CN111708987B - Method for predicting load of multiple parallel transformers of transformer substation - Google Patents
Method for predicting load of multiple parallel transformers of transformer substation Download PDFInfo
- Publication number
- CN111708987B CN111708987B CN202010549550.4A CN202010549550A CN111708987B CN 111708987 B CN111708987 B CN 111708987B CN 202010549550 A CN202010549550 A CN 202010549550A CN 111708987 B CN111708987 B CN 111708987B
- Authority
- CN
- China
- Prior art keywords
- load
- substation
- transformer
- transformers
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000013507 mapping Methods 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims description 6
- 230000006872 improvement Effects 0.000 abstract description 4
- 238000012417 linear regression Methods 0.000 abstract 1
- 230000008859 change Effects 0.000 description 7
- 238000013277 forecasting method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Operations Research (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Health & Medical Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Quality & Reliability (AREA)
- Probability & Statistics with Applications (AREA)
- Life Sciences & Earth Sciences (AREA)
- Algebra (AREA)
- Development Economics (AREA)
- Game Theory and Decision Science (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及电力设备负荷预测领域,尤其涉及一种变电站多台并联变压器负荷预测方法。The present invention relates to the field of load prediction of electric power equipment, and in particular to a method for predicting the load of multiple parallel transformers in a substation.
背景技术Background Art
变压器负荷是影响设备健康状态和绝缘寿命的重要因素,实现准确的变压器负荷预测对优化负荷分配、设备状态评估与故障预测具有重要意义。在实际中,除了日类型、季节和气象等常规因素外,变压器负荷还会受变电站运行方式变化的影响呈现出比变电站级负荷更为复杂的变化规律,使得现有的电力系统负荷预测技术无法准确地预测变压器的负荷。另一方面,电网中变压器数量巨大,单独为每台设备建立负荷预测模型会产生繁重的工作量。Transformer load is an important factor affecting the health status and insulation life of equipment. Accurate transformer load prediction is of great significance for optimizing load distribution, equipment status assessment and fault prediction. In practice, in addition to conventional factors such as day type, season and weather, transformer load is also affected by changes in substation operation mode and presents a more complex change pattern than substation-level load, making it impossible for existing power system load prediction technology to accurately predict transformer load. On the other hand, there are a huge number of transformers in the power grid, and establishing a load prediction model for each device separately will generate a heavy workload.
现有技术文件1(邓志祥等.一种配电变压器及配电线路的负荷预测方法[P].CN110009136A,2019-07-12.)公开了一种配电变压器及配电线路的负荷预测方法,对历史负荷、气象数据、工作日类型等各个权值进行初始化处理,进行基于Elman神经网络算法的神经元计算和预测。Prior art document 1 (Deng Zhixiang et al. A load forecasting method for distribution transformers and distribution lines [P]. CN110009136A, 2019-07-12.) discloses a load forecasting method for distribution transformers and distribution lines, which initializes various weights such as historical loads, meteorological data, and working day types, and performs neuron calculation and prediction based on the Elman neural network algorithm.
现有技术文件1公开的方法将传统的针对电力系统级别的负荷预测方法沿用至变压器级别的负荷。然而,在实际中,除了历史负荷、气象数据和工作日类型等常规因素外,变压器负荷还会受变电站运行方式调整等特殊因素影响而改变,呈现出比系统级负荷更为复杂的变化规律,如果只考虑常规因素而忽略变电站运行方式对变压器负荷的影响,会引起较大的预测误差。另一方面,电网中的变压器数量巨大,为每台变压器单独建立负荷预测模型会产生繁重的工作量。The method disclosed in the prior art document 1 applies the traditional load forecasting method for the power system level to the transformer level load. However, in practice, in addition to conventional factors such as historical load, meteorological data, and workday type, transformer load will also be affected by special factors such as the adjustment of substation operation mode, showing a more complex change pattern than the system-level load. If only conventional factors are considered and the impact of substation operation mode on transformer load is ignored, it will cause a large prediction error. On the other hand, the number of transformers in the power grid is huge, and establishing a load forecasting model for each transformer separately will generate a heavy workload.
发明内容Summary of the invention
本发明的目的在于,提供一种变电站多台并联变压器负荷预测方法,通过定义“负载分配系数”和使用非线性回归函数量化变电站不同运行方式下并联变压器负荷与变电站负荷之间的非线性映射关系,实现对多台并联变压器负荷的预测。The purpose of the present invention is to provide a method for predicting the load of multiple parallel transformers in a substation, by defining a "load distribution coefficient" and using a nonlinear regression function to quantify the nonlinear mapping relationship between the parallel transformer load and the substation load under different operating modes of the substation, so as to realize the prediction of the load of multiple parallel transformers.
本发明采用如下的技术方案。一种变电站多台并联变压器负荷预测方法,以Ti表示变电站内N台并联运行的变压器中的第i台变压器,N,i是正整数,N≥2,1≤i≤N;Cj表示变电站K种运行方式中的第j种运行方式,K,j是正整数,K≥2,1≤j≤K;t表示量测时刻,t是正整数;Li(t)表示t时刻第i台变压器的负荷;Ls(t)表示t时刻变电站的负荷;其特征在于,包括以下步骤:The present invention adopts the following technical scheme. A load prediction method for multiple transformers in parallel in a substation, wherein Ti represents the i-th transformer among N transformers in parallel in the substation, N, i is a positive integer, N≥2, 1≤i≤N; Cj represents the j-th operation mode among K operation modes of the substation, K, j is a positive integer, K≥2, 1≤j≤K; t represents the measurement time, t is a positive integer; Li (t) represents the load of the i-th transformer at time t; Ls (t) represents the load of the substation at time t; and the method is characterized in that it comprises the following steps:
步骤1,获取设定时间段内所述变电站的历史数据,包括该设定时间段内变电站负荷数据,每台变压器的负荷数据,变电站运行方式数据;Step 1, obtaining historical data of the substation within a set time period, including substation load data, load data of each transformer, and substation operation mode data within the set time period;
步骤2,使用变电站的历史数据采用如下公式(1)计算变电站以运行方式Cj运行时变压器Ti在t时刻的负载分配系数Ft(Ti,Cj)Step 2: Use the historical data of the substation to calculate the load sharing coefficient Ft ( Tj , Cj ) of the transformer Ti at time t when the substation is running in operation mode Cj using the following formula (1):
式中:Where:
Ft(Ti,Cj)表示负载分配系数;F t (T i , C j ) represents the load sharing factor;
Ti表示变电站内N台并联运行的变压器中的第i台变压器; Ti represents the i-th transformer among the N transformers running in parallel in the substation;
Cj表示变电站K种运行方式中的第j种运行方式;C j represents the jth operation mode among K operation modes of the substation;
t表示量测时刻;t represents the measurement time;
Li(t)表示t时刻第i台变压器的负荷; Li (t) represents the load of the i-th transformer at time t;
Ls(t)表示t时刻变电站的负荷;L s (t) represents the load of the substation at time t;
步骤3,以步骤2获得的负载分配系数Ft(Ti,Cj),结合变电站的负荷Ls(t),使用非线性回归函数G(Ls(t),Ti,Cj)量化负载分配系数Ft(Ti,Cj)与变电站的负荷Ls(t)的非线性映射关系,Step 3: Using the load distribution coefficient Ft ( Ti , Cj ) obtained in step 2 and the load Ls (t) of the substation, a nonlinear regression function G( Ls (t), Ti , Cj ) is used to quantify the nonlinear mapping relationship between the load distribution coefficient Ft ( Ti , Cj ) and the load Ls (t) of the substation.
Ft(Ti,Cj)=G(Ls(t),Ti,Cj)(2)F t (T i , C j ) = G (L s (t), T i , C j ) (2)
式中:Where:
G(Ls(t),Ti,Cj)表示包含自变量为变电站负荷Ls(t)的非线性回归函数;G(L s (t), Ti , C j ) represents a nonlinear regression function including the independent variable as the substation load L s (t);
步骤4,以步骤3获得的非线性回归函数G(Ls(t),Ti,Cj),结合变电站的负荷Ls(t),使用如下公式(3)对t时刻第i台变压器的负荷Li(t)进行预测,Step 4: Using the nonlinear regression function G( Ls (t), Ti , Cj ) obtained in step 3 and the load of the substation Ls (t), use the following formula (3) to predict the load Li (t) of the i-th transformer at time t:
Li(t)=G(Ls(t),Ti,Cj)·Ls(t) (3)。 Li (t)=G (L s (t), Ti , C j )·L s (t) (3).
优选地,使用如下含有常数项的幂函数作为非线性回归函数G(Ls(t),Ti,Cj)Preferably, a power function containing a constant term is used as the nonlinear regression function G(L s (t), Ti , C j )
G(Ls(t),Ti,Cj)=aLs(t)b+c (4)G(L s (t), T i , C j )=aL s (t) b +c (4)
Ls(t)表示t时刻变电站的负荷;L s (t) represents the load of the substation at time t;
a,b,c表示G(Ls(t),Ti,Cj)的参数值。a, b, c represent parameter values of G(L s (t), Ti , C j ).
优选地,使用最小二乘法估计非线性回归函数G(Ls(t),Ti,Cj)的参数值a,b,c。Preferably, the parameter values a, b, c of the nonlinear regression function G(L s (t), Ti , C j ) are estimated using the least squares method.
优选地,步骤1所述设定时间段的范围是1年-3年。Preferably, the range of the set time period in step 1 is 1 year to 3 years.
优选地,步骤1所述获取变电站运行方式数据是指历史运行中变压器出现过的变压器停运和运行状态。Preferably, the substation operation mode data obtained in step 1 refers to the transformer shutdown and operation status that have occurred in the historical operation of the transformer.
优选地,至少获取4个历史时刻的历史数据,即t≥4,包括变电站负荷数据,每台变压器的负荷数据,变电站运行方式数据,用于拟合非线性函数并进行预测。Preferably, historical data of at least four historical moments, i.e., t≥4, are obtained, including substation load data, load data of each transformer, and substation operation mode data, for fitting nonlinear functions and making predictions.
本发明的有益效果在于,与现有技术相比,本发明首先定义“负载分配系数”来描述并联变压器与变电站级负荷的分配关系,使用非线性回归函数量化变电站不同运行方式下“负载分配系数”和变电站级负荷的非线性映射关系,最后以变电站负荷预测结果为输入,根据变压器的“负载分配系数”实现多台并联变压器负荷的预测。The beneficial effect of the present invention lies in that, compared with the prior art, the present invention first defines a "load distribution coefficient" to describe the distribution relationship between parallel transformers and substation-level loads, uses a nonlinear regression function to quantify the nonlinear mapping relationship between the "load distribution coefficient" and the substation-level load under different operating modes of the substation, and finally uses the substation load prediction result as input to realize the prediction of the loads of multiple parallel transformers according to the "load distribution coefficient" of the transformer.
相比简化为常数,使用非线性回归函数量化每台变压器的负载分配系数Ft(Ti,Cj)与变电站负荷Ls(t)之间的非线性映射关系能够准确合理地反映负载分配系数的真实动态变化特性。所述方法在提升变压器负荷预测结果准确性的前提下极大地减小了负荷预测建模的工作量,实现了精度和效率两项性能的双重提升。Compared with simplifying to a constant, the nonlinear mapping relationship between the load distribution coefficient Ft (T i , C j ) of each transformer and the substation load Ls (t) can be quantified by using a nonlinear regression function, which can accurately and reasonably reflect the real dynamic change characteristics of the load distribution coefficient. The method greatly reduces the workload of load prediction modeling while improving the accuracy of transformer load prediction results, and achieves a dual improvement in both accuracy and efficiency.
本发明通过挖掘变电站在不同运行方式下、变电站级负荷与多台并联变压器负荷之间的非线性映射关系,以变电站负荷预测结果为输入,实现多台并联变压器的负荷预测,在提升了负荷预测精度的前提下极大程度地减少了负荷预测的工作量。The present invention exploits the nonlinear mapping relationship between the substation-level load and the load of multiple parallel transformers under different operating modes of the substation, takes the substation load prediction result as input, realizes the load prediction of multiple parallel transformers, and greatly reduces the workload of load prediction while improving the load prediction accuracy.
只要变电站在某一种状态Cj下运行时收集的历史数据量不少于4个,包括4个时,即不少于4个点,就可以拟合非线性函数并进行预测。所以本发明提供的变电站多台并联变压器负荷预测方法还有一个明显的优点,就是可以在历史负荷数据稀缺的场景下使用。As long as the amount of historical data collected when the substation is running in a certain state Cj is not less than 4, including 4 times, that is, not less than 4 points, a nonlinear function can be fitted and predicted. Therefore, the load prediction method for multiple parallel transformers in a substation provided by the present invention has another obvious advantage, that is, it can be used in scenarios where historical load data is scarce.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是变电站运行方式为C1时,变压器T1的负载分配系数Ft(Ti,Cj)与变电站负荷Ls(t)的映射关系散点图;Fig. 1 is a scatter diagram of the mapping relationship between the load distribution coefficient Ft (T i , C j ) of transformer T 1 and the substation load L s (t) when the substation operation mode is C 1 ;
图2是变电站运行方式为C4时,变压器T1的负载分配系数Ft(Ti,Cj)与变电站负荷Ls(t)的映射关系散点图;FIG2 is a scatter diagram showing the mapping relationship between the load distribution coefficient F t (T i , C j ) of transformer T 1 and the substation load L s (t) when the substation operation mode is C 4 ;
图3是变压器T1的负荷预测结果图;FIG3 is a diagram showing the load prediction results of transformer T1 ;
图4是变电站多台并联变压器负荷预测方法的流程示意图。FIG4 is a flow chart of a method for predicting loads of multiple transformers in parallel in a substation.
具体实施方式DETAILED DESCRIPTION
下面结合附图对本申请作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本申请的保护范围。The present application is further described below in conjunction with the accompanying drawings. The following embodiments are only used to more clearly illustrate the technical solution of the present invention, and cannot be used to limit the protection scope of the present application.
本发明提供了一种变电站多台并联变压器负荷预测方法,所述变电站S包括N台并联运行的变压器,以Ti表示变电站内N台并联运行的变压器中的第i台变压器,即变压器编号,N,i是正整数,N≥2,1≤i≤N;以Cj表示变电站K种运行方式中的第j种运行方式,K,j是正整数,K≥2,1≤j≤K;t表示量测时刻,t是正整数,如果获取历史数据的时间跨度为n天,1≤t≤24n;Li(t)表示t时刻第i台变压器的负荷;Ls(t)表示t时刻变电站的负荷。The present invention provides a load prediction method for multiple parallel transformers in a substation. The substation S includes N transformers running in parallel, Ti represents the i-th transformer among the N transformers running in parallel in the substation, that is, the transformer number, N,i is a positive integer, N≥2, 1≤i≤N; Cj represents the j-th operating mode among K operating modes of the substation, K,j is a positive integer, K≥2, 1≤j≤K; t represents a measurement time, t is a positive integer, if the time span for obtaining historical data is n days, 1≤t≤24n; Li (t) represents the load of the i-th transformer at time t; Ls (t) represents the load of the substation at time t.
如图4所示,所述变电站多台并联变压器负荷预测方法,包括以下步骤:As shown in FIG4 , the load prediction method for multiple parallel transformers in a substation includes the following steps:
步骤1,获取设定时间段内所述变电站的历史数据,包括该设定时间段内变电站负荷数据,每台变压器的负荷数据,变电站运行方式数据。优选地但非限制性地,设定时间段的范围是1年-3年。所述获取变电站运行方式数据是指历史运行中变压器出现过的变压器停运和正常运行状态。Step 1, obtaining historical data of the substation within a set time period, including substation load data, load data of each transformer, and substation operation mode data within the set time period. Preferably, but not restrictively, the range of the set time period is 1 year to 3 years. The substation operation mode data obtained refers to the transformer shutdown and normal operation status that have occurred in the historical operation of the transformer.
步骤2,定义负载分配系数Ft(Ti,Cj)为在某一时刻t,变电站的运行方式为Cj时,第i台变压器负荷Li(t)与变电站负荷Ls(t)的比值。使用变电站的历史数据采用如下公式(1)计算变电站以运行方式Cj运行时变压器Ti在t时刻的负载分配系数Ft(Ti,Cj),Step 2: define the load sharing coefficient Ft ( Ti , Cj ) as the ratio of the load of the i-th transformer Li (t) to the load of the substation Ls (t) at a certain time t when the substation is in operation mode Cj. Use the historical data of the substation to calculate the load sharing coefficient Ft ( Ti , Cj ) of the transformer Ti at time t when the substation is in operation mode Cj using the following formula (1):
式中:Where:
Ft(Ti,Cj)表示负载分配系数;F t (T i , C j ) represents the load sharing factor;
Ti表示变电站内N台并联运行的变压器中的第i台变压器; Ti represents the i-th transformer among the N transformers running in parallel in the substation;
Cj表示变电站K种运行方式中的第j种运行方式;C j represents the jth operation mode among K operation modes of the substation;
t表示量测时刻;t represents the measurement time;
Li(t)表示t时刻第i台变压器的负荷; Li (t) represents the load of the i-th transformer at time t;
Ls(t)表示t时刻变电站的负荷。L s (t) represents the load of the substation at time t.
步骤3,以步骤2获得的负载分配系数Ft(Ti,Cj),结合变电站的负荷Ls(t),使用非线性回归函数G(Ls(t),Ti,Cj)以如下公式(2)量化负载分配系数Ft(Ti,Cj)与变电站的负荷Ls(t)的非线性映射关系,Step 3: Using the load distribution coefficient Ft ( Ti , Cj ) obtained in step 2 and the load Ls (t) of the substation, a nonlinear regression function G( Ls (t), Ti , Cj ) is used to quantify the nonlinear mapping relationship between the load distribution coefficient Ft ( Ti , Cj ) and the load Ls (t) of the substation using the following formula (2):
Ft(Ti,Cj)=G(Ls(t),Ti,Cj)(2)F t (T i , C j ) = G (L s (t), T i , C j ) (2)
式中:Where:
G(Ls(t),Ti,Cj)表示包含自变量变电站的负荷Ls(t)的非线性回归函数;G(L s (t), Ti , C j ) represents the nonlinear regression function of the load L s (t) of the substation including the independent variable;
Ti表示变电站内N台并联运行的变压器中的第i台变压器; Ti represents the i-th transformer among the N transformers running in parallel in the substation;
Cj表示变电站K种运行方式中的第j种运行方式。 Cj represents the jth operating mode among K operating modes of the substation.
在理想条件下,变压器负载分配系数视为常数。然而在真实场景中,不同并联变压器的多种运行参数会受到变电站负荷水平的影响产生程度不一的变化,并间接影响了每台并联变压器的负载分配系数。因而,相比简化为常数,使用非线性回归函数量化每台变压器的负载分配系数Ft(Ti,Cj)与变电站负荷Ls(t)之间的非线性映射关系能够准确合理地反映负载分配系数的真实动态变化特性。Under ideal conditions, the transformer load sharing coefficient is considered a constant. However, in real scenarios, the various operating parameters of different parallel transformers will be affected by the load level of the substation and will change to varying degrees, and will indirectly affect the load sharing coefficient of each parallel transformer. Therefore, compared with simplifying it to a constant, using a nonlinear regression function to quantify the nonlinear mapping relationship between the load sharing coefficient Ft (T i , C j ) of each transformer and the substation load Ls (t) can accurately and reasonably reflect the real dynamic change characteristics of the load sharing coefficient.
优选地,以变电站负荷Ls(t)为自变量,以负载分配系数Ft(Ti,Cj)为因变量,使用含有常数项的幂函数G(Ls(t),Ti,Cj)量化变电站负荷Ls(t)与负载分配系数Ft(Ti,Cj)之间的非线性映射关系,以公式(3)表示Preferably, the substation load L s (t) is taken as the independent variable, the load distribution coefficient F t (T i , C j ) is taken as the dependent variable, and a power function G (L s (t), T i , C j ) containing a constant term is used to quantify the nonlinear mapping relationship between the substation load L s (t) and the load distribution coefficient F t (T i , C j ), which is expressed as formula (3):
G(Ls(t),Ti,Cj)=aLs(t)b+c(3)G(L s (t), T i , C j )=aL s (t) b +c (3)
Ls(t)表示t时刻变电站的负荷;L s (t) represents the load of the substation at time t;
a,b,c表示G(Ls(t),Ti,Cj)的参数值。a, b, c represent parameter values of G(L s (t), Ti , C j ).
使用最小二乘法估计非线性回归函数G(Ls(t),Ti,Cj)的参数值a,b,c。可以看出,参数值a,b,c受变电站的负荷Ls(t),变压器编号Ti以及变电站运行方式Cj的影响发生变化。The least squares method is used to estimate the parameter values a, b, and c of the nonlinear regression function G( Ls (t), Ti , Cj ). It can be seen that the parameter values a, b, and c change under the influence of the substation load Ls (t), transformer number Ti, and substation operation mode Cj .
步骤4,以步骤3获得的非线性回归函数G(Ls(t),Ti,Cj),结合变电站的负荷Ls(t),使用如下公式(4)对t时刻第i台变压器的负荷Li(t)进行预测,Ls(t)可以通过变电站级别短期或超短期负荷预测技术实现的,在电力系统中也较为容易获得,因为变电站级的负荷是被电网要求预测的。Step 4: The nonlinear regression function G( Ls (t), Ti , Cj ) obtained in step 3 is combined with the load of the substation Ls (t) to predict the load Li (t) of the i-th transformer at time t using the following formula (4). Ls (t) can be achieved through substation-level short-term or ultra-short-term load forecasting technology, which is also relatively easy to obtain in the power system because the load at the substation level is required to be predicted by the power grid.
Li(t)=G(Ls(t),Ti,Cj)·Ls(t) (4)L i (t) = G (L s (t), T i , C j )·L s (t) (4)
式中:Where:
Li(t)表示t时刻第i台变压器的负荷; Li (t) represents the load of the i-th transformer at time t;
G(Ls(t),Ti,Cj)表示包含自变量变电站的负荷Ls(t)的非线性回归函数;G(L s (t), Ti , C j ) represents the nonlinear regression function of the load L s (t) of the substation including the independent variable;
Ls(t)表示t时刻变电站的负荷。L s (t) represents the load of the substation at time t.
当变电站运行方式Ci或变压器编号Ti发生变化时,只需要替换对应的非线性函数G(Ls(t),Ti,Cj),即可实现对变电站不同运行状态和不同并联变压器的负荷预测。When the substation operation mode Ci or transformer number Ti changes, it is only necessary to replace the corresponding nonlinear function G( Ls (t), Ti , Cj ) to realize the load prediction of substations with different operation states and different parallel transformers.
值得注意的是,只要变电站在某一种状态Cj下运行时收集的历史数据量不少于4个,包括4个时,即不少于4个点,就可以拟合非线性函数并进行预测。所以本发明提供的变电站多台并联变压器负荷预测方法还有一个明显的优点,就是可以在历中负荷数据稀缺的场景下使用。It is worth noting that as long as the amount of historical data collected when the substation is running in a certain state Cj is not less than 4, including 4 times, that is, not less than 4 points, a nonlinear function can be fitted and predicted. Therefore, the load prediction method for multiple parallel transformers in a substation provided by the present invention has another obvious advantage, that is, it can be used in scenarios where historical load data is scarce.
与现有技术文件1为代表的将传统的针对电力系统级别的负荷预测方法沿用至变压器级别的负荷相比,本发明通过挖掘变电站在不同运行方式下、变电站级负荷与多台并联变压器负荷之间的非线性映射关系,以变电站负荷预测结果为输入,实现多台并联变压器的负荷预测,在提升了负荷预测精度的前提下极大程度地减少了负荷预测的工作量。Compared with the conventional load forecasting method for the power system level, represented by prior art document 1, which extends the traditional load forecasting method for the transformer level, the present invention exploits the nonlinear mapping relationship between the substation-level load and the load of multiple parallel transformers under different operating modes of the substation, takes the substation load forecasting result as input, and realizes the load forecasting of multiple parallel transformers, thereby greatly reducing the workload of load forecasting while improving the load forecasting accuracy.
以下给出以上述变电站多台并联变压器负荷预测方法进行预测实施实例:The following is an example of implementing the load prediction method for multiple parallel transformers in the substation:
某变电站S包括4台并联运行的变压器T1,T2,T3,T4,在能源管理系统(EnergyManagement System,简称EMS)中存储了4台并联运行的变压器T1,T2,T3,T4在2015-2016年的有功功率历史在线监测数据,该变电站S在这两年内总共过4种运行方式,如表1所示:A substation S includes four transformers T 1 , T 2 , T 3 , and T 4 running in parallel. The energy management system (EMS) stores the historical online monitoring data of active power of the four transformers T 1 , T 2 , T 3 , and T 4 running in parallel from 2015 to 2016. The substation S has a total of four operating modes in these two years, as shown in Table 1:
在真实情况下,如下表2中,一般情况下变电站绝大部分时间都在C1时刻运行(即变电站中所有变压器均正常运行),而C2-C4一般不常见(变电站中某台变压器发生停运,而其余变压器正常运行),因此C1往往具有大量历史数据,而C2-C4的历史数据则较为稀缺。由于含有常数项的幂函数结构十分简单,即使用于拟合的数据量非常大,也不会对计算效率造成明显影响。In real situations, as shown in Table 2, substations generally operate at C1 most of the time (i.e., all transformers in the substation are operating normally), while C2-C4 are generally uncommon (a transformer in the substation is out of service, while the rest are operating normally). Therefore, C1 often has a large amount of historical data, while C2-C4 historical data is relatively scarce. Since the power function structure containing a constant term is very simple, even if the amount of data used for fitting is very large, it will not have a significant impact on the calculation efficiency.
表1变电站运行方式Table 1 Substation operation mode
以T1为例,当变电站在C1和C4方式下运行时,T1的负载分配系数Ft(T1,C1)和Ft(T1,C4)与变电站负荷Ls(t)映射关系的散点图分别如附图1和2所示。Taking T1 as an example, when the substation operates in C1 and C4 modes, the scatter diagrams of the mapping relationship between T1 's load distribution coefficient Ft ( T1 , C1 ) and Ft ( T1 , C4 ) and the substation load Ls (t) are shown in Figures 1 and 2 respectively.
根据如附图1和所示的历史负荷数据中负载分配系数与变电站负荷Ls(t)的散点图,使用如式(2)所示的非线性回归函数量化Ft(T1,C1)和Ft(T1,C4)与Ls(t)的非线性映射关系,拟合结果分别如附图1和2中黑色曲线所示。由图可知,带有常数项的幂函数能够准确地量化和拟合变压器负载分配系数与变电站负荷的非线性映射关系。在其余变电站运行状态下的并联变压器的非线性回归函数的参数拟合结果如表2所示。According to the scatter plot of the load distribution coefficient and the substation load Ls (t) in the historical load data as shown in Figures 1 and 2, the nonlinear regression function shown in formula (2) is used to quantify the nonlinear mapping relationship between Ft ( T1 , C1 ) and Ft ( T1 , C4 ) and Ls (t), and the fitting results are shown in the black curves in Figures 1 and 2, respectively. It can be seen from the figure that the power function with a constant term can accurately quantify and fit the nonlinear mapping relationship between the transformer load distribution coefficient and the substation load. The parameter fitting results of the nonlinear regression function of the parallel transformer under the operating state of the other substations are shown in Table 2.
表2非线性回归函数的参数拟合结果Table 2 Parameter fitting results of nonlinear regression function
收集了变电站S在某一时段内的242个历史负荷值,其中第[63,133]以及[160,234]的两个时段内,变电站的运行方式为C4(T3短暂退出运行),而其余时段为C1。以T1为例,使用式(4)进行负荷预测,并根据变电站运行方式替换对应的G(Ls(t),T1,C1)和G(Ls(t),T1,C4)作为非线性回归函数。预测结果如附图3所示,预测值的均方根误差如表3所示。相比于将负载分配系数视为常数值,使用非线性回归函数进行负荷预测能够显著提升变压器负荷预测的准确性。242 historical load values of substation S in a certain period of time were collected. In the two periods [63, 133] and [160, 234], the operation mode of the substation was C 4 (T 3 was temporarily out of operation), and the rest of the periods were C 1. Taking T 1 as an example, equation (4) is used for load forecasting, and the corresponding G(L s (t), T 1 , C 1 ) and G(L s (t), T 1 , C 4 ) are replaced as nonlinear regression functions according to the substation operation mode. The prediction results are shown in Figure 3, and the root mean square error of the prediction value is shown in Table 3. Compared with treating the load distribution coefficient as a constant value, using a nonlinear regression function for load forecasting can significantly improve the accuracy of transformer load forecasting.
表3不同负荷预测方法的预测结果误差Table 3 Prediction results errors of different load forecasting methods
由附图3预测结果可知,本发明的变压器负荷方法具有较高的预测精度。当变电站运行方式发生变化,或是需要预测其他并联变压器的负荷时,只需要替换对应的非线性回归函数,即可准确地预测出任意变压器在任意运行方式下的负荷。此外,相比为每台变压器建立单独的负荷预测模型,使用替换非线性回归函数的方式能够极大程度地降低负荷预测的工作量。It can be seen from the prediction results of Figure 3 that the transformer load method of the present invention has a high prediction accuracy. When the operation mode of the substation changes, or when it is necessary to predict the load of other parallel transformers, it is only necessary to replace the corresponding nonlinear regression function to accurately predict the load of any transformer under any operation mode. In addition, compared with establishing a separate load prediction model for each transformer, the use of replacing the nonlinear regression function can greatly reduce the workload of load prediction.
本发明的有益效果在于,与现有技术相比,本发明首先定义“负载分配系数”来描述并联变压器与变电站级负荷的分配关系,使用非线性回归函数量化变电站不同运行方式下“负载分配系数”和变电站级负荷的非线性映射关系,最后以变电站负荷预测结果为输入,根据变压器的“负载分配系数”实现多台并联变压器负荷的预测。The beneficial effect of the present invention lies in that, compared with the prior art, the present invention first defines a "load distribution coefficient" to describe the distribution relationship between parallel transformers and substation-level loads, uses a nonlinear regression function to quantify the nonlinear mapping relationship between the "load distribution coefficient" and the substation-level load under different operating modes of the substation, and finally uses the substation load prediction result as input to realize the prediction of the loads of multiple parallel transformers according to the "load distribution coefficient" of the transformer.
相比简化为常数,使用非线性回归函数量化每台变压器的负载分配系数Ft(Ti,Cj)与变电站负荷Ls(t)之间的非线性映射关系能够准确合理地反映负载分配系数的真实动态变化特性。所述方法在提升变压器负荷预测结果准确性的前提下极大地减小了负荷预测建模的工作量,实现了精度和效率两项性能的双重提升。Compared with simplifying to a constant, the nonlinear mapping relationship between the load distribution coefficient Ft (T i ,C j ) of each transformer and the substation load Ls (t) can be quantified by using a nonlinear regression function, which can accurately and reasonably reflect the real dynamic change characteristics of the load distribution coefficient. The method greatly reduces the workload of load prediction modeling while improving the accuracy of transformer load prediction results, and achieves a dual improvement in both accuracy and efficiency.
只要变电站在某一种状态Cj下运行时收集的历史数据量不少于4个,包括4个时,即不少于4个点,就可以拟合非线性函数并进行预测。所以本发明提供的变电站多台并联变压器负荷预测方法还有一个明显的优点,就是可以在历史负荷数据稀缺的场景下使用。As long as the amount of historical data collected when the substation is running in a certain state Cj is not less than 4, including 4 times, that is, not less than 4 points, a nonlinear function can be fitted and predicted. Therefore, the load prediction method for multiple parallel transformers in a substation provided by the present invention has another obvious advantage, that is, it can be used in scenarios where historical load data is scarce.
本发明申请人结合说明书附图对本发明的实施示例做了详细的说明与描述,但是本领域技术人员应该理解,以上实施示例仅为本发明的优选实施方案,详尽的说明只是为了帮助读者更好地理解本发明精神,而并非对本发明保护范围的限制,相反,任何基于本发明的发明精神所作的任何改进或修饰都应当落在本发明的保护范围之内。The applicant of the present invention has made a detailed explanation and description of the implementation examples of the present invention in conjunction with the drawings in the specification. However, those skilled in the art should understand that the above implementation examples are only preferred implementation schemes of the present invention, and the detailed description is only to help readers better understand the spirit of the present invention, and it is not a limitation on the protection scope of the present invention. On the contrary, any improvements or modifications based on the inventive spirit of the present invention should fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010549550.4A CN111708987B (en) | 2020-06-16 | 2020-06-16 | Method for predicting load of multiple parallel transformers of transformer substation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010549550.4A CN111708987B (en) | 2020-06-16 | 2020-06-16 | Method for predicting load of multiple parallel transformers of transformer substation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111708987A CN111708987A (en) | 2020-09-25 |
CN111708987B true CN111708987B (en) | 2023-04-07 |
Family
ID=72540693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010549550.4A Active CN111708987B (en) | 2020-06-16 | 2020-06-16 | Method for predicting load of multiple parallel transformers of transformer substation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111708987B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112529250B (en) * | 2020-11-16 | 2023-06-30 | 贵州电网有限责任公司 | Comprehensive monitoring method for load condition of transformer |
CN112583032A (en) * | 2020-11-18 | 2021-03-30 | 浙江华云信息科技有限公司 | Energy storage strategy configuration method based on load demand as guidance |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101159381A (en) * | 2007-11-16 | 2008-04-09 | 国电南瑞科技股份有限公司 | Transforming plant voltage reactive integrated control system acting equipment selection technology |
CN102244384A (en) * | 2010-05-13 | 2011-11-16 | 河南省电力公司济源供电公司 | Optimal operation method of main transformers based on economic equivalent analysis |
CN103678931A (en) * | 2013-12-23 | 2014-03-26 | 国家电网公司 | Transformer substation coverage area energy efficiency assessing method based on precise measurement load data |
CN105184388A (en) * | 2015-08-05 | 2015-12-23 | 三峡大学 | Non-linear regression method for urban power load short-period prediction |
CN105826921A (en) * | 2016-05-26 | 2016-08-03 | 广东电网有限责任公司佛山供电局 | Distribution network load prediction method and distribution network load prediction system based on transformer operation data |
JP2017221040A (en) * | 2016-06-08 | 2017-12-14 | 株式会社東芝 | Power distribution system monitoring device |
CN108805310A (en) * | 2017-04-26 | 2018-11-13 | 苏文电能科技有限公司 | A kind of intelligent online analysis system of transformer station high-voltage side bus |
CN109460917A (en) * | 2018-11-08 | 2019-03-12 | 中国南方电网有限责任公司 | A kind of bus load prediction technique based on distribution factor and support vector machines |
CN110009136A (en) * | 2019-03-12 | 2019-07-12 | 国网江西省电力有限公司电力科学研究院 | A kind of load forecasting method of distribution transformer and distribution line |
CN110114766A (en) * | 2016-12-23 | 2019-08-09 | 必凯达能源股份公司 | The method that the existing power grid of distribution electric energy is constructed |
CN110163429A (en) * | 2019-05-10 | 2019-08-23 | 湖南大学 | A kind of short-term load forecasting method based on similar day optimal screening |
CN209448470U (en) * | 2019-03-14 | 2019-09-27 | 国网福建省电力有限公司电力科学研究院 | The double battery group intelligent management systems of substation's list charger based on electronic switch |
CN111262243A (en) * | 2020-03-04 | 2020-06-09 | 国网浙江省电力有限公司 | An intelligent identification and optimization method for the operation mode of the power distribution system in the park |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9020874B2 (en) * | 2011-10-31 | 2015-04-28 | Siemens Aktiengesellschaft | Short-term load forecast using support vector regression and feature learning |
US11804717B2 (en) * | 2017-05-05 | 2023-10-31 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for coordinating distributed energy storage |
US10700523B2 (en) * | 2017-08-28 | 2020-06-30 | General Electric Company | System and method for distribution load forecasting in a power grid |
-
2020
- 2020-06-16 CN CN202010549550.4A patent/CN111708987B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101159381A (en) * | 2007-11-16 | 2008-04-09 | 国电南瑞科技股份有限公司 | Transforming plant voltage reactive integrated control system acting equipment selection technology |
CN102244384A (en) * | 2010-05-13 | 2011-11-16 | 河南省电力公司济源供电公司 | Optimal operation method of main transformers based on economic equivalent analysis |
CN103678931A (en) * | 2013-12-23 | 2014-03-26 | 国家电网公司 | Transformer substation coverage area energy efficiency assessing method based on precise measurement load data |
CN105184388A (en) * | 2015-08-05 | 2015-12-23 | 三峡大学 | Non-linear regression method for urban power load short-period prediction |
CN105826921A (en) * | 2016-05-26 | 2016-08-03 | 广东电网有限责任公司佛山供电局 | Distribution network load prediction method and distribution network load prediction system based on transformer operation data |
JP2017221040A (en) * | 2016-06-08 | 2017-12-14 | 株式会社東芝 | Power distribution system monitoring device |
CN110114766A (en) * | 2016-12-23 | 2019-08-09 | 必凯达能源股份公司 | The method that the existing power grid of distribution electric energy is constructed |
CN108805310A (en) * | 2017-04-26 | 2018-11-13 | 苏文电能科技有限公司 | A kind of intelligent online analysis system of transformer station high-voltage side bus |
CN109460917A (en) * | 2018-11-08 | 2019-03-12 | 中国南方电网有限责任公司 | A kind of bus load prediction technique based on distribution factor and support vector machines |
CN110009136A (en) * | 2019-03-12 | 2019-07-12 | 国网江西省电力有限公司电力科学研究院 | A kind of load forecasting method of distribution transformer and distribution line |
CN209448470U (en) * | 2019-03-14 | 2019-09-27 | 国网福建省电力有限公司电力科学研究院 | The double battery group intelligent management systems of substation's list charger based on electronic switch |
CN110163429A (en) * | 2019-05-10 | 2019-08-23 | 湖南大学 | A kind of short-term load forecasting method based on similar day optimal screening |
CN111262243A (en) * | 2020-03-04 | 2020-06-09 | 国网浙江省电力有限公司 | An intelligent identification and optimization method for the operation mode of the power distribution system in the park |
Non-Patent Citations (3)
Title |
---|
Dong HAN.The Forecasting of Electrical Consumption Proportion of Different Industries in Substation Based on SCADA and the Daily Load Curve of Load Control System.《2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring》.2012,第738-741页. * |
袁明军.配电系统可靠性评估方法与应用研究.《中国博士学位论文全文数据库-工程科技II辑》.2012,全文. * |
赵凯.配电系统多目标综合优化运行的研究.《中国优秀硕士学位论文全文数据库-工程科技II辑》.2002,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN111708987A (en) | 2020-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111552923A (en) | A load forecasting method and load forecasting system based on general distribution | |
CN110474339B (en) | Power grid reactive power control method based on deep power generation load prediction | |
CN102930482B (en) | A kind of county power distribution investment results appraisal procedure | |
CN104809660B (en) | The dynamic screening of low-voltage platform area line loss per unit analysis indexes and comprehensive weight method to set up | |
CN105429129B (en) | Intermittent energy power generation capacity confidence evaluation method considering network constraints | |
CN107908638A (en) | The operation of power networks efficiency rating method and system matched somebody with somebody are excavated based on big data | |
CN110334952A (en) | A kind of distribution network planning Post-assessment Method based on the improved grey model degree of association | |
CN110264112A (en) | Bidirectional weighted gray correlation-based power distribution network reliability influence factor analysis method | |
CN110490409B (en) | DNN-based low-voltage transformer area line loss rate benchmarking value setting method | |
CN102855393A (en) | Method and system for measuring and calculating hydroenergy utilization improvement rate of cascaded hydropower stations | |
CN111708987B (en) | Method for predicting load of multiple parallel transformers of transformer substation | |
CN114372360A (en) | Method, terminal and storage medium for power load forecasting | |
CN103326348A (en) | System for improving local electric network power supply ability analysis and providing entire process online monitoring | |
CN104574202A (en) | Analysis method of output characteristic of wind power plant | |
CN111724049B (en) | Research and judgment method for potential electric power energy efficiency service clients | |
CN109787295A (en) | A calculation method for ultra-short-term forecasting of wind power that takes into account the state of wind farms | |
CN117833319A (en) | Electric power peak regulation system based on Internet of things | |
CN113205252A (en) | Aggregated load scheduling method based on demand side load peak regulation potential parameter prediction | |
CN105184672A (en) | Evaluation method for open, fair and impartial dispatching power generation schedule | |
CN109193791B (en) | Wind power convergence tendency state-based quantification method based on improved shape value | |
CN119051158A (en) | Photovoltaic power station integrated scheduling method | |
Duan et al. | Heavy overload prediction method of distribution transformer based on gbdt | |
CN113095372A (en) | Low-voltage transformer area line loss reasonable interval calculation method based on robust neural network | |
CN118505039A (en) | Distribution line vulnerability assessment method considering wind-light-load time sequence fluctuation characteristics | |
CN103928923A (en) | A network steady-state power quality early warning method based on sensitivity analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |