Nothing Special   »   [go: up one dir, main page]

CN111613792A - 一种含镍氧化物电极材料及其制备、应用和存放方法 - Google Patents

一种含镍氧化物电极材料及其制备、应用和存放方法 Download PDF

Info

Publication number
CN111613792A
CN111613792A CN202010344875.9A CN202010344875A CN111613792A CN 111613792 A CN111613792 A CN 111613792A CN 202010344875 A CN202010344875 A CN 202010344875A CN 111613792 A CN111613792 A CN 111613792A
Authority
CN
China
Prior art keywords
electrode material
nickel
salt
sodium
containing oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010344875.9A
Other languages
English (en)
Inventor
张任远
黄云辉
张怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202010344875.9A priority Critical patent/CN111613792A/zh
Publication of CN111613792A publication Critical patent/CN111613792A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种含镍氧化物电极材料及其制备、应用和存放方法。电极材料的化学通式为:Na2/3LixNiyMn2/3O2,其中,0<x≤1/6,1/6≤y≤1/3。制备方法具体包括以下步骤:(a)称量钠盐、锂盐、镍盐和锰盐,并溶于水中,搅拌后得到混合液,后将混合液蒸干,得到前驱体;(b)煅烧前驱体,后冷却至室温,得到所述的电极材料。该电极材料可直接置于空气中进行存放,该电极材料可与集流体、导电添加剂和粘接剂制备得到正极,将该正极与负极及电解液制备得到钠离子电池。与现有技术相比,本发明的电极材料在空气下存放,并不会与空气中的水分子反应,可以极大降低材料的储存成本。

Description

一种含镍氧化物电极材料及其制备、应用和存放方法
技术领域
本发明涉及电池领域,具体涉及一种含镍氧化物电极材料及其制备、应用和存放方法。
背景技术
过渡金属层状氧化物的正极材料由于制备成本低和高理论容量在钠离子电池中得到了广泛的应用。然而,过渡金属层状化合物正极材料对空气中的水分子十分敏感,若保存在空气中则会变质,影响电化学性能。将材料保存在干燥房里虽然可以避免材料与水接触,但这样会使得材料的储存成本成倍增加且无法进行长距离运输。因此,制备出对空气稳定型正极材料,对于降低材料的储存成本有着重要的意义。
发明内容
本发明的目的就是为了解决上述问题而提供一种含镍氧化物电极材料及其制备、应用和存放方法,电极材料在空气下存放,并不会与空气中的水分子反应,可以极大降低材料的储存成本。
本发明的目的通过以下技术方案实现:
一种含镍氧化物电极材料,所述电极材料的化学通式为:Na2/3LixNiyMn2/3O2,其中,0<x≤1/6,1/6≤y≤1/3,
当x=1/12时,y=7/24;
当x=1/9时,y=5/18;
当x=1/6时,y=1/4。
一种用于的电极材料的制备方法,所述制备方法具体包括以下步骤:
(a)称量钠盐、锂盐、镍盐和锰盐,并溶于水中,搅拌后得到混合液,后将混合液蒸干,得到前驱体;
(b)煅烧步骤(a)得到的前驱体,后冷却至室温,得到所述的电极材料。
优选地,步骤(a)中,钠盐为醋酸钠,锂盐为醋酸铁,镍盐为醋酸镍,锰盐为醋酸锰。
优选地,步骤(a)中,搅拌的转速为90-600r/min,搅拌的时间为12-24h,蒸干的温度为80-150℃,蒸干的时间为12-24h。
优选地,步骤(a)中,钠盐、锂盐、镍盐和锰盐的摩尔比为12:(0-3):(3-6):12。
优选地,步骤(b)中,煅烧的温度为700-1000℃,煅烧的时间为12-48h。
一种包含所述的含镍氧化物电极材料的正极,所述正极还包括集流体、导电添加剂和粘接剂,将电极材料、导电添加剂与粘接剂混合成浆体,再将浆体涂覆在集流体上。集流体为铝箔,导电添加剂为科琴黑,粘接剂为PVDF。
一种包含所述的正极的钠离子电池,所述钠离子电池还包括负极以及设于正极和负极之间的电解液。所述电池是全固态电池、非水溶液电池或水溶液电池。负极为锂片,电解液包含体积分数为95%PC、体积分数为5%FEC及浓度为1M的高氯酸钠,制备得到的钠离子电池可应用于太阳能、风力发电大规模储能,以及电网调峰、分布电站、后备电源、通讯基站领域。
上述的含镍氧化物电极材料可置于空气中存放,且长时间存放之后材料的晶体结构和电化学性能没有发生任何改变。本发明的Na2/3LixNiyMn2/3O2电极材料中的过渡金属层是由Li/Mn及Ni/Mn小单元构成,DFT计算表明,这两种单元对水分子的吸附能极高(吸附能越低表示该单元越容易吸附水分子,越高越不容易吸附水分子),因此水分子难以附着在材料表面,进而无法嵌入材料层间。
与现有技术相比,本发明具有以下有益效果:
本发明制备的电极材料在水中浸泡24小时后,该电极材料的晶体结构和电化学性能没有发生任何改变,证明了该电极材料可直接在空气中存放,并不会与空气中的水分子反应,对水分子不敏感,解决了大多数正极材料在空气中存放会与水分子反应的问题,且存放的时候不需特意存放在干燥房或者惰性气体箱内,可以极大降低材料的储存和运输成本。
附图说明
图1为实施例1制得的NLNM样品与W-NLNM样品的XRD对比图;
图2为实施例1制得的NLNM样品与W-NLNM样品的充放电对比图;
图3为实施例1制得的NLNM样品与W-NLNM样品的倍率对比图;
图4为实施例1制得的NLNM样品与W-NLNM样品的扫描电镜对比图(b为NLNM样品,c为W-NLNM样品)。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种含镍氧化物电极材料,为Na2/3Li1/9Ni5/18Mn2/3O2,采用以下制备步骤制备得到:
1)将醋酸钠、醋酸锂、醋酸镍、醋酸锰按12:2:5:12的摩尔比溶于去离子水中,搅拌得到绿色透明液体;
2)将步骤1)中的透明液体以90-600r/min的搅拌速率搅拌12-24h,搅拌时并加热在120℃下蒸干12-24h,得到前驱体,为粉末;
3)将步骤2)中蒸干的前驱体粉末收集起来,放置在管式炉中,900℃空气气氛下煅烧12小时后,自然冷却,得到电极材料,结构式为Na2/3Li1/9Ni5/18Mn2/3O2,记为NLNM样品。
将所得到的NLNM样品置于水中浸泡24h后,取出后在60-120℃的温度下烘干,得到的样品记为W-NLNM。
如图1所示,将NLNM样品与W-NLNM样品进行XRD对比(步长0.02°,测试范围10-80°),发现两者的XRD曲线没有任何变化,可以证明NLNM在水中浸泡24h后,没有变质。
如图2所示,将NLNM样品与W-NLNM样品进行充放电对比(0.5C电流密度下进行充放电),可看到,两者的电化学曲线几乎没有变化,证明了NLNM在水中浸泡24h后,没有发生电化学行为的改变。
如图3所示,将NLNM样品与W-NLNM样品进行倍率性能对比(分别在0.5C,1C,2C,5C,10C和20C电流密度下各充放电10圈),可看到,两者在不同电流密度下的容量几乎没有太大变化,证明了NLNM在水中浸泡24h后,没有发生容量衰减。
如图4所示,将NLNM样品与W-NLNM样品进行扫描(冷场发射扫描电镜)测试对比,可看到,两者的形貌几乎没有变化,证明NLNM在水中浸泡24小时后,没有发生形貌改变。
综上所述,NLNM材料在水中浸泡24h后,依然能够保持原有的晶格结构、电化学性能及形貌,因此NLNM是一种耐水性极好的正极材料。
实施例2
一种正极,包括集流体、导电添加剂、粘接剂和实施例1制备得到的电极材料,将电极材料、导电添加剂与粘接剂混合成浆体,再将浆体涂覆在集流体上,其中,集流体为铝箔,导电添加剂为科琴黑,粘接剂为PVDF。
实施例3
一种钠离子电池,包括实施例2制得的正极、负极以及设于正极和负极之间的电解液,负极为锂片,电解液包含体积分数为95%PC、体积分数为5%FEC及浓度为1M的高氯酸钠,该钠离子电池具有优异的电学性能。
实施例4
一种含镍氧化物电极材料,为Na2/3Li1/12Ni7/24Mn2/3O2,采用以下制备步骤制备得到:
1)将醋酸钠、醋酸锂、醋酸镍、醋酸锰按12:1.5:5.25:12的摩尔比溶于去离子水中,搅拌得到绿色透明液体;
2)将步骤1)中的透明液体以600r/min的搅拌速率搅拌12h,搅拌时并加热在150℃下蒸干24h,得到前驱体,为粉末;
3)将步骤2)中蒸干的前驱体粉末收集起来,放置在管式炉中,900℃空气气氛下煅烧12h后,自然冷却,得到电极材料,结构式为Na2/3Li1/12Ni7/24Mn2/3O2
该电极材料置于水中浸泡24h后,依然能够保持原有的晶格结构、电化学性能及形貌。
实施例5
一种含镍氧化物电极材料,为Na2/3Li1/6Ni1/4Mn2/3O2,采用以下制备步骤制备得到:
1)将醋酸钠、醋酸锂、醋酸镍、醋酸锰按12:3:4.5:12的摩尔比溶于去离子水中,搅拌得到绿色透明液体;
2)将步骤1)中的透明液体以300r/min的搅拌速率搅拌24h,搅拌时并加热在150℃下蒸干12h,得到前驱体,为粉末;
3)将步骤2)中蒸干的前驱体粉末收集起来,放置在管式炉中,900℃空气气氛下煅烧12h后,自然冷却,得到电极材料,结构式为Na2/3Li1/6Ni1/4Mn2/3O2
该电极材料置于水中浸泡24h后,依然能够保持原有的晶格结构、电化学性能及形貌。
实施例6
一种含镍氧化物电极材料,为Na2/3Li1/12Ni7/24Mn2/3O2,采用的制备方法除了步骤2)中搅拌的速率为450r/min,搅拌的时间为18h,蒸干的温度为80℃,蒸干的时间为24h,步骤3)中煅烧的温度为700℃,煅烧的时间为48h外,其余均与实施例4相同,得到的电极材料置于水中浸泡24h后,依然能够保持原有的晶格结构、电化学性能及形貌。
实施例7
一种含镍氧化物电极材料,为Na2/3Li1/6Ni1/4Mn2/3O2,采用的制备方法除了步骤2)中搅拌的速率为200r/min,搅拌的时间为18h,蒸干的温度为100℃,蒸干的时间为16h,步骤3)中煅烧的温度为1000℃,煅烧的时间为14h外,其余均与实施例5相同,得到的电极材料置于水中浸泡24h后,依然能够保持原有的晶格结构、电化学性能及形貌。
综上,化学通式为Na2/3LixNiyMn2/3O2的含镍氧化物电极材料耐水性能好,可直接在空气中存放,且晶体结构和电化学性能不会发生任何改变。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种含镍氧化物电极材料,其特征在于,所述电极材料的化学通式为:Na2/ 3LixNiyMn2/3O2,其中,0<x≤1/6,1/6≤y≤1/3。
2.根据权利要求1所述的一种钠离子电池电极材料,其特征在于,当x=1/12时,y=7/24;
当x=1/9时,y=5/18;
当x=1/6时,y=1/4。
3.一种如权利要求1或2所述的含镍氧化物电极材料的制备方法,其特征在于,所述制备方法具体包括以下步骤:
(a)称量钠盐、锂盐、镍盐和锰盐,并溶于水中,搅拌后得到混合液,后将混合液蒸干,得到前驱体;
(b)煅烧步骤(a)得到的前驱体,后冷却至室温,得到所述的电极材料。
4.根据权利要求3所述的一种含镍氧化物电极材料的制备方法,其特征在于,步骤(a)中,钠盐为醋酸钠,锂盐为醋酸铁,镍盐为醋酸镍,锰盐为醋酸锰。
5.根据权利要求3所述的一种含镍氧化物电极材料的制备方法,其特征在于,步骤(a)中,搅拌的转速为90-600r/min,搅拌的时间为12-24h,蒸干的温度为80-150℃,蒸干的时间为12-24h。
6.根据权利要求3所述的一种含镍氧化物电极材料的制备方法,其特征在于,步骤(a)中,钠盐、锂盐、镍盐和锰盐的摩尔比为12:(0-3):(3-6):12。
7.根据权利要求3所述的一种含镍氧化物电极材料的制备方法,其特征在于,步骤(b)中,煅烧的温度为700-1000℃,煅烧的时间为12-48h。
8.一种包含如权利要求1或2所述的含镍氧化物电极材料的正极。
9.一种包含如权利要求8所述的正极的钠离子电池,其特征在于,所述钠离子电池还包括负极以及设于正极和负极之间的电解液。
10.一种如权利要求1或2所述的含镍氧化物电极材料的存放方法,其特征在于,所述电极材料置于空气中存放。
CN202010344875.9A 2020-04-27 2020-04-27 一种含镍氧化物电极材料及其制备、应用和存放方法 Pending CN111613792A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010344875.9A CN111613792A (zh) 2020-04-27 2020-04-27 一种含镍氧化物电极材料及其制备、应用和存放方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010344875.9A CN111613792A (zh) 2020-04-27 2020-04-27 一种含镍氧化物电极材料及其制备、应用和存放方法

Publications (1)

Publication Number Publication Date
CN111613792A true CN111613792A (zh) 2020-09-01

Family

ID=72201214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010344875.9A Pending CN111613792A (zh) 2020-04-27 2020-04-27 一种含镍氧化物电极材料及其制备、应用和存放方法

Country Status (1)

Country Link
CN (1) CN111613792A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156444A (zh) * 2021-10-15 2022-03-08 西安交通大学 一种共生层状结构的钠离子电池正极材料及其制备方法和应用
CN115000399A (zh) * 2022-05-25 2022-09-02 西安交通大学 一种类球状钠离子电池正极材料及其制备方法和钠离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795514A (zh) * 2003-04-03 2006-06-28 威伦斯技术公司 包括混合活性颗粒的电极
US20070298512A1 (en) * 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US20120183837A1 (en) * 2011-01-14 2012-07-19 Uchicago Argonne, Llc Electrode materials for sodium batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795514A (zh) * 2003-04-03 2006-06-28 威伦斯技术公司 包括混合活性颗粒的电极
US20070298512A1 (en) * 2005-04-13 2007-12-27 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US20120183837A1 (en) * 2011-01-14 2012-07-19 Uchicago Argonne, Llc Electrode materials for sodium batteries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YI ZHANG等: "Water-Stable Cathode for High Rate Na-Ion Batteries", 《ACS APPLIED MATERIALS & INTERFACES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156444A (zh) * 2021-10-15 2022-03-08 西安交通大学 一种共生层状结构的钠离子电池正极材料及其制备方法和应用
CN115000399A (zh) * 2022-05-25 2022-09-02 西安交通大学 一种类球状钠离子电池正极材料及其制备方法和钠离子电池

Similar Documents

Publication Publication Date Title
CN109167035B (zh) 碳包覆的硫化亚铁负极材料、制备方法及其制备的钠离子电池
US20220263121A1 (en) Al-doped sheet llzo composite solid-state electrolyte and preparation method and application thereof
CN112151764A (zh) 一种电极极片及其制备方法和应用
CN112599749B (zh) 一种具有高导电性的高熵氧化物锂离子电池负极材料及制备方法
CN110931797A (zh) 一种具有复合包覆层的高镍正极材料及其制备方法
CN108281633B (zh) 锂硫电池正极材料、其制备方法和锂硫电池
CN111115713B (zh) 一种LaMnO3包覆富锂锰基正极材料及其制备方法
CN113314713A (zh) 一种锂钇共掺杂高性能钠离子电池正极材料及其制备方法
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
CN109192956B (zh) 磷酸锆锂快离子导体包覆镍钴铝酸锂正极材料及制备方法
CN107946564B (zh) 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用
CN110844899A (zh) 一种碳纳米管复合硫化钴纳米材料及其制备方法和应用
CN115312698A (zh) 一种钠离子电池层状氧化物正极材料、制备方法及应用
CN105932259A (zh) 一种镍钴锰酸锂正极材料的表面处理方法
CN111613792A (zh) 一种含镍氧化物电极材料及其制备、应用和存放方法
CN107689453B (zh) 双层复合结构陶瓷、该陶瓷的制备方法、自吸附式锂空气电池及该电池的制备方法
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
CN102723488A (zh) 一种高倍率性能钒掺杂硅酸铁锂正极材料及其制备方法
CN113871611A (zh) 一种高熵氧化物材料复合三元材料及其制备方法
CN113644274A (zh) 一种o2型锂离子电池正极材料及其制备方法与应用
CN113078315A (zh) 双导电层包覆的富锂锰基正极材料及其制备方法和应用
CN108461741B (zh) 一种LiAlO2/C修饰三元复合材料及其制备方法和应用
CN110931750A (zh) 一种铜掺杂氧化钴多孔纳米片复合材料及储能应用
CN114275829B (zh) 一种表面微孔化的空心球状高熵氧化物及其制备方法和应用
CN117219772A (zh) 一种低镍壳层结构的钠离子电池正极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200901