包括下列步骤:挤塑具有第一和第二表面的圆筒形熔融聚合物膜料坯,对圆筒形料坯的第一和第二表面施加低温流体,低温流体的作用是使熔融聚合物膜骤冷以使该聚合物膜基本上呈固态;接着赋予所述聚合物膜微孔孔隙度以适用作电池隔膜。最优选的是,该制备方法中包括共挤塑有至少一层聚乙烯和至少一层聚丙烯的聚合物膜的步骤。
根据本发明方法对聚合物膜进行骤冷后,最优选的是,为了赋予聚合物薄膜微孔孔隙度,该薄膜应经退火、拉伸和热定型步骤,其中退火步骤可提高聚合物结晶结构、热定型步骤可使薄膜具有尺寸稳定性。拉伸薄膜步骤最好包括使薄膜在低温(15-35℃)下伸长至少约20%,接着再在高温(110℃-130℃)下伸长至少约100%。热定型时的松弛一般为约8%至约15%。
附图的简要说明
以下结合几个实施例和几张附图对本发明进行详细说明,附图为:
图1是说明用于制造本发明隔膜的挤塑设备的示意图;
图2是显示用于圆筒形聚合物薄膜料坯的两表面进行骤冷操作的图1设备的细节;
图3是说明本发明方法操作的另一更详细的示意图;
图4A和4B是供测定微孔电池隔膜电阻与温度间函数关系的测量装置示意图;
图5是各种市售隔膜的电阻与温度的关系图(以每分钟60℃加热速率扫描测定);
图6是根据本发明制得的隔膜和两种其它市售隔膜的电阻与温度间的关系图。
以下依据几个只是说明性的实施例对本发明作详细的说明。本发明的精神及范围在后附的权利要求书中定义。
制造本发明隔膜的优选方法主要包括下述步骤:将聚合物膜挤塑成片材;对片材进行退火以增加结晶结构以及对已退火的片材进行拉伸。下述文献以及其中所引参考文献都说明了优选方法的技术现状,这些文献都已列入本文供参考。这些文献为:Yu等人的美国专利5565281,Yu的美国专利5691077及Yu等人的美国专利5667911。对技术熟练人员来说,是很容易获得这些方法的内容的。下面通过对制造电池隔膜的先有技术与本发明方法之间的不同之处的解释对本发明方法进行说明。
概括地说,本发明制造隔膜方法的改进之处是采用对聚合物片材两表面施加骤冷流体(如空气)的骤冷装置,如图1和图2所示。
图1中所示的是供共挤塑多层圆筒形料坯的挤塑设备,该挤塑设备10通常包括与模头组件16相连的第一挤塑机12和第二挤塑机14。模头组件16限定了数字18所示的模口的圆柱形模芯以及外侧空气骤冷环20和内侧空气骤冷环22,如图1和图2所示。供给模头组件16和内侧骤冷环22的冷空气是由鼓风机24提供的,供给外侧骤冷环20的冷空气是由另一鼓风机26提供的。阀门28、30用来调节空气流量,而关闭阀32和34可控制聚合物的物流。
就该挤塑设备运行来说,聚合物料粒36、38在挤塑机12、14中熔融,通过阀门32、34供到模头组件16。根据需要,可利用一台挤塑机只供入一种聚合物来制造单层聚合物薄膜,或者利用两台以上挤塑机来制造多层隔膜。对于不同的场合,需配置挤塑单层或共挤塑多层的适用模头。
已完全熔融的聚合物被供入模头组件16并通过模口18挤出,当熔融态圆筒形薄膜料坯40被挤出时,薄膜两侧面就会接触冷却空气流,如图2中的详细说明。
在图2中,与图1一样的零部件用相同的数字表示。当熔融态圆筒形薄膜40从模口18引出时,以42表示的外侧骤冷空气流沿整个薄膜外周表面对其进行冷却,以44表示的另一骤冷空气流沿整个薄膜内周表面对其进行冷却。两股空气流42、44是温度为约0℃-约45℃,更常用为约15℃-30℃的低温空气流。空气流42、44的作用是使熔融态薄膜40充分地冷却,以在46处薄膜基本上呈固态。
装置22包括由48所示的引出抽气孔,因此当需要调节压力时,可通过从圆筒形薄膜40限定的空腔50中引出空气流44体积量的空气来加以调节。
图3较详细地说明了用于下列实施例中的骤冷装置60。装置60包括模头出料口62,熔融聚合物就是从该出料口被引出模头而形成圆筒形料坯64的,装置60还设有向薄膜料坯64的两侧表面提供骤冷空气的外侧空气骤冷环66和内侧空气骤冷环68。空气通路由箭头70、72标示。每侧的空气骤冷环分别有按要求设定、调整的间隙74、76,而且空气骤冷环位于模头出料口62的上方,其高度78、80是可调整的,如下面实施例所述。为了按要求调整空气流,可同时调整间隙、压力和阀门。
鼓风机82向外侧空气骤冷环66提供空气,空气压力可在85处测定,另一鼓风机86向内侧空气骤冷环68提供空气,其压力在87处用压力计测定。进入内侧空气骤冷环的空气流以箭头88、89标示。
装置60还配置一个带控制阀92的抽风机90用来控制从圆筒形料坯64内流出的空气,图中箭头94、96、97和98标示内侧环形空气流返回的路径。
对于上述方式来说,骤冷空气流施加于由圆形模头引出的圆筒形料坯的两侧表面,以使从模头引出的熔融聚合物两侧表面迅速冷却。鼓风机82、86配置冷冻装置以冷却其输出的空气,通常冷却到约15℃-约25℃。
料坯的薄膜厚度一般为约0.2-约2‰英寸(密耳)。高度78、80一般设定为约1/2-约6英寸,而空气间隙74、76一般设定为约80-约250密耳。供给空气骤冷环的空气压力根据冷却要求通常为约0.8英寸水柱-约8英寸水柱。模头直径为11.87英寸,圆筒形料坯64直径一般为约11.5-约12.5英寸,而膨胀度可通过空气流率,特别可通过阀门92来控制。
如上所述,薄膜挤出后再经退火、拉伸和热定型的步骤将在以下实施例中作进一步的说明。下面将详细说明各种多层微孔电池隔膜的制备,按照下表报告产品的特征:
                                   表1
                                 试验方法
Gurley ASTM-D726(B)Gurley是用Gurley透气度测定仪(如4120型)测定的阻气流性。Gurley是在12.2英寸水柱压力下,10立方厘米空气通过一平方英寸产品所需的时间(以秒计)。
基重 基重的测定方法是:在整个试样的宽度范围切出三个1平方英尺样品,并用精密天平(精确至0.0001克)称出样品重量,计算三个样品的平均重量,并与允限作比较。
厚度 方法:在制浆造纸工业技术学会主持下开发的T411 om-83。采用精密测微计,以直径为1/2英寸的圆形极靴,在7磅/平方英寸压力下接触试样来测定厚度。取整个试样宽度范围的10个测微计读数,求平均值。
收缩,MD ASTM D-1204(60分钟,@90℃),分别测定三个长度约10厘米、沿纵向(MD)经拉伸的试样的长度,然后让试样置于90℃空气中1小时后再测定其长度,计算每一试样起始长度的收缩百分比和平均值。
实施例1
利用图1和图2所示设备制备1密耳厚的聚丙烯/聚乙烯/聚丙烯微孔电池隔膜,供给内侧和外侧空气骤冷环的空气是室温空气,该两个空气骤冷环设置在模头引出口上方3英寸的位置上。挤塑条件列于表2,挤出后,按表3条件对片材进行退火、两步法拉伸及热定型。产品的特性列于表4中。
                             表2
             实施例1电池隔膜用材料和挤塑条件总表
设备 Alpine三层共挤塑模头,模芯间隙210密耳,模头直径300毫米
树脂 Fina(Dallas,TX)pp3362全同立构聚丙烯,Mitsu Petroleum Chemial(Tokyo,JP)HIZEXHDPE 5202B聚乙烯
聚丙烯挤塑机机筒温度 195℃
聚乙烯挤塑机机筒温度 185℃
模头温度 185℃
线速度 105英尺/秒
空气骤冷环距模口的高度;内侧,外侧 35/16英寸,35/16英寸
空气骤冷环空气压力;内侧,外侧 7.0英寸水柱,7.0英寸水柱
空气骤冷环间隙;内侧,外侧(英寸) 0.200英寸,0.150英寸
          表3
实施例1电池隔膜的退火/拉伸条件总表
退火温度 120℃
退火时间 15分钟
冷拉伸温度 25℃
冷拉伸伸长率 25%
热拉伸温度 120℃
热拉伸伸长率 100%
热定型温度 120℃
                     表4
       实施例1电池隔膜的产品特性平均值
Gurley秒 厚度密耳 收缩率% 基重毫克/厘米2 孔隙度%
26 0.9 3.5 1.26 37.2
实施例2
按实施例1的步骤,制备双层聚乙烯/聚丙烯微孔电池隔膜。材料、设备和挤塑条件列于表5,而退火和拉伸条件列于表6。产品特性的平均值列于表7。
                               表5
               实施例2电池隔膜用材料和挤塑条件总表
设备 Alpine两层共挤塑模头,模芯间隙210密耳,模头直径300毫米
树脂 Fina pp3271全同立构聚丙烯,HIZEX5202B高密度聚乙烯
聚丙烯挤塑机机筒温度 200℃
聚乙烯挤塑机机筒温度 190℃
模头温度 200℃
线速度 100英尺/分钟
空气骤冷环距模口的高度;内侧,外侧 3英寸,35/16英寸
空气骤冷环空气压力;内侧,外侧 4英寸水柱,8英寸水柱
空气骤冷环间隙;内侧,外侧 0.200英寸,0.150英寸
           表6
实施例2电池隔膜的退火/拉伸条件总表
退火温度 120℃
退火时间 12分钟
冷拉伸温度 25℃
冷拉伸伸长率 25%
热拉伸温度 120℃
热拉伸伸长率 130%
热定型温度 120℃
                    表7
       实施例1电池隔膜的产品特性平均值
Gurley秒 厚度密耳 收缩率% 基重毫克/厘米2 孔隙度%
25 1.0 4.5 1.32 43.0
实施例3
按实施例1步骤,制备根据本发明的另一种聚丙烯/聚乙烯/聚丙烯三层电池隔膜。材料及挤塑条件汇于表8,退火、拉伸及热定型条件列于表9,而表10所列是产品特性。
                           表8
              实施例3电池隔膜用材料和挤塑条件总表
设备 Alpine三层共挤塑模头,模芯间隙210密耳,模头直径300毫米
树脂 Fina 3271全同立构聚丙烯,HIZEXHDPE 5202B高密度聚乙烯
聚丙烯挤塑机机筒温度 190℃
聚乙烯挤塑机机筒温度 185℃
模头温度 200℃
线速度 85英尺/秒
空气骤冷环距模口的高度;内侧,外侧 313/16英寸,31/2英寸
空气骤冷环空气压力;内侧,外侧 4英寸水柱,4英寸水柱
空气骤冷环间隙;内侧,外侧 0.250,0.100
          表9
实施例3电池隔膜的退火/拉伸条件总表
退火温度 122℃
退火时间 12分钟
冷拉伸温度 25℃
冷拉伸伸长率 45%
热拉伸温度 122℃
热拉伸伸长率 120%
热定型温度 122℃
                     表10
       实施例3电池隔膜的产品特性平均值
Gurley秒 厚度密耳 收缩率5 基重毫克/厘米2 孔隙度%
30 0.86 2.1 1.25 37
实施例4
按照上述实施例1的步骤,制备聚乙烯/聚丙烯/聚乙烯三层电池隔膜。挤塑操作的具体条件与所用设备及材料列在表11中,退火、拉伸及热定型条件列于表12,而代表性产品特性列于表13。
                               表11
               实施例4电池隔膜用材料和挤塑条件总表
设备 Alpine三层共挤塑模头,模芯间隙140密耳,模头直径300毫米
树脂 Fina 3271全同立构聚丙烯,HIZEX5202B高密度聚乙烯
聚丙烯挤塑机机筒温度 195℃
聚乙烯挤塑机机筒温度 185℃
模头温度 200℃
线速度 80英尺/分钟
空气骤冷环距模口的高度;内侧,外侧 23/4英寸,35/16英寸
空气骤冷环空气压力;内侧,外侧 4英寸,7英寸水柱
空气骤冷环间隙;内侧,外侧 0.150英寸,0.200英寸
         表12
实施例4电池隔膜的退火/拉伸条件总表
退火温度 120℃
退火时间 12分钟
冷拉伸温度 25℃
冷拉伸伸长率 25%
热拉伸温度 120℃
热拉伸伸长率 130%
热定型温度 120°
                   表13
      实施例4电池隔膜的产品特性平均值
Gurley秒 厚度密耳 收缩率% 基重毫克/厘米2 孔隙度%
33 1.07 3 1.4 41
实施例5
按照实施例4的步骤制备另一种聚乙烯/聚丙烯/聚乙烯三层电池隔膜。材料、设备及挤塑条件列于表14,表15列出了退火、热处理及拉伸条件,而表16列出了制得产品的特性。
                                 表14
                   实施例5电池隔膜用材料和挤塑条件总表
设备 Alpine三层共挤塑模头,模芯间隙140密耳,模头直径300毫米
树脂 Fina 3271全同立构聚丙烯,HIZEX5202B高密度聚乙烯
聚丙烯挤塑机机筒温度 195℃
聚乙烯挤塑机机筒温度 190℃
模头温度 193℃
线速度 90英尺/分钟
空气骤冷环距模口的高度;内侧,外侧 31/2英寸,35/16英寸
空气骤冷环空气压力;内侧,外侧 4英寸水柱,6英寸水柱
空气骤冷环间隙;内侧,外侧 0.200英寸,0.080英寸
          表15
实施例5电池隔膜的退火/拉伸条件总表
退火温度 120℃
退火时间 12分钟
冷拉伸温度 25
冷拉伸伸长率 25%
热拉伸温度 120
热拉伸伸长率 130%
热定型温度 120℃
                   表16
       实施例5电池隔膜的产品特性平均值
Gurley秒 厚度密耳 收缩率% 基重毫克/厘米2 孔隙度%
17 0.50 -- -- --
实施例6
按实施例1的步骤,制备根据本发明的另一种聚丙烯/聚乙烯/聚丙烯三层电池隔膜。关于设备、材料及挤塑条件的详细内容列于表17,表18列出了退火、拉伸及热定型参数,表19列出了产品特性。
                              表17
               实施例6电池隔膜用材料及挤塑条件总表
设备 Alpine三层共挤塑模头,模芯间隙140密耳,模头直径300毫米
树脂 Fina 3271全同立构聚丙烯,HIZEX5202B高密度聚乙烯
聚丙烯挤塑机机筒温度 195℃
聚乙烯挤塑机机筒温度 185℃
模头温度 198℃
线速度 80英尺/分钟
空气骤冷环距模口的高度;内侧,外侧 3英寸,35/16英寸
空气骤冷环空气压力;内侧,外侧 2英寸水柱,3英寸水柱
空气骤冷环间隙;内侧,外侧 0.080英寸,0.200英寸
            表18
实施例6电池隔膜的退火/拉伸条件总表
退火温度 125℃
退火时间 8分钟
冷拉伸温度 25℃
冷拉伸伸长率 45%
热拉伸温度 118℃
热拉伸伸长率 200%
热定型温度 125℃
                     表19
        实施例6电池隔膜的产品特性平均值
Gurley秒 厚度密耳 收缩率% 基重毫克/厘米2 孔隙度%
24 15 8 0.70 48
电阻
尽管工业上对可封闭的或者可熔融的电池隔膜很有兴趣,但对表征涉及的现象方面几乎还没做什么工作。据认为,当电池处在热失控状态下,温度可以每分钟100℃或高于100℃的速率上升,或者几倍于这一速率上升。只要有可能,在120-130℃时,电池隔膜的电阻能迅速上升,并保持在高达每平方厘米为10000欧姆左右,则可认为是理想的。已经采用聚丙烯/聚乙烯膜作为电池隔膜,其中聚乙烯在较低温度下发生熔融,而聚丙烯在较高的温度下仍保持原来的结构,因而熔融的聚乙烯就会阻塞隔膜的微孔结构。图4A和图4B图示了用来表征电池隔膜的电性能与温度关系的测量装置,测量装置100包括四个直径为0.375英寸的镍圆片102、104、106和108,它们以3密耳厚度嵌入Kapton聚酰亚胺薄膜110、112中,110、112的厚度也是3密耳。图4A图示了测量装置的上组件,而图4B图示了测量装置的下组件。镍圆片装有以109所示的接头镍片。
上组件114和下组件116用来将隔膜夹在其中间,并可放在带加热板的Carver压机中以125磅/英寸2的压力压入电极。采用Eurotherm808型控制器以稳定的加热速率将加热板从60℃加热至200℃。电极表面温度以两支E型热电偶118、120(0.5密耳厚,未画出)检测,该两支热电偶被固定在一对电极之间、放置在邻近夹持隔膜的电极的位置上。
图4A和4B的装置可按照由Geiger等人的“现代锂电池的隔膜(Advanced Separators for Lithium Batteries)”,11thInternational Seminar on Primary and Secodary BatteryTechnology and Application,Feb.28-Mar.3,1994所述方法操作。采用以1摩尔三氟甲烷-亚氨磺酰锂(HQ-115,3M3 CO.)在碳酸亚丙酯(Aldrich)与三甘醇二甲醚(Aldrich)1∶1(体积)中的溶液作为电解质,该电解质的电导率在使用温度范围内不会发生明显变化,其电阻是按照Laman等人在“充电式锂电池中隔膜的阻抗研究(ImpedanceStudies for Separators in Rechargeable Lithium Battery)”,J.Electrochem Soc.,Vol.140,NO.4,April,1993 pp.L51-53中所述的方法,采用RLC电桥(GenRad 1659型)以1千赫兹频率进行测定的。
图5所示的是商购的电池隔膜按上述方法以每分钟60℃的加热速率或扫描速率测定的电阻对温度的曲线。隔膜A是聚丙烯电池隔膜,隔膜B是聚乙烯电池隔膜而隔膜C是聚丙烯/聚乙烯/聚丙烯三层隔膜。隔膜C也在每分钟1℃的扫描速率下进行测定的,从曲线可发现温度高于130℃左右时出现高电阻,但高电阻的高温限稍低。
图6所示的是五种不同的隔膜按上述方法以每分钟60℃扫描速率测定的电性能曲线。隔膜6(a)、6(b)和6(c)是根据实施例5制备的聚乙烯/聚丙烯/聚乙烯隔膜,隔膜D是商购的聚丙烯/聚乙烯/聚丙烯隔膜,而隔膜E是商购的高分子量聚乙烯隔膜。
由图6可见,只有根据本发明制备的隔膜在130℃与185℃之间的电阻高于每平方厘米10000欧姆。这一特性是由所附权利要求书规定的本发明隔膜所独具的。

Claims (20)

1.一种含微孔聚烯烃膜的电池隔膜,该隔膜在以每分钟60℃的扫描速率、至少约185℃时测定的电阻能保持高于约每平方厘米10000欧姆。
2.根据权利要求1的电池隔膜,其中所述聚烯烃膜在以每分钟2℃的扫描速率、至少约185℃时测定的电阻能保持高于约每平方厘米10000欧姆。
3.根据权利要求1的电池隔膜,其中所述聚烯烃膜的特征在于:在以每分钟60℃的扫描速率、温度约130℃-约185℃范围内测定的电阻保持高于约每平方厘米10000欧姆。
4.根据权利要求2的电池隔膜,其中所述聚烯烃膜的特征在于:在以每分钟2℃的扫描速率、温度约130℃-约185℃范围内测定的电阻保持高于约每平方厘米10000欧姆。
5.根据权利要求1的电池隔膜,其中所述聚烯烃膜是由选自聚乙烯、聚丙烯及它们的混合物的聚合物成形的。
6.根据权利要求5的电池隔膜,其中所述聚烯烃膜包含全同立构聚丙烯形成的微孔聚烯烃。
7.根据权利要求5的电池隔膜,其中所述聚烯烃膜包含高密度聚乙烯形成的微孔膜。
8.根据权利要求1的电池隔膜,其中所述聚烯烃膜是包括至少一层聚丙烯形成的膜和至少一层聚乙烯形成的膜的多层聚烯烃膜。
9.根据权利要求8的电池隔膜,其中所述聚烯烃膜是双层膜。
10.根据权利要求8的电池隔膜,其中所述膜是聚丙烯/聚乙烯/聚丙烯三层膜。
11.一种制造电池隔膜的方法,该方法包括:
(a)将聚合物挤塑成具有内表面和外表面的熔融态圆筒形聚合物膜料坯;
(b)向所述圆筒形料坯的所述内表面和外表面施以低温流体,所述低温流体的作用是使所述熔融态聚合物膜的两表面骤冷,以使该聚合物膜基本上呈固态;以及
(c)赋予所述聚合物膜孔隙度以制成所述微孔隔离膜。
12.根据权利要求11的方法,其中所述挤塑所述聚合物膜的方法包括共挤塑具有至少两层不同组成的聚合物膜。
13.根据权利要求12的方法,其中所述聚合物膜包括一层聚乙烯层和一层聚丙烯层。
14.根据权利要求13的方法,其中所述聚乙烯层是由高密度聚乙烯形成的,而聚丙烯层是由全同立构聚丙烯层形成的。
15.一种制造电池隔膜的方法,该方法包括:
(a)将聚合物挤塑成具有内表面和外表面的熔融态圆筒形聚合物膜料坯;
(b)向所述聚合物膜的所述内表面和外表面施以低温流体,所述低温流体的作用是使所述熔融态聚合物膜的两表面骤冷,以使该聚合物膜基本上呈固态;
(c)对所述聚合物膜实施退火以提高其结晶结构;
(d)拉伸所述聚合物膜;以及
(e)对所述聚合物膜热定型。
16.根据权利要求15的方法,其中所述聚合物膜的拉伸步骤包括:
(f)在低温下使所述聚合物膜伸长至少约20%,随后
(g)在高温下使所述聚合物膜伸长至少约100%。
17.根据权利要求16的方法,其中所述低温是约15℃-约35℃。
18.根据权利要求16的方法,其中所述高温是约110℃-约135℃。
19.根据权利要求15的方法,其中所述聚合物膜包括一层聚乙烯层和一层聚丙烯层。
20.根据权利要求19的方法,其中所述聚丙烯层是由全同立构聚丙烯形成的。
CN00106839A 1999-04-20 2000-04-19 结构稳定的可熔电池隔膜及其制造方法 Pending CN1271184A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/296,682 US6346350B1 (en) 1999-04-20 1999-04-20 Structurally stable fusible battery separators and method of making same
US09/296,682 1999-04-20

Publications (1)

Publication Number Publication Date
CN1271184A true CN1271184A (zh) 2000-10-25

Family

ID=23143080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00106839A Pending CN1271184A (zh) 1999-04-20 2000-04-19 结构稳定的可熔电池隔膜及其制造方法

Country Status (7)

Country Link
US (1) US6346350B1 (zh)
EP (1) EP1047141A2 (zh)
JP (1) JP2000340207A (zh)
KR (1) KR20000071722A (zh)
CN (1) CN1271184A (zh)
CA (1) CA2301453A1 (zh)
SG (1) SG97881A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100459227C (zh) * 2003-08-07 2009-02-04 思凯德公司 电池隔膜及其制造方法
CN101228650B (zh) * 2005-07-25 2010-12-08 帝人株式会社 非水系二次电池用隔膜及其制造方法
CN102700222A (zh) * 2012-05-02 2012-10-03 达尼特材料科技(芜湖)有限公司 多孔膜及其制造方法
CN102820444A (zh) * 2011-06-10 2012-12-12 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN101641406B (zh) * 2007-01-19 2012-12-26 东丽电池隔膜株式会社 聚合材料和它的制备和使用
WO2013044545A1 (zh) * 2011-09-30 2013-04-04 天津东皋膜技术有限公司 具有压缩弹性热关断耐高温的涂层隔膜
CN103128975A (zh) * 2012-12-28 2013-06-05 深圳中兴创新材料技术有限公司 一种聚丙烯微孔膜的制备方法、聚丙烯微孔膜及其应用
CN101291794B (zh) * 2005-10-19 2013-08-28 东丽电池隔膜株式会社 聚烯烃多层微孔膜的制造方法
CN103782412A (zh) * 2011-09-08 2014-05-07 日新制钢株式会社 电池外壳用层叠体及其制造方法以及二次电池
CN108352480A (zh) * 2015-07-31 2018-07-31 赛尔格有限责任公司 改进的层压多层膜、隔板、电池、和方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020136945A1 (en) * 2000-01-18 2002-09-26 Call Ronald W. Multilayer battery separators
US6432586B1 (en) 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
US20050112462A1 (en) 2003-11-21 2005-05-26 Marple Jack W. High discharge capacity lithium battery
US8007940B2 (en) * 2001-12-11 2011-08-30 Eveready Battery Company, Inc. High discharge capacity lithium battery
US6796554B2 (en) * 2002-09-13 2004-09-28 Hewlett-Packard Development Company, L.P. Apparatus for stacking folded paper sheets
US7501008B2 (en) * 2003-01-31 2009-03-10 Microcell Corporation Hydrogen storage systems and fuel cell systems with hydrogen storage capacity
US8283071B2 (en) 2003-11-21 2012-10-09 Eveready Battery Company, Inc. High discharge capacity lithium battery
US8124274B2 (en) * 2003-11-21 2012-02-28 Eveready Battery Company, Inc. High discharge capacity lithium battery
US20050233214A1 (en) * 2003-11-21 2005-10-20 Marple Jack W High discharge capacity lithium battery
US20050244717A1 (en) * 2004-04-30 2005-11-03 Celgard Inc. Battery separator with antistatic properties
EP2263784B1 (en) * 2004-12-22 2012-03-28 Entegris, Inc. Multilayer porous membrane and process of manufacture
KR101243070B1 (ko) * 2005-09-28 2013-03-13 도레이 배터리 세퍼레이터 필름 주식회사 폴리에틸렌 미세 다공막의 제조 방법 및 전지용 세퍼레이터
PT103380B (pt) * 2005-11-09 2007-09-13 Univ Do Minho Linha de extrusão laboratorial para a produção de filme tubular convencional e biorientado, com comutação simples entre as duas técnicas
US10003058B2 (en) 2006-11-17 2018-06-19 Celgard, Llc Method of making a co-extruded, multi-layered battery separator
EP2321126B1 (de) 2008-05-02 2016-06-08 Treofan Germany GmbH & Co.KG Membranfolie für batterien mit abschaltfunktion
PL2274152T3 (pl) 2008-05-02 2014-08-29 Treofan Germany Gmbh & Co Kg Jednowarstwowa folia na membrany do baterii z funkcją wyłączania
WO2009132802A2 (de) * 2008-05-02 2009-11-05 Treofan Germany Gmbh & Co. Kg Membranfolie für batterien mit abschaltfunktion
JP4801705B2 (ja) * 2008-09-03 2011-10-26 三菱樹脂株式会社 セパレータ用積層多孔性フィルム、およびその製造方法
KR101678479B1 (ko) * 2008-10-24 2016-12-06 도레이 배터리 세퍼레이터 필름 주식회사 다층 미세다공막, 이러한 막의 제조방법 및 사용방법
CN102740956B (zh) * 2010-01-13 2015-11-25 东丽电池隔膜株式会社 微孔性膜和用于制备和使用这样的膜的方法
KR101295525B1 (ko) * 2011-06-17 2013-08-12 (주)이쎌텍 전지의 분리막용 미세다공성 필름 제조 장치 및 그 장치를 이용한 필름 제조방법
PL3350854T3 (pl) * 2015-09-18 2023-01-30 Celgard, Llc Ulepszone membrany, mikroporowate membrany kalandrowane, separatory baterii i związane sposoby

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679538A (en) * 1970-10-28 1972-07-25 Celanese Corp Novel open-celled microporous film
CA1028440A (en) * 1973-02-26 1978-03-21 Uop Inc. Polymer compositions with treated filler
EP0099228A3 (en) * 1982-07-06 1985-05-15 Exxon Research And Engineering Company Electrosensitive transfer film
US4539256A (en) * 1982-09-09 1985-09-03 Minnesota Mining And Manufacturing Co. Microporous sheet material, method of making and articles made therewith
US4436888A (en) * 1982-10-05 1984-03-13 E. I. Du Pont De Nemours And Company Method for making balanced low shrink tension polyolefin film
US4634739A (en) * 1984-12-27 1987-01-06 E. I. Du Pont De Nemours And Company Blend of polyethylene and polypropylene
US4650730A (en) 1985-05-16 1987-03-17 W. R. Grace & Co. Battery separator
US4882466A (en) * 1988-05-03 1989-11-21 Raychem Corporation Electrical devices comprising conductive polymers
JP2642206B2 (ja) 1989-12-28 1997-08-20 旭化成工業株式会社 防爆型二次電池
US5851610A (en) * 1991-02-07 1998-12-22 Applied Extrusion Technologies, Inc. Shrink films and articles including the same
JPH0698395A (ja) 1991-09-30 1994-04-08 Iwatsu Electric Co Ltd 音源用振動板
US5281491A (en) 1991-12-20 1994-01-25 W. R. Grace & Co. Battery separator
US5240655A (en) 1991-12-20 1993-08-31 W. R. Grace & Co.-Conn. Process of making a battery separator
JPH0698394A (ja) 1992-09-11 1994-04-08 Pioneer Cone Corp スピーカ用振動部品の製造方法
JP3352801B2 (ja) 1994-01-31 2002-12-03 日東電工株式会社 多孔質フィルム、その製造法およびその用途
US5667911A (en) * 1994-11-17 1997-09-16 Hoechst Celanese Corporation Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby
US5565281A (en) 1994-12-02 1996-10-15 Hoechst Celanese Corporation Shutdown, bilayer battery separator
TW297171B (zh) * 1994-12-20 1997-02-01 Hoechst Celanese Corp
JPH08244152A (ja) 1995-03-15 1996-09-24 Nitto Denko Corp 多孔質フィルムおよびその製造法
JPH08250097A (ja) 1995-03-15 1996-09-27 Kureha Chem Ind Co Ltd 電気化学的装置用極間セパレーター
JPH08266398A (ja) 1995-03-30 1996-10-15 Nippon Sanso Kk 断熱調理鍋
JP3508295B2 (ja) 1995-04-24 2004-03-22 カシオ計算機株式会社 薄膜トランジスタの製造方法
JP3203160B2 (ja) 1995-08-09 2001-08-27 三菱電機株式会社 ボリューム・レンダリング装置及び方法
JP3939778B2 (ja) 1996-02-09 2007-07-04 日東電工株式会社 電池用セパレータ
JPH10154499A (ja) * 1996-11-22 1998-06-09 Nitto Denko Corp 電池用セパレータ及びこれを用いた非水系2次電池
US5993954A (en) * 1997-04-29 1999-11-30 3M Innovative Properties Company Temperature-sensitive microporous film
US5888640A (en) * 1997-07-09 1999-03-30 Mobil Oil Corporation Metallized uniaxially shrinkable biaxially oriented polypropylene film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100459227C (zh) * 2003-08-07 2009-02-04 思凯德公司 电池隔膜及其制造方法
CN101228650B (zh) * 2005-07-25 2010-12-08 帝人株式会社 非水系二次电池用隔膜及其制造方法
CN101291794B (zh) * 2005-10-19 2013-08-28 东丽电池隔膜株式会社 聚烯烃多层微孔膜的制造方法
CN101641406B (zh) * 2007-01-19 2012-12-26 东丽电池隔膜株式会社 聚合材料和它的制备和使用
CN102820444B (zh) * 2011-06-10 2015-09-30 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN102820444A (zh) * 2011-06-10 2012-12-12 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN103782412A (zh) * 2011-09-08 2014-05-07 日新制钢株式会社 电池外壳用层叠体及其制造方法以及二次电池
CN103782412B (zh) * 2011-09-08 2016-04-13 日新制钢株式会社 电池外壳用层叠体及其制造方法以及二次电池
CN103035864A (zh) * 2011-09-30 2013-04-10 天津东皋膜技术有限公司 具有压缩弹性热关断耐高温的涂层隔膜
WO2013044545A1 (zh) * 2011-09-30 2013-04-04 天津东皋膜技术有限公司 具有压缩弹性热关断耐高温的涂层隔膜
CN103035864B (zh) * 2011-09-30 2017-06-06 天津东皋膜技术有限公司 具有压缩弹性热关断耐高温的涂层隔膜
CN102700222B (zh) * 2012-05-02 2015-07-01 达尼特材料科技(芜湖)有限公司 多孔膜及其制造方法
CN102700222A (zh) * 2012-05-02 2012-10-03 达尼特材料科技(芜湖)有限公司 多孔膜及其制造方法
CN103128975A (zh) * 2012-12-28 2013-06-05 深圳中兴创新材料技术有限公司 一种聚丙烯微孔膜的制备方法、聚丙烯微孔膜及其应用
CN108352480A (zh) * 2015-07-31 2018-07-31 赛尔格有限责任公司 改进的层压多层膜、隔板、电池、和方法

Also Published As

Publication number Publication date
CA2301453A1 (en) 2000-10-20
JP2000340207A (ja) 2000-12-08
SG97881A1 (en) 2003-08-20
EP1047141A2 (en) 2000-10-25
KR20000071722A (ko) 2000-11-25
US6346350B1 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
CN1271184A (zh) 结构稳定的可熔电池隔膜及其制造方法
CN1198347C (zh) 爆裂倾向降低的电池隔板
US8262973B2 (en) Microporous polyolefin film with improved meltdown property and preparing method thereof
TWI425045B (zh) 多層微多孔聚烯烴膜、其製法、及由它製得之電池隔離材
CN102575038B (zh) 多孔性聚丙烯膜卷
KR102266028B1 (ko) 폴리올레핀 미다공막 및 이의 제조 방법
JP6688922B2 (ja) 分離膜およびその製造方法
CN107316964B (zh) 一种改性均聚聚丙烯/高密度聚乙烯/改性均聚聚丙烯三层共挤锂电池隔膜及其制备方法
KR101437621B1 (ko) 다층 폴리올레핀계 미세다공막 및 그 제조방법
CN107732100B (zh) 一种三层共挤锂离子电池隔膜及其制备方法
EP2075126B1 (en) Microporous polyolefin multi layer film and preparing method thereof
EP2660277A1 (en) Polyolefin porous membrane and method of producing the same
KR20170019348A (ko) 폴리올레핀 다층 미세 다공질 막, 이의 제조 방법 및 전지용 세퍼레이터
CN107331822A (zh) 一种聚丙烯/聚乙烯/聚丙烯三层共挤锂离子电池隔膜及其制备方法
JP2011503247A5 (zh)
CN102527260A (zh) 一种多层聚乙烯微孔膜及其制备方法
EP3731305A1 (en) Crosslinked polyolefin separator and method of manufacturing the same
KR102229797B1 (ko) 폴리올레핀 다층 미다공막 및 이의 제조 방법
JPWO2018043335A1 (ja) 微多孔膜、リチウムイオン二次電池及び微多孔膜製造方法
KR20200026756A (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
CN105355811A (zh) 一种聚烯烃微孔膜、制备方法及锂离子电池
US20040080068A1 (en) Process of producing porous films
JP2009266808A (ja) ポリオレフィン微多孔膜
CN114142160B (zh) 一种纳米陶瓷-聚丙烯复合电池隔膜及制备方法
US3010950A (en) Polytetrafluoroethylene fine powders

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication