Nothing Special   »   [go: up one dir, main page]

CN113058651A - 基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法 - Google Patents

基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法 Download PDF

Info

Publication number
CN113058651A
CN113058651A CN201911406530.5A CN201911406530A CN113058651A CN 113058651 A CN113058651 A CN 113058651A CN 201911406530 A CN201911406530 A CN 201911406530A CN 113058651 A CN113058651 A CN 113058651A
Authority
CN
China
Prior art keywords
coordination polymer
sodium
htpta
melem
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911406530.5A
Other languages
English (en)
Other versions
CN113058651B (zh
Inventor
朱俊武
代黎明
孙敬文
付永胜
张文超
姚方磊
薛文康
毕佳宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201911406530.5A priority Critical patent/CN113058651B/zh
Publication of CN113058651A publication Critical patent/CN113058651A/zh
Application granted granted Critical
Publication of CN113058651B publication Critical patent/CN113058651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法。其步骤为:利用二氰二胺和氰胺一钠的有机加成反应制备4,6‑二氨基‑1,3,5‑三嗪‑2‑亚氨基钠盐;利用4,6‑二氨基‑1,3,5‑三嗪‑2‑亚氨基钠盐的低温聚合,脱除氨基制备2,5,8‑三氨基钠‑蜜勒胺衍生物;利用溶剂热法在水和乙腈的混合溶剂中构建新型蜜勒胺衍生物的二维配位聚合物。本发明所制备的配位聚合物具有良好的电化学性能,广泛适用于电极材料和催化材料等领域。

Description

基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法
技术领域
本发明涉及一种二维配位聚合物电催化剂的制备方法,属于纳米材料制备领域。
背景技术
当今社会,传统石油能源的日渐枯竭为人类带来了日趋严重的能源危机,另外化石能源的大量使用对环境的危害也日渐凸显,因此人类亟需发展清洁环保的新型可再生能源。在众多新技术中,电催化分解水已经成为最受人们关注的能源存储和转换方式。电化学分解水是一种利用电能将含量丰富的水分解为清洁氢能源的技术和手段。电催化全分解水主要包括两个半反应:阳极上的析氧反应(OER)和阴极上的析氢反应(HER)两者的理论电极电势分别为1.23V和0V,然而在实际过程中,由于多电子转移带来的活化能能垒,其实际电极电势远大于理论值,过高的过电位带来的极大的能量消耗和生产成本,因此如何提高能量转化效率,降低过电位值和生产成本是电催化分解水领域亟待解决的问题。由于OER反应需要缓慢的四电子/质子耦合过程,导致其发生反应的过电势较高,成为了限制电催化分解水转化效率的关键因素,寻找能够实现降低OER反应过电势的催化剂成为了实现电催化全分解水的重要环节。其中,Ru、Ir等贵金属及其化合物是普遍被认为具有较高OER催化活性的电催化材料,但他们的缺点在于高电压下,它们可以以其高价态的金属离子溶解进入溶液中,催化剂的稳定性较差,另一方面这些贵金属储存量低、价格昂贵,成本极高,难以进行工业化生产。因此,开发具有高催化活性的非贵金属材料催化剂具有重要的意义。
二维配位聚合物是一类新型的二维材料,区别于传统的二维材料,二维配位聚合物利用有机物作为连接基团,以金属离子作为配位中心,构成二维平面结构。一方面,二维配位聚合物结合了二维材料巨大的比表面,高暴露的金属活性位,纳米限域效应;另一方面,又兼具有机配体和无机金属离子中心共同的特性,结构和形貌可调控。基于其独特的光学、电学、磁学与机械性能,近些年来在催化、能量转换与储存、传感器、生物医药、磁致电阻等领域有着广泛的应用。近些年来有报道已经指出,高暴露的金属活性位置是一种合适的电催化产氧的活性位置,如果可以减少二维配位聚合物在垂直尺度达到一定的纳米范围,二维配位聚合物是一种非常优异的电催化产氧的催化剂。但是,二维配位聚合物的制备方法却非常困难,常见的如机械剥离法,液相剥离法,离子插层法等自上而下的剥离方法很难破坏它们强初的化学键,并且由于缺少在二维方向上的生长驱动力,合成的二维配位聚合物纳米片很难实现超薄的纳米尺度;同时,现有的二维配位聚合物在酸/碱性溶液中又很难保持稳定并溶解在溶液中,这些困难极大的限制了二维配位聚合物在电催化分解水产氧方面的应用。
发明内容
针对现有技术中存在的问题,本发明提供了一种基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法。
实现本发明目的的技术解决方案为:
步骤一,将二氰二胺、氰胺一钠在催化剂氢氧化钾作用下发生加成反应制备4,6-二氨基-1,3,5-三嗪-2-亚氨基钠盐的步骤,
Figure BDA0002348788230000021
步骤二,氩气保护下,将4,6-二氨基-1,3,5-三嗪-2-亚氨基钠盐发生高温聚合制备2,5,8-三氨基钠-蜜勒胺衍生物的步骤,
Figure BDA0002348788230000022
步骤三,将金属离子溶液和2,5,8-三氨基钠-蜜勒胺衍生物溶液混合后进行水热反应,反应结束后,离心洗涤、冷冻干燥获得所述的二维配位聚合物。
较佳的,步骤一中,二氰二胺,氰胺一钠和氢氧化钾的摩尔比为6~10:5:1,反应温度为100~200℃,更优选的反应温度为165℃,反应时间为12~24 h。
较佳的,步骤一中,反应体系的溶剂采用二甲亚砜。
较佳的,步骤二中,高温聚合的升温速率为2~5℃/min,聚合温度为250~350℃,更优选的聚合温度为315℃。
较佳的,步骤三中,2,5,8-三氨基钠-蜜勒胺衍生物溶液浓度为2~3 mg/ml。
较佳的,步骤三中,金属离子包括镍、铁、钴、钼中任意一种或几种。
较佳的,步骤三中,金属离子:2,5,8-三氨基钠-蜜勒胺衍生物的摩尔比为1~3:1。
较佳的,步骤三中,水热反应温度为60~100℃,水热反应时间为12~24h。
本发明与现有技术相比,其优点在于:
(1)催化剂制备方法简单,只需简单控制金属源和有机配体的比例,水热温度时间即可获得催化剂。
(2)所获得的催化剂,形貌均匀为纳米片组成的球形纳米花,且每一个纳米片都拥有超薄厚度,有利于离子传输,活性位置暴露。
(3)所获得的配位聚合物在碱性溶液中不会溶解,且具有非常优异的电催化产氧性能,循环寿命长。
(4)相较于贵金属催化剂,在成本和价格上具有优势。
附图说明
图1为本发明所述的基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备流程示意图。
图2为实施例1中melamine-Na和Na-HTPTA的红外分析。
图3为实施例1中Ni8-Fe-HTPTA样品的(a)SEM和(b)TEM图。
图4为实施例1中Ni8-Fe-HTPTA样品的(a)线性扫描伏安测试(b)Tafel曲线。
图5为实施例6中Fe-HTPTA样品的(a)SEM和(b)TEM图。
图6为实施例6中Fe-HTPTA样品的(a)线性扫描伏安测试(b)Tafel曲线。
图7为实施例7中Ni-HTPTA样品的(a)SEM和(b)TEM图。
图8为实施例7中Ni-HTPTA样品的(a)线性扫描伏安测试(b)Tafel曲线。
图9为实施例8中Co-HTPTA样品的(a)SEM和(b)TEM图。
图10为实施例8中Co-HTPTA样品的(a)线性扫描伏安测试(b)Tafel曲线。
图11为实施例9中Mo-HTPTA样品的(a)SEM和(b)TEM图。
具体实施方式
下面通过具体实施例和说明书附图对本发明做进一步说明。
结合图1,本发明所述的基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法,包括如下步骤:
步骤一:制备4,6-二氨基-1,3,5-三嗪-2-亚氨基钠盐:按一定比例称取二氰二胺,氰胺一钠和氢氧化钾于烧杯中,加入一定量二甲亚砜,加热温搅拌混合溶液得到黄色透明液体。将该液体倒入大量的乙醇溶剂中获得白色沉淀并洗涤、抽滤、干燥过夜。干燥产物命名为Na-melamine。
步骤二:制备2,5,8-三氨基钠-蜜勒胺衍生物:将步骤一中制得的Na-melamine加入到瓷舟中,置于管式炉中进行热。加热过程中Na-melamine会脱除大量氨基,聚合形成2,5,8-三氨基钠-蜜勒胺衍生物,得到淡黄色粉末,命名为Na-HTPTA。
步骤三:制备二维配位聚合物:将一定浓度的金属离子溶液、Na-HTPTA溶液按照一定比例混合,并置于聚四氟乙烯的水热反应釜中进行水热反应,反应结束后通过反复的离心洗涤去除杂质,经冷冻干燥获得二维配位聚合物,并命名为M-HTPTA。
实施例1:
步骤一:称取1.523g(18mmol)二氰二胺,0.96g(15mmol)氰胺一钠,0.178g(3mmol)氢氧化钾于三口烧瓶中,加入10ml DMSO并加热到165℃搅拌溶解,持续反应24h后,将该液体取出倾倒于100ml乙醇溶剂中获得白色沉淀,用DMF、乙醇继续洗涤,后干燥过夜。干燥产物命名为Na-melamine。图2为Na-melamine的红外图,其特征红外吸收峰1300-1700cm-1(C=N,C-N);3200-3400cm-1(N-H);808cm-1(三嗪环骨架振动);(Solid state 13C NMR:167.7ppm)
步骤二:将Na-melamine加入到瓷舟中,并将瓷舟置于管式炉中进行热聚合。聚合条件为:升温速率5℃/min,聚合温度315℃,氩气保护流量80ml/min,得到的淡黄色产物用DMF和乙醇分别洗涤三次,60℃干燥过夜,命名为Na-HTPTA。其红外分析图如图2,特征红外吸收峰1300-1700cm-1(C=N,C-N);808cm-1(三嗪环骨架振动);3200-3400cm-1(N-H)的吸收峰强度大大降低,其原因在于氨气在聚合过程中的脱除。(Solid state 13C NMR:168.3ppm,156.5ppm)
步骤三:按照乙酰丙酮镍:氯化亚铁:Na-HTPTA为2.2:0.3:1进行反应。将7.75ml的6.78mg/ml乙酰丙酮镍乙腈溶液,1ml的6.57mg/ml氯化亚铁水溶液,10ml的3mg/ml Na-HTPTA水溶液均匀混合,置于聚四氟乙烯的水热反应釜中,并将反应釜置于85℃的烘箱中,晶化24h。所得产物离心分离,用乙腈和去离子水分别洗涤三次,冷冻干燥,所得产物命名为Ni8-Fe-HTPTA。图3展示了产物Ni8-Fe-HTPTA均匀的纳米片堆积的纳米球花的SEM图(a),TEM图(b)。
电催化产氧(OER)活性试验:
称取2mg Ni8-Fe-HTPTA,0.4mg导电炭黑均匀的分散到400ul去离子水,100ul异丙醇和20ul的nafion(5wt%)分散液,将混合液体超声40分钟;之后用移液枪量取15ul分散液滴加到直径为5mm的玻碳电极上,室温干燥得到一层催化剂薄膜。电催化测试在三电极测试中进行,包括一根碳棒作为对电极,一个汞/氧化汞电极作为参比电极,电解质为1M氢氧化钾溶液。图4为Ni8-Fe-HTPTA的OER的线性扫描伏安测试(LSV)(a),以及Tafel曲线(b),可以看到,电流密度达到10mA/cm2所需过电位仅为255mV,说明Ni8-Fe-HTPTA具有很好的电催化活性,较低的Tafel值65.8mv/dec,证明催化剂具有良好的动力学性能。
实施列2:
参照实施列1中的步骤一进行反应,称取1.523g(18mmol)二氰二胺,0.96g(15mmol)氰胺一钠,0.178g(3mmol)氢氧化钾于三口烧瓶中,加入10ml DMSO并加热到100℃搅拌溶解,持续反应24h后,将该液体取出倾倒于足量的乙醇溶剂中获得白色沉淀,用DMF和乙醇继续洗涤后干燥过夜。结果表明,较低的温度使得反应不完全,得到的Na-melamine产率极低。
实施例3:
参照实施列1的步骤一进行反应,称取1.523g(18mmol)二氰二胺,0.96g(15mmol)氰胺一钠,0.178g(3mmol)氢氧化钾于三口烧瓶中,加入10ml DMSO并加热到200℃搅拌溶解,持续反应24h后,将该液体取出倾倒于足量的乙醇溶剂中获得白色沉淀,用DMF和乙醇继续洗涤,后抽滤并在60℃干燥过夜。得到的产物Na-melamine与实施列1无明显区别。
实施列4
以实施列1中所得到Na-melamine进行反应,参照步骤二的方法进行热聚合,将Na-melamine加入到瓷舟中,并将瓷舟置于管式炉中进行热聚合。聚合条件为:升温速率5℃/min,聚合温度250℃,氩气保护流量80ml/min,得到的淡黄色产物用DMF和乙醇分别洗涤三次,干燥过夜,命名为Na-HTPTA。结果表明,产物中含有大量的白色未聚合的反应物,聚合不完全。
实施列5
以实施列1中所得到Na-melamine进行反应,参照步骤二的方法进行热聚合,将Na-melamine加入到瓷舟中,并将瓷舟置于管式炉中进行热聚合。聚合条件为:升温速率5℃/min,聚合温度350℃,氩气保护流量80ml/min,得到的淡黄色产物用DMF和乙醇分别洗涤三次,60℃干燥过夜,命名为Na-HTPTA。结果表明,过高的温度得到的产物水溶性下降,产物颜色变深,有碳化现象产生。
实施例6:
用实施例1中所得Na-HTPTA制备催化剂,参照步骤三的方法,按照氯化亚铁:Na-HTPTA为2.5:1比例进行反应,所得催化剂命名为Fe-HTPTA。所得到的催化剂的SEM和TEM如图5,可以看到所得Fe-HTPTA具有二维纳米片的形貌,但是趋向于不均匀。Fe-HTPTA的OER活性试验的LSV测试如图6。可以看到相较于Ni8-Fe-HTPTA,Fe-HTPTA的催化活性较差,达到10mA/cm2的电流密度需要极大的过电位为402mV,同时122.7mv/dec的Tafel值表明,Fe-HTPTA作为催化剂时,OER过程阻力极大。
实施例7:
用实施例1中步骤二所得Na-HTPTA制备催化剂,参照步骤三的方法,按照乙酰丙酮镍:Na-HTPTA为2.5:1的比例制备Ni-HTPTA。Ni-HTPTA的SEM和TEM图如图7,可以看到Ni-HTPTA具有和Ni8-Fe-HTPTA相似的形貌和超薄的二维片层结构。Ni-HTPTA的OER活性试验如图8。结果表明,相较于单金属Fe-HTPTA,Ni-HTPTA具有更好的催化活性,达到10mA/cm2的电流密度仅需325mV的过电位,Tafel值为80.9mv/dec。
实施例8:
用实施例1中步骤二所得Na-HTPTA制备催化剂。将Na-HTPTA配置为3mg/mL的水溶液,将乙酰丙酮钴配置为9.4mg/mL的乙腈溶液。常温下,将10mL的Na-HTPTA溶液和10mL的乙酰丙酮钴溶液均匀混合并置于80℃条件下反应12h。反应结束后,将所得到得紫色固体离心,并用去离子水洗涤和乙腈三次,冷冻干燥,产物命名为Co-HTPTA。图9展示了Co-HTPTA的SEM和TEM图,Co-HTPTA为棒状材料。Co-HTPTA的OER活性试验如图10。结果表明,Co-HTPTA作为OER催化剂时,达到10mA/cm2的电流密度需390mV的过电位,Tafel值为167.5mv/dec。
实施例9:
用实施例1中步骤二所得Na-HTPTA制备催化剂。将Na-HTPTA配置为3mg/mL的水溶液,将乙酰丙酮钼配置为8.6mg/mL的乙腈溶液。常温下,将10mL的Na-HTPTA溶液和10mL的乙酰丙酮钼溶液均匀混合并置于60℃条件下反应12h。反应结束后,将所得到得白色固体离心,并用去离子水洗涤三次,冷冻干燥,产物命名为Mo-HTPTA。图11展示了Mo-HTPTA的SEM和TEM图,Mo-HTPTA为二维条带状。该Mo-HTPTA不具有OER活性。

Claims (10)

1.一种基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法,包括:
(1)将二氰二胺、氰胺一钠在催化剂氢氧化钾作用下发生加成反应制备4,6-二氨基-1,3,5-三嗪-2-亚氨基钠盐的步骤,
Figure FDA0002348788220000011
(2)氩气保护下,将4,6-二氨基-1,3,5-三嗪-2-亚氨基钠盐发生高温聚合制备2,5,8-三氨基钠-蜜勒胺衍生物的步骤,
Figure FDA0002348788220000012
(3)将金属离子溶液和2,5,8-三氨基钠-蜜勒胺衍生物溶液混合后进行水热反应,反应结束后,离心洗涤、冷冻干燥获得所述的二维配位聚合物的步骤。
2.如权利要求1所述的方法,其特征在于,二氰二胺,氰胺一钠和氢氧化钾的摩尔比为6~10:5:1。
3.如权利要求1所述的方法,其特征在于,步骤(1)中,反应温度为100~200℃,更优选的反应温度为165℃,反应时间为12~24h。
4.如权利要求1所述的方法,其特征在于,步骤(1)中,反应体系的溶剂采用二甲亚砜。
5.如权利要求1所述的方法,其特征在于,高温聚合的升温速率为2~5℃/min。
6.如权利要求1所述的方法,其特征在于,步骤(2)中,高温聚合温度为250~350℃,更优选的聚合温度为315℃。
7.如权利要求1所述的方法,其特征在于,2,5,8-三氨基钠-蜜勒胺衍生物溶液浓度为2~3mg/ml。
8.如权利要求1所述的方法,其特征在于,金属离子包括镍、铁、钴、钼中任意一种或几种。
9.如权利要求1所述的方法,其特征在于,金属离子与2,5,8-三氨基钠-蜜勒胺衍生物的摩尔比为1~3:1。
10.如权利要求1所述的方法,其特征在于,步骤(3)中,水热反应温度为60~100℃,水热反应时间为12~24h。
CN201911406530.5A 2019-12-31 2019-12-31 基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法 Active CN113058651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911406530.5A CN113058651B (zh) 2019-12-31 2019-12-31 基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911406530.5A CN113058651B (zh) 2019-12-31 2019-12-31 基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN113058651A true CN113058651A (zh) 2021-07-02
CN113058651B CN113058651B (zh) 2023-05-05

Family

ID=76558450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911406530.5A Active CN113058651B (zh) 2019-12-31 2019-12-31 基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN113058651B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628693A (zh) * 2020-12-11 2022-06-14 南京理工大学 富氮多孔碳材料锚定金属铁电催化剂的制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714602A (en) * 1984-06-18 1987-12-22 Helmut Krommer Process for the preparation of solid sodium hydrogen cyanamide
KR20090008102A (ko) * 2007-07-16 2009-01-21 주식회사 인실리코텍 다공성 금속-유기 골격 구조를 갖는 배위중합체 화합물 및이의 용매 함유물
WO2009011545A2 (en) * 2007-07-16 2009-01-22 Insilicotech Co., Ltd. Compound or solvate thereof with mesoporous metal-organic framework
CN101607213A (zh) * 2009-07-15 2009-12-23 复旦大学 钯配位聚合物分子聚集体催化材料及其制备方法和用途
US20110098414A1 (en) * 2006-03-08 2011-04-28 Makoto Fujita Polymer Complex
CN102603807A (zh) * 2012-01-11 2012-07-25 南开大学 四种镍配位聚合物的制备方法及其应用
CN103588799A (zh) * 2013-12-05 2014-02-19 南开大学 一种镉配位聚合物及其制备方法和应用
CN104557751A (zh) * 2015-01-06 2015-04-29 南京理工大学 一种用硫脲合成均三嗪胺类物质的方法
CN106784887A (zh) * 2016-12-08 2017-05-31 湘潭大学 由含芳基均三嗪环聚合物作为前驱体所制备的催化剂及其制备方法和应用
CN106902876A (zh) * 2017-03-06 2017-06-30 中国石油大学(华东) 一步共聚合法制备氮化碳基高效选择性光催化剂
CN106915735A (zh) * 2017-01-25 2017-07-04 广西大学 一种氮或金属掺杂碳材料的制备方法
US20180159141A1 (en) * 2016-12-06 2018-06-07 Savannah River Nuclear Solutions, Llc Non-Platinum Group Oxygen Reduction Reaction Catalysts
US10026970B1 (en) * 2017-12-12 2018-07-17 King Saud University Oxygen reduction reaction electrocatalyst
CN110075902A (zh) * 2019-05-22 2019-08-02 浙江工业大学 一种缺陷型共价三嗪框架材料衍生材料催化剂及其制备方法和应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714602A (en) * 1984-06-18 1987-12-22 Helmut Krommer Process for the preparation of solid sodium hydrogen cyanamide
US20110098414A1 (en) * 2006-03-08 2011-04-28 Makoto Fujita Polymer Complex
KR20090008102A (ko) * 2007-07-16 2009-01-21 주식회사 인실리코텍 다공성 금속-유기 골격 구조를 갖는 배위중합체 화합물 및이의 용매 함유물
WO2009011545A2 (en) * 2007-07-16 2009-01-22 Insilicotech Co., Ltd. Compound or solvate thereof with mesoporous metal-organic framework
CN101607213A (zh) * 2009-07-15 2009-12-23 复旦大学 钯配位聚合物分子聚集体催化材料及其制备方法和用途
CN102603807A (zh) * 2012-01-11 2012-07-25 南开大学 四种镍配位聚合物的制备方法及其应用
CN103588799A (zh) * 2013-12-05 2014-02-19 南开大学 一种镉配位聚合物及其制备方法和应用
CN104557751A (zh) * 2015-01-06 2015-04-29 南京理工大学 一种用硫脲合成均三嗪胺类物质的方法
US20180159141A1 (en) * 2016-12-06 2018-06-07 Savannah River Nuclear Solutions, Llc Non-Platinum Group Oxygen Reduction Reaction Catalysts
CN106784887A (zh) * 2016-12-08 2017-05-31 湘潭大学 由含芳基均三嗪环聚合物作为前驱体所制备的催化剂及其制备方法和应用
CN106915735A (zh) * 2017-01-25 2017-07-04 广西大学 一种氮或金属掺杂碳材料的制备方法
CN106902876A (zh) * 2017-03-06 2017-06-30 中国石油大学(华东) 一步共聚合法制备氮化碳基高效选择性光催化剂
US10026970B1 (en) * 2017-12-12 2018-07-17 King Saud University Oxygen reduction reaction electrocatalyst
CN110075902A (zh) * 2019-05-22 2019-08-02 浙江工业大学 一种缺陷型共价三嗪框架材料衍生材料催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIA, XX ET AL: ""Poly (triazine imide) (PTI) and graphene hybrids supported Pt-Sn catalysts for enhanced electrocatalytic oxidation of ethanol"" *
JINGWEN SUN ET AL: ""Poly (triazine imide) ligand based 2D metal coordination polymers: Design, synthesis and application in electrocatalytic water oxidation"" *
黄燕等: ""共价有机聚合物的合成及在燃料电池阴极氧还原反应中的应用"" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114628693A (zh) * 2020-12-11 2022-06-14 南京理工大学 富氮多孔碳材料锚定金属铁电催化剂的制备方法

Also Published As

Publication number Publication date
CN113058651B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN107346826B (zh) 一种单原子铁分散的氧还原电催化剂的制备方法
CN111384407B (zh) 一种金属单原子分散的有序介孔碳球的制备方法
CN108816258B (zh) 一种原位掺杂中空磷化钴纳米微粒的中空碳材料、制备方法及其在催化电解水产氢中的应用
CN108754531B (zh) 一种含Co和Ru双金属碳纳米复合电催化材料的制备方法
CN102078811B (zh) 均相沉淀-原位还原法制备炭载Pd纳米粒子催化剂的方法
CN110504458A (zh) 一种双金属-氮掺杂碳纳米电催化材料的制备方法
CN110137516B (zh) 铁锡合金负载的硫氮共掺杂碳电催化剂及制备方法
CN107516741B (zh) 一种具有优异电催化氧还原性能的金属Co负载的N掺杂三维多孔碳材料的合成方法
CN111744522A (zh) 一种基于溶胶凝胶法的富氮石墨烯气凝胶负载单原子簇催化剂的普适性制备和应用
CN113881965B (zh) 一种以生物质碳源为模板负载金属纳米颗粒催化剂及其制备方法和应用
CN112349920A (zh) 一种铁氮共掺杂多孔碳球电催化剂的制备
CN113659155B (zh) 一种金属-氮-碳包覆的碳纳米笼电催化剂及其制备方法和应用
CN113117709A (zh) 基于MXene和海藻酸钠制备高效锌空气电池催化剂
CN109888309B (zh) 一种基于金属卟啉与磷腈自组装纳米材料的n、p双掺杂石墨化碳材料、其制备方法及应用
CN109759066B (zh) 一种硼掺杂石墨烯负载的钴镍双金属氧化物析氧催化剂的制备方法
Sun et al. In-situ phosphating Co@ Nitrogen-doping graphene boosts overall water splitting under alkaline condition
CN114628696B (zh) 一种多孔碳载钴基双功能氧催化剂的制备方法
CN108543541B (zh) 一种镍钴磷/氨基碳纳米管催化剂及其制备方法和应用
CN108484415B (zh) 一种镉金属有机配合物的制备方法及其产品和衍生物
CN113058651B (zh) 基于蜜勒胺衍生物的二维配位聚合物电催化剂的制备方法
CN111495368B (zh) 一种Co团簇/SiO2复合材料及制备方法和应用
CN112076764A (zh) 镍掺杂的磁黄铁矿FeS纳米颗粒的制备方法及其应用
CN108892773B (zh) 一种卟啉聚合物纳米材料、其制备方法及应用
CN113224319B (zh) 一种氮硫共掺杂碳包覆过渡金属纳米硫化物电化学氧催化剂的制备方法
CN116516407A (zh) 一种高效稳定的电化学析氧催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant