CN113837364A - 基于残差网络和注意力机制的污水处理软测量方法及系统 - Google Patents
基于残差网络和注意力机制的污水处理软测量方法及系统 Download PDFInfo
- Publication number
- CN113837364A CN113837364A CN202111091225.9A CN202111091225A CN113837364A CN 113837364 A CN113837364 A CN 113837364A CN 202111091225 A CN202111091225 A CN 202111091225A CN 113837364 A CN113837364 A CN 113837364A
- Authority
- CN
- China
- Prior art keywords
- sewage treatment
- model
- soft
- layer
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010865 sewage Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000007246 mechanism Effects 0.000 title claims abstract description 19
- 238000012549 training Methods 0.000 claims abstract description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000012360 testing method Methods 0.000 claims abstract description 24
- 238000010200 validation analysis Methods 0.000 claims abstract description 18
- 238000000691 measurement method Methods 0.000 claims abstract description 15
- 238000005259 measurement Methods 0.000 claims description 34
- 239000007787 solid Substances 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 16
- 238000012795 verification Methods 0.000 claims description 16
- 230000004913 activation Effects 0.000 claims description 12
- 238000010606 normalization Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 238000011156 evaluation Methods 0.000 claims description 9
- 238000011176 pooling Methods 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000004927 fusion Effects 0.000 claims description 5
- 230000014509 gene expression Effects 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 claims 1
- 238000013527 convolutional neural network Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 11
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010238 partial least squares regression Methods 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012628 principal component regression Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
- G01N33/1806—Biological oxygen demand [BOD] or chemical oxygen demand [COD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Probability & Statistics with Applications (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Emergency Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Operations Research (AREA)
- Biodiversity & Conservation Biology (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Activated Sludge Processes (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111091225.9A CN113837364B (zh) | 2021-09-17 | 2021-09-17 | 基于残差网络和注意力机制的污水处理软测量方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111091225.9A CN113837364B (zh) | 2021-09-17 | 2021-09-17 | 基于残差网络和注意力机制的污水处理软测量方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113837364A true CN113837364A (zh) | 2021-12-24 |
CN113837364B CN113837364B (zh) | 2023-07-11 |
Family
ID=78959742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111091225.9A Active CN113837364B (zh) | 2021-09-17 | 2021-09-17 | 基于残差网络和注意力机制的污水处理软测量方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113837364B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114527716A (zh) * | 2022-02-08 | 2022-05-24 | 青岛理工大学 | 一种基于注意力机制和行为克隆模型的污水处理预测控制方法 |
CN115952685A (zh) * | 2023-02-02 | 2023-04-11 | 淮阴工学院 | 基于集成深度学习的污水处理过程软测量建模方法 |
CN117371873A (zh) * | 2023-12-01 | 2024-01-09 | 四川省生态环境科学研究院 | 一种基于大数据的环境保护工程用污水评估方法 |
CN117952228A (zh) * | 2024-02-01 | 2024-04-30 | 北京东方国信科技股份有限公司 | 软测量模型的训练方法及装置 |
CN118153409A (zh) * | 2024-04-02 | 2024-06-07 | 清华大学 | 污水厂微塑料去除过程模型构建方法及装置 |
CN118568448A (zh) * | 2024-08-05 | 2024-08-30 | 济南一杯水环保科技有限公司 | 一种供水管道微生物污染动态监测与消毒响应预测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110889085A (zh) * | 2019-09-30 | 2020-03-17 | 华南师范大学 | 基于复杂网络多元在线回归的废水智能监控方法及系统 |
CN111291937A (zh) * | 2020-02-25 | 2020-06-16 | 合肥学院 | 基于支持向量分类与gru神经网络联合的处理污水水质预测方法 |
CN112116080A (zh) * | 2020-09-24 | 2020-12-22 | 中国科学院沈阳计算技术研究所有限公司 | 一种融合了注意力机制的cnn-gru水质预测方法 |
CN112232214A (zh) * | 2020-10-16 | 2021-01-15 | 天津大学 | 一种基于深度特征融合和注意力机制的实时目标检测方法 |
CN113159395A (zh) * | 2021-03-31 | 2021-07-23 | 华南师范大学 | 一种基于深度学习的污水处理厂进水流量预测方法及系统 |
-
2021
- 2021-09-17 CN CN202111091225.9A patent/CN113837364B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110889085A (zh) * | 2019-09-30 | 2020-03-17 | 华南师范大学 | 基于复杂网络多元在线回归的废水智能监控方法及系统 |
CN111291937A (zh) * | 2020-02-25 | 2020-06-16 | 合肥学院 | 基于支持向量分类与gru神经网络联合的处理污水水质预测方法 |
CN112116080A (zh) * | 2020-09-24 | 2020-12-22 | 中国科学院沈阳计算技术研究所有限公司 | 一种融合了注意力机制的cnn-gru水质预测方法 |
CN112232214A (zh) * | 2020-10-16 | 2021-01-15 | 天津大学 | 一种基于深度特征融合和注意力机制的实时目标检测方法 |
CN113159395A (zh) * | 2021-03-31 | 2021-07-23 | 华南师范大学 | 一种基于深度学习的污水处理厂进水流量预测方法及系统 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114527716A (zh) * | 2022-02-08 | 2022-05-24 | 青岛理工大学 | 一种基于注意力机制和行为克隆模型的污水处理预测控制方法 |
CN114527716B (zh) * | 2022-02-08 | 2023-12-15 | 海斯特(青岛)泵业有限公司 | 一种基于注意力机制和行为克隆模型的污水处理预测控制方法 |
CN115952685A (zh) * | 2023-02-02 | 2023-04-11 | 淮阴工学院 | 基于集成深度学习的污水处理过程软测量建模方法 |
CN115952685B (zh) * | 2023-02-02 | 2023-09-29 | 淮阴工学院 | 基于集成深度学习的污水处理过程软测量建模方法 |
CN117371873A (zh) * | 2023-12-01 | 2024-01-09 | 四川省生态环境科学研究院 | 一种基于大数据的环境保护工程用污水评估方法 |
CN117371873B (zh) * | 2023-12-01 | 2024-03-26 | 四川省生态环境科学研究院 | 一种基于大数据的环境保护工程用污水评估方法 |
CN117952228A (zh) * | 2024-02-01 | 2024-04-30 | 北京东方国信科技股份有限公司 | 软测量模型的训练方法及装置 |
CN118153409A (zh) * | 2024-04-02 | 2024-06-07 | 清华大学 | 污水厂微塑料去除过程模型构建方法及装置 |
CN118153409B (zh) * | 2024-04-02 | 2025-01-28 | 清华大学 | 污水厂微塑料去除过程模型构建方法及装置 |
CN118568448A (zh) * | 2024-08-05 | 2024-08-30 | 济南一杯水环保科技有限公司 | 一种供水管道微生物污染动态监测与消毒响应预测方法 |
CN118568448B (zh) * | 2024-08-05 | 2024-12-10 | 济南一杯水环保科技有限公司 | 一种供水管道微生物污染动态监测与消毒响应预测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113837364B (zh) | 2023-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113837364A (zh) | 基于残差网络和注意力机制的污水处理软测量方法及系统 | |
CN110824914B (zh) | 一种基于pca-lstm网络的废水处理智能监控方法 | |
CN113837356B (zh) | 基于融合神经网络的污水处理智能预测方法 | |
CN110110466B (zh) | 一种机器学习和工艺仿真的污水处理目标参数预测方法 | |
CN109492265B (zh) | 基于动态非线性pls软测量方法的废水出水指标预测方法 | |
CA3049807A1 (en) | Intelligent systems and methods for process and asset health diagnosis, anomoly detection and control in wastewater treatment plants or drinking water plants | |
CN110889085A (zh) | 基于复杂网络多元在线回归的废水智能监控方法及系统 | |
CN110824915B (zh) | 基于ga-dbn网络的废水处理智能监控方法及系统 | |
CN110705692A (zh) | 一种基于空间和时间注意力的长短期记忆网络对工业非线性动态过程产品质量预测方法 | |
CN108920888B (zh) | 一种基于深度神经网络的连续搅拌釜式反应过程辨识方法 | |
CN111898734B (zh) | 一种基于mlp的nmr弛豫时间反演方法 | |
CN102262147A (zh) | 一种废水处理系统出水cod的软测量方法和系统 | |
CN107402586A (zh) | 基于深度神经网络的溶解氧浓度控制方法及系统 | |
CN103235096A (zh) | 污水水质检测方法与装置 | |
CN110320335A (zh) | 一种关于污水处理出水水质指标的多元鲁棒软测量方法 | |
CN115204227A (zh) | 基于深度学习的设备故障诊断中不确定性量化校准方法 | |
CN114944203A (zh) | 基于自动寻优算法与深度学习的废水处理监控方法及系统 | |
CN111122811A (zh) | 一种oica和rnn融合模型的污水处理过程故障监测方法 | |
CN108595892A (zh) | 基于时间差分模型的软测量建模方法 | |
JPWO2020021688A1 (ja) | 水処理プラントおよび水処理プラントの運転方法 | |
CN116029612A (zh) | 一种基于深度学习的城镇污水厂外加碳源精准控制方法 | |
CN114897103A (zh) | 一种基于近邻成分损失优化多尺度卷积神经网络的工业过程故障诊断方法 | |
CN113159395A (zh) | 一种基于深度学习的污水处理厂进水流量预测方法及系统 | |
CN111125907A (zh) | 一种基于混合智能模型的污水处理氨氮软测量方法 | |
CN113838542A (zh) | 化学需氧量智能预测方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241210 Address after: Building 8, Huashi University West, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou City, Guangdong Province 510630 (Huashi Technology Building), self-designed 3rd floor, No. 355-361 Patentee after: South China Normal University (Guangzhou) University Science and Technology Park Co.,Ltd. Country or region after: China Address before: 510006 School of environment, South China Normal University, 378 Waihuan West Road, Panyu District, Guangzhou City, Guangdong Province Patentee before: SOUTH CHINA NORMAL University Country or region before: China |
|
TR01 | Transfer of patent right |