CN112566584A - 用于组织烧灼的医疗器械 - Google Patents
用于组织烧灼的医疗器械 Download PDFInfo
- Publication number
- CN112566584A CN112566584A CN201980053396.7A CN201980053396A CN112566584A CN 112566584 A CN112566584 A CN 112566584A CN 201980053396 A CN201980053396 A CN 201980053396A CN 112566584 A CN112566584 A CN 112566584A
- Authority
- CN
- China
- Prior art keywords
- distal
- pulley
- cable
- instrument
- proximal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B18/1233—Generators therefor with circuits for assuring patient safety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1482—Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00292—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
- A61B2017/003—Steerable
- A61B2017/00318—Steering mechanisms
- A61B2017/00323—Cables or rods
- A61B2017/00327—Cables or rods with actuating members moving in opposite directions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00595—Cauterization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/1246—Generators therefor characterised by the output polarity
- A61B2018/1253—Generators therefor characterised by the output polarity monopolar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1422—Hook
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/301—Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/302—Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B2034/303—Surgical robots specifically adapted for manipulations within body lumens, e.g. within lumen of gut, spine, or blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/71—Manipulators operated by drive cable mechanisms
- A61B2034/715—Cable tensioning mechanisms for removing slack
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2218/00—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2218/001—Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/0105—Steering means as part of the catheter or advancing means; Markers for positioning
- A61M25/0133—Tip steering devices
- A61M25/0147—Tip steering devices with movable mechanical means, e.g. pull wires
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Robotics (AREA)
- Cardiology (AREA)
- Manipulator (AREA)
Abstract
某些方面涉及用于进行关节运动的单极医疗器械的系统和技术。在一个方面,该医疗器械包括腕部,该腕部包括近侧连接叉和远侧连接叉;端部执行器,该端部执行器经由远侧轴件联接到该远侧连接叉;至少一个近侧滑轮,该至少一个近侧滑轮位于该近侧连接叉中;至少一个远侧滑轮,该至少一个远侧滑轮位于该远侧连接叉中并且联接到该远侧轴件;第一缆线,该第一缆线被构造成与该至少一个近侧滑轮和该至少一个远侧滑轮接合;以及第二缆线,该第二缆线被构造成与该至少一个近侧滑轮接合而不接合该至少一个远侧滑轮。
Description
相关申请的交叉引用
本申请要求2018年8月15日提交的美国临时专利申请62/764,744的权益,该专利申请据此全文以引用方式并入。
技术领域
本文所公开的系统和方法涉及医疗器械,并且更具体地涉及用于烧灼组织的医疗器械。
背景技术
医疗规程诸如腹腔镜手术可涉及进入患者的内部区域并使患者的内部区域可视化。在腹腔镜检查规程中,医疗器械可通过腹腔镜式检查入口插入内部区域中。
在某些规程中,机器人使能的医疗系统可用于控制医疗器械和端部执行器(诸如可烧灼组织的医疗器械)的插入和/或操纵。机器人使能的医疗系统可包括机器人臂或任何其他器械定位装置。机器人使能的医疗系统还可包括控制器,该控制器用于控制在规程期间对器械的定位,并且控制供应给端部执行器的电流以控制对组织的烧灼。
发明内容
本公开的系统、方法和装置各自具有若干创新方面,这些创新方面中没有一个独自负责本文所公开的期望属性。
在一个方面,提供了一种医疗器械,该医疗器械包括腕部,该腕部包括近侧连接叉和远侧连接叉;端部执行器,该端部执行器经由远侧轴件联接到该远侧连接叉;至少一个近侧滑轮,该至少一个近侧滑轮位于该近侧连接叉中;至少一个远侧滑轮,该至少一个远侧滑轮位于该远侧连接叉中并且联接到该远侧轴件;第一缆线,该第一缆线被构造成与该至少一个近侧滑轮和该至少一个远侧滑轮接合;以及第二缆线,该第二缆线被构造成与该至少一个近侧滑轮接合而不接合该至少一个远侧滑轮。
在另一方面,提供了一种以多个运动度致动端部执行器的方法,该方法包括推进或回缩至少一个第一缆线段,该至少一个第一缆线段接合器械的至少一个近侧滑轮和至少一个远侧滑轮,该器械包括腕部,该腕部包括近侧连接叉和远侧连接叉,该端部执行器联接到该远侧连接叉,该至少一个近侧滑轮位于该近侧连接叉中,并且该至少一个远侧滑轮位于该远侧连接叉中;以及推进或回缩至少一个第二缆线段,该至少一个第二缆线段接合该至少一个近侧滑轮而不接合该至少一个远侧滑轮。
在又一方面,提供了一种医疗器械,该医疗器械包括腕部,该腕部包括近侧连接叉和远侧连接叉;端部执行器,该端部执行器经由远侧轴件联接到该远侧连接叉;至少一个近侧滑轮,该至少一个近侧滑轮位于该近侧连接叉中;至少一个远侧滑轮,该至少一个远侧滑轮位于该远侧连接叉中并且联接到该远侧轴件;以及至少一个缆线段,该至少一个缆线段被构造成接合该至少一个近侧滑轮和该至少一个远侧滑轮,并且沿着基本上线性路径在该至少一个近侧滑轮和该至少一个远侧滑轮之间延伸。
在另一方面,提供了一种医疗器械,该医疗器械包括腕部,该腕部包括近侧连接叉和远侧连接叉;端部执行器,该端部执行器经由远侧轴件联接到该远侧连接叉;至少一个近侧滑轮,该至少一个近侧滑轮位于该近侧连接叉中;以及至少一个远侧滑轮,该少一个远侧滑轮位于该远侧连接叉中并且联接到该远侧轴件,其中该端部执行器包括钩,该钩包括第一连杆和第二连杆,并且该第一连接件具有从延伸穿过该至少一个远侧滑轮的旋转轴线偏移的纵向轴线。
附图说明
下文将结合附图描述所公开的方面,该附图被提供以说明而非限制所公开的方面,其中类似的标号表示类似的元件。
图1示出了被布置用于诊断性和/或治疗性支气管镜检查的基于推车的机器人系统的实施方案。
图2描绘了图1的机器人系统的另外方面。
图3示出了被布置用于输尿管镜检查的图1的机器人系统的实施方案。
图4示出了被布置用于血管规程的图1的机器人系统的实施方案。
图5示出了被布置用于支气管镜检查规程的基于台的机器人系统的实施方案。
图6提供了图5的机器人系统的替代视图。
图7示出了被构造成收起机器人臂的示例性系统。
图8示出了被构造用于输尿管镜检查规程的基于台的机器人系统的实施方案。
图9示出了被构造用于腹腔镜检查规程的基于台的机器人系统的实施方案。
图10示出了图5至图9的具有俯仰和倾斜调节的基于台的机器人系统的实施方案。
图11提供了图5至图10的台和基于台的机器人系统的柱之间的接口的详细图示。
图12示出了基于台的机器人系统的另选实施方案。
图13示出了图12的基于台的机器人系统的端视图。
图14示出了其上附接有机器人臂的基于台的机器人系统的端视图。
图15示出了示例性器械驱动器。
图16示出了具有成对器械驱动器的示例性医疗器械。
图17示出了器械驱动器和器械的另选设计,其中驱动单元的轴线平行于器械的细长轴的轴线。
图18示出了具有基于器械的插入架构的器械。
图19示出了示例性控制器。
图20描绘了根据示例性实施方案的框图,该框图示出了估计图1至图10的机器人系统的一个或多个元件的位置(诸如图16至图18的器械的位置)的定位系统。
图21示出了根据本公开的各方面的示例性医疗环境,在该医疗环境中进行关节运动的医疗器械可用于医疗规程。
图22A至图22C示出了根据本公开的各方面的单极医疗器械的实施方案的多个视图。
图23示出了缆线路径的实施方案,该缆线路径可用于将图22A至图22C所示的医疗器械的缆线重定向。
图24A至图24C示出了根据本公开的各方面的可用于单极医疗器械中的单极钩的多个实施方案。
图25A至图25C示出了根据本公开的各方面的用于单极医疗器械的远侧滑轮的另一个实施方案的多个视图。
图26是示出根据本公开的各方面的能够由机器人系统或其部件操作以用于以多个运动度致动端部执行器的示例性方法的流程图。
具体实施方式
1.概述。
本公开的各方面可整合到机器人使能的医疗系统中,该机器人使能的医疗系统能够执行多种医疗规程,包括微创规程(诸如腹腔镜检查)和非侵入规程(诸如内窥镜检查)两者。在内窥镜检查规程中,系统可能能够执行支气管镜检查、输尿管镜检查、胃镜检查等。
除了执行广泛的规程之外,系统可以提供附加的益处,诸如增强的成像和指导以帮助医师。另外,该系统可以为医师提供从人体工程学方位执行规程的能力,而不需要笨拙的臂运动和方位。另外,该系统可以为医师提供以改进的易用性执行规程的能力,使得系统的器械中的一个或多个器械可由单个用户控制。
出于说明的目的,下文将结合附图描述各种实施方案。应当理解,所公开的概念的许多其他实施方式是可能的,并且利用所公开的实施方式可实现各种优点。标题包括在本文中以供参考并且有助于定位各个节段。这些标题并非旨在限制相对于其所述的概念的范围。此类概念可在整个说明书中具有适用性。
A.机器人系统–推车。
机器人使能的医疗系统可以按多种方式构造,具体取决于特定规程。图1示出了被布置用于诊断性和/或治疗性支气管镜检查的基于推车的机器人使能的系统10的实施方案。在支气管镜检查期间,系统10可包括推车11,该推车具有一个或多个机器人臂12,以将医疗器械诸如可操纵内窥镜13(其可以是用于支气管镜检查的规程特定的支气管镜)递送至自然孔口进入点(即,在本示例中定位在台上的患者的口),以递送诊断和/或治疗工具。如图所示,推车11可被定位在患者的上躯干附近,以便提供到进入点的通路。类似地,可以致动机器人臂12以相对于进入点定位支气管镜。当用胃镜(用于胃肠(GI)规程的专用内窥镜)执行GI规程时,也可利用图1中的布置。图2更详细地描绘了推车的示例性实施方案。
继续参考图1,一旦推车11被正确定位,机器人臂12就可以机器人地、手动地或以其组合方式将可操纵内窥镜13插入患者体内。如图所示,可操纵内窥镜13可包括至少两个伸缩部分,诸如内引导件部分和外护套部分,每个部分联接到来自一组器械驱动器28的单独的器械驱动器(也称为器械驱动机构(IDM)),每个器械驱动器联接到单独的机器人臂的远侧端部。有利于将引导件部分与护套部分同轴对准的器械驱动器28的这种线性布置产生“虚拟轨道”29,该“虚拟轨道”可以通过将一个或多个机器人臂12操纵到不同角度和/或方位而在空间中被重新定位。本文所述的虚拟轨道在附图中使用虚线描绘,并且因此虚线未描绘系统的任何物理结构。器械驱动器28沿着虚拟轨道29的平移使内引导件部分相对于外护套部分伸缩,或者使内窥镜13从患者推进或回缩。虚拟轨道29的角度可以基于临床应用或医师偏好来调整、平移和枢转。例如,在支气管镜检查中,如图所示的虚拟轨道29的角度和方位代表了在向医师提供到内窥镜13的通路同时使由内窥镜13弯曲到患者的口中引起的摩擦最小化之间的折衷。
在插入之后,内窥镜13可以使用来自机器人系统的精确命令向下导向患者的气管和肺,直到到达目标目的地或手术部位。为了增强通过患者的肺网络的导航和/或到达期望的目标,内窥镜13可被操纵以从外部护套部分伸缩地延伸内引导件部分,以获得增强的关节运动和更大的弯曲半径。使用单独的器械驱动器28还允许引导件部分和护套部分彼此独立地被驱动。
例如,内窥镜13可被导向以将活检针递送到目标,诸如患者肺内的病变或结节。针可沿工作通道向下部署,该工作通道延伸内窥镜的长度以获得待由病理学家分析的组织样本。根据病理结果,可沿内窥镜的工作通道向下部署附加工具以用于附加活检。在识别出结节是恶性的之后,内窥镜13可以通过内窥镜递送工具以切除潜在的癌组织。在一些情况下,诊断和治疗处理可在单独的规程中递送。在这些情况下,内窥镜13也可用于递送基准以“标记”目标结节的位置。在其他情况下,诊断和治疗处理可在相同的规程期间递送。
系统10还可包括可移动塔30,该可移动塔可经由支撑缆线连接到推车11以向推车11提供控制、电子、流体、光学、传感器和/或电力的支持。将这样的功能放置在塔30中允许可以由操作医师和他/她的工作人员更容易地调整和/或重新定位的更小形状因子的推车11。另外,在推车/台和支撑塔30之间划分功能减少了手术室混乱并且有利于改善临床工作流程。虽然推车11可被定位成靠近患者,但是塔30可以在远程位置中被收起以在规程过程期间不挡道。
为了支持上述机器人系统,塔30可包括基于计算机的控制系统的部件,该基于计算机的控制系统将计算机程序指令存储在例如非暂态计算机可读存储介质诸如永磁存储驱动器、固态驱动器等内。无论执行是发生在塔30中还是发生在推车11中,这些指令的执行都可以控制整个系统或其子系统。例如,当由计算机系统的处理器执行时,指令可致使机器人系统的部件致动相关托架和臂安装件,致动机器人臂,并且控制医疗器械。例如,响应于接收到控制信号,机器人臂的关节中的马达可将臂定位成特定姿势。
塔架30还可包括泵、流量计、阀控制器和/或流体通路,以便向可通过内窥镜13部署的系统提供受控的冲洗和抽吸能力。这些部件也可使用塔30的计算机系统来控制。在一些实施方案中,冲洗和抽吸能力可通过单独的缆线直接递送到内窥镜13。
塔30可包括电压和浪涌保护器,该电压和浪涌保护器被设计成向推车11提供经滤波和保护的电力,从而避免在推车11中放置电力变压器和其他辅助电力部件,从而得到更小、更可移动的推车11。
塔30还可包括用于在整个机器人系统10中部署的传感器的支撑设备。例如,塔30可包括用于在整个机器人系统10中检测、接收和处理从光学传感器或相机接收的数据的光电设备。结合控制系统,此类光电设备可用于生成实时图像,以用于在整个系统中部署的任何数量的控制台中显示(包括在塔30中显示)。类似地,塔30还可包括用于接收和处理从部署的电磁(EM)传感器接收的信号的电子子系统。塔30还可用于容纳和定位EM场发生器,以便由医疗器械中或医疗器械上的EM传感器进行检测。
除了系统的其余部分中可用的其他控制台(例如,安装在推车顶部上的控制台)之外,塔30还可包括控制台31。控制台31可包括用于医师操作者的用户界面和显示屏,诸如触摸屏。系统10中的控制台通常设计成提供机器人控制以及规程的术前信息和实时信息两者,诸如内窥镜13的导航和定位信息。当控制台31不是医师可用的唯一控制台时,其可由第二操作者(诸如护士)使用以监测患者的健康状况或生命体征和系统10的操作,以及提供规程特定的数据,诸如导航和定位信息。在其他实施方案中,控制台30容纳在与塔30分开的主体中。
塔30可通过一个或多个缆线或连接件(未示出)联接到推车11和内窥镜13。在一些实施方案中,可通过单个缆线向推车11提供来自塔30的支撑功能,从而简化手术室并消除手术室的混乱。在其他实施方案中,特定功能可联接在单独的布线和连接中。例如,尽管可以通过单个电力缆线向推车11提供电力,但也可以通过单独的缆线提供对控制、光学器件、射流和/或导航的支持。
图2提供了来自图1所示的基于推车的机器人使能的系统的推车11的实施方案的详细图示。推车11通常包括细长支撑结构14(通常称为“柱”)、推车基部15以及在柱14的顶部处的控制台16。柱14可包括一个或多个托架,诸如用于支持一个或多个机器人臂12(图2中示出三个)的部署的托架17(另选地为“臂支撑件”)。托架17可包括可单独构造的臂安装件,该臂安装件沿着垂直轴线旋转以调整机器人臂12的基部,以相对于患者更好地定位。托架17还包括托架接口19,该托架接口允许托架17沿着柱14竖直地平移。
托架接口19通过狭槽诸如狭槽20连接到柱14,该狭槽定位在柱14的相对侧上以引导托架17的竖直平移。狭槽20包含竖直平移接口以将托架17相对于推车基部15定位并保持在各种竖直高度处。托架17的竖直平移允许推车11调整机器人臂12的到达范围以满足各种台高度、患者尺寸和医师偏好。类似地,托架17上的可单独构造的臂安装件允许机器人臂12的机器人臂基部21以多种构型成角度。
在一些实施方案中,狭槽20可补充有狭槽盖,该狭槽盖与狭槽表面齐平且平行,以防止灰尘和流体在托架17竖直平移时进入柱14的内部腔以及竖直平移接口。狭槽盖可通过定位在狭槽20的竖直顶部和底部附近的成对弹簧卷轴部署。盖在卷轴内盘绕,直到在托架17竖直地上下平移时被部署成从盖的盘绕状态延伸和回缩。当托架17朝向卷轴平移时,卷轴的弹簧加载提供了将盖回缩到卷轴中的力,同时在托架17平移远离卷轴时也保持紧密密封。可使用例如托架接口19中的支架将盖连接到托架17,以确保在托架17平移时盖的适当延伸和回缩。
柱14可在内部包括诸如齿轮和马达之类的机构,其被设计成使用竖直对准的导螺杆以响应于响应用户输入(例如,来自控制台16的输入)生成的控制信号来以机械化方式平移托架17。
机器人臂12通常可包括由一系列连杆23分开的机器人臂基部21和端部执行器22,该一系列连杆由一系列关节24连接,每个关节包括独立的致动器,每个致动器包括可独立控制的马达。每个可独立控制的关节表示机器人臂12可用的独立自由度。机器人臂12中的每个机器人臂可具有七个关节,并且因此提供七个自由度。多个关节导致多个自由度,从而允许“冗余”的自由度。具有冗余自由度允许机器人臂12使用不同的连接件方位和关节角度将其相应的端部执行器22定位在空间中的特定方位、取向和轨迹处。这允许系统从空间中的期望点定位和导向医疗器械,同时允许医师将臂关节移动到远离患者的临床有利方位,以产生更大的接近,同时避免臂碰撞。
推车基部15在地板上平衡柱14、托架17和机器人臂12的重量。因此,推车基部15容纳较重的部件,诸如电子器件、马达、电源以及使得推车11能够移动和/或固定的部件。例如,推车基部15包括允许推车11在规程之前容易地围绕房间移动的可滚动的轮形脚轮25。在到达适当方位之后,脚轮25可以使用轮锁固定,以在规程期间将推车11保持在适当方位。
定位在柱14的竖直端部处的控制台16允许用于接收用户输入的用户界面和显示屏(或两用装置,诸如例如触摸屏26)两者向医师用户提供术前和术中两者数据。触摸屏26上的潜在术前数据可以包括从术前计算机化断层摄影(CT)扫描导出的术前计划、导航和标测数据和/或来自术前患者面谈的记录。显示器上的术中数据可以包括从工具、传感器提供的光学信息和来自传感器的坐标信息以及重要的患者统计,诸如呼吸、心率和/或脉搏。控制台16可以被定位和倾斜成允许医师从柱14的与托架17相对的侧面接近控制台16。从该方位,医师可以在从推车11后面操作控制台16的同时观察控制台16、机器人臂12和患者。如图所示,控制台16还包括用以帮助操纵和稳定推车11的柄部27。
图3示出了被布置用于输尿管镜检查的机器人使能的系统10的实施方案。在输尿管镜规程中,推车11可被定位成将输尿管镜32(被设计成横穿患者的尿道和输尿管的规程特定的内窥镜)递送到患者的下腹部区域。在输尿管镜检查中,可以期望输尿管镜32直接与患者的尿道对准以减少该区域中的敏感解剖结构上的摩擦和力。如图所示,推车11可以在台的脚部处对准,以允许机器人臂12定位输尿管镜32,以用于直接线性进入患者的尿道。机器人臂12可从台的脚部沿着虚拟轨道33将输尿管镜32通过尿道直接插入患者的下腹部中。
在插入尿道中之后,使用与支气管镜检查中类似的控制技术,输尿管镜32可以被导航到膀胱、输尿管和/或肾中以用于诊断和/或治疗应用。例如,可以将输尿管镜32引导到输尿管和肾中以使用沿输尿管镜32的工作通道向下部署的激光或超声碎石装置来打碎积聚的肾结石。在碎石完成之后,可以使用沿输尿管镜32向下部署的篮移除所得的结石碎片。
图4示出了类似地被布置用于血管规程的机器人使能的系统10的实施方案。在血管规程中,系统10可被构造成使得推车11可将医疗器械34(诸如可操纵导管)递送至患者的腿部的股动脉中的进入点。股动脉呈现用于导航的较大直径以及到患者的心脏的相对较少的迂回且曲折的路径两者,这简化了导航。如在输尿管镜规程中,推车11可以被定位成朝向患者的腿和下腹部,以允许机器人臂12提供直接线性进入患者的大腿/髋部区域中的股动脉进入点的虚拟轨道35。在插入动脉中之后,可通过平移器械驱动器28来导向和插入医疗器械34。另选地,推车可以被定位在患者的上腹部周围,以到达另选的血管进入点,诸如肩部和腕部附近的颈动脉和臂动脉。
B.机器人系统–台。
机器人使能的医疗系统的实施方案还可结合患者的台。结合台通过移除推车减少了手术室内的资本设备的量,这允许更多地接近患者。图5示出了被布置用于支气管镜检查规程的此类机器人使能的系统的实施方案。系统36包括用于将平台38(示出为“台”或“床”)支撑在地板上的支撑结构或柱37。与基于推车的系统非常相似,系统36的机器人臂39的端部执行器包括器械驱动器42,其被设计成通过或沿着由器械驱动器42的线性对准形成的虚拟轨道41来操纵细长医疗器械,诸如图5中的支气管镜40。在实践中,用于提供荧光镜成像的C形臂可以通过将发射器和检测器放置在台38周围而定位在患者的上腹部区域上方。
图6提供了用于讨论目的的没有患者和医疗器械的系统36的另选视图。如图所示,柱37可包括在系统36中示出为环形的一个或多个托架43,一个或多个机器人臂39可基于该托架。托架43可以沿着沿柱37的长度延伸的竖直柱接口44平移,以提供不同的有利点,机器人臂39可以从这些有利点被定位以到达患者。托架43可以使用定位在柱37内的机械马达围绕柱37旋转,以允许机器人臂39进入台38的多个侧面,诸如患者的两侧。在具有多个托架的实施方案中,托架可单独地定位在柱上,并且可独立于其他托架平移和/或旋转。虽然托架43不需要环绕柱37或甚至是圆形的,但如图所示的环形形状有利于托架43围绕柱37旋转,同时保持结构平衡。托架43的旋转和平移允许系统36将医疗器械诸如内窥镜和腹腔镜对准到患者身上的不同进入点中。在其他实施方案(未示出)中,系统36可包括具有可调式臂支撑件的病人检查台或病床,该可调式臂支撑件呈在病人检查台或病床旁边延伸的杆或导轨的形式。一个或多个机器人臂39(例如,经由具有肘关节的肩部)可附接到可调式臂支撑件,该可调式臂支撑件可被竖直调节。通过提供竖直调节,机器人臂39有利地能够紧凑地存放在病人检查台或病床下方,并且随后在规程期间升高。
机器人臂39可通过包括一系列关节的一组臂安装件45安装在托架43上,该关节可单独地旋转和/或伸缩地延伸以向机器人臂39提供附加的可构造性。另外,臂安装架45可定位在托架43上,使得当托架43适当地旋转时,臂安装架45可定位在台38的同一侧上(如图6所示)、台38的相对侧上(如图9所示)或台38的相邻侧上(未示出)。
柱37在结构上为台38提供支撑,并且为托架43的竖直平移提供路径。在内部,柱37可配备有用于引导托架的竖直平移的导螺杆,以及用以机械化基于导螺杆的托架43的平移的马达。柱37还可将功率和控制信号传送到托架43和安装在其上的机器人臂39。
台基部46具有与图2所示的推车11中的推车基部15类似的功能,容纳较重的部件以平衡台/床38、柱37、托架43和机器人臂39。台基部46还可结合刚性脚轮以在规程期间提供稳定性。从台基部46的底部部署的脚轮可以在基部46的两侧沿相反方向延伸,并且当系统36需要移动时回缩。
继续图6,系统36还可以包括塔(未示出),该塔使系统36的功能在台与塔之间进行划分以减小台的形状因子和体积。如在先前所公开的实施方案中,塔可以向台提供各种支持功能,诸如处理、计算和控制能力、电力、流体和/或光学以及传感器处理。塔还可以是可移动的,以远离患者定位,从而改善医师的接近并且消除手术室的混乱。另外,将部件放置在塔中允许在台基部46中有更多的储存空间,以用于机器人臂39的潜在收起。塔还可以包括主控制器或控制台,其提供用于用户输入的用户界面(诸如键盘和/或挂件)以及用于术前和术中信息(诸如实时成像、导航和跟踪信息)的显示屏(或触摸屏)两者。在一些实施方案中,塔还可包含用于待用于注气的气罐的夹持器。
在一些实施方案中,台基部可以在不使用时收起和储存机器人臂。图7示出了在基于台的系统的实施方案中收起机器人臂的系统47。在系统47中,托架48可以竖直平移到基部49中以使机器人臂50、臂安装件51和托架48收起在基部49内。基部盖52可以平移和回缩打开以围绕柱53部署托架48、臂安装件51和机器人臂50,并且关闭以收起该托架、臂安装件和机器人臂,以便在不使用时保护它们。基部盖52可以用膜54沿着其开口的边缘密封,以防止在关闭时灰尘和流体进入。
图8示出了被构造用于输尿管镜检查规程的机器人使能的基于台的系统的实施方案。在输尿管镜检查中,台38可以包括用于将患者定位成与柱37和台基部46成偏角的旋转部分55。旋转部分55可以围绕枢转点(例如,位于患者的头部下方)旋转或枢转,以便将旋转部分55的底部部分定位成远离柱37。例如,旋转部分55的枢转允许C形臂(未示出)定位在患者的下腹部上方,而不与台38下方的柱(未示出)竞争空间。通过围绕柱37旋转托架35(未示出),机器人臂39可以沿着虚拟轨道57将输尿管镜56直接插入患者的腹股沟区域中以到达尿道。在输尿管镜检查中,镫58也可以固定至台38的旋转部分55,以在规程期间支撑患者的腿的方位,并且允许完全通向患者的腹股沟区域。
在腹腔镜检查规程中,通过患者的腹壁中的小切口,可将微创器械插入患者的解剖结构中。在一些实施方案中,微创器械包括用于进入患者体内解剖结构的细长刚性构件,诸如轴。在患者腹腔充气之后,可以引导器械执行外科或医疗任务,诸如抓握、切割、消融、缝合等。在一些实施方案中,器械可以包括镜,诸如腹腔镜。图9示出了被构造用于腹腔镜检查规程的机器人使能的基于台的系统的实施方案。如图9所示,系统36的托架43可以被旋转并且竖直调整,以将成对的机器人臂39定位在台38的相对侧上,使得可以使用臂安装件45将器械59定位成穿过患者两侧上的最小切口以到达他/她的腹腔。
为了适应腹腔镜检查规程,机器人使能的台系统还可将平台倾斜到期望的角度。图10示出了具有俯仰或倾斜调整的机器人使能的医疗系统的实施方案。如图10所示,系统36可以适应台38的倾斜,以将台的一部分定位在比另一部分距底板更远的距离处。另外,臂安装件45可以旋转以匹配倾斜,使得机器人臂39与台38保持相同的平面关系。为了适应更陡的角度,柱37还可以包括伸缩部分60,该伸缩部分允许柱37的竖直延伸以防止台38接触地板或与台基部46碰撞。
图11提供了台38与柱37之间的接口的详细图示。俯仰旋转机构61可以被构造成以多个自由度改变台38相对于柱37的俯仰角。俯仰旋转机构61可以通过将正交轴线1、2定位在柱台接口处来实现,每条轴线由单独的马达3、4响应于电俯仰角命令而致动。沿着一个螺钉5的旋转将使得能够在一条轴线1中进行倾斜调整,而沿着另一个螺钉6的旋转将使得能够沿着另一个轴线2进行倾斜调节。在一些实施方案中,可使用球形关节来在多个自由度上改变台38相对于柱37的俯仰角。
例如,当试图将台定位在头低脚高位(即,将患者的下腹部定位在比患者的上腹部距地板更高的方位)以用于下腹部手术时,俯仰调整特别有用。头低脚高位致使患者的内部器官通过重力滑向他/她的上腹部,从而清理出腹腔以使微创工具进入并且执行下腹部外科或医疗规程,诸如腹腔镜前列腺切除术。
图12和图13示出了基于台的外科机器人系统100的另选实施方案的等轴视图和端视图。外科机器人系统100包括可被构造成相对于台101支撑一个或多个机器人臂(参见例如图14)的一个或多个可调式臂支撑件105。在例示的实施方案中,示出了单个可调式臂支撑件105,但是附加的臂支撑件可设置在台101的相对侧上。可调式臂支撑件105可被构造,使得其可相对于台101运动,以调节和/或改变可调式臂支撑件105和/或安装到该可调式臂支撑件的任何机器人臂相对于台101的方位。例如,可调式臂支撑件105可相对于台101被调节一个或多个自由度。可调式臂支撑件105为系统100提供高灵活性,包括容易地将一个或多个可调式臂支撑件105和附接到其的任何机器人臂收起在台101下方的能力。可调式臂支撑件105可从收起方位升高到台101的上表面下方的方位。在其他实施方案中,可调式臂支撑件105可从收起方位升高到台101的上表面上方的方位。
可调式臂支撑件105可提供若干自由度,包括提升、侧向平移、倾斜等。在图12和图13的例示实施方案中,臂支撑件105被构造成具有四个自由度,这些自由度在图12中用箭头示出。第一自由度允许在z方向上(“Z提升”)调节可调式臂支撑件105。例如,可调式臂支撑件105可包括托架109,该托架被构造成沿着或相对于支撑台101的柱102向上或向下运动。第二自由度可允许可调式臂支撑件105倾斜。例如,可调式臂支撑件105可包括旋转接头,该旋转接头可允许可调式臂支撑件105在特伦德伦伯格卧位与床对准。第三自由度可允许可调式臂支撑件105“向上枢转”,这可用于调节台101的一侧与可调式臂支撑件105之间的距离。第四自由度可允许可调式臂支撑件105沿着台的纵向长度平移。
图12和图13中的外科机器人系统100可包括由安装到基部103的柱102支撑的台。基部103和柱102相对于支撑表面支撑台101。地板轴线131和支撑轴线133在图13中示出。
可调式臂支撑件105可安装到柱102。在其他实施方案中,臂支撑件105可安装到台101或基部103。可调式臂支撑件105可包括托架109、杆或导轨连接件111以及杆或导轨107。在一些实施方案中,安装到轨道107的一个或多个机器人臂可相对于彼此平移和运动。
托架109可通过第一接头113附接到柱102,该第一接头允许托架109相对于柱102运动(例如,诸如沿第一轴线或竖直轴线123上下运动)。第一接头113可向可调式臂支撑件105提供第一自由度(“Z提升”)。可调式臂支撑件105可包括第二接头115,该第二接头为可调式臂支撑件105提供第二自由度(倾斜)。可调式臂支撑件105可包括第三接头117,该第三接头可为可调式臂支撑件105提供第三自由度(“向上枢转”)。可提供附加接头119(在图13中示出),该附加接头机械地约束第三接头117以在导轨连接件111围绕第三轴线127旋转时保持导轨107的取向。可调式臂支撑件105可包括第四接头121,该第四接头可沿着第四轴线129为可调式臂支撑件105提供第四自由度(平移)。
图14示出了具有安装在台101的相对侧上的两个可调式臂支撑件105A、105B的外科机器人系统140A的端视图。第一机器人臂142A附接到第一可调式臂支撑件105B的杆或导轨107A。第一机器人臂142A包括附接到导轨107A的基部144A。第一机器人臂142A的远侧端部包括可附接到一个或多个机器人医疗器械或工具的器械驱动机构146A。类似地,第二机器人臂142B包括附接到导轨107B的基部144B。第二机器人臂142B的远侧端部包括器械驱动机构146B。器械驱动机构146B可被构造成附接到一个或多个机器人医疗器械或工具。
在一些实施方案中,机器人臂142A、142B中的一者或多者包括具有七个或更多个自由度的臂。在一些实施方案中,机器人臂142A、142B中的一者或多者可包括八个自由度,包括插入轴线(包括插入的1个自由度)、腕部(包括腕部俯仰、偏航和翻滚的3个自由度)、肘部(包括肘部俯仰的1个自由度)、肩部(包括肩部俯仰和偏航的2个自由度)以及基部144A、144B(包括平移的1个自由度)。在一些实施方案中,插入自由度可由机器人臂142A、142B提供,而在其他实施方案中,器械本身经由基于器械的插入架构提供插入。
C.器械驱动器和接口。
系统的机器人臂的端部执行器可包括:(i)器械驱动器(另选地称为“器械驱动机构”或“器械装置操纵器”),其结合了用于致动医疗器械的机电装置;以及(ii)可移除或可拆卸的医疗器械,其可以没有诸如马达的任何机电部件。该二分法可能是由以下所驱动的:对医疗规程中使用的医疗器械进行灭菌的需要;以及由于昂贵的资本设备的复杂机械组件和敏感电子器件而不能对昂贵的资本设备进行充分灭菌。因此,医疗器械可以被设计成从器械驱动器(以及因此从系统)拆卸、移除和互换,以便由医师或医师的工作人员单独灭菌或处置。相比之下,器械驱动器不需要被改变或灭菌,并且可以被覆盖以便保护。
图15示出了示例性器械驱动器。定位在机器人臂的远侧端部处的器械驱动器62包括一个或多个驱动单元63,其以平行轴线布置以经由驱动轴64向医疗器械提供受控扭矩。每个驱动单元63包括用于与器械相互作用的单独的驱动轴64,用于将马达轴旋转转换成期望扭矩的齿轮头65,用于生成驱动扭矩的马达66,用以测量马达轴的速度并且向控制电路提供反馈的编码器67,以及用于接收控制信号并且致动驱动单元的控制电路68。每个驱动单元63被独立地控制和机动化,器械驱动器62可以向医疗器械提供多个(如图15所示为四个)独立的驱动输出部。在操作中,控制电路68将接收控制信号,将马达信号传输至马达66,将由编码器67测量的所得马达速度与期望速度进行比较,并且调制马达信号以生成期望扭矩。
对于需要无菌环境的规程,机器人系统可以结合驱动接口,诸如连接至无菌覆盖件的无菌适配器,其位于器械驱动器与医疗器械之间。无菌适配器的主要目的是将角运动从器械驱动器的驱动轴传递到器械的驱动输入部,同时保持驱动轴与驱动输入部之间的物理分开并且因此保持无菌。因此,示例性无菌适配器可以包括旨在与器械驱动器的驱动轴和器械上的驱动输入部配合的一系列旋转输入部和旋转输出部。连接到无菌适配器的由薄的柔性材料(诸如透明或半透明塑料)组成的无菌覆盖件被设计成覆盖资本设备,诸如器械驱动器、机器人臂和推车(在基于推车的系统中)或台(在基于台的系统中)。覆盖件的使用将允许资本设备被定位在患者附近,同时仍然位于不需要灭菌的区域(即,非无菌区)。在无菌覆盖件的另一侧上,医疗器械可以在需要灭菌的区域(即,无菌区)与患者对接。
D.医疗器械。
图16示出了具有成对器械驱动器的示例性医疗器械。与被设计成供机器人系统使用的其他器械类似,医疗器械70包括细长轴71(或细长主体)和器械基部72。由于其用于由医师进行的手动交互的预期设计而也被称为“器械柄部”的器械基部72通常可以包括可旋转驱动输入部73(例如,插座、滑轮或卷轴),该驱动输入部被设计成与延伸通过机器人臂76的远侧端部处的器械驱动器75上的驱动接口的驱动输出部74配合。当物理连接、闩锁和/或联接时,器械基部72的配合的驱动输入部73可以与器械驱动器75中的驱动输出部74共享旋转轴线,以允许扭矩从驱动输出部74传递到驱动输入部73。在一些实施方案中,驱动输出部74可以包括花键,其被设计成与驱动输入部73上的插座配合。
细长轴71被设计成通过解剖开口或内腔(例如,如在内窥镜检查中)或通过微创切口(例如,如在腹腔镜检查中)递送。细长轴71可以是柔性的(例如,具有类似于内窥镜的特性)或刚性的(例如,具有类似于腹腔镜的特性),或者包含柔性部分和刚性部分两者的定制组合。当被设计用于腹腔镜检查时,刚性细长轴的远侧端部可以连接到端部执行器,该端部执行器从由具有至少一个自由度的连接叉形成的关节腕和外科工具或医疗器械(例如,抓握器或剪刀)延伸,当驱动输入部响应于从器械驱动器75的驱动输出部74接收到的扭矩而旋转时,该外科工具可以基于来自腱的力来致动。当设计用于内窥镜检查时,柔性细长轴的远侧端部可包括可操纵或可控制的弯曲节段,该弯曲节段以基于从器械驱动器75的驱动输出74接收到的扭矩而进行关节运动和弯曲。
使用沿着细长轴71的腱沿着细长轴71传递来自器械驱动器75的扭矩。这些单独的腱(例如,拉线)可以单独地锚定至器械柄部72内的单独的驱动输入部73。从柄部72,沿着细长轴71的一个或多个牵拉腔向下引导腱并且将其锚定在细长轴71的远侧部分处,或者锚定在细长轴的远侧部分处的腕部中。在外科手术诸如腹腔镜检查规程、内窥镜检查规程或混合规程期间,这些腱可以联接到远侧安装的端部执行器,诸如腕部、抓握器或剪刀。在这样的布置下,施加在驱动输入部73上的扭矩将张力传递到腱,从而致使端部执行器以某种方式致动。在一些实施方案中,在外科手术期间,腱可以致使关节围绕轴线旋转,从而致使端部执行器沿一个方向或另一个方向移动。另选地,腱可以连接到细长轴71的远侧端部处的抓握器的一个或多个钳口,其中来自腱的张力致使抓握器闭合。
在内窥镜检查中,腱可以经由粘合剂、控制环或其他机械固定件联接到沿着细长轴71定位(例如,在远侧端部处)的弯曲或进行关节运动的节段。当固定地附接到弯曲节段的远侧端部时,施加在驱动输入部73上的扭矩将沿腱向下传递,从而致使较软的弯曲节段(有时称为可关节运动节段或区域)弯曲或进行关节运动。沿着不弯曲节段,可以有利的是,使单独的牵拉腔螺旋或盘旋,该牵拉腔沿着内窥镜轴的壁(或在内部)导向单独的腱,以平衡由牵拉线中的张力引起的径向力。为了特定目的,可以改变或设计螺旋的角度和/或其间的间隔,其中更紧的螺旋在负载力下表现出较小的轴压缩,而较低的螺旋量在负载力下引起更大的轴压缩,但限制弯曲。在另一种情况下,可以平行于细长轴71的纵向轴线来导向牵拉腔以允许在期望的弯曲或可关节运动节段中进行受控关节运动。
在内窥镜检查中,细长轴71容纳多个部件以辅助机器人规程。轴71可以在轴71的远侧端部处包括用于部署外科工具(或医疗器械)、对手术区域进行冲洗和/或抽吸的工作通道。轴71还可以容纳线和/或光纤以向远侧末端处的光学组件/从远侧末端处的光学组件传递信号,该光学组件可以包括光学相机。轴71也可以容纳光纤,以将来自位于近侧的光源(例如,发光二极管)的光载送到轴71的远侧端部。
在器械70的远侧端部处,远侧末端还可以包括用于递送用于诊断和/或治疗的工具、对手术部位进行冲洗和抽吸的工作通道的开口。远侧末端还可以包括用于相机(诸如纤维镜或数码相机)的端口,以捕获内部解剖空间的图像。相关地,远侧末端还可以包括用于光源的端口,该光源用于在使用相机时照亮解剖空间。
在图16的示例中,驱动轴轴线以及因此驱动输入部轴线与细长轴71的轴线正交。然而,该布置使细长轴71的滚动能力复杂化。在保持驱动输入部73静止的同时沿着其轴线使细长轴71滚动会引起当腱从驱动输入部73延伸出去并且进入到细长轴71内的牵拉腔时,腱的不期望的缠结。所得到的这样的腱的缠结可能破坏旨在在内窥镜规程期间预测柔性细长轴71的运动的任何控制算法。
图17示出了器械驱动器和器械的另选设计,其中驱动单元的轴线平行于器械的细长轴的轴线。如图所示,圆形器械驱动器80包括四个驱动单元,其驱动输出81在机器人臂82的端部处平行对准。驱动单元和它们各自的驱动输出81容纳在由组件83内的驱动单元中的一个驱动单元驱动的器械驱动器80的旋转组件83中。响应于由旋转驱动单元提供的扭矩,旋转组件83沿着圆形轴承旋转,该圆形轴承将旋转组件83连接到器械驱动器80的非旋转部分84。可以通过电接触将电力和控制信号从器械驱动器80的非旋转部分84传送至旋转组件83,该电接触可以通过由电刷滑环连接(未示出)的旋转来维持。在其他实施方案中,旋转组件83可以响应于集成到不可旋转部分84中的单独的驱动单元,并且因此不平行于其他驱动单元。旋转机构83允许器械驱动器80允许驱动单元及其相应的驱动输出81作为单个单元围绕器械驱动器轴线85旋转。
与先前所公开的实施方案类似,器械86可以包括细长轴部分88和器械基部87(出于讨论的目的,示出为具有透明的外部表层),该器械基部包括被配置成接收器械驱动器80中的驱动输出部81的多个驱动输入部89(诸如插座、滑轮和卷轴)。与先前公开的实施方案不同,器械轴88从器械基部87的中心延伸,该器械基部的轴线基本上平行于驱动输入部89的轴线,而不是如图16的设计中那样正交。
当联接到器械驱动器80的旋转组件83时,包括器械基部87和器械轴88的医疗器械86与旋转组件83组合地围绕器械驱动器轴线85旋转。由于器械轴88被定位在器械基部87的中心处,因此当附接时器械轴88与器械驱动器轴线85同轴。因此,旋转组件83的旋转致使器械轴88围绕其自身的纵向轴线旋转。此外,当器械基部87与器械轴88一起旋转时,连接到器械基部87中的驱动输入部89的任何腱在旋转期间都不缠结。因此,驱动输出部81、驱动输入部89和器械轴88的轴线的平行允许轴在不会使任何控制腱缠结的情况下旋转。
图18示出了根据一些实施方案的具有基于器械的插入架构的器械。器械150可联接到上文所述的器械驱动器中的任一个器械驱动器。器械150包括细长轴152、连接到轴152的端部执行器162和联接到轴152的柄部170。细长轴152包括管状构件,该管状构件具有近侧部分154和远侧部分156。细长轴152沿着其外表面包括一个或多个通道或沟槽158。沟槽158被构造成接收穿过该沟槽的一根或多根线材或缆线180。因此,一根或多根缆线180沿着细长轴152的外表面延伸。在其他实施方案中,缆线180也可穿过细长轴152。所述一根或多根缆线180的操纵(例如,经由器械驱动器)引起端部执行器162的致动。
器械柄部170(也可称为器械基部)通常可包括附接接口172,该附接接口具有一个或多个机械输入件174,例如插孔、滑轮或卷轴,所述一个或多个机械输入件被设计成与器械驱动器的附接表面上的一个或多个扭矩联接器往复地配合。
在一些实施方案中,器械150包括使得细长轴152能够相对于柄部170平移的一系列滑轮或缆线。换句话讲,器械150本身包括基于器械的插入架构,该架构适应器械的插入,从而使对机器人臂的依赖最小化以提供器械150的插入。在其他实施方案中,机器人臂可以很大程度上负责器械插入。
E.控制器。
本文所述的机器人系统中的任一个机器人系统可包括用于操纵附接到机器人臂的器械的输入装置或控制器。在一些实施方案中,控制器可与器械(例如,通信地、电子地、电气、无线地和/或机械地)联接,使得控制器的操纵例如经由主从控制引起器械的对应操纵。
图19是控制器182的实施方案的透视图。在本实施方案中,控制器182包括可具有阻抗和导纳控制两者的混合控制器。在其他实施方案中,控制器182可仅利用阻抗或被动控制。在其他实施方案中,控制器182可仅利用导纳控制。通过作为混合控制器,控制器182有利地在使用时可具有较低的感知惯性。
在例示的实施方案中,控制器182被构造成允许操纵两个医疗器械,并且包括两个柄部184。柄部184中的每个柄部连接到万向支架186。每个万向支架186连接到定位平台188。
如图19所示,每个定位平台188包括通过棱柱接头196联接到柱194的SCARA臂(选择顺应性装配机器人臂)198。棱柱接头196被构造成沿着柱194(例如,沿着导轨197)平移,以允许柄部184中的每个柄部在z方向上平移,从而提供第一自由度。SCARA臂198被构造成允许柄部184在x-y平面中运动,从而提供两个附加自由度。
在一些实施方案中,一个或多个负荷传感器定位在控制器中。例如,在一些实施方案中,负荷传感器(未示出)定位在万向支架186中的每个万向支架的主体中。通过提供负荷传感器,控制器182的部分能够在导纳控制下操作,从而在使用时有利地减小控制器的感知惯性。在一些实施方案中,定位平台188被构造用于导纳控制,而万向支架186被构造用于阻抗控制。在其他实施方案中,万向支架186被构造用于导纳控制,而定位平台188被构造用于阻抗控制。因此,对于一些实施方案,定位平台188的平移自由度或方位自由度可依赖于导纳控制,而万向支架186的旋转自由度依赖于阻抗控制。
F.导航和控制。
传统的内窥镜检查可以涉及使用荧光透视(例如,如可以通过C形臂递送的)和其他形式的基于辐射的成像模态,以向操作医师提供腔内指导。相比之下,本公开所设想的机器人系统可以提供基于非辐射的导航和定位装置,以减少医师暴露于辐射并且减少手术室内的设备的量。如本文所用,术语“定位”可以指确定和/或监测对象在参考坐标系中的方位。诸如术前标测、计算机视觉、实时EM跟踪和机器人命令数据的技术可以单独地或组合地使用以实现无辐射操作环境。在仍使用基于辐射的成像模态的其他情况下,可以单独地或组合地使用术前标测、计算机视觉、实时EM跟踪和机器人命令数据,以改进仅通过基于辐射的成像模态获得的信息。
图20是示出根据示例实施方案的估计机器人系统的一个或多个元件的位置(诸如器械的位置)的定位系统90的框图。定位系统90可以是被配置成执行一个或多个指令的一组一个或多个计算机装置。计算机装置可以由上文讨论的一个或多个部件中的处理器(或多个处理器)和计算机可读存储器来体现。以举例的方式而非限制,计算机装置可以位于图1所示的塔30、图1至图4所示的推车11、图5至图14所示的床等中。
如图20所示,定位系统90可以包括定位模块95,该定位模块处理输入数据91-94以生成用于医疗器械的远侧末端的位置数据96。位置数据96可以是表示器械的远侧端部相对于参考系的位置和/或取向的数据或逻辑。参考系可以是相对于患者解剖结构或已知对象(诸如EM场发生器)的参考系(参见下文对于EM场发生器的讨论)。
现在更详细地描述各种输入数据91-94。术前标测可以通过使用低剂量CT扫描的集合来完成。术前CT扫描被重建成三维图像,这些三维图像被可视化,例如作为患者的内部解剖结构的剖面图的“切片(slices)”。当总体上分析时,可以生成用于患者的解剖结构(诸如患者肺网络)的解剖腔、空间和结构的基于图像的模型。可以从CT图像确定和近似诸如中心线几何形状的技术,以形成患者解剖结构的三维体积,其被称为模型数据91(当仅使用术前CT扫描生成时也称为“术前模型数据”)。中心线几何形状的使用在美国专利申请号14/523760中有所讨论,其内容全文并入本文中。网络拓扑模型也可以从CT图像中导出,并且特别适合于支气管镜检查。
在一些实施方案中,器械可以配备有相机以提供视觉数据(或图像数据)92。定位模块95可处理视觉数据92以实现一个或多个基于视觉的(或基于图像的)位置跟踪模块或特征部。例如,术前模型数据91可以与视觉数据92结合使用,以实现对医疗器械(例如,内窥镜或推进通过内窥镜的工作通道的器械)的基于计算机视觉的跟踪。例如,使用术前模型数据91,机器人系统可以基于内窥镜的行进预期路径根据模型生成预期内窥镜图像的库,每个图像连接到模型内的位置。在外科手术进行时,机器人系统可以参考该库,以便将在相机(例如,在内窥镜的远侧端部处的相机)处捕获的实时图像与图像库中的那些图像进行比较,以辅助定位。
其他基于计算机视觉的跟踪技术使用特征跟踪来确定相机的运动,并且因此确定内窥镜的运动。定位模块95的一些特征可以识别术前模型数据91中的与解剖腔对应的圆形几何结构并且跟踪那些几何结构的变化以确定选择了哪个解剖腔,以及跟踪相机的相对旋转和/或平移运动。拓扑图的使用可以进一步增强基于视觉的算法或技术。
光流(另一种基于计算机视觉的技术)可以分析视觉数据92中的视频序列中的图像像素的位移和平移以推断相机运动。光流技术的示例可以包括运动检测、对象分割计算、亮度、运动补偿编码、立体视差测量等。通过多次迭代的多帧比较,可以确定相机(以及因此内窥镜)的运动和位置。
定位模块95可以使用实时EM跟踪来生成内窥镜在全局坐标系中的实时位置,该全局坐标系可以被配准到由术前模型表示的患者的解剖结构。在EM跟踪中,包括嵌入在医疗器械(例如,内窥镜工具)中的一个或多个位置和取向中的一个或多个传感器线圈的EM传感器(或跟踪器)测量由定位在已知位置处的一个或多个静态EM场发生器产生的EM场的变化。由EM传感器检测的位置信息被存储为EM数据93。EM场发生器(或发射器)可以靠近患者放置,以产生嵌入式传感器可以检测到的低强度磁场。磁场在EM传感器的传感器线圈中感应出小电流,可以对该小电流进行分析以确定EM传感器与EM场发生器之间的距离和角度。这些距离和取向可以在手术中“配准”到患者解剖结构(例如,手术前模型),以确定将坐标系中的单个位置与患者的解剖结构的手术前模型中的方位对准的几何变换。一旦配准,医疗器械的一个或多个方位(例如,内窥镜的远侧末端)中的嵌入式EM跟踪器可以提供医疗器械通过患者的解剖结构的进展的实时指示。
机器人命令和运动学数据94也可以由定位模块95使用以提供用于机器人系统的方位数据96。可以在术前校准期间确定从关节运动命令得到的装置俯仰和偏航。在手术中,这些校准测量可以与已知的插入深度信息结合使用,以估计器械的方位。另选地,这些计算可以结合EM、视觉和/或拓扑建模进行分析,以估计医疗器械在网络内的方位。
如图20所示,定位模块95可以使用多个其他输入数据。例如,尽管在图20中未示出,但是利用形状感测纤维的器械可以提供定位模块95可以用来确定器械的位置和形状的形状数据。
定位模块95可以组合地使用输入数据91-94。在一些情况下,这样的组合可以使用概率方法,其中定位模块95向根据输入数据91-94中的每个输入数据确定的位置分配置信度权重。因此,在EM数据可能不可靠(如可能存在EM干扰的情况)的情况下,由EM数据93确定的位置的置信度可能降低,并且定位模块95可能更重地依赖于视觉数据92和/或机器人命令和运动学数据94。
如上所讨论的,本文讨论的机器人系统可以被设计成结合以上技术中的一种或多种技术的组合。位于塔、床和/或推车中的机器人系统的基于计算机的控制系统可以将计算机程序指令存储在例如非暂态计算机可读存储介质(诸如永久性磁存储驱动器、固态驱动器等)内,该计算机程序指令在执行时致使系统接收并且分析传感器数据和用户命令,生成整个系统的控制信号并且显示导航和定位数据,诸如器械在全局坐标系内的方位、解剖图等。
2.对用于烧灼的医疗器械的介绍。
本公开的实施方案涉及可用于在医疗规程期间烧灼组织的医疗器械。医疗器械可在机器人臂的远侧端部处附接到IDM,使得医疗器械可由机器人系统控制。位于医疗器械的远侧端部处的端部执行器可具体体现为金属件(例如,呈钩的形状),并且可通过向该金属件(例如,进行关节运动的金属钩)施加电流来以受控方式烧灼(例如,烧伤)患者的解剖结构的一部分。
图21示出了其中根据本公开的各方面的单极医疗器械可用于医疗规程的示例性系统。系统200可包括电联接到有源电路径210和返回电路径215的发生器205、患者220、电联接到患者220的接地垫225以及单极医疗器械230。发生器205被配置成经由有源路径210向单极医疗器械230供应电流。电流在经由返回电路径215返回到发生器205之前,可通过患者220从单极医疗器械230流到接地垫225。
由于单极医疗器械230和接地垫225之间的电势差,单极医疗器械230的端部执行器用足够的电能充电以烧灼附近的组织。在图21的实施方案中,医疗器械230可被认为是单极的而不是双极的,因为端部执行器仅通过有源电路径210供应电流,其中返回电路径215经由接地垫225完成穿过患者220身体的电路。此类单极医疗器械230的具体特征部将在下文描述。然而,本领域的技术人员将理解,这些特征部可不限于单极医疗器械,而是也可应用于各种单指腕部器械(例如,非能量解剖刀片)、双极器械和其他外科工具。
可存在许多与设计单极医疗器械相关联的设计考虑。第一设计考虑是单极医疗器械230有利地以受控且可预测的方式烧伤/烧灼组织,而不会烧伤患者体内不期望的组织。其他类型的医疗器械(诸如某些类型的双极针驱动器)可以由全金属构造形成,当内部金属缆线抵靠内表面摩擦时,该全金属构造可以是耐磨的。然而,这种全金属构造对于单极医疗器械230可能是不切实际的,因为全金属构造可能导致单极医疗器械230的某些部件/部分以不期望的方式导电。例如,当单极医疗器械230的除端部执行器之外的特定部分形成到接地垫225的最短路径时,电流可从单极医疗器械230的该特定部分流入周围组织中,从而潜在地以不期望的方式烧灼组织并伤害患者。
第二设计考虑是单极医疗器械230被设计成承受磨损和撕裂。如上所述,某些器械(诸如一些双极针驱动器)可以由全金属构造形成。当内部金属缆线抵靠内部固定式重定向表面延伸时,此类器械可以是耐磨的。如本文所用,固定式重定向表面是指非旋转表面,线缆沿着该非旋转表面延伸,从而改变线缆所穿过的线缆路径。为了致动端部执行器的部分,一根或多根金属缆线可被传送穿过医疗器械的主体,并且金属缆线所采取的路径可经由一个或多个滑轮和/或一个或多个固定式重定向表面来重定向。然而,因为全金属构造由于不期望的燃烧而可能是不切实际的,所以具有由塑料形成的一个或多个部件可能是有益的。这可导致金属对塑料接触(例如,金属缆线在内部塑料表面上滑动),这可导致磨损和撕裂的增加。
在机器人系统的上下文中,第三设计考虑包括经由单极医疗器械230的关节运动提供至少两个运动自由度(DOF)。如下面进一步详细描述的,单极医疗器械230可以包括腕部,该腕部可以经由被传送穿过腕部的至少一部分的一根或多根缆线或缆线段的致动而以2个DOF进行关节运动。缆线可通过例如联接到单极医疗器械230的近侧端部的IDM推进和/或回缩,以便使腕部进行关节运动。
在一些情况下,在不显著增加单极医疗器械230的直径的情况下,在腕部中提供2个DOF的关节运动可能需要重定向由缆线穿过腕部所穿过的路径。然而,如上所述,如果腕部由电绝缘和/或介电材料(例如,塑料)形成以解决上述第一设计考虑,则在腕部内包括固定式重定向表面可能由于线缆与由塑料或另一种绝缘材料制成的固定式重定向表面之间的摩擦而导致过早磨损。一旦固定式重定向表面已经历磨损(例如,缆线已经磨破重定向表面,从而形成用于缆线穿过腕部的新路径),重定向表面就可不再将电缆的穿过路径在预期方向上重定向,这可能导致非预期的功能。例如,磨损的缆线路径可缩短电缆穿过腕部所穿过的路径的总体长度,这可导致缆线松弛。缆线中的额外松弛可具有在一定距离内推进或回缩缆线时不能使腕部进行关节运动的效果,这可能只会导致缆线松弛。此外,使金属缆线在塑料重定向表面上滑动有时可导致高磨损率,这可在患者体内留下高含量的微粒。
A.示例性单极医疗器械。
图22A至图22C示出了根据本公开的各方面的单极医疗器械的实施方案的多个视图。具体地,图22A示出了单极医疗器械300的视图,其中包括远侧连接叉305和近侧连接叉310的腕部301是可见的。端部执行器315被示为经由图22B中标记的远侧轴件320联接到远侧连接叉305。
图22B示出了单极医疗器械300的另一个视图,其中远侧连接叉305和近侧连接叉310是透明的以提供腕部301的内部的视图。如图22B所示,单极医疗器械300还包括远侧轴件320、远侧滑轮325、导电缆线330、固定式重定向表面335、近侧轴件340、一组近侧滑轮345、近侧重定向轴件350、一组近侧重定向滑轮355、第一缆线360和第二缆线365。
远侧滑轮325和近侧滑轮345围绕相应的远侧轴件320和近侧轴件340的旋转可向腕部301提供2个DOF的关节运动。例如,远侧轴件320可限定偏航轴线,远侧滑轮325以及因此端部执行器315被构造成围绕该偏航轴线进行关节运动。类似地,近侧轴件340可限定俯仰轴线,近侧滑轮345以及因此远侧连接叉305被构造成围绕该俯仰轴线进行关节运动。近侧滑轮345被构造成相对于俯仰轴线旋转,从而为端部执行器315的关节运动提供一自由度。类似地,远侧滑轮325被构造成相对于偏航轴线旋转,从而为端部执行器315的关节运动提供另一个自由度。近侧重定向滑轮355可被构造成为单极医疗器械300的主体与近侧滑轮345之间的缆线路径提供平滑的重定向过渡。
第一缆线360穿过腕部301内的第一路径,以便与近侧重定向滑轮355、近侧滑轮345和远侧滑轮325接合。相比之下,第二缆线365穿过腕部301内的第二路径,以便与近侧重定向滑轮355和近侧滑轮345接合,而不接合远侧滑轮325。第一缆线360和第二缆线365可由金属或另一种耐磨材料形成。在一些实施方案中,第一缆线360和/或第二缆线365可由钨或不锈钢形成。在一些实施方案中,第一缆线360和/或第二缆线365可由高强度聚合物,如液晶聚合物(例如,VectranTM)或超高分子量聚合物(例如,)形成。导电缆线330穿过腕部301内的第三路径,以便与近侧重定向滑轮355、近侧滑轮345和远侧滑轮325接合。导电缆线330可由导电材料形成并且电连接到端部执行器315。导电缆线330还可电连接到有源电路径210(示于图21中),以便向端部执行器315供应电流。在一些实施方案中,导电缆线330包括导电芯,该导电芯具有围绕其的非导电夹套。
如上文在“对用于烧灼的医疗器械的介绍”节段中所解释的,单极医疗器械的一个设计考虑是提供如下结构,在该结构中电流以控制器方式(即,仅来自端部执行器315,而不是单极医疗器械300的其他部件)施加到患者的解剖结构。因此,远侧连接叉305和/或近侧连接叉310可由一种或多种电绝缘材料形成,以防止施加到导电缆线315的电流经由远侧连接叉305和/或近侧连接叉310被传输到患者的解剖结构。在一些实施方案中,近侧连接叉310和远侧连接叉305均由电绝缘材料形成,而在其他实施方案中,近侧连接叉310和远侧连接叉305中的仅一者由电绝缘材料形成。在某些实施方案中,远侧滑轮325、近侧滑轮345和近侧重定向滑轮355也可由一种或多种电绝缘材料形成,以将滑轮325、345和355与导电缆线330电隔离。然而,在其他实施方案中,远侧滑轮325、近侧滑轮345和近侧重定向滑轮355也可由一种或多种金属材料形成,这可减少滑轮325、345和355上的磨损。在某些实施方案中,一种或多种电绝缘材料可包括塑料。
腕部可为能够在偏航方向和俯仰方向上进行2个运动DOF(例如,相对于限定偏航轴线的远侧轴件320运动以及相对于限定俯仰轴线的近侧轴件340运动)。具体地,第一缆线360和/或第二缆线365的推进或回缩段可导致腕部以2个运动DOF中的一个或两个运动DOF运动。
图22C示出了第一缆线360和第二缆线365如何与腕部301接合。为了以2个运动DOF致动腕部301,第一缆线360和第二缆线365在腕内的某些位置处施加力。更具体地,第二缆线365接合形成于远侧连接叉305中的塑料部件370以将力施加到远侧连接叉305。因此,第二缆线365可在远侧连接叉305中终止于塑料部件370处。
在图22C所示的实施方案中,第二缆线365可不需要沿着塑料部件370运动。即,第二缆线365的每一侧可以相同的速率推进或回缩。因此,第二缆线365不需要紧固到或以其他方式物理地连接到塑料部件370。此外,由于第二缆线365不需要沿塑料部件370行进,因此塑料部件370将不会由于与第二缆线365的摩擦而经历显著磨损。应当注意,在其他实施方案中,部件370可由除塑料之外的非金属材料制成,包括但不限于其他介电材料。
继续参考图22C,第一缆线360与远侧滑轮325接合。为了使远侧滑轮325相对于远侧轴件320旋转,可使第一缆线360的一侧推进,同时使另一侧回缩,或反之亦然。为了防止第一缆线360和远侧滑轮325之间的滑动,第一缆线360可经由紧固件375紧固到远侧滑轮325(如图23所示)。
B.示例性缆线路径。
某些可关节运动的腕部可以使用固定式重定向表面来改变缆线路径,以便向可关节运动的腕部内的适当位置施加力。然而,当远侧连接叉305和近侧连接叉310由电绝缘材料形成时,如图22A至图22C的实施方案中所示,使用此类固定式重定向表面与致动缆线(例如,第一缆线360和第二缆线365)接合可由于随着缆线沿着固定式重定向表面运动发生的摩擦而导致重定向表面上的过早磨损。
为了防止在腕部301中使用的电绝缘材料上的这种磨损,本公开的某些方面涉及不含固定式重定向表面的缆线路径的使用。图23示出了缆线路径的实施方案,该缆线路径可用于将图22A至图22C所示的医疗器械的缆线重定向。如图23所示,第一缆线360包括在紧固件375处连接到远侧滑轮325的两个第一缆线段361和363。第一缆线段361和363接合两个近侧滑轮345和两个近侧重定向滑轮355。如上所述,第一缆线360可通过使第一缆线段361推进而使另一个第一缆线段363回缩来使远侧滑轮325旋转,或反之亦然。
第二缆线365包括接合两个近侧滑轮345和两个近侧重定向滑轮355的两个第二缆线段367和369。由第二缆线365接合的近侧滑轮345和近侧重定向滑轮355可比由第一缆线365接合的近侧滑轮345和近侧重定向滑轮355更靠近腕部301的中心轴线定位。第一缆线360的缆线路径的这种布线在紧固件375与远侧轴件320之间提供更大的距离,从而增加由第一缆线360施加到远侧滑轮325的力的杠杆作用(例如,力矩臂)。此外,该滑轮构型有助于使近侧滑轮345的直径最大化,这增加了杠杆臂的节距。
如从图23中的图示清楚地看出,第一缆线360和第二缆线365均不与腕部301内的固定式重定向表面接合。因此,可防止或最小化由于来自在固定式重定向表面上延伸的第一缆线360和第二缆线365中的一者的摩擦而引起的腕部301的任何过早磨损。另外,通过采用此类缆线路径而不使用第一缆线360和第二缆线365的固定式重定向表面,可增加工具寿命。由于远侧连接叉305由电绝缘材料形成,因此降低了在使用单极医疗器械时杂散电流不合需要地损坏组织的风险。
尽管对于第一缆线360和第二缆线365中的每一者,图23的缆线路径没有固定式重定向表面,但导电缆线330仍可在固定式重定向表面335上延伸,如图22B所示。然而,由于导电缆线330不需要用于驱动腕部301中的任何部件的致动,因此施加到导电缆线330的力小于第一缆线360和第二缆线365中的力。因此,随着导电缆线330沿着固定式重定向表面335延伸产生的摩擦将可能不会引起足够的磨损以不利地影响工具寿命。在一些实施方案中,导电缆线330可为涂覆有低摩擦夹套(诸如PTFE夹套)的导电缆线的形式。这可有利地帮助减小摩擦。
在图23的实施方案中,第一缆线段361和363中的每一者从近侧滑轮345基本上线性地延伸到远侧滑轮325。另外,由腕部301内的第一缆线360和第二缆线365限定的两个路径可相对于彼此不对称。即,第一缆线360可接合远侧滑轮325,而第二缆线365不接合远侧滑轮325。因此,第一缆线360可比第二缆线365穿过腕部301穿过更长的路径。在一些实施方案中,由于不对称的缆线路径,因此不存在关于器械轴轴线的180度旋转对称。尽管由特定缆线路径形成了不对称性,如图23所示,但在垂直于俯仰轴线并将俯仰轴线平分的平面上存在镜像对称性。
远侧滑轮325可相对于远侧轴件320旋转(例如,在偏航方向上的致动),使得使第一缆线段361和363中的一者推进,而使第一缆线段361和363中的另一者回缩,或反之亦然,以便沿相反方向旋转。为了使腕部301相对于近侧轴件340致动(例如,在俯仰方向上的致动),使第一电缆段361和363组或第二电缆段367和369组中的一者一起推进,而使第一电缆段361和363组或第二电缆段367和369组中的另一者回缩,或反之亦然,以便沿相反方向旋转。
图23所示的线缆路径可使得腕部301(以及因此单极钩)能够根据N+1个致动技术被致动,其中N是其中腕部301被构造成被致动的自由度的数量,并且N+1是被构造成控制腕部的致动的线缆段的数量。然而,在某些实施方案中,第二缆线365可被构造成使得其不单独地提供运动DOF。即,第二缆线365可被构造成使得第二缆线段367和369仅可一起推进和/或回缩。在一些实施方案中,在此类配置下,N+1致动技术类似于其中N=3的腕部。这是有利的,因为其使得相同的柄部机构能够驱动2个DOF和3个DOF两者的腕部。因此,虽然腕部301可被构造成类似于N+1致动技术被致动,但在实践中,腕部301的DOF的数量可小于N(例如,2个DOF)。
C.示例性单极钩。
图24A至图24C示出了根据本公开的各方面的可用于单极医疗器械中的单极钩的多个实施方案。图24A至图24C所示的实施方案可解决某些设计考虑,包括但不限于将单极钩与单极医疗器械的其他金属部件电隔离、降低单极钩在单极医疗器械从患者移除时将卡在其他装置(例如,插管)上的可能性等。
如上所述,一个设计考虑涉及将单极钩与其他金属部件电隔离,因为在不隔离的情况下,供应给单极钩的电流可能短接到其他金属部件。例如,由于远侧轴件320(参见图22B)可由金属形成,因此如果单极钩被锚定到远侧滑轮325中使得其与远侧轴件320相交,则当单极钩被充电时,远侧轴件320可短接到单极钩。在一些实施方案中,可以将单极钩锚定到远侧滑轮325中,其中钩的最后一个腿部与远侧轴件320的轴线相交;然而,在此类“相交”的情况下,可能需要将另一个弯曲引入单极钩中,以便相对于远侧滑轮具有相同的远侧形状。在此类实施方案中,相同的远侧形状有利地有助于提供组合外科应用,通过8mm插管装配,以及在移除单极钩时不会卡在插管的边缘上。在其他实施方案中,在“不相交的”情况下,钩的最后一个腿部不与远侧轴件320的轴线相交,从而降低短路的风险。
在图24A中,端部执行器组件400包括单极钩405、绝缘构件410和远侧滑轮325。绝缘构件410可将位于单极钩405上的基部绝缘从远侧滑轮325延伸的一定长度的单极钩405。在一些实施方案中,远侧滑轮325的基部也可至少部分地由绝缘材料形成。在一些实施方案中,远侧滑轮325的基部和绝缘构件410由两种不同的绝缘材料形成。用于远侧滑轮325的基部的绝缘构件的绝缘材料可能需要比绝缘构件410的绝缘材料更坚固,因为它将需要保护基部免受由单极能量产生的局部高温的影响。如图24A所示,单极钩405相对于远侧轴件320形成一角度,使得单极钩405不与远侧轴件320相交。远侧滑轮325可包括基座,单极钩405的至少一部分延伸到该基座中并且向单极钩405提供机械支撑。因此,远侧滑轮325的基部可被构造成接收单极钩405。另外,图24A的远侧滑轮325可具有基本上对称的形状。
在图24B的实施方案中,端部执行器组件420包括单极钩405和远侧滑轮327。单极钩405包括近侧连杆407和远侧连杆409,其中近侧连杆407相对于远侧连杆409成角度。在其他实施方案中,单极钩405包括多于两个链节,诸如三个、四个或更多个。近侧连杆407被构造成相对于至少一个远侧滑轮327的旋转轴线450形成一角度,使得近侧连杆407不与远侧轴件320相交,该远侧轴件与旋转轴线450同心。例如,近侧连杆407可相对于限定在旋转轴线450处的坐标系445形成一角度。另外,如图24B所示,近侧连杆407的中心轴线430与旋转轴线450分开或从其偏移预定距离435。
图24C示出了包括单极钩405、绝缘构件465和远侧滑轮329的端部执行器组件460的另一个实施方案。类似于绝缘构件410(示于图24A中),绝缘构件465可将位于单极钩405上的基部绝缘从远侧滑轮329延伸的一定长度的单极钩405。图24C还示出了包括两个第一缆线段361和363的第一缆线360与紧固件375处的远侧滑轮329之间的连接。导电缆线330还被示出为在远侧滑轮329的一侧处连接到远侧滑轮329。尽管图中未示出,但导电缆线330电连接到单极钩405,同时保持与远侧轴件320的电隔离。
如上所述,另一个设计考虑涉及降低当从患者移除单极医疗器械时单极钩将卡在其他装置(例如,插管)上的可能性。参考图24B,远侧连杆409可相对于旋转轴线450与坐标系445的X轴线形成小于90°的角度。在某些具体实施中,单极医疗器械可通过插管插入以执行医疗规程。插管可限定内腔,该内腔的直径类似于单极医疗器械的总直径。在远侧连杆409和坐标系445之间的某些角度(例如,近侧连杆407的中心轴线430和坐标系445的X轴线之间的角度)处,当从患者移除单极医疗器械时,远侧连杆409可能更有可能捕获插管。然而,当远侧连杆409与坐标系445的X轴线之间的角度足够小时(例如,基本上小于90°),单极钩可被迫向后,沿着插管滑动,使得单极钩不太可能在从患者移除单极医疗装置时被捕获。
D.用于单极医疗器械的示例远侧滑轮。
图25A至图25C示出了根据本公开的各方面的用于单极医疗器械的远侧滑轮的另一个实施方案的多个视图。图25A至图25C的实施方案可解决另一个设计考虑,其中对于不对称缆线构型,第一缆线360偏心定位,以在远侧滑轮325的一侧上与远侧滑轮325接合。由于第一缆线360从腕部301的中心轴线偏移,因此由于第一缆线360中的张力,远侧滑轮325的仅一侧保持在远侧连接叉305内的适当位置。因此,当将外力施加到端部执行器315时,远侧滑轮325和附接到其上的端部执行器315可能无法仅取决于第一缆线360的张力,以防止端部执行器315从远侧连接叉305被移除。因此,在图25A至图25C所示的实施方案中,为了降低远侧滑轮325和端部执行器315与远侧连接叉305分开的可能性,远侧滑轮325可包括通道510,并且远侧连接叉305可包括销凸台515。销凸台515可被构造成当端部执行器315相对于远侧轴件(例如,沿偏航轴线)旋转到或经过整个旋转范围时滑动到通道510中。可导致端部执行器315和远侧滑轮325被拉出远侧连接叉305的被施加到远侧滑轮325的任何旋转和/或关节运动力通过销凸台515与通道510的边缘之间的干扰被传递到远侧连接叉305。在其他实施方案中,端部执行器315可包括与工具中的所有其他金属隔离的金属销(未示出)。在一些实施方案中,金属销类似于图22B中的销320。
D.用于以多个运动度致动端部执行器的示例性方法。
图26是示出根据本公开的各方面的能够由机器人系统或其部件操作以用于以多个运动度致动端部执行器的示例性方法的流程图。例如,图26所示的方法700的步骤可由医疗机器人系统(例如,机器人使能的系统10)或相关联的系统的处理器和/或其他部件执行。为方便起见,方法700被描述为由结合方法700的描述的“系统”执行。
方法700在框701处开始。在方框705处,系统可推进或回缩接合器械的至少一个近侧滑轮和至少一个远侧滑轮的至少一个第一缆线段。该器械可具体体现为如图22A至图22C所示,并且可包括腕部301,该腕部包括近侧连接叉310和远侧连接叉305,其中端部执行器315联接到远侧连接叉305。如图22A至图22C所示,至少一个近侧滑轮345可位于近侧连接叉310中,并且至少一个远侧滑轮325可位于远侧连接叉305中。
在框710处,系统可推进或回缩接合至少一个近侧滑轮345而不接合至少一个远侧滑轮325的至少一个第二缆线段。在某些具体实施中,方法700可涉及通过推进或回缩至少一个第一缆线段来使端部执行器相对于延伸穿过至少一个远侧滑轮325的偏航轴线旋转,如图22C和图23所示。方法700在框715处结束。
3.实施系统和术语。
本文所公开的具体实施提供了用于进行关节运动的医疗器械的系统、方法和设备,该医疗器械可包括单极端部执行器。
应当指出的是,如本文所用,术语“联接(couple)”、“联接(coupling)”、“联接(coupled)”或词语联接的其他变型形式可以指示间接连接或直接连接。例如,如果第一部件“联接”到第二部件,则第一部件可经由另一个部件间接连接到第二部件或直接连接到第二部件。
与本文所述的进行关节运动的医疗器械相关联的功能可作为一个或多个指令被存储在处理器可读或计算机可读的介质上。术语“计算机可读介质”是指可由计算机或处理器访问的任何可用介质。以举例的方式而非限制,这样的介质可包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪存储器、致密盘只读存储器(CD-ROM)或其他光盘存储装置、磁盘存储装置或其他磁存储装置,或可以用于存储呈指令或数据结构的形式的期望的程序代码并且可以由计算机访问的任何其他介质。应当指出的是,计算机可读介质可为有形的和非暂态的。如本文所用,术语“代码”可以指可由计算装置或处理器执行的软件、指令、代码或数据。
本文所公开的方法包括用于实现所述方法的一个或多个步骤或动作。在不脱离权利要求的范围的情况下,方法步骤和/或动作可彼此互换。换句话讲,除非正在描述的方法的正确操作需要步骤或动作的特定顺序,否则可以在不脱离权利要求的范围的情况下修改特定步骤和/或动作的顺序和/或使用。
如本文所用,术语“多个”表示两个或更多个。例如,多个部件指示两个或更多个部件。术语“确定”涵盖多种动作,并且因此,“确定”可包括计算、运算、处理、导出、调查、查找(例如,在表格、数据库或另一种数据结构中查找)、查明等。另外,“确定”可包括接收(例如,接收信息)、访问(例如,访问存储器中的数据)等。另外,“确定”可包括解析、选择、挑选、建立等。
除非另有明确指明,否则短语“基于”并不意味着“仅基于”。换句话讲,短语“基于”描述“仅基于”和“至少基于”两者。
提供对所公开的具体实施的前述具体实施方式以使得本领域的任何技术人员能够制作或使用本发明。对这些具体实施的各种修改对于本领域的技术人员而言将是显而易见的,并且在不脱离本发明的范围的情况下,本文所定义的一般原理可应用于其他具体实施。例如,应当理解,本领域的普通技术人员将能够采用多个对应的替代和等同的结构细节,诸如紧固、安装、联接或接合工具部件的等同方式、用于产生特定致动运动的等同机构、以及用于递送电能的等同机构。因此,本发明并非旨在限于本文所示的具体实施,而是被赋予符合本文所公开的原理和新颖特征的最广范围。
Claims (38)
1.一种医疗器械,包括:
腕部,所述腕部包括近侧连接叉和远侧连接叉;
端部执行器,所述端部执行器经由远侧轴件联接到所述远侧连接叉;
至少一个近侧滑轮,所述至少一个近侧滑轮在所述近侧连接叉中;
至少一个远侧滑轮,所述至少一个远侧滑轮在所述远侧连接叉中且联接到所述远侧轴件;
第一缆线,所述第一缆线构造成与所述至少一个近侧滑轮和所述至少一个远侧滑轮接合;以及
第二缆线,所述第二缆线构造成与所述至少一个近侧滑轮接合而不接合所述至少一个远侧滑轮。
2.根据权利要求1所述的器械,其中所述远侧连接叉包括不含固定式重定向表面的表面区域。
3.根据权利要求2所述的器械,其中所述远侧连接叉完全没有任何固定式重定向表面。
4.根据权利要求1所述的器械,其中所述近侧连接叉和所述远侧连接叉由一种或多种绝缘材料形成。
5.根据权利要求4所述的器械,其中所述近侧连接叉的内表面和所述远侧连接叉的内表面完全由一种或多种绝缘材料形成。
6.根据权利要求1所述的器械,其中:
所述至少一个近侧滑轮构造成相对于俯仰轴线旋转,从而为所述端部执行器的关节运动提供第一自由度,以及
所述至少一个远侧滑轮构造成相对于偏航轴线旋转,从而为所述端部执行器的关节运动提供第二自由度。
7.根据权利要求6所述的器械,其中所述第一缆线的缆线路径和所述第二缆线的缆线路径不与任何固定式重定向表面接触。
8.根据权利要求1所述的器械,其中所述端部执行器包括单极钩。
9.根据权利要求8所述的器械,其中所述单极钩从延伸穿过所述远侧连接叉中的所述至少一个远侧滑轮的旋转轴线偏移。
10.根据权利要求8所述的器械,其中所述单极钩包括相对于第二连杆成角度的第一连杆。
11.根据权利要求10所述的器械,其中:
所述第一连杆包括近侧连杆,且所述第二连杆包括远侧连杆,以及
所述至少一个远侧滑轮包括基座,所述第一连杆构造成接收到所述基座中。
12.根据权利要求11所述的器械,其中:
所述第一连杆构造成相对于所述至少一个远侧滑轮的旋转轴线形成一角度,以及
所述角度构造成响应于从插管移除所述器械而防止所述钩卡在所述插管上。
13.根据权利要求1所述的器械,其中所述第一缆线的至少一个区段相对于所述第二缆线的至少一个区段是不对称的。
14.根据权利要求13所述的器械,其中所述第一缆线的所述至少一个区段构造成比所述第二缆线的所述至少一个区段穿过所述腕部穿过更长的路径。
15.根据权利要求1所述的器械,还包括导电缆线,所述导电缆线构造成:
接合所述至少一个近侧滑轮和所述至少一个远侧滑轮,以及
向所述端部执行器提供电流。
16.根据权利要求15所述的器械,其中:
所述第一缆线包括两个第一缆线段,
所述第二缆线包括两个第二缆线段,以及
所述至少一个近侧滑轮包括至少四个滑轮,其中的每个滑轮构造成与所述两个第一缆线段或所述两个第二缆线段中的对应一者接合。
17.根据权利要求15所述的器械,其中构造成与所述两个第二缆线段接合的所述近侧滑轮还构造成比与所述两个第一缆线段接合的所述近侧滑轮更靠近所述腕部的中心轴线定位。
18.根据权利要求17所述的器械,其中所述远侧连接叉包括销,所述销构造成接收在形成于所述端部执行器的基部中的通道中。
19.根据权利要求1所述的器械,其中所述端部执行器包括N+1个钩,其中N是其中所述钩构造成致动的自由度的数量,且N+1是构造成控制所述钩的致动的缆线段的数量。
20.根据权利要求1所述的器械,其中:
所述第一缆线包括与相同远侧滑轮接合的两个第一缆线段,以及
所述两个第一缆线段与两个单独的近侧滑轮接合且沿相同方向缠绕在所述两个单独的近侧滑轮周围。
21.根据权利要求20所述的器械,其中所述第一缆线的所述两个第一缆线段在俯仰轴线的同一侧上经过。
22.根据权利要求20所述的器械,其中所述第二缆线包括两个第二缆线段,其中所述两个第二缆线段中的至少一个第二缆线段在所述俯仰轴线的另一侧上。
23.根据权利要求20所述的器械,其中所述两个第一缆线段定位在所述两个第二缆线段的外侧上。
24.一种以多个运动度致动端部执行器的方法,所述方法包括:
推进或回缩至少一个第一缆线段,所述至少一个第一缆线段接合器械的至少一个近侧滑轮和至少一个远侧滑轮,所述器械包括腕部,所述腕部包括近侧连接叉和远侧连接叉,所述端部执行器联接到所述远侧连接叉,所述至少一个近侧滑轮位于所述近侧连接叉中,且所述至少一个远侧滑轮位于所述远侧连接叉中;以及
推进或回缩至少一个第二缆线段,所述至少一个第二缆线段接合所述至少一个近侧滑轮而不接合所述至少一个远侧滑轮。
25.根据权利要求24所述的方法,还包括:
通过推进或回缩所述至少一个第二缆线段来使所述端部执行器相对于延伸穿过所述至少一个近侧滑轮的俯仰轴线旋转。
26.根据权利要求24所述的方法,还包括:
通过推进或回缩所述至少一个第一缆线段来使所述端部执行器相对于延伸穿过所述至少一个远侧滑轮的偏航轴线旋转。
27.根据权利要求24所述的方法,其中所述远侧连接叉包括不含固定式重定向表面的表面区域。
28.根据权利要求24所述的方法,其中所述近侧连接叉和所述远侧连接叉由一种或多种绝缘材料形成。
29.根据权利要求24所述的方法,其中所述端部执行器包括单极钩。
30.一种医疗器械,包括:
腕部,所述腕部包括近侧连接叉和远侧连接叉;
端部执行器,所述端部执行器经由远侧轴件联接到所述远侧连接叉;
至少一个近侧滑轮,所述至少一个近侧滑轮在所述近侧连接叉中;
至少一个远侧滑轮,所述至少一个远侧滑轮在所述远侧连接叉中且联接到所述远侧轴件;以及
至少一个缆线段,所述至少一个缆线段构造成接合所述至少一个近侧滑轮和所述至少一个远侧滑轮,且沿着基本线性的路径在所述至少一个近侧滑轮和所述至少一个远侧滑轮之间延伸。
31.根据权利要求30所述的器械,其中所述至少一个缆线段构造成接合所述至少一个近侧滑轮和所述至少一个远侧滑轮,而不与在所述至少一个近侧滑轮和所述至少一个远侧滑轮之间的固定式重定向表面接合。
32.根据权利要求30所述的器械,其中:
所述至少一个缆线段由金属形成,以及
至少所述远侧连接叉由塑料形成。
33.根据权利要求30所述的器械,其中随着所述至少一个缆线段在所述至少一个近侧滑轮和所述至少一个远侧滑轮之间延伸,所述至少一个缆线段具有约零的偏离角。
34.根据权利要求30所述的器械,其中随着所述至少一个缆线段在所述至少一个近侧滑轮和所述至少一个远侧滑轮之间延伸,所述至少一个缆线段具有大于约零的偏离角。
35.一种医疗器械,包括:
腕部,所述腕部包括近侧连接叉和远侧连接叉;
端部执行器,所述端部执行器经由远侧轴件联接到所述远侧连接叉;
至少一个近侧滑轮,所述至少一个近侧滑轮在所述近侧连接叉中;以及
至少一个远侧滑轮,所述至少一个远侧滑轮在所述远侧连接叉中且联接到所述远侧轴件,
其中所述端部执行器包括钩,所述钩包括第一连杆和第二连杆,且所述第一连杆具有从延伸穿过所述至少一个远侧滑轮的旋转轴线偏移的纵向轴线。
36.根据权利要求35所述的器械,其中所述第一连杆的轴线从延伸穿过所述至少一个远侧滑轮的所述旋转轴线成角度地偏移。
37.根据权利要求35所述的器械,其中所述第一连杆的轴线从延伸穿过所述至少一个远侧滑轮的所述旋转轴线平移地偏移。
38.根据权利要求35所述的器械,其中:
所述第一连杆构造成相对于延伸穿过所述至少一个远侧滑轮的所述旋转轴线形成一角度,以及
所述角度构造成响应于从插管移除所述器械而防止所述钩卡在所述插管上。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862764744P | 2018-08-15 | 2018-08-15 | |
US62/764744 | 2018-08-15 | ||
PCT/US2019/039412 WO2020036685A1 (en) | 2018-08-15 | 2019-06-27 | Medical instruments for tissue cauterization |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112566584A true CN112566584A (zh) | 2021-03-26 |
Family
ID=69524269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980053396.7A Pending CN112566584A (zh) | 2018-08-15 | 2019-06-27 | 用于组织烧灼的医疗器械 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10828118B2 (zh) |
EP (1) | EP3806772A4 (zh) |
CN (1) | CN112566584A (zh) |
WO (1) | WO2020036685A1 (zh) |
Families Citing this family (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4755638B2 (ja) | 2004-03-05 | 2011-08-24 | ハンセン メディカル,インク. | ロボットガイドカテーテルシステム |
US8814921B2 (en) | 2008-03-06 | 2014-08-26 | Aquabeam Llc | Tissue ablation and cautery with optical energy carried in fluid stream |
US9232959B2 (en) | 2007-01-02 | 2016-01-12 | Aquabeam, Llc | Multi fluid tissue resection methods and devices |
US20220096112A1 (en) | 2007-01-02 | 2022-03-31 | Aquabeam, Llc | Tissue resection with pressure sensing |
US9254123B2 (en) | 2009-04-29 | 2016-02-09 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with shape control and support elements |
US9339341B2 (en) | 2010-02-08 | 2016-05-17 | Intuitive Surgical Operations, Inc. | Direct pull surgical gripper |
US8672837B2 (en) | 2010-06-24 | 2014-03-18 | Hansen Medical, Inc. | Methods and devices for controlling a shapeable medical device |
US20120071752A1 (en) | 2010-09-17 | 2012-03-22 | Sewell Christopher M | User interface and method for operating a robotic medical system |
US9138166B2 (en) | 2011-07-29 | 2015-09-22 | Hansen Medical, Inc. | Apparatus and methods for fiber integration and registration |
EP2819599B1 (en) | 2012-02-29 | 2018-05-23 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
US10383765B2 (en) | 2012-04-24 | 2019-08-20 | Auris Health, Inc. | Apparatus and method for a global coordinate system for use in robotic surgery |
US20130317519A1 (en) | 2012-05-25 | 2013-11-28 | Hansen Medical, Inc. | Low friction instrument driver interface for robotic systems |
US20140148673A1 (en) | 2012-11-28 | 2014-05-29 | Hansen Medical, Inc. | Method of anchoring pullwire directly articulatable region in catheter |
US10231867B2 (en) | 2013-01-18 | 2019-03-19 | Auris Health, Inc. | Method, apparatus and system for a water jet |
US10149720B2 (en) | 2013-03-08 | 2018-12-11 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US9566414B2 (en) | 2013-03-13 | 2017-02-14 | Hansen Medical, Inc. | Integrated catheter and guide wire controller |
US9057600B2 (en) | 2013-03-13 | 2015-06-16 | Hansen Medical, Inc. | Reducing incremental measurement sensor error |
US11213363B2 (en) | 2013-03-14 | 2022-01-04 | Auris Health, Inc. | Catheter tension sensing |
US9326822B2 (en) | 2013-03-14 | 2016-05-03 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US9173713B2 (en) | 2013-03-14 | 2015-11-03 | Hansen Medical, Inc. | Torque-based catheter articulation |
US20140277334A1 (en) | 2013-03-14 | 2014-09-18 | Hansen Medical, Inc. | Active drives for robotic catheter manipulators |
US9629595B2 (en) | 2013-03-15 | 2017-04-25 | Hansen Medical, Inc. | Systems and methods for localizing, tracking and/or controlling medical instruments |
US20140276647A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Vascular remote catheter manipulator |
US10376672B2 (en) | 2013-03-15 | 2019-08-13 | Auris Health, Inc. | Catheter insertion system and method of fabrication |
US10849702B2 (en) | 2013-03-15 | 2020-12-01 | Auris Health, Inc. | User input devices for controlling manipulation of guidewires and catheters |
US20140276936A1 (en) | 2013-03-15 | 2014-09-18 | Hansen Medical, Inc. | Active drive mechanism for simultaneous rotation and translation |
US9283046B2 (en) | 2013-03-15 | 2016-03-15 | Hansen Medical, Inc. | User interface for active drive apparatus with finite range of motion |
US9014851B2 (en) | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
US9271663B2 (en) | 2013-03-15 | 2016-03-01 | Hansen Medical, Inc. | Flexible instrument localization from both remote and elongation sensors |
US9408669B2 (en) | 2013-03-15 | 2016-08-09 | Hansen Medical, Inc. | Active drive mechanism with finite range of motion |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
US10744035B2 (en) | 2013-06-11 | 2020-08-18 | Auris Health, Inc. | Methods for robotic assisted cataract surgery |
US10426661B2 (en) | 2013-08-13 | 2019-10-01 | Auris Health, Inc. | Method and apparatus for laser assisted cataract surgery |
EP3243476B1 (en) | 2014-03-24 | 2019-11-06 | Auris Health, Inc. | Systems and devices for catheter driving instinctiveness |
US10046140B2 (en) | 2014-04-21 | 2018-08-14 | Hansen Medical, Inc. | Devices, systems, and methods for controlling active drive systems |
US10569052B2 (en) | 2014-05-15 | 2020-02-25 | Auris Health, Inc. | Anti-buckling mechanisms for catheters |
US9561083B2 (en) | 2014-07-01 | 2017-02-07 | Auris Surgical Robotics, Inc. | Articulating flexible endoscopic tool with roll capabilities |
US10792464B2 (en) | 2014-07-01 | 2020-10-06 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
US9744335B2 (en) | 2014-07-01 | 2017-08-29 | Auris Surgical Robotics, Inc. | Apparatuses and methods for monitoring tendons of steerable catheters |
AU2015325052B2 (en) | 2014-09-30 | 2020-07-02 | Auris Health, Inc. | Configurable robotic surgical system with virtual rail and flexible endoscope |
US10499999B2 (en) | 2014-10-09 | 2019-12-10 | Auris Health, Inc. | Systems and methods for aligning an elongate member with an access site |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
US11819636B2 (en) | 2015-03-30 | 2023-11-21 | Auris Health, Inc. | Endoscope pull wire electrical circuit |
US20160287279A1 (en) | 2015-04-01 | 2016-10-06 | Auris Surgical Robotics, Inc. | Microsurgical tool for robotic applications |
US9622827B2 (en) | 2015-05-15 | 2017-04-18 | Auris Surgical Robotics, Inc. | Surgical robotics system |
US10674982B2 (en) | 2015-08-06 | 2020-06-09 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
US10702226B2 (en) | 2015-08-06 | 2020-07-07 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
US10716525B2 (en) | 2015-08-06 | 2020-07-21 | Covidien Lp | System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction |
CN113274140B (zh) | 2015-09-09 | 2022-09-02 | 奥瑞斯健康公司 | 手术覆盖件 |
EP4070723A1 (en) | 2015-09-18 | 2022-10-12 | Auris Health, Inc. | Navigation of tubular networks |
US10639108B2 (en) | 2015-10-30 | 2020-05-05 | Auris Health, Inc. | Process for percutaneous operations |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
US10932861B2 (en) | 2016-01-14 | 2021-03-02 | Auris Health, Inc. | Electromagnetic tracking surgical system and method of controlling the same |
US10932691B2 (en) | 2016-01-26 | 2021-03-02 | Auris Health, Inc. | Surgical tools having electromagnetic tracking components |
US11324554B2 (en) | 2016-04-08 | 2022-05-10 | Auris Health, Inc. | Floating electromagnetic field generator system and method of controlling the same |
US10454347B2 (en) | 2016-04-29 | 2019-10-22 | Auris Health, Inc. | Compact height torque sensing articulation axis assembly |
US11037464B2 (en) | 2016-07-21 | 2021-06-15 | Auris Health, Inc. | System with emulator movement tracking for controlling medical devices |
US10463439B2 (en) | 2016-08-26 | 2019-11-05 | Auris Health, Inc. | Steerable catheter with shaft load distributions |
US11241559B2 (en) | 2016-08-29 | 2022-02-08 | Auris Health, Inc. | Active drive for guidewire manipulation |
KR102555546B1 (ko) | 2016-08-31 | 2023-07-19 | 아우리스 헬스, 인코포레이티드 | 길이 보존 수술용 기구 |
US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
US10136959B2 (en) | 2016-12-28 | 2018-11-27 | Auris Health, Inc. | Endolumenal object sizing |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
US11529190B2 (en) | 2017-01-30 | 2022-12-20 | Covidien Lp | Enhanced ablation and visualization techniques for percutaneous surgical procedures |
US11793579B2 (en) | 2017-02-22 | 2023-10-24 | Covidien Lp | Integration of multiple data sources for localization and navigation |
US10792466B2 (en) | 2017-03-28 | 2020-10-06 | Auris Health, Inc. | Shaft actuating handle |
KR102558061B1 (ko) | 2017-03-31 | 2023-07-25 | 아우리스 헬스, 인코포레이티드 | 생리적 노이즈를 보상하는 관강내 조직망 항행을 위한 로봇 시스템 |
JP7314052B2 (ja) | 2017-04-07 | 2023-07-25 | オーリス ヘルス インコーポレイテッド | 患者イントロデューサのアライメント |
US10285574B2 (en) | 2017-04-07 | 2019-05-14 | Auris Health, Inc. | Superelastic medical instrument |
WO2018208994A1 (en) | 2017-05-12 | 2018-11-15 | Auris Health, Inc. | Biopsy apparatus and system |
EP3624668A4 (en) | 2017-05-17 | 2021-05-26 | Auris Health, Inc. | EXCHANGEABLE WORK CHANNEL |
US10022192B1 (en) | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
WO2019005872A1 (en) | 2017-06-28 | 2019-01-03 | Auris Health, Inc. | INSTRUMENT INSERTION COMPENSATION |
US10699448B2 (en) | 2017-06-29 | 2020-06-30 | Covidien Lp | System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
US10464209B2 (en) | 2017-10-05 | 2019-11-05 | Auris Health, Inc. | Robotic system with indication of boundary for robotic arm |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
US10016900B1 (en) | 2017-10-10 | 2018-07-10 | Auris Health, Inc. | Surgical robotic arm admittance control |
WO2019075074A1 (en) | 2017-10-10 | 2019-04-18 | Covidien Lp | SYSTEM AND METHOD FOR IDENTIFICATION AND MARKING OF A TARGET IN A THREE-DIMENSIONAL FLUOROSCOPIC RECONSTRUCTION |
US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
US10987179B2 (en) | 2017-12-06 | 2021-04-27 | Auris Health, Inc. | Systems and methods to correct for uncommanded instrument roll |
EP3684281A4 (en) | 2017-12-08 | 2021-10-13 | Auris Health, Inc. | SYSTEM AND PROCEDURE FOR NAVIGATION AND TARGETING OF MEDICAL INSTRUMENTS |
CN116059454A (zh) | 2017-12-08 | 2023-05-05 | 奥瑞斯健康公司 | 用于执行医疗手术的系统和用以移除肾结石的医疗装置 |
BR112020011444A2 (pt) | 2017-12-11 | 2021-02-02 | Auris Health, Inc. | sistemas e métodos para arquiteturas de inserção baseadas em instrumentos |
CN118203426A (zh) | 2017-12-14 | 2024-06-18 | 直观外科手术操作公司 | 具有张力带的医疗工具 |
EP3684562A4 (en) | 2017-12-14 | 2021-06-30 | Auris Health, Inc. | SYSTEM AND METHOD OF ESTIMATING THE LOCATION OF AN INSTRUMENT |
WO2019125964A1 (en) | 2017-12-18 | 2019-06-27 | Auris Health, Inc. | Methods and systems for instrument tracking and navigation within luminal networks |
USD901694S1 (en) | 2018-01-17 | 2020-11-10 | Auris Health, Inc. | Instrument handle |
USD873878S1 (en) | 2018-01-17 | 2020-01-28 | Auris Health, Inc. | Robotic arm |
EP3740152A4 (en) | 2018-01-17 | 2021-11-03 | Auris Health, Inc. | SURGICAL PLATFORM WITH ADJUSTABLE ARMRESTS |
USD901018S1 (en) | 2018-01-17 | 2020-11-03 | Auris Health, Inc. | Controller |
USD932628S1 (en) | 2018-01-17 | 2021-10-05 | Auris Health, Inc. | Instrument cart |
USD924410S1 (en) | 2018-01-17 | 2021-07-06 | Auris Health, Inc. | Instrument tower |
KR20200118439A (ko) | 2018-01-17 | 2020-10-15 | 아우리스 헬스, 인코포레이티드 | 개선된 로봇 아암을 갖는 수술 로봇 시스템 |
US10893842B2 (en) | 2018-02-08 | 2021-01-19 | Covidien Lp | System and method for pose estimation of an imaging device and for determining the location of a medical device with respect to a target |
JP7301884B2 (ja) | 2018-02-13 | 2023-07-03 | オーリス ヘルス インコーポレイテッド | 医療用器具を駆動するためのシステム及び方法 |
CN111970985A (zh) | 2018-03-07 | 2020-11-20 | 直观外科手术操作公司 | 具有易组装构件的低摩擦小型医疗工具 |
US11992286B2 (en) | 2018-03-07 | 2024-05-28 | Intuitive Surgical Operations, Inc. | Low-friction medical tools having roller-assisted tension members |
US11439376B2 (en) | 2018-03-07 | 2022-09-13 | Intuitive Surgical Operations, Inc. | Low-friction, small profile medical tools having easy-to-assemble components |
JP7305668B2 (ja) | 2018-03-28 | 2023-07-10 | オーリス ヘルス インコーポレイテッド | 可変曲げ剛性プロファイルを有する医療用器具 |
MX2020010117A (es) | 2018-03-28 | 2020-11-06 | Auris Health Inc | Sistemas y metodos para mostrar la ubicacion estimada de instrumento. |
MX2020010112A (es) | 2018-03-28 | 2020-11-06 | Auris Health Inc | Sistemas y metodos para el registro de sensores de ubicacion. |
EP3773302A4 (en) | 2018-04-10 | 2022-01-05 | Intuitive Surgical Operations, Inc. | ARTICULATED MEDICAL DEVICES WITH FLEXIBLE WIRE GUIDANCE |
CN112218595A (zh) | 2018-05-18 | 2021-01-12 | 奥瑞斯健康公司 | 用于机器人使能的远程操作的系统的控制器 |
JP7250824B2 (ja) | 2018-05-30 | 2023-04-03 | オーリス ヘルス インコーポレイテッド | 位置センサベースの分岐予測のためのシステム及び方法 |
CN110831538B (zh) | 2018-05-31 | 2023-01-24 | 奥瑞斯健康公司 | 基于图像的气道分析和映射 |
JP7371026B2 (ja) | 2018-05-31 | 2023-10-30 | オーリス ヘルス インコーポレイテッド | 管状網の経路ベースのナビゲーション |
MX2020012897A (es) | 2018-05-31 | 2021-05-27 | Auris Health Inc | Sistemas roboticos y metodos para navegacion de la red luminal que detectan ruido fisiologico. |
CN112218596A (zh) | 2018-06-07 | 2021-01-12 | 奥瑞斯健康公司 | 具有高力器械的机器人医疗系统 |
EP3813632A4 (en) | 2018-06-27 | 2022-03-09 | Auris Health, Inc. | ALIGNMENT AND MOUNTING SYSTEMS FOR MEDICAL INSTRUMENTS |
JP7391886B2 (ja) | 2018-06-28 | 2023-12-05 | オーリス ヘルス インコーポレイテッド | 滑車共有を組み込んだ医療システム |
US11259798B2 (en) | 2018-07-16 | 2022-03-01 | Intuitive Surgical Operations, Inc. | Medical devices having tissue grasping surfaces and features for manipulating surgical needles |
US11612447B2 (en) | 2018-07-19 | 2023-03-28 | Intuitive Surgical Operations, Inc. | Medical devices having three tool members |
US11705238B2 (en) | 2018-07-26 | 2023-07-18 | Covidien Lp | Systems and methods for providing assistance during surgery |
EP3820373A4 (en) | 2018-08-07 | 2022-04-27 | Auris Health, Inc. | COMBINATION OF STRAIN-BASED FORM MEASUREMENT WITH CATHETER CONTROL |
CN112566584A (zh) * | 2018-08-15 | 2021-03-26 | 奥瑞斯健康公司 | 用于组织烧灼的医疗器械 |
WO2020036686A1 (en) | 2018-08-17 | 2020-02-20 | Auris Health, Inc. | Bipolar medical instrument |
KR20210052475A (ko) | 2018-08-24 | 2021-05-10 | 아우리스 헬스, 인코포레이티드 | 수동 및 로봇 제어가능 의료 기구 |
CN112739283A (zh) | 2018-09-17 | 2021-04-30 | 奥瑞斯健康公司 | 用于伴随医学规程的系统和方法 |
EP3813716A4 (en) | 2018-09-26 | 2022-07-13 | Auris Health, Inc. | SYSTEMS AND INSTRUMENTS FOR SUCTION AND IRRIGATION |
CN112804933B (zh) | 2018-09-26 | 2024-10-18 | 奥瑞斯健康公司 | 关节运动式医疗器械 |
WO2020069080A1 (en) | 2018-09-28 | 2020-04-02 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
EP3856064A4 (en) | 2018-09-28 | 2022-06-29 | Auris Health, Inc. | Systems and methods for docking medical instruments |
US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
US11576738B2 (en) | 2018-10-08 | 2023-02-14 | Auris Health, Inc. | Systems and instruments for tissue sealing |
US11291514B2 (en) | 2018-11-15 | 2022-04-05 | Intuitive Surgical Operations, Inc. | Medical devices having multiple blades and methods of use |
US11213287B2 (en) | 2018-11-15 | 2022-01-04 | Intuitive Surgical Operations, Inc. | Support apparatus for a medical retractor device |
US11877806B2 (en) | 2018-12-06 | 2024-01-23 | Covidien Lp | Deformable registration of computer-generated airway models to airway trees |
US11617493B2 (en) | 2018-12-13 | 2023-04-04 | Covidien Lp | Thoracic imaging, distance measuring, surgical awareness, and notification system and method |
US11801113B2 (en) | 2018-12-13 | 2023-10-31 | Covidien Lp | Thoracic imaging, distance measuring, and notification system and method |
EP3870075A4 (en) | 2018-12-20 | 2022-08-03 | Auris Health, Inc. | SHIELDING FOR WRIST INSTRUMENTS |
US11254009B2 (en) | 2018-12-20 | 2022-02-22 | Auris Health, Inc. | Systems and methods for robotic arm alignment and docking |
CN113226202A (zh) | 2018-12-28 | 2021-08-06 | 奥瑞斯健康公司 | 用于机器人医疗系统的经皮护套和方法 |
WO2020139973A1 (en) | 2018-12-28 | 2020-07-02 | Auris Health, Inc. | Medical instrument with articulable segment |
US11357593B2 (en) | 2019-01-10 | 2022-06-14 | Covidien Lp | Endoscopic imaging with augmented parallax |
US11589913B2 (en) | 2019-01-25 | 2023-02-28 | Auris Health, Inc. | Vessel sealer with heating and cooling capabilities |
US11625825B2 (en) | 2019-01-30 | 2023-04-11 | Covidien Lp | Method for displaying tumor location within endoscopic images |
US11744643B2 (en) | 2019-02-04 | 2023-09-05 | Covidien Lp | Systems and methods facilitating pre-operative prediction of post-operative tissue function |
EP3890644A4 (en) | 2019-02-08 | 2022-11-16 | Auris Health, Inc. | MANIPULATION AND CLOT REMOVAL WITH ROBOTIC CONTROL |
CN113453642A (zh) | 2019-02-22 | 2021-09-28 | 奥瑞斯健康公司 | 具有用于可调式臂支撑件的机动臂的外科平台 |
EP3965710A4 (en) | 2019-03-08 | 2023-04-05 | Auris Health, Inc. | TILT MECHANISMS FOR MEDICAL SYSTEMS AND APPLICATIONS |
CN113613580A (zh) | 2019-03-22 | 2021-11-05 | 奥瑞斯健康公司 | 用于使医疗器械上的输入部对准的系统和方法 |
WO2020197625A1 (en) * | 2019-03-25 | 2020-10-01 | Auris Health, Inc. | Systems and methods for medical stapling |
US11617627B2 (en) | 2019-03-29 | 2023-04-04 | Auris Health, Inc. | Systems and methods for optical strain sensing in medical instruments |
KR20210149805A (ko) | 2019-04-08 | 2021-12-09 | 아우리스 헬스, 인코포레이티드 | 동시 절차를 위한 시스템, 방법, 및 작업흐름 |
CN114007521A (zh) | 2019-06-26 | 2022-02-01 | 奥瑞斯健康公司 | 用于机器人臂对准和对接的系统和方法 |
US11369386B2 (en) | 2019-06-27 | 2022-06-28 | Auris Health, Inc. | Systems and methods for a medical clip applier |
US11109928B2 (en) | 2019-06-28 | 2021-09-07 | Auris Health, Inc. | Medical instruments including wrists with hybrid redirect surfaces |
EP3989793A4 (en) | 2019-06-28 | 2023-07-19 | Auris Health, Inc. | CONSOLE OVERLAY ITS METHODS OF USE |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
WO2021028883A1 (en) | 2019-08-15 | 2021-02-18 | Auris Health, Inc. | Medical device having multiple bending sections |
JP7451686B2 (ja) | 2019-08-30 | 2024-03-18 | オーリス ヘルス インコーポレイテッド | 器具画像信頼性システム及び方法 |
WO2021038469A1 (en) | 2019-08-30 | 2021-03-04 | Auris Health, Inc. | Systems and methods for weight-based registration of location sensors |
US11234780B2 (en) | 2019-09-10 | 2022-02-01 | Auris Health, Inc. | Systems and methods for kinematic optimization with shared robotic degrees-of-freedom |
US11627924B2 (en) | 2019-09-24 | 2023-04-18 | Covidien Lp | Systems and methods for image-guided navigation of percutaneously-inserted devices |
WO2021059099A1 (en) | 2019-09-26 | 2021-04-01 | Auris Health, Inc. | Systems and methods for collision detection and avoidance |
WO2021064536A1 (en) | 2019-09-30 | 2021-04-08 | Auris Health, Inc. | Medical instrument with capstan |
US11737835B2 (en) | 2019-10-29 | 2023-08-29 | Auris Health, Inc. | Braid-reinforced insulation sheath |
US12102298B2 (en) | 2019-12-10 | 2024-10-01 | Covidien Lp | Lymphatic system tracking |
CN114901188A (zh) | 2019-12-31 | 2022-08-12 | 奥瑞斯健康公司 | 动态滑轮系统 |
CN118383870A (zh) | 2019-12-31 | 2024-07-26 | 奥瑞斯健康公司 | 用于经皮进入的对准界面 |
KR20220123273A (ko) | 2019-12-31 | 2022-09-06 | 아우리스 헬스, 인코포레이티드 | 해부학적 특징부 식별 및 표적설정 |
JP2023508718A (ja) | 2019-12-31 | 2023-03-03 | オーリス ヘルス インコーポレイテッド | 高度バスケット駆動モード |
EP4084720A4 (en) | 2019-12-31 | 2024-01-17 | Auris Health, Inc. | ALIGNMENT TECHNIQUES FOR PERCUTANE ACCESS |
EP4171427A4 (en) | 2020-06-29 | 2024-08-07 | Auris Health Inc | SYSTEMS AND METHODS FOR DETECTING CONTACT BETWEEN A LINK AND AN EXTERNAL OBJECT |
US11357586B2 (en) | 2020-06-30 | 2022-06-14 | Auris Health, Inc. | Systems and methods for saturated robotic movement |
WO2022003493A1 (en) | 2020-06-30 | 2022-01-06 | Auris Health, Inc. | Robotic medical system with collision proximity indicators |
CN112057173A (zh) * | 2020-09-30 | 2020-12-11 | 深圳市精锋医疗科技有限公司 | 手术器械、从操作设备及手术机器人 |
CN112043392A (zh) * | 2020-09-30 | 2020-12-08 | 深圳市精锋医疗科技有限公司 | 手术器械、从操作设备及手术机器人 |
WO2022068039A1 (zh) * | 2020-09-30 | 2022-04-07 | 深圳市精锋医疗科技有限公司 | 手术器械、从操作设备及手术机器人 |
CN112043394A (zh) * | 2020-09-30 | 2020-12-08 | 深圳市精锋医疗科技有限公司 | 手术器械、从操作设备及手术机器人 |
CN112690902A (zh) * | 2021-03-25 | 2021-04-23 | 成都博恩思医学机器人有限公司 | 一种电钩结构 |
GB2623832A (en) * | 2022-10-31 | 2024-05-01 | Cmr Surgical Ltd | Arrangement of an electrosurgical instrument |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020111621A1 (en) * | 1999-01-22 | 2002-08-15 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US20030109877A1 (en) * | 1999-10-08 | 2003-06-12 | Intuitive Surgical, Inc. | Minimally invasive surgical hook apparatus and method for using same |
US20080021440A1 (en) * | 2004-09-30 | 2008-01-24 | Solomon Todd R | Electro-mechancial strap stack in robotic arms |
US20130110107A1 (en) * | 2011-10-31 | 2013-05-02 | Paul Smith | Endoscopic instrument having a deflectable distal tool |
US20160051318A1 (en) * | 2008-07-16 | 2016-02-25 | Intuitive Surgical Operations, Inc. | Medical instrument electrically energized using drive cables |
US20170172553A1 (en) * | 2015-12-10 | 2017-06-22 | Cambridge Medical Robotics Limited | Pulley arrangement for articulating a surgical instrument |
CN108366837A (zh) * | 2015-10-16 | 2018-08-03 | 医疗显微器具股份公司 | 用于机器人手术的手术工具以及机器人手术组件 |
Family Cites Families (386)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3763860A (en) | 1971-08-26 | 1973-10-09 | H Clarke | Laparoscopy instruments and method for suturing and ligation |
US4040413A (en) | 1974-07-18 | 1977-08-09 | Fuji Photo Optical Co. Ltd. | Endoscope |
JPS5394515A (en) | 1977-01-31 | 1978-08-18 | Kubota Ltd | Method of producing glass fiber reinforced cement plate |
US4470407A (en) | 1982-03-11 | 1984-09-11 | Laserscope, Inc. | Endoscopic device |
US4532935A (en) | 1982-11-01 | 1985-08-06 | Wang Ko P | Bronchoscopic needle assembly |
US4747405A (en) | 1984-03-01 | 1988-05-31 | Vaser, Inc. | Angioplasty catheter |
US4685458A (en) | 1984-03-01 | 1987-08-11 | Vaser, Inc. | Angioplasty catheter and method for use thereof |
DE3715418A1 (de) | 1986-05-08 | 1987-11-12 | Olympus Optical Co | Lithotom |
US4854301A (en) | 1986-11-13 | 1989-08-08 | Olympus Optical Co., Ltd. | Endoscope apparatus having a chair with a switch |
US5029574A (en) | 1988-04-14 | 1991-07-09 | Okamoto Industries, Inc. | Endoscopic balloon with a protective film thereon |
EP0377749B1 (en) | 1988-06-06 | 1994-08-31 | Sumitomo Electric Industries, Ltd. | Catheter |
US5344395A (en) | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US4983165A (en) | 1990-01-23 | 1991-01-08 | Loiterman David A | Guidance system for vascular catheter or the like |
DE9001262U1 (de) | 1990-02-05 | 1990-08-09 | Martin, Werner, 7207 Rietheim-Weilheim | Chirurgischer Nadelhalter für eine Endo-Naht, Endo-Ligatur od.dgl. |
US5345927A (en) | 1990-03-02 | 1994-09-13 | Bonutti Peter M | Arthroscopic retractors |
CA2048120A1 (en) | 1990-08-06 | 1992-02-07 | William J. Drasler | Thrombectomy method and device |
US5496267A (en) | 1990-11-08 | 1996-03-05 | Possis Medical, Inc. | Asymmetric water jet atherectomy |
US5085659A (en) | 1990-11-21 | 1992-02-04 | Everest Medical Corporation | Biopsy device with bipolar coagulation capability |
JPH05208014A (ja) | 1991-04-10 | 1993-08-20 | Olympus Optical Co Ltd | 処置具 |
ATE168545T1 (de) | 1991-05-29 | 1998-08-15 | Origin Medsystems Inc | Retraktor-vorrichtung fuer endoskopische chirurgie |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5269797A (en) | 1991-09-12 | 1993-12-14 | Meditron Devices, Inc. | Cervical discectomy instruments |
US5449356A (en) | 1991-10-18 | 1995-09-12 | Birtcher Medical Systems, Inc. | Multifunctional probe for minimally invasive surgery |
US5217001A (en) | 1991-12-09 | 1993-06-08 | Nakao Naomi L | Endoscope sheath and related method |
US5217465A (en) | 1992-02-28 | 1993-06-08 | Alcon Surgical, Inc. | Flexible and steerable aspiration tip for microsurgery |
US5318589A (en) | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
US5325848A (en) | 1992-09-10 | 1994-07-05 | Ethicon, Inc. | Endoscopic tissue manipulator with expandable frame |
US5545170A (en) | 1992-10-09 | 1996-08-13 | Innovasive Devices, Inc. | Surgical instrument |
US5342381A (en) | 1993-02-11 | 1994-08-30 | Everest Medical Corporation | Combination bipolar scissors and forceps instrument |
ATE284650T1 (de) | 1993-06-10 | 2005-01-15 | Mir A Imran | Urethrales gerät zur ablation mittels hochfrequenz |
US5792165A (en) | 1993-07-21 | 1998-08-11 | Charles H. Klieman | Endoscopic instrument with detachable end effector |
US5431649A (en) | 1993-08-27 | 1995-07-11 | Medtronic, Inc. | Method and apparatus for R-F ablation |
US5645083A (en) | 1994-02-10 | 1997-07-08 | Essig; Mitchell N. | Peritoneal surgical method |
US5411016A (en) | 1994-02-22 | 1995-05-02 | Scimed Life Systems, Inc. | Intravascular balloon catheter for use in combination with an angioscope |
US5441485A (en) | 1994-02-24 | 1995-08-15 | Peters; Michael J. | Bladder catheter |
US5501667A (en) | 1994-03-15 | 1996-03-26 | Cordis Corporation | Perfusion balloon and method of use and manufacture |
US5529235A (en) | 1994-04-28 | 1996-06-25 | Ethicon Endo-Surgery, Inc. | Identification device for surgical instrument |
EP0699418A1 (en) | 1994-08-05 | 1996-03-06 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5573535A (en) | 1994-09-23 | 1996-11-12 | United States Surgical Corporation | Bipolar surgical instrument for coagulation and cutting |
US5613973A (en) | 1995-03-10 | 1997-03-25 | Wilson Greatbatch Ltd. | Laraposcopic surgical grasper having an attachable strap |
US5562648A (en) | 1995-03-31 | 1996-10-08 | E. I. Du Pont De Nemours And Company | Adult incontinent absorbent undergarment |
US5697949A (en) | 1995-05-18 | 1997-12-16 | Symbiosis Corporation | Small diameter endoscopic instruments |
US5562678A (en) | 1995-06-02 | 1996-10-08 | Cook Pacemaker Corporation | Needle's eye snare |
DE19532098A1 (de) | 1995-08-30 | 1997-03-06 | Stuemed Gmbh | Vorrichtung für endoskopische Operationen, insbesondere spreizbares Stütz-Epi-Hypopharyngo-Laryngoskop nach Feyh-Kastenbauer |
US5710870A (en) | 1995-09-07 | 1998-01-20 | California Institute Of Technology | Decoupled six degree-of-freedom robot manipulator |
US5989230A (en) | 1996-01-11 | 1999-11-23 | Essex Technology, Inc. | Rotate to advance catheterization system |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
US6706050B1 (en) | 1996-05-10 | 2004-03-16 | Emmanuil Giannadakis | System of laparoscopic-endoscopic surgery |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5658311A (en) | 1996-07-05 | 1997-08-19 | Schneider (Usa) Inc. | High pressure expander bundle for large diameter stent deployment |
US5788667A (en) | 1996-07-19 | 1998-08-04 | Stoller; Glenn | Fluid jet vitrectomy device and method for use |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US5810770A (en) | 1996-12-13 | 1998-09-22 | Stryker Corporation | Fluid management pump system for surgical procedures |
US5893869A (en) | 1997-02-19 | 1999-04-13 | University Of Iowa Research Foundation | Retrievable inferior vena cava filter system and method for use thereof |
ATE288705T1 (de) | 1997-04-29 | 2005-02-15 | Raymond F Lippitt | Ringförmig expandierbarer und zurückziebarer mechanismus zum greifen und lösen |
US6156030A (en) | 1997-06-04 | 2000-12-05 | Y-Beam Technologies, Inc. | Method and apparatus for high precision variable rate material removal and modification |
US6174318B1 (en) | 1998-04-23 | 2001-01-16 | Scimed Life Systems, Inc. | Basket with one or more moveable legs |
US6071281A (en) | 1998-05-05 | 2000-06-06 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same |
US6093157A (en) | 1997-10-22 | 2000-07-25 | Scimed Life Systems, Inc. | Radiopaque guide wire |
US6120476A (en) | 1997-12-01 | 2000-09-19 | Cordis Webster, Inc. | Irrigated tip catheter |
RU2130762C1 (ru) | 1997-12-10 | 1999-05-27 | Федоров Святослав Николаевич | Устройство для офтальмохирургических операций |
US6120498A (en) | 1998-03-05 | 2000-09-19 | Jani; Mahendra G. | Aspirating handpieces for laser surgical operations |
FR2779934B1 (fr) | 1998-06-17 | 2001-01-05 | Saphir Medical Sa | Piece a main a commande pneumatique pour applications chirurgicales et medicales |
US6398726B1 (en) | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6522906B1 (en) | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
DE19859434C2 (de) | 1998-12-22 | 2001-03-08 | Bruker Optik Gmbh | IR-spektroskopisches Endoskop mit aufblasbarem Ballon |
US6405078B1 (en) | 1999-01-15 | 2002-06-11 | Biosense Webster, Inc. | Porous irrigated tip electrode catheter |
US6110171A (en) | 1999-03-09 | 2000-08-29 | Everest Medical Corporation | Electrosurgical cutting and coagulating instrument for open surgery |
WO2000053099A1 (en) | 1999-03-09 | 2000-09-14 | Advance Sentry Corporation | Biopsy apparatus and method of obtaining biopsy sample |
US6183435B1 (en) | 1999-03-22 | 2001-02-06 | Cordis Webster, Inc. | Multi-directional steerable catheters and control handles |
US6911026B1 (en) | 1999-07-12 | 2005-06-28 | Stereotaxis, Inc. | Magnetically guided atherectomy |
US6375635B1 (en) | 1999-05-18 | 2002-04-23 | Hydrocision, Inc. | Fluid jet surgical instruments |
US6206903B1 (en) | 1999-10-08 | 2001-03-27 | Intuitive Surgical, Inc. | Surgical tool with mechanical advantage |
US6440061B1 (en) | 2000-03-24 | 2002-08-27 | Donald E. Wenner | Laparoscopic instrument system for real-time biliary exploration and stone removal |
EP1305078B1 (en) | 2000-07-24 | 2011-06-29 | Jeffrey Grayzel | Stiffened balloon catheter for dilatation and stenting |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
US6902560B1 (en) * | 2000-07-27 | 2005-06-07 | Intuitive Surgical, Inc. | Roll-pitch-roll surgical tool |
US20030158545A1 (en) | 2000-09-28 | 2003-08-21 | Arthrocare Corporation | Methods and apparatus for treating back pain |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
EP1353617A2 (en) | 2001-01-18 | 2003-10-22 | The Regents Of The University Of California | Minimally invasive glaucoma surgical instrument and method |
US7699835B2 (en) | 2001-02-15 | 2010-04-20 | Hansen Medical, Inc. | Robotically controlled surgical instruments |
JP4588906B2 (ja) | 2001-03-13 | 2010-12-01 | オリンパス株式会社 | 内視鏡用採取具 |
US20030004455A1 (en) | 2001-06-28 | 2003-01-02 | Kadziauskas Kenneth E. | Bi-manual phaco needle |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
WO2003013374A1 (en) | 2001-08-06 | 2003-02-20 | Penn State Research Foundation | Multifunctional tool and method for minimally invasive surgery |
US20030208189A1 (en) | 2001-10-19 | 2003-11-06 | Payman Gholam A. | Integrated system for correction of vision of the human eye |
US6652537B2 (en) | 2001-12-12 | 2003-11-25 | C. R. Bard, Inc. | Articulating stone basket |
US6676668B2 (en) | 2001-12-12 | 2004-01-13 | C.R. Baed | Articulating stone basket |
MXPA04008781A (es) | 2002-03-19 | 2005-12-15 | Bard Dublin Itc Ltd | Dispositivo para biopsia y modulo de aguja para biopsia que puede insertarse en el dispositivo para biopsia. |
DE10212154A1 (de) | 2002-03-19 | 2003-10-09 | Norbert F Heske | Handstück einer Biopsievorrichtung |
US20040158261A1 (en) | 2002-05-15 | 2004-08-12 | Vu Dinh Q. | Endoscopic device for spill-proof laparoscopic ovarian cystectomy |
US8956280B2 (en) | 2002-05-30 | 2015-02-17 | Intuitive Surgical Operations, Inc. | Apparatus and methods for placing leads using direct visualization |
AU2003257309A1 (en) | 2002-08-13 | 2004-02-25 | Microbotics Corporation | Microsurgical robot system |
US20040176751A1 (en) | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
US20040186349A1 (en) | 2002-12-24 | 2004-09-23 | Usgi Medical Corp. | Apparatus and methods for achieving endoluminal access |
US6984232B2 (en) | 2003-01-17 | 2006-01-10 | St. Jude Medical, Daig Division, Inc. | Ablation catheter assembly having a virtual electrode comprising portholes |
US20040153093A1 (en) | 2003-01-31 | 2004-08-05 | Advanced Medical Optics, Inc. | Bi-manual phacoemulsification apparatus and method |
US7559934B2 (en) | 2003-04-07 | 2009-07-14 | Scimed Life Systems, Inc. | Beaded basket retrieval device |
US7122003B2 (en) | 2003-04-16 | 2006-10-17 | Granit Medical Innovations, Llc | Endoscopic retractor instrument and associated method |
US7121781B2 (en) | 2003-06-11 | 2006-10-17 | Intuitive Surgical | Surgical instrument with a universal wrist |
US9002518B2 (en) | 2003-06-30 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Maximum torque driving of robotic surgical tools in robotic surgical systems |
US8403828B2 (en) | 2003-07-21 | 2013-03-26 | Vanderbilt University | Ophthalmic orbital surgery apparatus and method and image-guide navigation system |
US20050159645A1 (en) | 2003-11-12 | 2005-07-21 | Bertolero Arthur A. | Balloon catheter sheath |
ITPI20030107A1 (it) | 2003-11-14 | 2005-05-15 | Massimo Bergamasco | Dispositivo per l'esecuzione di operazioni |
JP4994849B2 (ja) | 2004-02-09 | 2012-08-08 | スマート・メディカル・システムズ・リミテッド | 内視鏡アセンブリ |
CN100463648C (zh) | 2004-03-11 | 2009-02-25 | 梅德拉股份有限公司 | 能量辅助的医学设备和系统 |
US9345456B2 (en) | 2004-03-24 | 2016-05-24 | Devicor Medical Products, Inc. | Biopsy device |
JP4638683B2 (ja) | 2004-03-25 | 2011-02-23 | テルモ株式会社 | 血管内異物除去吸引用カテーテル |
US20050261705A1 (en) | 2004-05-21 | 2005-11-24 | Gist Christopher W | Device to remove kidney stones |
DE102004040959B4 (de) | 2004-08-24 | 2008-12-24 | Erbe Elektromedizin Gmbh | Chirurgisches Instrument |
WO2006031596A2 (en) | 2004-09-09 | 2006-03-23 | Onset Medical Corporation | Expandable gastrointestinal sheath |
US7824415B2 (en) | 2004-09-15 | 2010-11-02 | Boston Scientific Scimed, Inc. | Atraumatic medical device |
WO2006060658A2 (en) | 2004-12-01 | 2006-06-08 | Ethicon Endo-Surgery, Inc. | Apparatus and method for stone capture and removal |
WO2006065913A1 (en) | 2004-12-15 | 2006-06-22 | Wilson-Cook Medical Inc. | Flexible surgical needle device |
US20060156875A1 (en) | 2005-01-19 | 2006-07-20 | Depuy Mitek, Inc. | Fluid cutting device and method of use |
US8375808B2 (en) | 2005-12-30 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Force sensing for surgical instruments |
US7465288B2 (en) | 2005-06-28 | 2008-12-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Actuation handle for a catheter |
US20070027443A1 (en) | 2005-06-29 | 2007-02-01 | Ondine International, Ltd. | Hand piece for the delivery of light and system employing the hand piece |
JP2009500086A (ja) | 2005-07-01 | 2009-01-08 | ハンセン メディカル,インク. | ロボットガイドカテーテルシステム |
US8790396B2 (en) | 2005-07-27 | 2014-07-29 | Medtronic 3F Therapeutics, Inc. | Methods and systems for cardiac valve delivery |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US20070135803A1 (en) | 2005-09-14 | 2007-06-14 | Amir Belson | Methods and apparatus for performing transluminal and other procedures |
US8597303B2 (en) | 2005-11-03 | 2013-12-03 | Cook Medical Technologies Llc | Articulating basket with simultaneous basket extension or basket retraction |
JP4981680B2 (ja) | 2005-11-04 | 2012-07-25 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム、内視鏡、支持部材 |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
EP1986563B1 (en) | 2006-02-22 | 2012-12-26 | Hansen Medical, Inc. | System and apparatus for measuring distal forces on a working instrument |
US20070208375A1 (en) | 2006-02-23 | 2007-09-06 | Kouji Nishizawa | Surgical device |
WO2007103995A2 (en) | 2006-03-07 | 2007-09-13 | Vance Products Incorporated, D/B/A Cook Urological Incorporated | Foot operated irrigation control apparatus for medical procedures |
US8211114B2 (en) | 2006-04-24 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Medical instrument having a medical snare |
US7927327B2 (en) | 2006-04-25 | 2011-04-19 | Ethicon Endo-Surgery, Inc. | Medical instrument having an articulatable end effector |
US8038598B2 (en) | 2006-05-15 | 2011-10-18 | Baystate Health, Inc. | Balloon endoscope device |
EP2018203B1 (en) | 2006-05-17 | 2012-06-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Auto lock for catheter handle |
US8092470B2 (en) | 2006-06-08 | 2012-01-10 | Olympus Medical Systems Corp. | Calculus crushing apparatus and medical procedure using endoscope |
CA2655431C (en) | 2006-06-14 | 2014-10-21 | Benny Hon Bun Yeung | Surgical manipulator |
US9585714B2 (en) | 2006-07-13 | 2017-03-07 | Bovie Medical Corporation | Surgical sealing and cutting apparatus |
US8652086B2 (en) | 2006-09-08 | 2014-02-18 | Abbott Medical Optics Inc. | Systems and methods for power and flow rate control |
CN101998841B (zh) | 2006-09-19 | 2013-04-10 | 纽约市哥伦比亚大学理事会 | 用于对解剖学上悬浮的中空器官进行外科手术的系统、设备和方法 |
US7535991B2 (en) | 2006-10-16 | 2009-05-19 | Oraya Therapeutics, Inc. | Portable orthovoltage radiotherapy |
US20090131885A1 (en) | 2006-11-08 | 2009-05-21 | Takayuki Akahoshi | Curved Irrigation/Aspiration Needle |
US7935130B2 (en) | 2006-11-16 | 2011-05-03 | Intuitive Surgical Operations, Inc. | Two-piece end-effectors for robotic surgical tools |
US8480595B2 (en) | 2006-12-13 | 2013-07-09 | Devicor Medical Products, Inc. | Biopsy device with motorized needle cocking |
US8814921B2 (en) | 2008-03-06 | 2014-08-26 | Aquabeam Llc | Tissue ablation and cautery with optical energy carried in fluid stream |
WO2008097540A2 (en) | 2007-02-02 | 2008-08-14 | Hansen Medical, Inc. | Robotic surgical instrument and methods using bragg fiber sensors |
WO2008101206A2 (en) | 2007-02-15 | 2008-08-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter and method of manufacture |
EP2617398B1 (en) | 2007-03-13 | 2017-11-15 | Optimedica Corporation | Intraocular lens for improved placement |
US7987046B1 (en) | 2007-04-04 | 2011-07-26 | Garmin Switzerland Gmbh | Navigation device with improved user interface and mounting features |
US20090030446A1 (en) | 2007-07-25 | 2009-01-29 | Measamer John P | Tissue Manipulator |
JP5296351B2 (ja) | 2007-08-28 | 2013-09-25 | オリンパスメディカルシステムズ株式会社 | 内視鏡挿入装置 |
US20090082634A1 (en) | 2007-09-25 | 2009-03-26 | Biten Kishore Kathrani | Surgical method |
US8224484B2 (en) | 2007-09-30 | 2012-07-17 | Intuitive Surgical Operations, Inc. | Methods of user interface with alternate tool mode for robotic surgical tools |
US8328819B2 (en) | 2007-10-22 | 2012-12-11 | Boston Scientific Scimed, Inc. | Steerable stone basket |
US20140058365A1 (en) | 2007-12-17 | 2014-02-27 | Josef F. Bille | System and Method for Using Compensating Incisions in Intrastromal Refractive Surgery |
US20090299352A1 (en) | 2007-12-21 | 2009-12-03 | Boston Scientific Scimed, Inc. | Steerable laser-energy delivery device |
CN101951990A (zh) | 2007-12-23 | 2011-01-19 | Oraya治疗公司 | 检测、控制和预测辐射传输的方法和装置 |
KR20100120183A (ko) | 2008-01-30 | 2010-11-12 | 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 | 로봇을 이용한 미세수술 스텐트 시술을 위한 시스템, 디바이스 및 방법 |
US20090254083A1 (en) | 2008-03-10 | 2009-10-08 | Hansen Medical, Inc. | Robotic ablation catheter |
US8048024B2 (en) | 2008-03-17 | 2011-11-01 | Boston Scientific Scimed, Inc. | Steering mechanism |
US10368838B2 (en) | 2008-03-31 | 2019-08-06 | Intuitive Surgical Operations, Inc. | Surgical tools for laser marking and laser cutting |
WO2009131928A1 (en) | 2008-04-21 | 2009-10-29 | Electromedical Associates Llc | Devices and methods for ablating and removing a tissue mass |
US8864681B2 (en) | 2008-04-23 | 2014-10-21 | Devicor Medical Products, Inc. | Biopsy devices |
US9539381B2 (en) | 2008-05-12 | 2017-01-10 | Humparkull, Llc | Hemostatic devices and methods for use thereof |
WO2009140288A2 (en) | 2008-05-13 | 2009-11-19 | Boston Scientific Scimed, Inc. | Steering system with locking mechanism |
WO2009140688A2 (en) | 2008-05-16 | 2009-11-19 | The Johns Hopkins University | System and method for macro-micro distal dexterity enhancement in micro-surgery of the eye |
KR101016102B1 (ko) | 2008-05-30 | 2011-02-17 | 정창욱 | 최소 침습 수술 도구 |
US8628545B2 (en) | 2008-06-13 | 2014-01-14 | Covidien Lp | Endoscopic stitching devices |
US20100004642A1 (en) | 2008-07-02 | 2010-01-07 | Lumpkin Christopher F | Selectively bendable laser fiber for surgical laser probe |
US8540748B2 (en) | 2008-07-07 | 2013-09-24 | Intuitive Surgical Operations, Inc. | Surgical instrument wrist |
US8821480B2 (en) | 2008-07-16 | 2014-09-02 | Intuitive Surgical Operations, Inc. | Four-cable wrist with solid surface cable channels |
US9186221B2 (en) | 2008-07-16 | 2015-11-17 | Intuitive Surgical Operations Inc. | Backend mechanism for four-cable wrist |
US20100082017A1 (en) | 2008-09-26 | 2010-04-01 | Advanced Medical Optics, Inc. | Laser modification of intraocular lens |
US9186128B2 (en) | 2008-10-01 | 2015-11-17 | Covidien Lp | Needle biopsy device |
JP5913983B2 (ja) | 2008-12-02 | 2016-05-11 | バイオリテック ファーマ マーケティング リミテッド | レーザ誘起蒸気/プラズマ媒体の医療処置および装置 |
US20100179632A1 (en) | 2009-01-12 | 2010-07-15 | Medtronic Vascular, Inc. | Robotic Fenestration Device Having Impedance Measurement |
ITBO20090004U1 (it) | 2009-02-11 | 2010-08-12 | Tre Esse Progettazione Biomedica S R L | Manipolatore robotico per la manovra a distanza di cateteri steerable nel sistema cardiovascolare umano. |
US20100204605A1 (en) | 2009-02-12 | 2010-08-12 | Keimar, Inc. | Physiological parameter sensors |
US8120301B2 (en) | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8945163B2 (en) | 2009-04-01 | 2015-02-03 | Ethicon Endo-Surgery, Inc. | Methods and devices for cutting and fastening tissue |
US8377052B2 (en) | 2009-04-17 | 2013-02-19 | Domain Surgical, Inc. | Surgical tool with inductively heated regions |
US8517955B2 (en) | 2009-05-08 | 2013-08-27 | Broncus Medical Inc. | Tissue sampling devices, systems and methods |
WO2010133982A2 (en) | 2009-05-18 | 2010-11-25 | Koninklijke Philips Electronics, N.V. | Marker-free tracking registration and calibration for em-tracked endoscopic system |
US8882660B2 (en) | 2009-05-29 | 2014-11-11 | Nanyang Technological University | Robotic system for flexible endoscopy |
US20110015483A1 (en) | 2009-07-16 | 2011-01-20 | Federico Barbagli | Endoscopic robotic catheter system |
US8888789B2 (en) | 2009-09-23 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system control |
US20110071541A1 (en) | 2009-09-23 | 2011-03-24 | Intuitive Surgical, Inc. | Curved cannula |
US8721631B2 (en) | 2009-09-24 | 2014-05-13 | Biolite Pharma Marketing Ltd | Twister fiber optic systems and their use in medical applications |
JP5752137B2 (ja) | 2009-10-15 | 2015-07-22 | インベンティオ エルエルシーInventio Llc | 使い捨て可能かつ再使用可能な複雑形状の透明エンドスコープ |
ES2388867B1 (es) | 2009-10-27 | 2013-09-18 | Universitat Politècnica De Catalunya | Pinzas para cirugia laparoscópica mínimamente invasiva. |
US20110152880A1 (en) | 2009-12-23 | 2011-06-23 | Hansen Medical, Inc. | Flexible and steerable elongate instruments with torsion control |
US20130053877A1 (en) | 2010-02-05 | 2013-02-28 | Imds Corporation | Multiple Function Surgical Instrument |
WO2011100753A2 (en) | 2010-02-15 | 2011-08-18 | The Johns Hopkins University | Interventional photoacoustic imaging system |
US8292889B2 (en) | 2010-02-26 | 2012-10-23 | Tyco Healthcare Group Lp | Drive mechanism for articulation of a surgical instrument |
GB201006079D0 (en) | 2010-04-13 | 2010-05-26 | Central Manchester University | Surgical device and methods |
US20110257641A1 (en) | 2010-04-14 | 2011-10-20 | Roger Hastings | Phototherapy for renal denervation |
US8394120B2 (en) | 2010-05-04 | 2013-03-12 | Jacek Krzyzanowski | End effector assembly with increased clamping force for a surgical instrument |
WO2011158232A2 (en) | 2010-06-13 | 2011-12-22 | Motus Gi Medical Technologies Ltd. | Systems and methods for cleaning body cavities |
US20110313343A1 (en) | 2010-06-18 | 2011-12-22 | Alcon Research, Ltd. | Phacoemulsification Fluidics System Having a Single Pump Head |
WO2011160686A1 (en) | 2010-06-23 | 2011-12-29 | Renzo Marco Giovanni Brun Del Re | Biopsy alignment guide |
WO2017066518A1 (en) | 2010-06-29 | 2017-04-20 | Mighty Oak Medical, Inc. | Patient-matched apparatus and methods for performing surgical procedures |
EP3552655B1 (en) | 2010-07-13 | 2020-12-23 | Loma Vista Medical, Inc. | Inflatable medical devices |
US20120071752A1 (en) | 2010-09-17 | 2012-03-22 | Sewell Christopher M | User interface and method for operating a robotic medical system |
US20120071922A1 (en) | 2010-09-20 | 2012-03-22 | Shanley John F | System for providing surgical access |
WO2012037694A2 (en) | 2010-09-25 | 2012-03-29 | Queen's University At Kingston | Methods and systems for coherent imaging and feedback control for modification of materials |
US9066741B2 (en) | 2010-11-01 | 2015-06-30 | Atricure, Inc. | Robotic toolkit |
DE102011086032A1 (de) | 2010-11-16 | 2012-05-16 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Flüssigkeitsstrahlskalpell |
US20130066136A1 (en) | 2010-11-24 | 2013-03-14 | Mount Sinai School Of Medicine | Magnetic based device for retrieving a misplaced article |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
US20120191083A1 (en) | 2011-01-20 | 2012-07-26 | Hansen Medical, Inc. | System and method for endoluminal and translumenal therapy |
DE102011011497A1 (de) | 2011-02-17 | 2012-08-23 | Kuka Roboter Gmbh | Chirurgisches Instrument |
US10716706B2 (en) | 2011-04-07 | 2020-07-21 | Bausch & Lomb Incorporated | System and method for performing lens fragmentation |
US10786432B2 (en) | 2011-04-12 | 2020-09-29 | Sartorius Stedim Biotech Gmbh | Use of a device and a method for preparing mixtures of pharmaceutical substances |
US9655615B2 (en) | 2011-04-19 | 2017-05-23 | Dextera Surgical Inc. | Active wedge and I-beam for surgical stapler |
EP3620139B1 (en) | 2011-05-12 | 2021-11-10 | Carl Zeiss Meditec AG | Laser instrument for eye therapy |
US9301876B2 (en) | 2011-05-16 | 2016-04-05 | Wavelight Gmbh | System and process for surgical treatment of an eye as well as process for calibrating a system of such a type |
WO2013003088A1 (en) | 2011-06-28 | 2013-01-03 | Cook Medical Technologies, LLC | Biopsy needle with flexible length |
US20130035537A1 (en) | 2011-08-05 | 2013-02-07 | Wallace Daniel T | Robotic systems and methods for treating tissue |
US8821377B2 (en) | 2011-09-07 | 2014-09-02 | Justin Collins | Laparoscopic surgery |
EP2753250B1 (en) | 2011-09-10 | 2019-03-20 | Cook Medical Technologies LLC | Control handles for medical devices |
US9918681B2 (en) | 2011-09-16 | 2018-03-20 | Auris Surgical Robotics, Inc. | System and method for virtually tracking a surgical tool on a movable display |
US9956039B2 (en) | 2011-10-03 | 2018-05-01 | Biolase, Inc. | Surgical laser cutting device |
US9060794B2 (en) | 2011-10-18 | 2015-06-23 | Mako Surgical Corp. | System and method for robotic surgery |
WO2013063675A1 (en) | 2011-11-04 | 2013-05-10 | Titan Medical Inc. | Apparatus and method for controlling an end-effector assembly |
US10213260B2 (en) | 2011-12-01 | 2019-02-26 | Joe Denton Brown | End fire fiber arrangements with improved erosion resistance |
US9131987B2 (en) | 2011-12-02 | 2015-09-15 | Ethicon Endo-Surgery, Inc. | Elbow assembly for surgical devices |
US9179927B2 (en) | 2011-12-02 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Surgical methods using a surgical device having a fixed angular orientation |
WO2013090558A1 (en) | 2011-12-15 | 2013-06-20 | Imricor Medical Systems, Inc. | Mri compatible handle and steerable sheath |
US9504604B2 (en) | 2011-12-16 | 2016-11-29 | Auris Surgical Robotics, Inc. | Lithotripsy eye treatment |
CA2953941C (en) | 2012-01-18 | 2017-11-21 | Wavelight Gmbh | Adjusting laser energy in accordance with optical density |
WO2013126838A2 (en) | 2012-02-25 | 2013-08-29 | Thrufocus Optics, Inc. | Devices and methods for improving vision using laser photomiosis |
US20130225996A1 (en) | 2012-02-28 | 2013-08-29 | Spiration, Inc. | Lung biopsy needle |
EP2819599B1 (en) | 2012-02-29 | 2018-05-23 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
EP2830522A4 (en) | 2012-03-28 | 2016-03-30 | Cibiem Inc | PLANNING AND EVALUATION OF THE MODULATION OF A CAROTIDIC GLOMUS |
US9757199B2 (en) | 2012-04-12 | 2017-09-12 | Boston Scientific Scimed, Inc. | Surgical laser systems and laser lithotripsy techniques |
US20140142591A1 (en) | 2012-04-24 | 2014-05-22 | Auris Surgical Robotics, Inc. | Method, apparatus and a system for robotic assisted surgery |
US10383765B2 (en) | 2012-04-24 | 2019-08-20 | Auris Health, Inc. | Apparatus and method for a global coordinate system for use in robotic surgery |
CN104605935B (zh) | 2012-04-27 | 2018-10-30 | 库卡实验仪器有限公司 | 机器人手术系统 |
US9364220B2 (en) | 2012-06-19 | 2016-06-14 | Covidien Lp | Apparatus for endoscopic procedures |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
DE102012212510B4 (de) | 2012-07-17 | 2014-02-13 | Richard Wolf Gmbh | Endoskopisches Instrument |
US20140051985A1 (en) | 2012-08-17 | 2014-02-20 | Tailin Fan | Percutaneous nephrolithotomy target finding system |
US10105086B2 (en) | 2012-08-27 | 2018-10-23 | Facet Technologies, Llc | Twist-to-charge mechanism of lancing device |
US9375235B2 (en) | 2012-12-12 | 2016-06-28 | Boston Scientific Scimed, Inc. | Method and system for transhiatal esophagectomy |
WO2014110043A1 (en) | 2013-01-08 | 2014-07-17 | Boston Scientific Scimed, Inc. | Low profile medical device and related methods of use |
US20140194859A1 (en) | 2013-01-10 | 2014-07-10 | Pravoslava IANCHULEV | System and method of performing femtosecond laser accomodative capsulotomy |
US9522003B2 (en) | 2013-01-14 | 2016-12-20 | Intuitive Surgical Operations, Inc. | Clamping instrument |
US10231867B2 (en) | 2013-01-18 | 2019-03-19 | Auris Health, Inc. | Method, apparatus and system for a water jet |
CN105283144B (zh) | 2013-02-26 | 2018-06-05 | 阿梅·西纳·卡巴克奇 | 机器人操纵器系统 |
US20140249557A1 (en) | 2013-03-01 | 2014-09-04 | Ethicon Endo-Surgery, Inc. | Thumbwheel switch arrangements for surgical instruments |
JP5676058B1 (ja) | 2013-03-06 | 2015-02-25 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム及び内視鏡システムの作動方法 |
US10149720B2 (en) | 2013-03-08 | 2018-12-11 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US9867635B2 (en) | 2013-03-08 | 2018-01-16 | Auris Surgical Robotics, Inc. | Method, apparatus and system for a water jet |
US10080576B2 (en) | 2013-03-08 | 2018-09-25 | Auris Health, Inc. | Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment |
US9737300B2 (en) | 2013-03-13 | 2017-08-22 | Ethicon Llc | Electrosurgical device with disposable shaft having rack and pinion drive |
JP6251379B2 (ja) | 2013-03-14 | 2017-12-20 | ジャイラス・エーシーエムアイ・インコーポレーテッド | 外科的位置決め回路 |
WO2014158880A1 (en) | 2013-03-14 | 2014-10-02 | Brigham And Women's Hospital, Inc. | System and method for a laparoscopic morcellator |
EP3900641A1 (en) * | 2013-03-14 | 2021-10-27 | SRI International Inc. | Wrist and grasper system for a robotic tool |
US9232956B2 (en) | 2013-04-16 | 2016-01-12 | Calcula Technologies, Inc. | Device for removing kidney stones |
US10076231B2 (en) | 2013-04-22 | 2018-09-18 | Gyrus Acmi, Inc. | Surgeon controlled endoscope device and method |
US11020016B2 (en) | 2013-05-30 | 2021-06-01 | Auris Health, Inc. | System and method for displaying anatomy and devices on a movable display |
US10744035B2 (en) | 2013-06-11 | 2020-08-18 | Auris Health, Inc. | Methods for robotic assisted cataract surgery |
US10426661B2 (en) | 2013-08-13 | 2019-10-01 | Auris Health, Inc. | Method and apparatus for laser assisted cataract surgery |
US11800991B2 (en) | 2013-08-15 | 2023-10-31 | Intuitive Surgical Operations, Inc. | Graphical user interface for catheter positioning and insertion |
US9861428B2 (en) | 2013-09-16 | 2018-01-09 | Ethicon Llc | Integrated systems for electrosurgical steam or smoke control |
CN111166274A (zh) | 2013-10-24 | 2020-05-19 | 奥瑞斯健康公司 | 机器人辅助腔内外科手术系统及相关方法 |
US9993313B2 (en) | 2013-10-24 | 2018-06-12 | Auris Health, Inc. | Instrument device manipulator with roll mechanism |
EP3060140A4 (en) | 2013-10-26 | 2017-06-07 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Atrial appendage ligation |
US9937626B2 (en) | 2013-12-11 | 2018-04-10 | Covidien Lp | Wrist and jaw assemblies for robotic surgical systems |
US9808269B2 (en) | 2013-12-12 | 2017-11-07 | Boston Scientific Scimed, Inc. | Adjustable medical retrieval devices and related methods of use |
JP6518671B2 (ja) | 2013-12-13 | 2019-05-22 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | 入れ子式生検針 |
WO2015109178A1 (en) | 2014-01-17 | 2015-07-23 | Merit Medical Systems, Inc. | Flush cut biopsy needle assembly and method of use |
JP6431678B2 (ja) | 2014-03-20 | 2018-11-28 | オリンパス株式会社 | 挿入形状検出装置 |
CN106456935B (zh) | 2014-04-02 | 2019-12-24 | 直观外科手术操作公司 | 使用可操控管心针和柔性针的设备、系统以及方法 |
US20150314110A1 (en) | 2014-05-05 | 2015-11-05 | Hansen Medical, Inc. | Balloon visualization for traversing a vessel |
US11826172B2 (en) | 2014-05-06 | 2023-11-28 | St. Jude Medical, Cardiology Division, Inc. | Electrode support structure assembly |
JP6302754B2 (ja) | 2014-06-04 | 2018-03-28 | オリンパス株式会社 | 接合構造及び生検針 |
US20170007337A1 (en) | 2014-07-01 | 2017-01-12 | Auris Surgical Robotics, Inc. | Driver-mounted torque sensing mechanism |
US9744335B2 (en) | 2014-07-01 | 2017-08-29 | Auris Surgical Robotics, Inc. | Apparatuses and methods for monitoring tendons of steerable catheters |
US9561083B2 (en) | 2014-07-01 | 2017-02-07 | Auris Surgical Robotics, Inc. | Articulating flexible endoscopic tool with roll capabilities |
US10159533B2 (en) | 2014-07-01 | 2018-12-25 | Auris Health, Inc. | Surgical system with configurable rail-mounted mechanical arms |
US9788910B2 (en) | 2014-07-01 | 2017-10-17 | Auris Surgical Robotics, Inc. | Instrument-mounted tension sensing mechanism for robotically-driven medical instruments |
US20160270865A1 (en) | 2014-07-01 | 2016-09-22 | Auris Surgical Robotics, Inc. | Reusable catheter with disposable balloon attachment and tapered tip |
US10792464B2 (en) | 2014-07-01 | 2020-10-06 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
US20160022466A1 (en) | 2014-07-24 | 2016-01-28 | Lim Innovations, Inc. | Sequential series of orthopedic devices that include incremental changes in form |
US10828051B2 (en) | 2014-07-28 | 2020-11-10 | Shaw P. Wan | Suction evacuation device |
US9877708B2 (en) | 2014-07-30 | 2018-01-30 | Covidien Lp | Exchangeable core biopsy needle |
US10085759B2 (en) | 2014-08-14 | 2018-10-02 | Boston Scientific Scimed, Inc. | Kidney stone suction device |
JP6682513B2 (ja) | 2014-09-08 | 2020-04-15 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 回収装置 |
AU2015325052B2 (en) | 2014-09-30 | 2020-07-02 | Auris Health, Inc. | Configurable robotic surgical system with virtual rail and flexible endoscope |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
US9999745B2 (en) | 2014-11-05 | 2018-06-19 | Clph, Llc | Catheter devices and methods for making them |
DE102014226240A1 (de) | 2014-12-17 | 2016-06-23 | Kuka Roboter Gmbh | System zur roboterunterstützten medizinischen Behandlung |
DE102015200428B3 (de) | 2015-01-14 | 2016-03-17 | Kuka Roboter Gmbh | Verfahren zur Ausrichtung eines mehrachsigen Manipulators mit einem Eingabegerät |
JP6657244B2 (ja) | 2015-02-26 | 2020-03-04 | コヴィディエン リミテッド パートナーシップ | ソフトウェア及び誘導管を備えたロボット制御の遠隔運動中心 |
US20160287279A1 (en) | 2015-04-01 | 2016-10-06 | Auris Surgical Robotics, Inc. | Microsurgical tool for robotic applications |
WO2016164824A1 (en) | 2015-04-09 | 2016-10-13 | Auris Surgical Robotics, Inc. | Surgical system with configurable rail-mounted mechanical arms |
CA2983568A1 (en) | 2015-04-23 | 2016-10-27 | Via Surgical Ltd. | Surgical fastener delivery and locking mechanism |
US9622827B2 (en) | 2015-05-15 | 2017-04-18 | Auris Surgical Robotics, Inc. | Surgical robotics system |
US10610254B2 (en) | 2015-08-20 | 2020-04-07 | Boston Scientific Scimed, Inc. | Medical device and related methods |
CN113274140B (zh) | 2015-09-09 | 2022-09-02 | 奥瑞斯健康公司 | 手术覆盖件 |
EP4070723A1 (en) | 2015-09-18 | 2022-10-12 | Auris Health, Inc. | Navigation of tubular networks |
US10052164B2 (en) | 2015-10-02 | 2018-08-21 | Ethicon Llc | System and method of converting user input into motion of a surgical instrument via a robotic surgical system |
US10639108B2 (en) | 2015-10-30 | 2020-05-05 | Auris Health, Inc. | Process for percutaneous operations |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US20170151416A1 (en) | 2015-12-01 | 2017-06-01 | Invivo Therapeutics Corporation | Methods and Systems for Delivery of a Trail of a Therapeutic Substance into an Anatomical Space |
GB201521811D0 (en) * | 2015-12-10 | 2016-01-27 | Cambridge Medical Robotics Ltd | Drive assembly interface |
WO2017114855A1 (en) | 2015-12-29 | 2017-07-06 | Koninklijke Philips N.V. | System, control unit and method for control of a surgical robot |
US10932861B2 (en) | 2016-01-14 | 2021-03-02 | Auris Health, Inc. | Electromagnetic tracking surgical system and method of controlling the same |
US10932691B2 (en) | 2016-01-26 | 2021-03-02 | Auris Health, Inc. | Surgical tools having electromagnetic tracking components |
CN109219412B (zh) | 2016-03-07 | 2022-02-08 | 伊西康有限责任公司 | 机器人双极器械 |
US10350016B2 (en) | 2016-03-17 | 2019-07-16 | Intuitive Surgical Operations, Inc. | Stapler with cable-driven advanceable clamping element and dual distal pulleys |
US11324554B2 (en) | 2016-04-08 | 2022-05-10 | Auris Health, Inc. | Floating electromagnetic field generator system and method of controlling the same |
EP3471599A4 (en) | 2016-06-17 | 2020-01-08 | Align Technology, Inc. | INTRAORAL DEVICES WITH SENSOR |
US11037464B2 (en) | 2016-07-21 | 2021-06-15 | Auris Health, Inc. | System with emulator movement tracking for controlling medical devices |
US10687904B2 (en) | 2016-08-16 | 2020-06-23 | Ethicon Llc | Robotics tool exchange |
KR102555546B1 (ko) | 2016-08-31 | 2023-07-19 | 아우리스 헬스, 인코포레이티드 | 길이 보존 수술용 기구 |
US9931025B1 (en) | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
GB2554915B (en) | 2016-10-14 | 2022-03-02 | Cmr Surgical Ltd | Driving arrangement for articulating a surgical instrument |
US10136959B2 (en) | 2016-12-28 | 2018-11-27 | Auris Health, Inc. | Endolumenal object sizing |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
US10543048B2 (en) | 2016-12-28 | 2020-01-28 | Auris Health, Inc. | Flexible instrument insertion using an adaptive insertion force threshold |
US10987120B2 (en) | 2017-01-10 | 2021-04-27 | New Wave Endo-Surgery Inc. | Multifunction surgical instrument for use in laparoscopic surgery |
US10792466B2 (en) | 2017-03-28 | 2020-10-06 | Auris Health, Inc. | Shaft actuating handle |
KR102558061B1 (ko) | 2017-03-31 | 2023-07-25 | 아우리스 헬스, 인코포레이티드 | 생리적 노이즈를 보상하는 관강내 조직망 항행을 위한 로봇 시스템 |
JP7314052B2 (ja) | 2017-04-07 | 2023-07-25 | オーリス ヘルス インコーポレイテッド | 患者イントロデューサのアライメント |
US10285574B2 (en) | 2017-04-07 | 2019-05-14 | Auris Health, Inc. | Superelastic medical instrument |
IT201700041991A1 (it) | 2017-04-14 | 2018-10-14 | Medical Microinstruments Spa | Assieme robotico per microchirurgia |
WO2018208994A1 (en) | 2017-05-12 | 2018-11-15 | Auris Health, Inc. | Biopsy apparatus and system |
EP3624668A4 (en) | 2017-05-17 | 2021-05-26 | Auris Health, Inc. | EXCHANGEABLE WORK CHANNEL |
US10022192B1 (en) | 2017-06-23 | 2018-07-17 | Auris Health, Inc. | Automatically-initialized robotic systems for navigation of luminal networks |
US11026758B2 (en) | 2017-06-28 | 2021-06-08 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
US11832889B2 (en) | 2017-06-28 | 2023-12-05 | Auris Health, Inc. | Electromagnetic field generator alignment |
WO2019005872A1 (en) | 2017-06-28 | 2019-01-03 | Auris Health, Inc. | INSTRUMENT INSERTION COMPENSATION |
CN110913788B (zh) | 2017-06-28 | 2024-03-12 | 奥瑞斯健康公司 | 电磁失真检测 |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
WO2019036418A1 (en) * | 2017-08-16 | 2019-02-21 | Covidien Lp | END EFFECTOR COMPRISING A WRIST SET AND A MONOPOLAR TOOL FOR ROBOTIC SURGICAL SYSTEMS |
US10973600B2 (en) | 2017-09-29 | 2021-04-13 | Ethicon Llc | Power axle wrist for robotic surgical tool |
US10464209B2 (en) | 2017-10-05 | 2019-11-05 | Auris Health, Inc. | Robotic system with indication of boundary for robotic arm |
US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
US10016900B1 (en) | 2017-10-10 | 2018-07-10 | Auris Health, Inc. | Surgical robotic arm admittance control |
US11058493B2 (en) | 2017-10-13 | 2021-07-13 | Auris Health, Inc. | Robotic system configured for navigation path tracing |
US10555778B2 (en) | 2017-10-13 | 2020-02-11 | Auris Health, Inc. | Image-based branch detection and mapping for navigation |
CN107595368B (zh) | 2017-10-19 | 2024-04-30 | 以诺康医疗科技(苏州)有限公司 | 一种超声波手术刀头、刀杆及超声波手术刀 |
US10987179B2 (en) | 2017-12-06 | 2021-04-27 | Auris Health, Inc. | Systems and methods to correct for uncommanded instrument roll |
CN116059454A (zh) | 2017-12-08 | 2023-05-05 | 奥瑞斯健康公司 | 用于执行医疗手术的系统和用以移除肾结石的医疗装置 |
EP3684281A4 (en) | 2017-12-08 | 2021-10-13 | Auris Health, Inc. | SYSTEM AND PROCEDURE FOR NAVIGATION AND TARGETING OF MEDICAL INSTRUMENTS |
BR112020011444A2 (pt) | 2017-12-11 | 2021-02-02 | Auris Health, Inc. | sistemas e métodos para arquiteturas de inserção baseadas em instrumentos |
EP3684562A4 (en) | 2017-12-14 | 2021-06-30 | Auris Health, Inc. | SYSTEM AND METHOD OF ESTIMATING THE LOCATION OF AN INSTRUMENT |
WO2019125964A1 (en) | 2017-12-18 | 2019-06-27 | Auris Health, Inc. | Methods and systems for instrument tracking and navigation within luminal networks |
KR20200118439A (ko) | 2018-01-17 | 2020-10-15 | 아우리스 헬스, 인코포레이티드 | 개선된 로봇 아암을 갖는 수술 로봇 시스템 |
EP3740152A4 (en) | 2018-01-17 | 2021-11-03 | Auris Health, Inc. | SURGICAL PLATFORM WITH ADJUSTABLE ARMRESTS |
US10779839B2 (en) | 2018-02-08 | 2020-09-22 | Ethicon Llc | Surgical clip applier with parallel closure jaws |
JP7301884B2 (ja) | 2018-02-13 | 2023-07-03 | オーリス ヘルス インコーポレイテッド | 医療用器具を駆動するためのシステム及び方法 |
JP2021514761A (ja) | 2018-03-01 | 2021-06-17 | オーリス ヘルス インコーポレイテッド | マッピング及びナビゲーションのための方法及びシステム |
MX2020010112A (es) | 2018-03-28 | 2020-11-06 | Auris Health Inc | Sistemas y metodos para el registro de sensores de ubicacion. |
JP7305668B2 (ja) | 2018-03-28 | 2023-07-10 | オーリス ヘルス インコーポレイテッド | 可変曲げ剛性プロファイルを有する医療用器具 |
MX2020010117A (es) | 2018-03-28 | 2020-11-06 | Auris Health Inc | Sistemas y metodos para mostrar la ubicacion estimada de instrumento. |
MX2020010220A (es) | 2018-03-29 | 2021-01-15 | Auris Health Inc | Sistemas médicos activados robóticamente con efectores de extremo multifunción que tienen desviaciones rotacionales. |
JP7250824B2 (ja) | 2018-05-30 | 2023-04-03 | オーリス ヘルス インコーポレイテッド | 位置センサベースの分岐予測のためのシステム及び方法 |
MX2020012897A (es) | 2018-05-31 | 2021-05-27 | Auris Health Inc | Sistemas roboticos y metodos para navegacion de la red luminal que detectan ruido fisiologico. |
CN110831538B (zh) | 2018-05-31 | 2023-01-24 | 奥瑞斯健康公司 | 基于图像的气道分析和映射 |
JP7371026B2 (ja) | 2018-05-31 | 2023-10-30 | オーリス ヘルス インコーポレイテッド | 管状網の経路ベースのナビゲーション |
US10744981B2 (en) | 2018-06-06 | 2020-08-18 | Sensata Technologies, Inc. | Electromechanical braking connector |
CN112218596A (zh) | 2018-06-07 | 2021-01-12 | 奥瑞斯健康公司 | 具有高力器械的机器人医疗系统 |
US10667875B2 (en) | 2018-06-27 | 2020-06-02 | Auris Health, Inc. | Systems and techniques for providing multiple perspectives during medical procedures |
JP7391886B2 (ja) | 2018-06-28 | 2023-12-05 | オーリス ヘルス インコーポレイテッド | 滑車共有を組み込んだ医療システム |
EP3820373A4 (en) | 2018-08-07 | 2022-04-27 | Auris Health, Inc. | COMBINATION OF STRAIN-BASED FORM MEASUREMENT WITH CATHETER CONTROL |
CN112566584A (zh) * | 2018-08-15 | 2021-03-26 | 奥瑞斯健康公司 | 用于组织烧灼的医疗器械 |
WO2020036686A1 (en) | 2018-08-17 | 2020-02-20 | Auris Health, Inc. | Bipolar medical instrument |
KR20210052475A (ko) | 2018-08-24 | 2021-05-10 | 아우리스 헬스, 인코포레이티드 | 수동 및 로봇 제어가능 의료 기구 |
CN112739283A (zh) | 2018-09-17 | 2021-04-30 | 奥瑞斯健康公司 | 用于伴随医学规程的系统和方法 |
CN112804933B (zh) | 2018-09-26 | 2024-10-18 | 奥瑞斯健康公司 | 关节运动式医疗器械 |
EP3813716A4 (en) | 2018-09-26 | 2022-07-13 | Auris Health, Inc. | SYSTEMS AND INSTRUMENTS FOR SUCTION AND IRRIGATION |
WO2020069080A1 (en) | 2018-09-28 | 2020-04-02 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
EP3856064A4 (en) | 2018-09-28 | 2022-06-29 | Auris Health, Inc. | Systems and methods for docking medical instruments |
US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
US11576738B2 (en) | 2018-10-08 | 2023-02-14 | Auris Health, Inc. | Systems and instruments for tissue sealing |
EP3870075A4 (en) | 2018-12-20 | 2022-08-03 | Auris Health, Inc. | SHIELDING FOR WRIST INSTRUMENTS |
CN113226202A (zh) | 2018-12-28 | 2021-08-06 | 奥瑞斯健康公司 | 用于机器人医疗系统的经皮护套和方法 |
CN113453642A (zh) | 2019-02-22 | 2021-09-28 | 奥瑞斯健康公司 | 具有用于可调式臂支撑件的机动臂的外科平台 |
EP3965710A4 (en) | 2019-03-08 | 2023-04-05 | Auris Health, Inc. | TILT MECHANISMS FOR MEDICAL SYSTEMS AND APPLICATIONS |
CN113613580A (zh) | 2019-03-22 | 2021-11-05 | 奥瑞斯健康公司 | 用于使医疗器械上的输入部对准的系统和方法 |
WO2020197625A1 (en) | 2019-03-25 | 2020-10-01 | Auris Health, Inc. | Systems and methods for medical stapling |
US11617627B2 (en) | 2019-03-29 | 2023-04-04 | Auris Health, Inc. | Systems and methods for optical strain sensing in medical instruments |
KR20210149805A (ko) | 2019-04-08 | 2021-12-09 | 아우리스 헬스, 인코포레이티드 | 동시 절차를 위한 시스템, 방법, 및 작업흐름 |
-
2019
- 2019-06-27 CN CN201980053396.7A patent/CN112566584A/zh active Pending
- 2019-06-27 WO PCT/US2019/039412 patent/WO2020036685A1/en unknown
- 2019-06-27 US US16/454,632 patent/US10828118B2/en active Active
- 2019-06-27 EP EP19849522.8A patent/EP3806772A4/en active Pending
-
2020
- 2020-09-29 US US17/037,380 patent/US11896335B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020111621A1 (en) * | 1999-01-22 | 2002-08-15 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US20030109877A1 (en) * | 1999-10-08 | 2003-06-12 | Intuitive Surgical, Inc. | Minimally invasive surgical hook apparatus and method for using same |
US20080021440A1 (en) * | 2004-09-30 | 2008-01-24 | Solomon Todd R | Electro-mechancial strap stack in robotic arms |
US20160051318A1 (en) * | 2008-07-16 | 2016-02-25 | Intuitive Surgical Operations, Inc. | Medical instrument electrically energized using drive cables |
US20130110107A1 (en) * | 2011-10-31 | 2013-05-02 | Paul Smith | Endoscopic instrument having a deflectable distal tool |
CN108366837A (zh) * | 2015-10-16 | 2018-08-03 | 医疗显微器具股份公司 | 用于机器人手术的手术工具以及机器人手术组件 |
US20170172553A1 (en) * | 2015-12-10 | 2017-06-22 | Cambridge Medical Robotics Limited | Pulley arrangement for articulating a surgical instrument |
Also Published As
Publication number | Publication date |
---|---|
US10828118B2 (en) | 2020-11-10 |
US20200054408A1 (en) | 2020-02-20 |
US20210007819A1 (en) | 2021-01-14 |
WO2020036685A1 (en) | 2020-02-20 |
EP3806772A4 (en) | 2022-03-30 |
US11896335B2 (en) | 2024-02-13 |
EP3806772A1 (en) | 2021-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11896335B2 (en) | Medical instruments for tissue cauterization | |
CN112566567B (zh) | 双极医疗器械 | |
CN113613566B (zh) | 用于医疗缝合的系统和方法 | |
CN112770689B (zh) | 用于抽吸和冲洗的系统和器械 | |
US20200197112A1 (en) | Shielding for wristed instruments | |
CN114040727A (zh) | 包括具有混合重定向表面的腕部的医疗器械 | |
CN112367928A (zh) | 结合滑轮共享的医疗系统 | |
CN114007521A (zh) | 用于机器人臂对准和对接的系统和方法 | |
EP3908224A1 (en) | Systems and methods for aligning inputs on medical instruments | |
CN112770690A (zh) | 用于对接医疗器械的系统和方法 | |
CN113164184A (zh) | 能够手动地和机器人地控制的医疗器械 | |
CN112804959A (zh) | 用于伴随内窥镜和经皮医学规程的机器人系统和方法 | |
CN114554995A (zh) | 具有多个医疗器械的机器人医疗系统 | |
CN113347938A (zh) | 具有加热和冷却能力的血管密封器 | |
CN115605157A (zh) | 具有传感器集成以支持远程操作和直接手动相互作用的无源和有源臂控制方案 | |
CN113286543A (zh) | 具有可关节运动区段的医疗器械 | |
CN114375182A (zh) | 用于使用共享机器人自由度进行运动学优化的系统和方法 | |
CN114269279A (zh) | 用于调节医疗规程中的远程中心距离的系统和方法 | |
CN115515523A (zh) | 机器人外科手术的工作空间优化 | |
CN114502094A (zh) | 用于碰撞检测和避免的系统和方法 | |
CN115334993A (zh) | 用于医疗器械的约束运动控制的系统和方法 | |
CN115315226A (zh) | 用于外科机器人装置的热信息传送系统和方法 | |
CN115379811A (zh) | 用于机器人系统的手动输入装置 | |
CN114449958A (zh) | 机器人致动的医疗牵开器 | |
CN115802975A (zh) | 用于检测连杆与外部对象之间的接触的系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |