Nothing Special   »   [go: up one dir, main page]

CN113423502B - 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法 - Google Patents

用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法 Download PDF

Info

Publication number
CN113423502B
CN113423502B CN202080011989.XA CN202080011989A CN113423502B CN 113423502 B CN113423502 B CN 113423502B CN 202080011989 A CN202080011989 A CN 202080011989A CN 113423502 B CN113423502 B CN 113423502B
Authority
CN
China
Prior art keywords
aluminum oxide
cracking
barium calcium
calcium aluminum
monolith
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080011989.XA
Other languages
English (en)
Other versions
CN113423502A (zh
Inventor
C·卡迪根
R·奥黑尔
J·D·比奇
A·W·韦尔奇
J·D·金特纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spark Energy
Colorado School of Mines
Original Assignee
Spark Energy
Colorado School of Mines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spark Energy, Colorado School of Mines filed Critical Spark Energy
Priority to CN202410498800.4A priority Critical patent/CN118437334A/zh
Publication of CN113423502A publication Critical patent/CN113423502A/zh
Application granted granted Critical
Publication of CN113423502B publication Critical patent/CN113423502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0411Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

用于NH3裂化和/或合成的催化剂通常包括用钌、钴或二者修饰的钡钙铝氧化物化合物。这些催化剂可以结合至金属结构上,这改善了导热性和气体传导性。

Description

用于NH3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形 成方法
相关申请的交叉引用
本申请根据35U.S.C.§119(e)要求如下美国临时专利申请序列号的优先权和权益:2019年1月31日提交的62/799,595(“Metal-Decorated Barium Calcium AluminumOxide Catalyst for Cracking NH3”);2019年2月5日提交的62/801,578(“MetalMonolith Supported Catalysts for NH3 Synthesis and Cracking”);和2019年11月6日提交的62/931,537(“Cobalt-Decorated Barium Calcium Aluminum Oxide for NH3Synthesis and Cracking”,其各自通过引用以其整体并入本文。
本申请涉及2018年5月15日提交的名称为“Metal-Decorated Barium CalciumAluminum Oxide and Related Materials for NH3Catalysis”的国际公开号WO 2018/213305。它通过引用以其整体并入本文。
技术领域
公开文本涉及用于如下二者的催化剂:(1)将氨裂化(crack)为氮气、氢气和氨的混合物和(2)由氮气和氢气的混合物合成氨。本文还描述了制造催化剂和使用催化剂裂化和/或合成NH3的方法。
背景技术
人类导致的二氧化碳(CO2)排放导致全球变暖、气候变化和海洋酸化,其每一个均威胁人类的持续经济发展和安全。为了应对这种威胁,工业化国家和发展中国家都积极寻求基本无CO2排放的能源。虽然已经广泛开发了几种无CO2能源产生选项,但目前没有一种包括可行的无CO2燃料。
氨(NH3)可以根据如下反应式(1)作为燃料燃烧:
4NH3(g)+3O2→2N2+6H2O(g)+热量 (1)
如果将NH3热重整为氢气和氮气,则NH3可直接用作无碳燃料或用作氢源。它还可以用于NH3、H2和N2的混合物中以使其燃烧特性适合特定的工艺或设备。与气态氢、液态氢或电池组相比,它具有更高的能量密度,更容易的储存条件和更便宜的长期储存和配送。
生产氨的主要工业程序是Haber-Bosch工艺,如下列反应式(2)所示:
N2 (g) + 3 H2(g) → 2 NH3 (g) (ΔH = -92.2 kJ/mol) (2)
在2005年,Haber-Bosch氨合成每生产1吨NH3平均产生约2.1吨CO2;大约三分之二的CO2产量来自烃的蒸汽重整以生产氢气,而剩余的三分之一来自烃燃料燃烧,为合成工厂提供能量。到2005年,大约75%的Haber-Bosch NH3工厂使用天然气作为进料和燃料,而其余使用煤或石油。Haber-Bosch NH3合成消耗约3%至5%的全球天然气产量和约1%至2%的全球能量产量。
Haber-Bosch反应通常在含有氧化铁或钌催化剂的反应器中在约300℃至约550℃的温度和约90巴至约180巴的压力下进行。需要升高的温度以实现合理的反应速率。由于NH3合成的放热性质,升高的温度驱动平衡朝向反应物,但这被高压抵消。
氨合成的最新进展已经产生了可以在约300℃至约600℃的温度和范围从1巴至高达压力容器和压缩机设计的实际极限的压力下运行的反应器。当设计用于较低操作压力时,这种新一代反应器可降低设备成本和气体压缩成本,但它们还降低在每次通过催化剂床期间转化成NH3的N2和H2反应物的分数。这增加了制备给定量的NH3所需的再循环次数,这会增加给定量的NH3的热损失,除非反应器热量用合适的热交换器有效地再循环。除非使用具有高气体传导性的催化剂床,否则更高的反应物再循环次数也会增加再循环泵能量要求。
使用现今的商业催化剂,NH3的热裂化可能需要700-900℃的温度。如果不使用催化剂,则需要甚至更高的温度。这样的高温是不期望的,因为它们增加了裂化NH3所需的能量,并且因为它们会引起许多材料变形或降解。已知在氧化铝载体上的钌催化NH3裂化,但其需要相对高的金属负载量和相对高的(约700℃)操作。高钌负载量是不期望的,因为其增加了催化剂成本。钌是铂族金属,其相对稀少并且每克成本高。700℃的工作温度也是不理想的,因为它仍然足够热而使低成本的钢和不锈钢快速降解或变形。
被频繁启动和停止的以NH3为燃料的设备(比如汽车和调峰发电厂)需要NH3裂化器设计,所述NH3裂化器可被快速加热到其工作温度,并且在许多温度循环后可保持良好的催化剂附着性。必须适配约束空间的设备需要紧凑的NH3裂化器设计。需要大量燃料或具有高度可变的燃料流动要求的设备可以受益于具有高气体传导性的NH3裂化器以在高流动操作期间使燃料压降最小化。
NH3燃料现在正被碱性燃料电池制造商使用。它是使海上运输脱碳和为无碳电网提供季节性储能的主要竞争者。它也是用于使长途卡车运输的内燃机脱碳的最有可能的解决方案。
最近开发的用于NH3燃料用途的NH3合成反应器和NH3裂化反应器暴露了对NH3活性催化剂床的需要,催化剂床(a)可以良好地在700℃如下运行,(b)可以快速加热到它们的工作温度,(c)经历来自热循环的最小降解,(d)仅需要小的铂族金属负载量或根本不需要铂族金属,以及(e)具有高气体传导性。
附图说明
图1示出了为实验室测试制得的波纹状金属单体(metal monolith)的径向截面。
图2A和2B示出了金属单体和装有用于在台式设备中测试的管连接件的那种类型的整料的轴向截面。
图3示出了对于1wt%Ru/B2CA填充的催化剂床而言作为催化剂温度的函数的NH3裂化分数。
图4示出了用于测试催化剂的台式NH3裂化设备。
图5示出了作为温度的函数的Ru/B2CA和Co/B2CA的NH3裂化性能。
图6示出了作为NH3流的函数的20wt%Co/B2CA的NH3裂化性能。
图7示出了作为时间的函数的20wt%Co/B2CA的NH3裂化性能。
图8比较了20wt%Co/B2CA与Ru/B2CA的耐久性测试前后的NH3裂化性能。
图9比较了钴修饰的(cobalt-decorated)B2CA和钴氧化物修饰的B2CA的NH3合成性能。
图10比较了具有不同组成的钴修饰的、钌修饰的钡钙铝氧化物(barium calciumaluminum oxide)的NH3合成性能。
具体实施方式
本文描述了适合于由N2+H2混合物合成NH3和将NH3裂化为N2+H2+NH3混合物的钴修饰的和钌及钴修饰的钡钙铝氧化物催化剂的各种实施方案,以及使用所公开的催化剂合成和裂化NH3的相应方法。本文还描述了适用于NH3裂化的钌修饰的钡钙铝氧化物催化剂的各种实施方案以及使用所公开的催化剂裂化NH3的相关方法。因此,如本文所述,所公开的催化剂可以使用低钌负载量、钴负载量(根本没有钌)或钌和钴的混合物。本文所述的催化剂可以结合至金属结构上,这改善了导热性和气体传导性。本文所述的技术至少通过如下来改进现有技术的状态:(a)提供具有低铂族金属负载量或不具有铂族金属负载量的高NH3活性催化剂,(b)降低裂化NH3所需的温度,和/或(c)提供可鲁棒地结合至精确设计的金属单体上的催化剂,所述金属单体减少催化剂床热质量,增加其导热性,并增加其气体传导性。
公开文本引用“B2CA”,其是水泥化学表示法,其中B=BaO(氧化钡),C=CaO(氧化钙),A=Al2O3(氧化铝)。因此,如本文所使用,术语“B2CA”=Ba2CaAl2O6,一种钡钙铝氧化物化合物。使用类似的水泥化学表示法,公开文本还参考了另外的钡钙铝氧化物化合物,比如B21C16A3(Ba21Ca16Al6O46)、BCA2(BaCaAl2O6)、B5C7A4(Ba5Ca7Al8O24)、B3C3A2(Ba3Ca3Al2O12)、B2C5A(Ba2Ca5Al2O10)、和BCA(BaCaAl2O5)。
催化剂合成
本文所述的催化剂,其通常适用于本文所述的NH3裂化和合成方法中,通过首先合成B2CA粉末或相关钡钙铝氧化物组合物来制备。可以使用合成B2CA或相关钡钙铝氧化物组合物的任何方法。用于制备本文所述催化剂的钡钙铝氧化物化合物还可以使一些或全部铝氧化物被硼氧化物替代。在一些实施方案中,制备钡钙铝氧化物化合物(包括制备其中一些或全部铝氧化物被硼氧化物替代的钡钙铝氧化物化合物)的方法与国际公开号WO 2018/213305描述的方法类似或相同,通过引用将其整体并入本文。
然后用0.1wt%至10wt%的钌、0.1wt%至50wt%的钴、或在这些前述范围内的钌和钴的组合修饰所得粉末。使用催化活性金属修饰钡钙铝氧化物粉末可以使用任何合适的方法进行,包括但不限于以与WO 2018/213305中描述的方法类似或相同的方式。当遵循WO2018/213305中描述的方法时,修饰通常通过如下进行:(a)在金属盐+丙酮溶液中搅拌该粉末以用所需金属的盐修饰其表面,和(b)在含氢气氛中将所得材料退火以将金属盐还原成金属。合适的金属盐的非限制性示例是用于Ru修饰的RuCl3水合物和用于Co修饰的CoCl2六水合物。Ru+Co金属修饰混合物可以通过使用含有Ru盐和Co盐二者的溶液制备或通过相继沉积金属来制备。存在于水合盐中的水似乎不会通过水合钡钙铝粉而损坏该钡钙铝粉。与无水RuCl3相比,RuCl3水合物通常购买更便宜并且更容易溶解在丙酮中,因此在一些实施方案中可以是优选的。
在一些实施方案中,可以省略步骤(b),比如当需要在NH3合成或裂化设备中将金属盐第一次在H2或NH3流下加热至工作温度时将其还原成金属时。然而,如果这样做,必须注意盐的放出的阴离子(例如氯)不会损害合成或裂化设备中的下游装置。
通过在含氧气氛中对Co/钡钙铝氧化物进行退火,可以将Co/钡钙铝氧化物催化剂转化成Co氧化物/钡钙铝氧化物催化剂。对于一些钴负载,催化剂的氧化形式比用于NH3合成的金属形式表现得更好。将Co/钡钙铝氧化物退火以形成Co-氧化物/钡钙铝氧化物的一个示例是,在50%氧气/50%氮气气氛中,使用5℃/分钟渐变(ramp)至400℃,在400℃停留2小时,然后5℃/分钟渐变至室温,将Co/钡钙铝氧化物退火。
由此形成的金属修饰的钡钙铝氧化物组合物可以通过国际公开号WO 2018/213305中描述的方法或经由任何其他合适的方法而形成为催化剂床。WO 2018/213305中描述的方法包括,作为示例,使用该材料作为粉末,将其挤出成粒料,将其压制成粒料,并且将其结合至结构支撑件上。已经发现,具有结合至其表面的金属修饰的钡钙铝氧化物薄层的金属单体由于其高的气体传导性、高的导热性和高的催化剂利用率而特别有益于NH3合成和裂化。
金属修饰的钡钙铝氧化物催化剂涂覆的金属单体制造
制造金属修饰的钡钙铝氧化物催化剂涂覆的金属单体的方法通常包括三个步骤:制造整料,用钡钙铝氧化物化合物涂覆整料,和使用催化活性金属修饰钡钙铝氧化物涂层。
金属单体可以形成为工程要求(比如气体传导性、导热性和整料的每单位长度的表面积)所需的任何特定形状。金属单体可从商业供应商以各种构型获得。图1示出了通过用于实验室测试目的的由Starfire Energy制造的螺旋形金属单体100的径向截面。在这种情况下,金属单体100由以螺旋形式彼此抵靠的两片钣金形成。一片钣金101是平坦的,而另一片102是波纹状的。钣金片101、102的一端焊接在杆103上。钣金片101和102围绕杆103缠绕,这产生反应物可以流动通过其的轴向通道104。螺旋整料100插入金属管105中,金属管防止螺旋展开并允许整料100稍后接合到用于反应物气体入口和产物气体出口的工艺气体管道。许多其他金属单体设计也是可能的。
图2A示出了整料200的轴向截面,图2B示出了在整料200已经与端盖和管连接件适配以在台式催化剂测试设备中测试之后的整料250。在该实施方案中,整料200包括金属管壳201和波纹状的金属箔内部202。为测试250已经制备的整料包括相同的金属管壳201和箔内部202,其上焊接有端盖254和255。管251、252和253焊接到所述端盖。管252为催化剂整料提供反应物,管253接受来自催化剂整料的产物气体。管251允许热电偶放置在整料的反应物入口侧附近或之上以测量其温度。
可基于其耐温性、化学相容性和/或催化剂附着特性以及任何其他特性来选择整料钣金。在NH3裂化的情况下,钣金优选地在高达至少450℃,并且优选地高达700℃的温度下耐受还原气氛(特别是H2和NH3)。还希望钡钙铝氧化物很好地附着到整料钣金上。Fecralloy(含铝不锈钢的商品名)、渗铝(aluminized)不锈钢(在类似于电镀的工艺中浸涂有铝的不锈钢)、以及不锈钢合金可以满足这些条件并且是可商购的。渗铝软钢合金可以是合适的。
金属单体可被氧化以促进钡钙铝氧化物附着。在Fecralloy或渗铝不锈钢整料的情况下,氧化导致在钣金表面上形成良好结合的铝氧化物层。该铝氧化物层可以促进钡钙铝氧化物附着。表面氧化还可以促进钡钙铝氧化物与不锈钢的附着。氧化Fecralloy的退火曲线的示例是在50%O2+50%N2气氛中在1015℃下进行6小时退火。氧化渗铝不锈钢的退火方案的示例是在50%O2+50%N2气氛中在700℃下进行6小时退火。
在一些实施方案中,金属单体可以被设计和制造成允许电流通过它,使得它可以被电加热。这种整料的示例是由Continental Corporation生产的EmiCat金属单体。
钡钙铝氧化物粉末从含有有机结合剂的有机溶剂浆料沉积在金属单体上。有机溶剂优选具有低粘度以促进浆料流过整料以及高蒸汽压以促进溶剂从浆料涂覆的整料中快速蒸发。合适的有机溶剂的示例是丙酮。合适的有机结合剂的示例是柠檬酸。已经发现,10mg柠檬酸/mL丙酮为测试的整料提供了良好的结合性能;然而,可调节特定柠檬酸浓度以使浆料性质适合特定应用。优选不使用水作为钡钙铝氧化物浆料的溶剂的主要组分,因为钡钙铝氧化物是当暴露于水时将水合的水泥形成剂。这种水合可以改变其物理和化学性质。
向有机溶剂+结合剂溶液加入“精细研磨”的钡钙铝氧化物即可形成钡钙铝氧化物浆料。“精细研磨”的示例是已经行星式球磨至如通过氮气BET分析所测量的约4m2/g表面积的粉末。具有显著更低的表面积的粉末可能不会保持悬浮在有机溶剂+结合剂溶液中以形成浆料。具有较高表面积的钡钙铝氧化物粉末可以很好地起作用,但不是绝对必要的。
可以通过将整料浸渍在浆料中,通过将浆料倾倒通过整料,或通过将浆料泵送通过整料,以及通过任何其他合适的方式,而将钡钙铝氧化物应用到整料上。在所有情况下,在足够的浆料已从整料排出以允许通道打开之后,整料可从“右侧向上”旋转到“上侧向下”以促进均匀的浆料涂覆。可继续旋转直至足够的溶剂已从浆料中蒸发,使得浆料不再在整料表面上流动。
涂覆有干燥的涂浆的整料可在氧气气氛中退火,以蒸发残余溶剂,烧掉有机结合剂,并促进钡钙铝氧化物晶粒之间的彼此结合以及与整料的结合。氧气气氛的示例包括在氮气和环境空气中的50%的氧气。用于将钡钙铝氧化物结合至金属单体上的退火曲线的示例是:5℃/分钟渐变至700℃,在700℃停留6小时,5℃/分钟渐变至室温。可以使用其他退火曲线,并且可以基于整料的耐热性和最终钡钙铝氧化物表面积与结合强度之间的权衡来选择。退火温度优选不超过1200℃,因为这会熔化钡钙铝氧化物,结果可能损坏金属单体。
可以通过将整料浸入合适的金属盐溶液中或通过其通道倾倒合适的金属盐溶液而用Ru或Co或二者修饰整料上的钡钙铝氧化物涂层。Co溶液的示例是溶解在丙酮中的氯化钴六水合物。可以使用0.1至50wt%(相对于整料上的钡钙铝氧化物的质量)的钴负载量,其中15至25wt%的Co是一个优选的范围。Ru溶液的示例是溶解在丙酮中的RuCl3水合物。可以使用0.1至10wt%的Ru负载量(相对于整料上的钡钙铝氧化物的质量),其中1至5wt%的Ru是一个优选的范围。在这两种情况下,金属盐从溶液吸附到钡钙铝氧化物上,导致溶液颜色变淡。期望的金属负载量可以通过使用少量的浓溶液或更大量的稀溶液来实现。对于窄通道的整料,丙酮溶液可以通过毛细作用保持在通道中,使其具有非常长的蒸发时间。在这种情况下,还可以通过用压缩气体将金属盐溶液吹出整料通道并进入容器,继续使压缩气体流动以从通道蒸发残余溶剂,然后将捕获的溶液倒回通过整料,来促进金属盐沉积。这一工艺可以重复直到溶液被消耗。金属氯化物修饰可以通过退火转化成金属。在一些实施方案中,在氢气气氛中退火是优选的,因为氢气促使氯离开金属氯化物变成HCl气体,从而允许在较低温度(低至200℃)下进行退火。退火也可以在氮气中进行,但需要更高的温度(例如500℃)。在氢气气氛中退火以将金属氯化物转化成金属的示例是:5℃/分钟渐变至400℃,在400℃下停留2小时,然后5℃/分钟渐变至室温。另一个示例是在氢气氛中在240℃下退火12小时。
用于NH3裂化的催化剂
在示例性催化剂裂化方法中,将裂化催化剂床或整料加热至300至650℃并引导NH3气体通过它。可以在将NH3输入流引入催化剂床之前将其预热。NH3裂化是吸热过程,因此裂化床需要加热以在使用期间保持其温度。
当NH3气体流过热催化剂床时,其裂化为N2+H2+NH3混合物。N2和H2将处于由NH3反应物的组成所决定的化学计量的3H2:1N2比率。裂化产物气体中残余NH3的浓度可以根据如下而变化:(a)反应是否在裂化器中进行到平衡,和(b)针对裂化器中使用的温度和压力,NH3在N2+H2+NH3混合物中的热力学平衡浓度。
产物流中NH3的平衡浓度可以通过提高催化剂床温度或降低其压力来降低。产物流中NH3的平衡浓度可以通过降低催化剂床温度或增加其压力来增加。
对于给定的催化剂床体积、温度和压力,通过降低NH3流动速率来增加在催化剂床中的停留时间,可以使裂化为N2+H2的进的NH3的分数更接近热力学平衡值。如果仅需要NH3气体的部分裂化,可以通过增加NH3流量来减少在催化剂床中的停留时间,从而减少在反应器中裂化的NH3的分数。对于恒定的NH3输入流量、压力和催化剂床体积,裂化的NH3分数可以通过增加床温度来增加和通过降低床温度来降低。
用于NH3合成的催化剂
在示例性催化剂合成方法中,将合成催化剂床或整料加热至200至650℃,并引导N2+H2气体混合物通过它。反应物压力可以为0.1巴至500巴。可以在将反应物输入流引入催化剂床之前将其预热。当N2+H2气体混合物流过热催化剂床时,其一部分转化成NH3。产物气体中NH3的浓度可以根据如下而变化:(a)反应是否在反应器中进行到平衡,和(b)针对反应器中使用的温度和压力,NH3在N2+H2+NH3混合物中的热力学平衡浓度。
产物流中NH3的平衡浓度可以通过降低催化剂床温度或增加其压力来增加。NH3合成是放热过程,因此当合成NH3时,裂化床会变得更热。这在高操作压力下可能是特别重要的,为此可能需要排热机制来防止反应器过热。
对于给定的催化剂床体积、温度和压力,通过降低NH3流动速率来增加在催化剂床中的停留时间,可以使转化成NH3的进入的N2+H2的分数更接近热力学平衡值。
实施例
实施例1
根据国际公开号WO 2018/213305中描述的方法制备B2CA粉末并用1wt%Ru金属修饰。将Ru修饰粉末冷压成不含结合剂的粒料。将粒料压碎以产生一定范围的粒度,并将所得混合物筛分以选择约20目颗粒。将0.2g的Ru修饰的B2CA颗粒与0.4g的无催化剂的氧化铝颗粒稀释剂混合,并将催化剂-稀释剂混合物装载至催化剂承载器中。
在包括NH3气体供应、NH3流量控制器、管式炉、NH3预热管、催化剂承载器和气相色谱仪的实验室设备中测试催化剂-稀释剂混合物的裂化能力。NH3预热管和催化剂承载器均位于管式炉内。NH3气体依次通过NH3流量控制器、预热管和催化剂承载器。产物气体通过管道使其冷却至室温,然后通过气相色谱取样测定其组成。
图3显示了在至多600℃的炉温下,在环境压力(大约高于海平面1700m)下使用10标准mL/分钟的NH3流由三次测试的NH3裂化数据。当催化剂从600℃冷却至200℃时,收集图3中所示的数据。每个数据曲线在0.6裂化分数附近的小偏移是由于在该点气相色谱仪变化的校准曲线。在所有三个测试中,可以看出NH3在475℃和更高温度下完全裂化。裂化分数在低于475℃的温度下降低并且在250℃和以下接近零。
实施例2
如上所述,用10、15和20wt%的Co/B2CA涂覆金属单体。整料装配有管连接件,如图2所示。每个整料的NH3裂化能力通过将其放置在台式氨裂化设备400中来测试,其在图4中描绘。涂覆有催化剂的整料401由圆柱形加热器402加热。来自储存容器403的氨气通过流量控制器404和预热管405进入催化剂整料401。在通过整料401之后,产物气体继续通过管406以由热导计407分析,然后在火炬408中燃烧。
将催化剂整料加热至300至650℃的温度,同时向其提供1标准升/分钟(slm)的环境压力NH3流。对于这些整料,该流量等于300hr-1GHSV和12秒的NH3停留时间。用导热设备测量离开催化剂整料的气体的氢气含量。图5示出了Co/B2CA涂覆的整料(浅灰色、深灰色和虚线曲线)的裂化分数(0=无NH3裂化,1=标称地所有NH3裂化为N2+H2)以及用于比较的3wt%Ru/B2CA涂覆的整料(虚线曲线)的裂化分数。其显示10wt%、15wt%和20wt%Co/B2CA整料具有类似的性能,其中15wt%的整料在给定温度下具有比10wt%和20wt%整料略高的裂化分数。Co/B2CA整料必须加热到高于约30℃的温度以获得与3wt%Ru/B2CA整料相同的裂化分数。
实施例3
如上所述,用20wt%Co/B2CA涂覆金属单体。整料与图2所示的管连接件配合,并放置在图4所示的台式NH3裂化测试设备中。将整料加热至标称650℃,并使环境压力NH3以0.5至14标准升/分钟(sLm)的速率流过整料。
作为流量的函数的裂化分数示于图6中。在0.5slm和1.0slm NH3反应物流量下实现完全裂化。对于大于或等于2slm的NH3反应物流量,裂化分数减少。观察到产物气体火焰在14slm NH3流量下变得不稳定,裂化分数为约0.3。在该流量下,测试整料的空速为4200hr-1,NH3停留时间为0.8s。
实施例4
将实施例2中使用的20wt%Co/B2CA整料放置在图4中描绘的台式NH3裂化测试设备中。将整料加热至标称550℃,并以1标准升/分钟(slm)向其提供环境压力NH3持续90小时的时间段。作为时间的函数的裂化分数显示在图7中。历时90h的过程,裂化分数没有明显变化,表明Co/B2CA催化剂在这段时间内是稳定的。
在90小时测试完成之后,在1slm NH3流量下测量作为温度的函数的整料的裂化分数。图8示出了对于耐久性测试之前的20wt%Co/B2CA整料(黑色实心曲线)、耐久性测试之后的20wt%Co/B2CA整料(灰色实心曲线)和未经受耐久性测试的3wt%Ru/B2CA整料(黑色虚线)的作为温度的函数的NH3裂化。经90小时耐久性测试后,20wt%Co/B2CA的裂化性能提高,变得与3wt%Ru/B2CA的性能近似相同。
实施例5
使用上述方法制备具有1wt%、5wt%、10wt%、15wt%和20wt%钴负载量的Co/B2CA和Co-氧化物/B2CA粉末。在这种情况下,通过制备具有所需量的钴的六水合氯化钴在丙酮中的溶液,将B2CA粉末混合到其中,然后重复搅拌混合物直至丙酮蒸发,从而将钴盐沉积在B2CA粉末上。当丙酮蒸发时,混合物从蓝色变成粉红色,表明氯化钴盐离子已经重新结合。
通过在700℃下在50%H2+50%N2气流中将钴盐修饰的B2CA粉末退火4小时而将该钴盐修饰的B2CA粉末还原为钴金属。退火后,样品全部变色为黑色的色调,表明盐已还原成钴金属。在台式差示NH3合成反应器中测定了Co/B2CA样品的NH3合成特性。在该测试之后,通过在管式炉中在50%N2+50%O2流下在700℃下退火4小时来氧化样品。在氧气中退火之后,样品颜色不变,除了1wt%钴,其具有微红色色相。然后将氧化的样品在台式NH3合成反应器中重新测试。
为了测试金属钴和钴氧化物修饰二者,将一克催化剂粉末放置在反应器中。使75%H2+25%N2的10巴混合物以2至20slm的流量和范围为室温至625℃的温度流过粉末催化剂床。图9显示各催化剂粉末在4slm反应物流量下产生的氨的最高浓度。钴氧化物修饰的粉末在5、10和15wt%负载量下产生更高的氨浓度。在1wt%和20wt%的负载量下,钴金属修饰和钴氧化物修饰产生大约相同的氨浓度。
实施例6
考察了钡钙铝氧化物组成对用于NH3合成的钌修饰和钴修饰的催化剂性能的影响。合成了BaO-CaO-Al2O3三元空间的7种组成。其具体组成为B21C16A3、BCA2、B5C7A4、B3C3A2、B2C5A、BCA、和B2CA。将各组成分成用20wt%钴或1wt%钌修饰的两份样品。在台式差示NH3合成反应器中,在至多625℃的温度下,在10.6巴下,在75%H2+25%N2的4slm的恒定流量下,检查1克的每种金属修饰的样品的NH3合成特性。
图10显示了每份样品的产物气体最大NH3浓度。对于钴和钌修饰二者,B2CA产生最高的NH3浓度。然而,钌修饰的B5C7A4、B3C3A2、B2C5A和BCA产生的NH3浓度为Ru/B2CA的75%或更多,表明它们也是使用Ru修饰的钡钙铝氧化物合成NH3的良好组成。此外,钴修饰的B21C16A3、B5C7A4、B3C3A2、B2C5A和BCA产生的NH3浓度为Co/B2CA的75%或更多,表明它们也是使用Co修饰的钡钙铝氧化物合成NH3的良好组成。
从上文可以理解,为了说明的目的在此已经描述了本发明的具体实施方案,但是在不偏离本发明的保护范围的情况下可以进行各种修改。因此,本发明不受除了所附权利要求之外的限制。

Claims (6)

1.一种将NH3裂化为N2+H2+NH3混合物的方法,包括:
使催化剂暴露于NH3,所述催化剂包括使用催化物质修饰的钡钙铝氧化物,
其中所述催化物质包括钌、钴和钴氧化物中的一种或多种。
2.根据权利要求1所述的方法,其中所述钡钙铝氧化物选自由如下组成的组:Ba21Ca16Al6O46、BaCaAl2O6、Ba5Ca7Al8O24、Ba3Ca3Al2O12、Ba2Ca5Al2O10、BaCaAl2O5和Ba2CaAl2O6
3.根据权利要求1所述的方法,其中所述催化剂物质包括钌和钴,钌和钴氧化物,或钌、钴和钴氧化物。
4.根据权利要求1所述的方法,其中所述钡钙铝氧化物中的铝氧化物被部分地或全部地替换为硼氧化物。
5.根据权利要求1所述的方法,其中将使用催化物质修饰的所述钡钙铝氧化物结合至金属单体。
6.根据权利要求5所述的方法,其中在所述催化剂暴露于所述NH3的同时,通过使电流通过所述金属单体而加热所述金属单体。
CN202080011989.XA 2019-01-31 2020-01-31 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法 Active CN113423502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410498800.4A CN118437334A (zh) 2019-01-31 2020-01-31 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201962799595P 2019-01-31 2019-01-31
US62/799,595 2019-01-31
US201962801578P 2019-02-05 2019-02-05
US62/801,578 2019-02-05
US201962931537P 2019-11-06 2019-11-06
US62/931,537 2019-11-06
PCT/US2020/016258 WO2020160500A1 (en) 2019-01-31 2020-01-31 Metal-decorated barium calcium aluminum oxide catalyst for nh3 synthesis and cracking and methods of forming the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202410498800.4A Division CN118437334A (zh) 2019-01-31 2020-01-31 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法

Publications (2)

Publication Number Publication Date
CN113423502A CN113423502A (zh) 2021-09-21
CN113423502B true CN113423502B (zh) 2024-05-10

Family

ID=71841690

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202080011989.XA Active CN113423502B (zh) 2019-01-31 2020-01-31 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法
CN202410498800.4A Pending CN118437334A (zh) 2019-01-31 2020-01-31 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202410498800.4A Pending CN118437334A (zh) 2019-01-31 2020-01-31 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法

Country Status (5)

Country Link
US (2) US11772979B2 (zh)
EP (1) EP3917668A4 (zh)
JP (1) JP2022524299A (zh)
CN (2) CN113423502B (zh)
WO (1) WO2020160500A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11852383B2 (en) 2022-02-28 2023-12-26 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US12055131B2 (en) 2022-02-28 2024-08-06 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11905797B2 (en) 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes
EP4375236A1 (de) * 2022-11-22 2024-05-29 Linde GmbH Anlage zur ammoniakspaltung
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11897828B1 (en) 2023-03-03 2024-02-13 EnhancedGEO, Holdings, LLC Thermochemical reactions using geothermal energy
US11912573B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Molten-salt mediated thermochemical reactions using geothermal energy
US11912572B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Thermochemical reactions using geothermal energy
US12060765B1 (en) 2023-07-27 2024-08-13 EnhancedGEO Holdings, LLC Float shoe for a magma wellbore
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055823A (en) * 1959-07-14 1962-09-25 California Research Corp Multi-stage hydrofining-hydrocracking process employing an intermediate treating operation
US4988661A (en) * 1988-09-09 1991-01-29 Catalysts And Chemicals Inc., Far East Steam reforming catalyst for hydrocarbons and method of producing the catalyst
CN101049577A (zh) * 2007-02-07 2007-10-10 大连理工大学 一种具有氧化铝涂层的蜂窝状金属丝网载体及其制备方法
JP2010110697A (ja) * 2008-11-06 2010-05-20 Hitachi Zosen Corp アンモニア分解触媒
CN101745387A (zh) * 2009-12-25 2010-06-23 华东理工大学 用于氨合成、氨分解的催化剂及其制备方法和应用
CN103447098A (zh) * 2013-08-12 2013-12-18 华东理工大学 一种渗铝不锈钢整体式催化剂载体的制备方法
CN103977828A (zh) * 2013-12-10 2014-08-13 中国科学院大连化学物理研究所 用于氨合成及氨分解的催化剂
CN104640628A (zh) * 2012-09-20 2015-05-20 国立大学法人东京工业大学 生成氢气用催化剂以及氢气的制造方法
CN105188915A (zh) * 2013-05-09 2015-12-23 沙特基础工业全球技术公司 碱土金属/金属氧化物负载型催化剂
CN106457222A (zh) * 2014-05-22 2017-02-22 沙特基础工业全球技术有限公司 用于氨分解的混合金属氧化物催化剂
CN107206356A (zh) * 2014-12-19 2017-09-26 庄信万丰股份有限公司 催化剂制造方法
WO2018213305A1 (en) * 2017-05-15 2018-11-22 Starfire Energy Metal-decorated barium calcium aluminum oxide and related materials for nh3 catalysis
WO2019104204A1 (en) * 2017-11-25 2019-05-31 Starfire Energy Chemical reactor with integrated heat exchanger

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898183A (en) 1954-03-18 1959-08-04 Montedison Spa Process and apparatus for performing exothermic reactions under high pressure and at elevated temperature
US3344052A (en) 1964-11-23 1967-09-26 George C Yeh Method of producing ammonia including contacting an electrostatically charged catalyst with nitrogen and hydrogen
US3395982A (en) 1966-10-14 1968-08-06 United States Steel Corp Synthetic production of ammonia
US3519546A (en) 1967-03-06 1970-07-07 Vin Jang Lee Method of increasing the activity of a catalyst in the oxidation of carbon monoxide
US3721532A (en) 1971-02-08 1973-03-20 Braun Co C Ammonia synthesis system
US3932139A (en) 1971-07-21 1976-01-13 Combinatul Chimic Fagaras Reactor for the catalytic ammonia synthesis at high temperatures and pressures
GB1565824A (en) 1976-11-15 1980-04-23 Ici Ltd Exothermic process and apparatus therefor
US4322394A (en) 1977-10-31 1982-03-30 Battelle Memorial Institute Adsorbent regeneration and gas separation utilizing microwave heating
US4312640A (en) 1979-03-12 1982-01-26 Pall Corporation Heat-reactivatable adsorbent gas fractionator and process
IL63630A (en) 1981-08-21 1985-01-31 Ram Lavie Process for the manufacture of ammonia
US4567315A (en) 1984-05-11 1986-01-28 Kuwait Institute For Scientific Research Process for purification of liquid paraffins
US5268091A (en) 1989-08-08 1993-12-07 Institut Francais De Petrole Method for removing arsenic and phosphorus contained in liquid hydrocarbon cuts, nickel based retaining material
JPH0779946B2 (ja) 1991-09-13 1995-08-30 工業技術院長 ガス吸着・脱離制御方法
SE470136B (sv) 1992-04-22 1993-11-15 Sandvik Ab Anordning vid katalysatorenhet för förbränningsmotor innefattande en elektriskt värmd metalltråd
US5326537A (en) 1993-01-29 1994-07-05 Cleary James M Counterflow catalytic device
US5711926A (en) 1996-05-14 1998-01-27 Knaebel; Kent S. Pressure swing adsorption system for ammonia synthesis
CN2318593Y (zh) 1996-10-21 1999-05-12 许富昌 模块式螺旋板换热器
US5976723A (en) 1997-03-12 1999-11-02 Boffito; Claudio Getter materials for cracking ammonia
US6746650B1 (en) 1999-06-14 2004-06-08 Utc Fuel Cells, Llc Compact, light weight methanol fuel gas autothermal reformer assembly
DE19951976A1 (de) 1999-10-28 2001-05-10 Degussa Verfahren zur plasmakatalytischen Erzeugung von Ammoniak
EP1095906B1 (en) 1999-10-29 2004-12-29 Haldor Topsoe A/S Process for the preparation of ammonia
DE60106306T2 (de) 2000-02-10 2006-02-23 Haldor Topsoe A/S Verfahren und Vorrichtung zur Herstellung von Ammoniak
UA66957C2 (uk) 2000-03-03 2004-06-15 Process Man Enterprises Ltd Спосіб виробництва аміаку та апарат для його здійснення
US6758268B2 (en) 2000-04-24 2004-07-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
WO2001087770A1 (en) * 2000-05-12 2001-11-22 Gradient Technology Production of hydrogen by autothermic decomposition of ammonia
WO2002047464A2 (en) 2000-12-12 2002-06-20 Texaco Development Corporation Nested compact fuel processor for producing hydrogen rich gas
US20030036477A1 (en) * 2001-04-20 2003-02-20 Nordquist Andrew Francis Coated monolith substrate and monolith catalysts
US6712950B2 (en) 2002-03-04 2004-03-30 Lynntech, Inc. Electrochemical synthesis of ammonia
US6881308B2 (en) 2002-03-04 2005-04-19 Lynntech, Inc. Electrochemical synthesis of ammonia
JP4856851B2 (ja) 2002-04-05 2012-01-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ガス放出プロセスを制御する方法および装置
US20050247050A1 (en) 2004-05-05 2005-11-10 Eaton Corporation Adsorption based ammonia storage and regeneration system
US20060039847A1 (en) 2004-08-23 2006-02-23 Eaton Corporation Low pressure ammonia synthesis utilizing adsorptive enhancement
US7314544B2 (en) 2004-09-07 2008-01-01 Lynntech, Inc. Electrochemical synthesis of ammonia
US8241708B2 (en) 2005-03-09 2012-08-14 Micron Technology, Inc. Formation of insulator oxide films with acid or base catalyzed hydrolysis of alkoxides in supercritical carbon dioxide
EP1866083B1 (en) * 2005-03-24 2021-06-30 University of Regina Nickel on Ceria/Zirconia catalyst
JP2008013396A (ja) 2006-07-05 2008-01-24 Kansai Paint Co Ltd 複合金属酸化物及び導電性複合金属酸化物の製造方法
US7811442B2 (en) 2007-02-10 2010-10-12 N H Three LLC Method and apparatus for anhydrous ammonia production
DE102007026712A1 (de) 2007-06-06 2008-12-11 Uhde Gmbh Vorrichtung und Verfahren für katalytische Gasphasenreaktionen sowie deren Verwendung
US20100183497A1 (en) 2007-11-06 2010-07-22 Quantumsphere, Inc. System and method for ammonia synthesis
JP5373410B2 (ja) 2009-01-09 2013-12-18 トヨタ自動車株式会社 アンモニア合成方法
US8629189B1 (en) 2009-03-17 2014-01-14 Louisiana Tech University Research Foundation, A Division Of Louisiana Tech University Foundation, Inc. Nanofilaments of catalytic materials for chemical process improvements
US8038957B1 (en) 2009-06-25 2011-10-18 Cleary James M Electric catalytic oxidizer
CN103237599B (zh) 2010-12-07 2014-12-31 国立大学法人东京工业大学 氨合成催化剂以及氨合成方法
US9359867B2 (en) 2011-05-11 2016-06-07 Baker Hughes Incorporated Desorption of a desiccant by radio waves or microwaves for a downhole sorption cooler
US9862842B2 (en) 2012-02-29 2018-01-09 Sabic Global Technologies B.V. Infrared radiation absorbing articles and method of manufacture
WO2014034473A1 (ja) 2012-08-30 2014-03-06 国立大学法人東京工業大学 導電性マイエナイト型化合物粉末の製造方法
CN104684867B (zh) 2012-09-28 2016-08-24 旭硝子株式会社 高电子密度的导电性钙铝石化合物的制造方法
GB201220912D0 (en) 2012-11-21 2013-01-02 Johnson Matthey Plc Oxidation catalyst for treating the exhaust gas of a compression ignition engine
US10131545B2 (en) 2013-01-22 2018-11-20 Nippon Shokubai Co., Ltd. Ammonia synthesis method and catalyst for ammonia synthesis
WO2014135977A2 (en) 2013-03-06 2014-09-12 Saudi Basic Industries Corporation Alkaline earth metal aluminate spinels and method for the preparation and use thereof
WO2015136954A1 (ja) 2014-03-13 2015-09-17 国立研究開発法人科学技術振興機構 アンモニア合成触媒及びアンモニア合成方法
CN104445967B (zh) 2014-10-30 2016-08-31 湖州吴兴道场城乡建设发展有限公司 一种玻璃棉纤维以及棉毡
CN109071250B (zh) 2016-03-01 2022-08-02 约瑟夫.比奇 电增强哈伯-博施(eehb)的无水氨合成
JP6675619B2 (ja) * 2016-08-08 2020-04-01 国立大学法人東京工業大学 アンモニア合成用触媒の製造方法及びアンモニアの製造方法
FR3067442A1 (fr) 2017-06-12 2018-12-14 Faurecia Systemes D'echappement Dispositif de stockage et d'alimentation en gaz et ensemble correspondant
US10914217B2 (en) 2019-01-31 2021-02-09 Hyundai Motor Company Ammonia production catalyst and after treatment system
BR112022016518A2 (pt) 2020-02-21 2022-10-11 Starfire Energy Sistemas e métodos para remoção por micro-ondas de nh3 a partir de material adsorvente

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055823A (en) * 1959-07-14 1962-09-25 California Research Corp Multi-stage hydrofining-hydrocracking process employing an intermediate treating operation
US4988661A (en) * 1988-09-09 1991-01-29 Catalysts And Chemicals Inc., Far East Steam reforming catalyst for hydrocarbons and method of producing the catalyst
CN101049577A (zh) * 2007-02-07 2007-10-10 大连理工大学 一种具有氧化铝涂层的蜂窝状金属丝网载体及其制备方法
JP2010110697A (ja) * 2008-11-06 2010-05-20 Hitachi Zosen Corp アンモニア分解触媒
CN101745387A (zh) * 2009-12-25 2010-06-23 华东理工大学 用于氨合成、氨分解的催化剂及其制备方法和应用
CN104640628A (zh) * 2012-09-20 2015-05-20 国立大学法人东京工业大学 生成氢气用催化剂以及氢气的制造方法
CN105188915A (zh) * 2013-05-09 2015-12-23 沙特基础工业全球技术公司 碱土金属/金属氧化物负载型催化剂
CN103447098A (zh) * 2013-08-12 2013-12-18 华东理工大学 一种渗铝不锈钢整体式催化剂载体的制备方法
CN103977828A (zh) * 2013-12-10 2014-08-13 中国科学院大连化学物理研究所 用于氨合成及氨分解的催化剂
CN106457222A (zh) * 2014-05-22 2017-02-22 沙特基础工业全球技术有限公司 用于氨分解的混合金属氧化物催化剂
CN107206356A (zh) * 2014-12-19 2017-09-26 庄信万丰股份有限公司 催化剂制造方法
WO2018213305A1 (en) * 2017-05-15 2018-11-22 Starfire Energy Metal-decorated barium calcium aluminum oxide and related materials for nh3 catalysis
CN111182966A (zh) * 2017-05-15 2020-05-19 星火能源 用于nh3催化的金属修饰的钡钙铝氧化物及相关材料
WO2019104204A1 (en) * 2017-11-25 2019-05-31 Starfire Energy Chemical reactor with integrated heat exchanger

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Canan Karakaya et al."Development, characterization, and modeling of a high-performance Ru/B2CA catalyst for ammonia synthesis".《Chemical Engineering Science》.2021,第247卷1-13. *
万惠霖等.《固体表面物理化学若干研究前沿》.厦门大学出版社,2006,第528页. *

Also Published As

Publication number Publication date
US20200277198A1 (en) 2020-09-03
US20240101436A1 (en) 2024-03-28
CN113423502A (zh) 2021-09-21
WO2020160500A1 (en) 2020-08-06
US11772979B2 (en) 2023-10-03
JP2022524299A (ja) 2022-05-02
CN118437334A (zh) 2024-08-06
EP3917668A4 (en) 2022-11-23
EP3917668A1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
CN113423502B (zh) 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法
TWI495508B (zh) Carbon monoxide conversion catalyst and the use of one of the carbon dioxide modification method
US4522894A (en) Fuel cell electric power production
KR101529906B1 (ko) Hts 반응기의 작동방법
JP5763890B2 (ja) 水素製造触媒およびそれを用いた水素製造方法
WO2007029862A1 (ja) 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
US20070183968A1 (en) Water-gas shift and reforming catalyst and method of reforming alcohol
JPS61247601A (ja) 炭化水素燃料処理装置
CN112203761A (zh) 碳氢化合物改性催化剂以及碳氢化合物改性装置
KR20090057554A (ko) 수성가스 전환반응을 위한 촉매, 이의 제조방법 및 이를이용한 수성가스 전환 방법
JP3589309B2 (ja) メタンの改質による水素の製造法
JP4377699B2 (ja) 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法
JP2005044651A (ja) 水素リッチガスの製造方法
JP4328941B2 (ja) 水素含有ガスの製造方法
GB2607490A (en) Method for preparing a steam reforming catalyst, catalyst and related use
JPH0426503A (ja) メタノールの改質方法
JP4377700B2 (ja) 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法
JP2009149464A (ja) 定置型水素製造用改質装置
JPS59189937A (ja) メタノ−ルの水蒸気改質用触媒の製造法
JPH07309603A (ja) 燃料電池用水素含有ガスの製造方法
JP2011183346A (ja) 水素製造用触媒、その製造方法および水素製造方法
JPH0312302A (ja) メタノール改質装置
JP2011224554A (ja) アンモニア分解用触媒及び該触媒の製造方法、並びに該触媒を用いた水素製造方法
JPS59131501A (ja) メタノ−ルの水蒸気改質法
JP2020008183A (ja) アンモニアの燃焼方法及び水素製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant