Nothing Special   »   [go: up one dir, main page]

CN112885936B - 一种透明电极结构的Micro-LED阵列及制备方法 - Google Patents

一种透明电极结构的Micro-LED阵列及制备方法 Download PDF

Info

Publication number
CN112885936B
CN112885936B CN202011385368.6A CN202011385368A CN112885936B CN 112885936 B CN112885936 B CN 112885936B CN 202011385368 A CN202011385368 A CN 202011385368A CN 112885936 B CN112885936 B CN 112885936B
Authority
CN
China
Prior art keywords
type gan
transparent electrode
insulating layer
metal electrode
type metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011385368.6A
Other languages
English (en)
Other versions
CN112885936A (zh
Inventor
郭伟玲
陈佳昕
李梦梅
冯玉霞
郭浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202011385368.6A priority Critical patent/CN112885936B/zh
Publication of CN112885936A publication Critical patent/CN112885936A/zh
Application granted granted Critical
Publication of CN112885936B publication Critical patent/CN112885936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种透明电极结构的Micro‑LED阵列及制备方法,该结构主要包括发光像素单元、像素单元深隔离槽、衬底。发光像素单元包括:N型GaN、量子阱有源区、P型GaN、绝缘层、透明电极、N型金属电极、P型金属电极。本发明使用ITO作为透明电极,将其完全覆盖在P型GaN上,将P型金属电极制备在N型GaN上面的ITO上,正向电流通过P型金属电极流向ITO再导入到发光层,避免了由于Micro‑LED的P型金属电极面积占比大对发光效率的影响。由于ITO折射率处于空气与外延材料之间,可以提高出光角度,有助于光的逸出,增加了Micro‑LED阵列的光通量,并使其在相同电流下表现出更高的亮度。

Description

一种透明电极结构的Micro-LED阵列及制备方法
技术领域
本发明涉及光电子技术领域,特别涉及一种透明电极结构的Micro-LED阵列及制备方法。
背景技术
LED(Light emitting diode)作为发光器件,在生活中扮演着重要的角色。在照明领域,已经替代了白炽灯,节约了大量能源。在显示领域,如液晶显示器(LCD)和有机发光二极管(OLED),微发光二极管(Micro-LED)显示技术等,为人们提供了优质的显示面板,尤其是近年来迅速发展的Micro-LED显示技术,作为一种独特的显示器,应用于智能眼镜,头戴式显示器(HMDs)和抬头显示器(HUDs)等领域,而受到业界内广泛关注。与传统的LCD和OLED相比,Micro LED具有低功耗,高亮度,短响应时间和使用寿命长等优点。
普通LED由于发光面积大,P型金属电极面积相比整个发光面积,比例较小。因此对出光的影响不大。但由于Micro-LED尺寸微小,P型金属电极面积占比大,因此P型金属电极的面积对Micro-LED出光有很大影响。ITO(Indium Tin Oxide)作为铟锡金属氧化物,具有良好的透明性,导电性,低电阻率和化学稳定性,还可以切断对人体有害的电子辐射,紫外线及远红外线,在众多可作为透明电极的材料中,ITO是被最广泛应用的一种。
因此,本发明在P型GaN上覆盖一层透明电极ITO,并将P型金属电极制备在位于N型GaN上的ITO上,从而提高发光效率和亮度。
发明内容
本发明的目的在于提供了一种透明电极结构的Micro-LED阵列及制备方法,用以提高器件的发光效率和亮度。
本发明所提出的一种透明电极结构的Micro-LED阵列,包括发光阵列1和衬底2,发光阵列1包括多个发光二极管单元11,像素单元深隔离槽10。所述的发光像素单元11包含N型GaN 3,N型金属电极9,量子阱有源区4,P型GaN 5,P型金属电极8,透明电极ITO 6和绝缘层a 7和绝缘层b 13。
所述像素单元深隔离槽的尺寸在5μm到10μm之间,发光像素单元的尺寸在10μm到100μm之间。
本发明所提出的一种透明电极结构的Micro-LED阵列及制备方法,包括以下步骤:
S1.在衬底上依次生长N型GaN,量子阱有源区,P型GaN,得到外延材料;
S2.在外延材料上使用光刻胶做为掩膜,保护不需要被刻蚀的区域,通过干法刻蚀外延材料至N型GaN,形成台阶;
S3.使用光刻胶或者SiO2作为掩膜,干法刻蚀外延材料至衬底,形成像素单元深隔离槽;
S4.在外延材料上制备一层绝缘层,然后旋涂光刻胶,曝光显影将需要腐蚀的区域光刻胶去掉,再通过湿法腐蚀将不需要的绝缘层腐蚀掉,留下绝缘层b;
S5.溅射透明电极ITO,然后旋涂光刻胶,曝光显影将需要腐蚀区域的光刻胶去掉,再通过湿法腐蚀将不需要的透明电极腐蚀掉;
S6.旋涂光刻胶,曝光显影将需要制备电极的区域光刻胶去掉,随后制备N型金属电极,将每个发光像素单元的N型金属电极互联;
S7.制备绝缘层,旋涂光刻胶,曝光显影将需要腐蚀区域的光刻胶去掉,留下绝缘层a 7,在透明电极上制备P型金属电极,将每行发光像素单元的P型金属电极连在一起。
所述步骤S1中,衬底为硅,蓝宝石,碳化硅,氮化镓中的一种,N型GaN的厚度为2~4μm;量子阱有源区的厚度200nm~300nm和P型GaN的厚度为70~150nm;量子阱有源区是由InGaN层和GaN层交替循环组成,长N型GaN,量子阱有源区和P型GaN的制备方法为MOCVD生长。
所述步骤S5中,透明电极使用铟锡金属氧化物ITO(Indium Tin Oxide)。
所述步骤S4和S7中,绝缘层a和绝缘层b使用SiO2、SiNx、聚酰亚胺绝缘导电层中的一种,绝缘层的制备方法为等离子体增强型化学气相沉积法;
所述步骤S6和S7中,N型金属电极和P型金属电极使用使用Ti/Al/Ti/Au,Ni/Al等,制备方法为电子束蒸发法。
附图说明
图1是制备好的n×m透明电极结构的Micro-LED阵列芯片的俯视图;
图2是图1A-A截面图;
图3是图2中单个发光像素单元截面图;
图4是图2中单个发光像素单元3D结构图
图5是制备好的3×3透明电极结构的Micro-LED阵列芯片3D结构图;
附图标记说明:
1、发光阵列;2、衬底;3、N型GaN;4、量子阱有源区;5、P型GaN;6、透明电极ITO;7、绝缘层a;8、P型金属电极;9、N型金属电极;10、像素单元深隔离槽;11、发光像素单元;12、台阶;13、绝缘层b;14、台阶的后侧;15、台阶的左侧;16、台阶的前侧;17、台阶的右侧。
具体实施方式
为使本发明要解决的技术问题、技术方案更加清楚,下面结合附图进行详细描述。
参考图1,图2一种透明电极结构的Micro-LED阵列,包括:
衬底2;
N型GaN 3,其制备在衬底2上面;
量子阱有源区4,制备在N型GaN 3上面;
P型GaN 5,制备在量子阱有源区4上面;
台阶12,通过刻蚀外延材料至N型GaN形成;
透明电极ITO 6,制备在P型GaN和台阶侧壁以及N型GaN上;
N型金属电极9,制备在N型GaN上面;
P型金属电极制备在N型GaN上的透明电极上面;
像素单元深隔离槽10,刻蚀外延材料至衬底,使Micro-LED像素单元电隔离;
本发明中金属电极为Ti/Al/Ti/Au,Ni/Al等,衬底为硅,蓝宝石,碳化硅,氮化镓中的一种,绝缘层使用SiO2、SiNx、聚酰亚胺绝缘导电层中的一种
下面结合图2,图3,图4具体阐述透明电极结构的Micro-LED阵列及制备,方法如下:
S1.在蓝宝石衬底2上通过MOCVD的方法依次生长N型GaN 3(厚度2μm)、量子阱有源区4(厚度250nm),量子阱有源区是由InGaN层(2nm)和GaN层(10nm)交替循环组成,和P型GaN5(厚度100nm),得到LED外延材料,随后用丙酮和无水乙醇各清洗两次,去除表面有机物质,最后用去离子水冲洗若干次。
S2.在外延材料上使用PD2100正光刻胶作为ICP刻蚀掩膜,保护不需要刻蚀的区域,通过ICP干法刻蚀外延片至N型GaN 3,形成台阶12;
S3.再次在外延片上使用光刻胶或者光刻胶加SiO2作为掩膜,保护不需要刻蚀的区域,通过ICP干法刻蚀外延片至蓝宝石衬底,形成像素单元深隔离槽10,发光像素单元尺寸为60μm×60μm,隔离槽尺寸为4μm;
S4.通过PECVD(等离子体增强化学气相淀积),在外延材料上制备一层SiO2绝缘层,然后旋涂光刻胶,曝光显影将需要腐蚀掉的区域光刻胶去掉,再通过湿法腐蚀将不需要的绝缘层腐蚀掉,留下绝缘层b 13;
S5.溅射透明电极ITO,然后旋涂光刻胶,曝光显影将需要腐蚀区域的光刻胶去掉,再通过湿法腐蚀将不需要的透明电极ITO腐蚀掉,并在580℃条件下退火8min;
S6.旋涂光刻胶,曝光显影将需要制备N型金属电极的区域光刻胶去掉,随后使用电子束蒸发方法制备N型金属电极9,快速热退火形成良好的欧姆接触,将每个发光像素单元的N型金属电极进行互联,并且为了保证N型金属电极在过桥部分的可靠性,做了加宽处理;
S7.通过PECVD(等离子体增强化学气相淀积),在外延材料上制备一层SiO2绝缘层,然后旋涂光刻胶,曝光显影将需要腐蚀掉的区域光刻胶去掉,再通过湿法腐蚀将不需要的绝缘层腐蚀掉,留下绝缘层a 7;
S8.在N型GaN上的透明电极上制备P型金属电极,快速热退火形成良好的欧姆接触,并将每个发光像素单元的P型金属电极进行互联,并且对P型金属电极爬坡处统一加宽了电极宽度,防止断裂;
最终获得一种透明电极结构的Micro-LED阵列。
以上所述,仅为本发明的具体实施方式,以上结构和实施只用于帮助理解本发明方法和核心思想。对于本技术领域的普通技术人员来说,在不脱离本发明核心思想的前提下,还可以对本发明进行改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (7)

1.一种透明电极结构的Micro-LED阵列,其特征在于,包括发光阵列(1)和衬底(2);发光阵列(1)包括多个发光像素单元(11)、像素单元深隔离槽(10),所述的发光像素单元(11)包括N型GaN(3),N型金属电极(9),量子阱有源区(4),P型GaN(5),P型金属电极(8),透明电极ITO(6)和绝缘层a(7)与绝缘层b(13);
P型GaN上表面(5)完全被透明电极ITO(6)覆盖,所述P型金属电极(8)位于N型GaN上的透明电极上,没有阻碍光从P型GaN上表面的逸出;
所述透明电极ITO(6)包括三部分:
位于P型GaN上面的部分;
位于台阶(12)侧壁的部分,所述部分覆盖三侧侧壁,分别为台阶后侧(14),台阶左侧(15),台阶前侧(16),并通过绝缘层b(13)与侧壁隔离;
位于N型GaN上绝缘层上的部分,用来连接P型金属电极到透明电极ITO与P型GaN;
所述绝缘层b(13)包括两部分:
位于台阶(12)侧壁的部分,所述部分覆盖三侧侧壁,分别为台阶后侧(14),台阶左侧(15),台阶前侧(16),用于隔离N型GaN(3),量子阱有源区(4),和P型GaN(5)与透明电极ITO的接触;
位于N型GaN(3)与透明电极ITO(6)之间,用于防止透明电极与N型GaN接触从而发生短路;
所述绝缘层a(7)包括两部分:
位于P型金属电极(8)与N型金属电极(9)之间,为了防止P型金属电极在进行像素单元互联时与N型金属电极短接;
位于台阶右侧(17),用于防止侧壁漏电。
2.根据权利要求1所述的一种透明电极结构的Micro-LED阵列,其特征在于,所述像素单元深隔离槽(10)的尺寸在5μm到10μm之间,发光像素单元的尺寸在10μm到100μm之间。
3.制备如权利要求1所述的一种透明电极结构的Micro-LED阵列的方法,其特征在于包括以下步骤:
S1.在衬底上依次生长N型GaN(3),量子阱有源区(4),P型GaN(5),得到外延材料;
S2.刻蚀外延材料至N型GaN(3),形成台阶(12);
S3.刻蚀外延材料至衬底,形成像素单元深隔离槽(10);
S4.在外延材料上制备一层绝缘层,然后旋涂光刻胶,曝光显影后通过湿法腐蚀将不需要的绝缘层腐蚀掉,留下绝缘层b(13);
S5.溅射透明电极,然后旋涂光刻胶,曝光显影后通过湿法腐蚀将不需要的透明电极腐蚀掉,留下透明电极(6);
S6.旋涂光刻胶,曝光显影将需要制备N型金属电极区域的光刻胶去掉,湿法腐蚀在N型GaN上开出N型金属电极窗口,制备N型金属电极(9),并连接每个发光像素单元的N型金属电极;
S7.再次制备绝缘层,然后旋涂光刻胶,曝光显影后通过湿法腐蚀将不需要的绝缘层腐蚀掉,留下绝缘层a(7);
S8.将P型金属电极(8)制备在N型GaN上的透明电极上,并连接每行发光像素单元的P型金属电极。
4.根据权利要求3所述的方法,其特征在于,所述步骤S1中,衬底为硅,蓝宝石,碳化硅,氮化镓中的一种,N型GaN的厚度为2~4μm,量子阱有源区的厚度200nm~300nm,P型GaN的厚度为70nm~150nm;量子阱有源区是由InGaN层和GaN层交替循环组成,N型GaN,量子阱有源区和P型GaN的制备方法为MOCVD生长。
5.根据权利要求3所述的方法,所述步骤S5中,透明电极使用铟锡金属氧化物ITO,ITO折射率处于空气与外延材料之间。
6.根据权利要求3所述的方法,所述步骤S4和S7中,绝缘层a(7)和绝缘层b(13)使用SiO2、SiNx、聚酰亚胺中的一种,绝缘层的制备方法为等离子体增强型化学气相沉积法。
7.根据权利要求3所述的方法,所述步骤S6和S7中,N型金属电极和P型金属电极使用Ti/Al/Ti/Au或Ni/Al,制备方法为电子束蒸发法。
CN202011385368.6A 2020-12-01 2020-12-01 一种透明电极结构的Micro-LED阵列及制备方法 Active CN112885936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011385368.6A CN112885936B (zh) 2020-12-01 2020-12-01 一种透明电极结构的Micro-LED阵列及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011385368.6A CN112885936B (zh) 2020-12-01 2020-12-01 一种透明电极结构的Micro-LED阵列及制备方法

Publications (2)

Publication Number Publication Date
CN112885936A CN112885936A (zh) 2021-06-01
CN112885936B true CN112885936B (zh) 2022-04-22

Family

ID=76043185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011385368.6A Active CN112885936B (zh) 2020-12-01 2020-12-01 一种透明电极结构的Micro-LED阵列及制备方法

Country Status (1)

Country Link
CN (1) CN112885936B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038973B (zh) * 2021-08-10 2023-06-16 重庆康佳光电技术研究院有限公司 发光器件及其制作方法和测试方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125433B2 (ja) * 2007-11-09 2013-01-23 サンケン電気株式会社 半導体発光装置及びその製造方法
CN102593287B (zh) * 2011-01-10 2015-07-08 展晶科技(深圳)有限公司 发光二极管晶粒及其制造方法、发光二极管封装结构
JP2013008817A (ja) * 2011-06-24 2013-01-10 Toshiba Corp 半導体発光素子及びその製造方法
KR101954204B1 (ko) * 2012-08-28 2019-06-12 엘지이노텍 주식회사 발광소자
CN103400924B (zh) * 2013-08-14 2015-11-25 中国科学院长春光学精密机械与物理研究所 微型柔性led阵列器件及制备方法
CN107256871B (zh) * 2017-06-27 2019-09-27 上海天马微电子有限公司 微发光二极管显示面板和显示装置
CN109216399B (zh) * 2018-09-29 2024-10-15 华南理工大学 倒装结构微尺寸光子晶体led阵列芯片及其制备方法
CN111916539B (zh) * 2019-05-08 2022-04-19 深圳第三代半导体研究院 一种正装集成单元二极管芯片
CN110911537B (zh) * 2019-11-29 2021-12-28 东莞市中晶半导体科技有限公司 共阴极led芯片及其制作方法

Also Published As

Publication number Publication date
CN112885936A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
EP3221890B1 (en) Integrated led micro-display and method of fabricating the same
US10249789B2 (en) Light emitting diode chip and fabrication method
JP5313683B2 (ja) 光の放出効率を向上させることができるシリコン発光素子およびその製造方法
US8753909B2 (en) Light-emitting device and manufacturing method thereof
US20090230407A1 (en) Led device and method for fabricating the same
CN102185073B (zh) 一种倒装发光二极管及其制作方法
TWI462328B (zh) 半導體發光裝置及其製造方法
US8420418B2 (en) Light-emitting device and manufacturing method thereof
CN112885936B (zh) 一种透明电极结构的Micro-LED阵列及制备方法
CN111106214A (zh) 一种发光二极管芯片及其制备方法
CN114400276A (zh) 一种高压led芯片的制作方法
CN102790156A (zh) 半导体发光结构
KR20170123847A (ko) 광추출효율 향상을 위한 p-형 오믹 접합 전극 패턴을 구비한 자외선 발광 다이오드 소자
TWI474504B (zh) 發光二極體結構及其製作方法
US20150048303A1 (en) Light-emitting diode and method for manufacturing thereof
CN102130249B (zh) 超亮度发光二极管及其制作方法
CN211929520U (zh) 一种发光二极管芯片
CN115642209A (zh) 一种Micro-LED芯片结构及其制备方法
CN210805813U (zh) 一种高可靠度的led芯片
TWI667786B (zh) 發光二極體顯示器及其製造方法
CN107611154B (zh) 一种交流发光二极管芯片及其制作方法
US8878210B2 (en) Light-emitting device
CN103311379A (zh) 一种GaN基LED以及制造GaN基LED的方法
CN105932133B (zh) 一种高亮度led芯片及其制备方法
CN211789074U (zh) 一种发光二极管芯片

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant