Disclosure of Invention
The invention solves the problems: the defects of the prior art are overcome, the compact ring plasma technology is applied to the technical field of deep space exploration, the high specific impulse and high power space propeller based on the compact ring plasma is provided, and the problems of low specific impulse and low acceleration efficiency of the current propeller are solved.
The technical scheme of the invention is as follows: a high specific impulse and high power space thruster based on compact ring plasma adopts the compact ring plasma as a propellant to form a space thruster with a bell mouth shape.
The space thruster comprises a host device and a high-voltage pulse power supply; the host device includes a formation region and an acceleration region; the metal cylindrical inner electrode of the formation region is connected with the metal hollow conical inner electrode of the acceleration region to form an inner electrode of the host device, and the metal cylindrical inner electrode of the formation region and the metal cylindrical outer electrode are insulated and isolated by a polytetrafluoroethylene cylinder; the forming area and the accelerating area adopt the same metal cylindrical outer electrode; the acceleration zone is composed of a hollow conical inner electrode and a metal cylindrical outer electrode, the shape of the acceleration zone is similar to that of a bell mouth, the hollow conical inner electrode and the metal cylindrical inner electrode forming the acceleration zone are welded together, and the metal cylindrical outer electrode is positioned on the outermost layer of the host device; the design of the bell mouth shape reduces the resistance of the compact ring plasma as the propellant in the acceleration process, reduces the conversion of the kinetic energy of the compact ring plasma to the internal energy, and the current used by the forming area and the acceleration area is from the same high-voltage pulse power supply, so that more energy obtained from the power supply is used for accelerating the propellant, and the energy conversion efficiency is improved.
The ratio of the length of the forming area to the length of the accelerating area is designed to be 3/7, the radius ratio of the tail ends of the metal hollow cone inner electrode and the metal cylindrical outer electrode is designed to be 1/5, the accelerating efficiency of the space propeller with the characteristics is close to 50%, and the problem that the existing propeller is low in accelerating efficiency is solved.
The specific impulse and power of the space thruster are as follows: the specific impulse is 10000-50000 s, the power is 5000-25000 KW, the problems of low specific impulse and low power of the current propeller are solved, and in addition, the plume problem of the current propeller is solved because the compact ring plasma is quasi-neutral as a propellant.
The formation region includes: the device comprises a solenoid coil, a metal circular ring cover plate, a metal cylindrical inner electrode, a metal circular ring plate flange, a polytetrafluoroethylene cylinder, a metal cylindrical outer electrode and a gas injection window; the solenoid coil is internally provided with a cylinder made of insulating materials, and the outside of the solenoid coil is wound with a coil; fixing the insulating material of the solenoid coil and a metal ring cover plate together, fixing the metal ring cover plate and a metal ring plate flange by adopting screws, welding a metal cylindrical inner electrode on the metal ring cover plate, covering the metal cylindrical inner electrode with a metal ring plate flange with an insulated lower end, fixing one end of the metal ring plate flange with the metal cylindrical cover plate through a polytetrafluoroethylene cylinder, fixing the other end of the metal ring plate flange with a metal ring outer electrode welding plate together by using screws, welding a metal cylindrical outer electrode on the metal ring outer electrode welding plate, and opening a plurality of gas injection windows distributed in the radial direction on the metal cylindrical outer electrode, the neutral gas injected through the window can diffuse between the metal cylindrical inner electrode and the metal cylindrical outer electrode, the injected neutral gas can form compact ring plasma through ionization and acceleration of the high-voltage pulse power supply.
In the acceleration zone, a metal annular plate flange is welded at the tail end of an outer electrode of the metal cylinder and is used for being connected with a test platform or a drift tube during experimental test.
The solenoid coil is insulated from the metal cylindrical inner electrode and the metal cylindrical outer electrode of the host device, and the length of the solenoid coilThe degree, the number of turns and the winding size can be determined according to the required magnetic flux and the molding requirement of the compact ring, and the relation between the magnetic flux and the plasma radius of the compact ring is
The relation between the magnetic flux and the space between the metal cylindrical inner electrode and the metal cylindrical outer electrode of the host device is
Here, the
Is the magnetic flux, B is the magnetic induction, R is the coil radius, I
fIs the forming current for forming the compact ring plasma, lambda is the intrinsic value of the helicity, delta is the distance between the inner and outer electrodes of the metal cylinder in the forming region.
The high-voltage pulse power supply is subjected to single discharge to form and accelerate compact ring plasma in the host device, namely the single high-voltage pulse power supply is subjected to single discharge to form and accelerate the compact ring plasma serving as a propellant, and the specific impulse and the thrust of the space thruster are adjustable through the adjustment of the voltage of the high-voltage pulse power supply.
The host device has good tightness, and needs to be vacuumized to 10 degrees when being used-4And Pa, the gas injected from the gas injection window is high-pressure gas with the purity higher than 99.999% and the gas pressure range of 0.2-8.0 MPa.
The working principle of the high specific impulse and high power space thruster based on the compact ring plasma is as follows:
(a) firstly, electrifying a solenoid coil to generate a poloidal magnetic field, and injecting gas between a metal cylindrical inner electrode and a metal cylindrical outer electrode from a gas injection window;
(b) secondly, triggering a high-voltage pulse power supply, wherein the high-voltage pulse power supply breaks down between the inner metal cylindrical electrode and the outer metal cylindrical electrode and ionizes the gas into neutral plasma;
(c) the plasma passing through the formation region of the main unit becomes a compact ring plasma, and is accelerated by electromagnetic force in the acceleration region, and finally ejected from the bell mouth.
Compared with the prior art, the invention has the advantages that:
(1) the accelerating region of the host device of the high specific impulse and high power space thruster based on the compact ring plasma is composed of a metal hollow conical inner electrode and a metal cylindrical outer electrode, and the shape of the accelerating region is similar to that of a bell mouth. The design of the bell mouth shape reduces the resistance of the compact ring plasma as propellant in the acceleration process, thereby being beneficial to reducing the conversion of kinetic energy of the compact ring into internal energy, leading the energy obtained from a power supply to be more used for accelerating the propellant and improving the energy conversion efficiency.
(2) The length ratio of the forming area to the accelerating area of the host device of the high specific impulse high-power space thruster based on the compact ring plasma is 3/7, and the design of longer length of the accelerating area improves the accelerating efficiency of the compact ring as a propellant.
(3) The high specific impulse and high power space thruster based on the compact ring plasma generates and accelerates the compact ring plasma by adopting single discharge of a high-voltage pulse power supply, thereby improving the power of the thruster.
(4) The high specific impulse and high power space thruster based on the compact ring plasma has the following advantages: (a) the average thrust is large (> 1N); (b) the energy conversion efficiency is high (> 50%); (c) the propellant is quasi-neutral (no plume); (d) the specific impulse is high (10000-50000 s).
(5) The high specific impulse and high power space thruster based on the compact ring plasma can realize the adjustability of the specific impulse and the thrust of the thruster through the adjustment of the high-voltage pulse power supply.
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings and examples.
The accelerating region of the host device is designed into the bell mouth shape, so that the dissipation of the kinetic energy of the compact ring plasma is reduced, more energy obtained from a power supply is used for accelerating the compact ring plasma, the energy conversion efficiency is improved, the resistance met by the compact ring plasma serving as a propellant in the accelerating process is reduced by adopting the bell mouth shape design, the kinetic energy conversion of the compact ring plasma to internal energy is reduced, more energy obtained from the power supply is used for accelerating the compact ring plasma, and the energy conversion efficiency is improved. The ratio of the length of the formation region of the host device to the length of the acceleration region is designed to be 3/7, the radius ratio of the tail ends of the metal hollow conical inner electrode and the metal cylindrical outer electrode is designed to be 1/5, the acceleration region of the host device formed by the hollow conical inner electrode and the metal cylindrical outer electrode is designed to be in a horn mouth shape, and the simulation calculation result shows that the acceleration efficiency of the space propeller with the characteristics is close to 50%, so that the problem of low acceleration efficiency of the existing propeller is solved. All insulating between the metal cylinder inner electrode of solenoid coil and host computer device, the metal cylinder outer electrode, the length of the host computer device solenoid coil of design is 0.25m, the radius is 0.04m, utilize the diameter to be 2mm copper wire winding on the solenoid, need to wind 125 circles, the winding density is: n is 500/m. According to the magnetic induction intensity of the solenoid coil being 0.1T, the relation between the magnetic induction intensity of the solenoid coil and the current is utilized:

the current required to provide 160A from the external power source is available to the solenoid coil to produce
Of the magnetic flux of (a). Meanwhile, the specific impulse of the space propeller with the bell mouth shape based on the compact ring plasma design is 10000-50000 s, and the power is 5000-25000 KW, so that the problems of low specific impulse and low power of the current propeller are solved. In addition, because the compact ring plasma is quasi-neutral as a propellant, the problem of plume existing in the current propeller can be solved. In addition, the invention takes the compact ring plasma as one of the technical paths of the high-power plasma thruster for the first time to solve the problems of small thrust, low specific impulse and plume existing in the traditional thruster.
As shown in figures 1 and 2, the high specific impulse and high power space thruster based on the compact toroidal plasma of the invention comprises a forming area 1 and an accelerating area 8, wherein a solenoid coil 4 is internally provided with a cylinder made of insulating materials, and is externally wound with a coil. The insulating material of the solenoid coil 4 and a metal ring cover plate 13 are fixed together, the metal ring cover plate 13 and a metal ring plate flange 14 are fixed by screws, a metal cylinder inner electrode 2 is welded on the metal ring cover plate 13, the metal ring plate flange 14 with the lower end insulated covers the metal cylinder inner electrode 3, one end of the metal ring plate flange 14 is fixed with a metal cylinder cover plate 16 through a polytetrafluoroethylene cylinder 15, the other end of the metal ring plate flange is fixed with a metal ring outer electrode welding plate 17 by screws, a metal cylinder outer electrode 2 is welded on the metal ring outer electrode welding plate 17, and a plurality of gas injection windows 6 which are distributed radially are formed in the metal cylinder outer electrode 2. The acceleration zone of the host device is composed of a metal hollow conical inner electrode 9 and a metal cylindrical outer electrode 2, and the shape of the acceleration zone is similar to that of a bell mouth. The metal hollow cone inner electrode 9 of the acceleration zone is welded with the metal cylinder inner electrode 3 of the formation zone, and the metal cylinder outer electrode 2 is positioned at the outermost layer of the host device.
The working implementation mode of the high specific impulse and high power space thruster based on the compact ring plasma is as follows:
(1) firstly, electrifying a solenoid coil 4 to generate a filling magnetic field 5 (poloidal magnetic field), and injecting gas between a metal cylindrical inner electrode 3 and a metal cylindrical outer electrode 2 from a gas injection window 6;
(2) secondly, triggering a high-voltage pulse power supply 7, wherein the high-voltage pulse power supply 7 breaks down between the metal cylindrical inner electrode 3 and the metal cylindrical outer electrode 2 and ionizes the gas into neutral plasma;
(3) the plasma passing through the host device formation region 1 becomes a compact toroid plasma 12, and the compact toroid plasma 12 is accelerated in the acceleration region 8 by the high voltage pulse power supply and finally ejected from the bell mouth.
As shown in fig. 2, the metal ring cover 13 and the metal ring plate flange 14 are fixed together by screws, and one end of the metal ring plate flange 14 is fixed to the metal cylindrical cover 16 through a teflon cylinder 15, and the other end is fixed to the metal ring outer electrode welding plate 17 by screws, the metal cylindrical outer electrode 2 is welded to the metal ring outer electrode welding plate 17, and the metal cylindrical outer electrode 2 is provided with a plurality of radially distributed gas injection windows 6.
As shown in fig. 3, the host device has a solenoid coil 4, the solenoid coil 4 is insulated from the metal cylindrical inner electrode 3 and the metal cylindrical outer electrode 2, the solenoid coil 4 is fixed to the metal annular cover plate 13 by an insulating material, the metal annular cover plate 13 is fixed to a metal annular plate flange 14 with an insulated lower end, the metal cylindrical inner electrode 3, one end of the metal annular plate flange 14 is fixed to the metal cylindrical cover plate 16 by a teflon cylinder 15, the other end is fixed to a metal annular outer electrode welding plate 17 by a screw, the metal cylindrical outer electrode 2 is welded to the metal annular outer electrode welding plate 17, and a plurality of gas injection windows 6 distributed radially are formed in the metal cylindrical outer electrode 2. The metal hollow cone inner electrode 9 of the acceleration zone is welded with the metal cylinder inner electrode 3 of the formation zone, and the metal cylinder outer electrode 2 is positioned at the outermost layer of the host device. The end of the metal cylindrical outer electrode 2 is welded with a metal ring plate flange 18, and the metal ring plate flange 18 can be used for being connected with a test platform or a drift tube during experimental test and can also be removed during practical application.
The above detailed description of the compact toroid plasma based high specific impulse high power space thruster is illustrative and not restrictive with reference to the embodiments, and thus variations and modifications without departing from the general concept of the present invention are intended to be included within the scope of the present invention.