CN110270365A - 一种氮化碳/氯氧化镧复合材料的制备与应用 - Google Patents
一种氮化碳/氯氧化镧复合材料的制备与应用 Download PDFInfo
- Publication number
- CN110270365A CN110270365A CN201910668532.5A CN201910668532A CN110270365A CN 110270365 A CN110270365 A CN 110270365A CN 201910668532 A CN201910668532 A CN 201910668532A CN 110270365 A CN110270365 A CN 110270365A
- Authority
- CN
- China
- Prior art keywords
- laocl
- composite material
- preparation
- fused salt
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 229910052746 lanthanum Inorganic materials 0.000 title description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 title description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000001699 photocatalysis Effects 0.000 claims abstract description 18
- 238000007146 photocatalysis Methods 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 12
- 230000008018 melting Effects 0.000 claims abstract description 12
- 150000003839 salts Chemical class 0.000 claims abstract description 11
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 6
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910002420 LaOCl Inorganic materials 0.000 claims abstract 10
- 238000001354 calcination Methods 0.000 claims abstract 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 20
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 235000011164 potassium chloride Nutrition 0.000 claims description 10
- 239000001103 potassium chloride Substances 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims description 2
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 abstract description 11
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 238000009776 industrial production Methods 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 14
- 229910052593 corundum Inorganic materials 0.000 description 7
- 239000010431 corundum Substances 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000006555 catalytic reaction Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 150000007974 melamines Chemical class 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 238000002256 photodeposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明具体涉及一种C3N4/LaOCl复合材料的制备方法和应用,其属于光催化领域。本发明将低熔点的水溶性氯化物熔盐和适量三聚氰胺及氧化镧充分混合,在熔盐熔融温度下一步煅烧合成所述C3N4/LaOCl复合材料。本发明采用一步熔盐法制备C3N4/LaOCl复合材料,无需引入模板,简单易行,熔盐可水洗回收,成本经济,环境友好,易于大规模工业化生产。所得C3N4/LaOCl复合材料呈淡黄色、二维片状形貌,能够在可见光照下光催化水全分解生成H2和O2,生成的氢气和氧气物质的量之比接近于水全分解的化学计量比2:1,具有良好应用前景。
Description
技术领域
本发明涉及一种可见光响应的高效稳定、低成本光催化材料及其制备方法和应用,具体涉及一种C3N4/LaOCl复合材料及其制备方法和应用。
背景技术
近年来,氮化碳(C3N4)作为新兴的共轭聚合物光催化材料备受关注,在水分解、光催化CO2还原、光催化有机选择性合成和有机污染物降解等方面有大量研究报道,但C3N4光生电子空穴易复合,光催化效率低,光催化分解水制氢的研究多是在三乙醇胺等电子授体存在下的产氢半反应,不能实现水的完全分解,影响了其实际应用。研究表明,通过异质结将两种能带位置匹配的催化材料结合起来构筑的复合材料,通过结间的电荷传递,可加速光生载流子分离与迁移,提高光量子效率,进而实现较高效率的光催化水全分解,提高光催化效率。氯氧化镧(LaOCl)是一种重要的发光基质,具有较高的光吸收和传能效率,在彩色显示、催化、光电转换、气敏等领域均有广泛的应用,作为光催化材料,较宽的带隙影响了其可能的实际应用。将能带位置匹配的C3N4和LaOCl进行复合构建复合光催化剂,利用异质结间的电子空穴传递,实现光生载流子的有效分离,将有望得到一种新型高效的全解水光催化剂。因此,开发简单易行,成本经济,环境友好的C3N4/LaOCl复合光催化材料的制备方法将具有重要意义。
发明内容
本发明的目的在于提供一种C3N4/LaOCl复合材料的制备方法及其应用,该制备方法简单易行,成本经济,环境友好,易于大规模推广。本发明所制备的C3N4/LaOCl复合材料具有催化活性高和稳定性好的优点,可应用于光催化水全分解制氢。
为实现上述目的,本发明采用如下技术方案:
一种C3N4/LaOCl复合材料的制备方法,其是以低熔点水溶性氯化物熔盐、三聚氰胺和氧化镧为原料,经熔盐法一步合成。其具体是将低熔点水溶性氯化物熔盐、三聚氰胺和氧化镧置于研钵内充分混合并研磨均匀后,放入带盖的刚玉坩埚中,将坩埚置于马弗炉内,经400~600 ℃处理1~5 h后,自然降温至室温,将所得混合物经去离子水洗涤至离子浓度<10ppm,再于40~120 ℃干燥3~12 h,得到淡黄色复合材料C3N4/LaOCl粉末。
其中,所用低熔点水溶性氯化物熔盐、三聚氰胺(C3N6H6)和氧化镧(La2O3)的质量比为(0.1~10):(0.1~10):(0.1~10)。
所述低熔点水溶性氯化物熔盐为氯化锂和氯化钾的混合物,两者的质量比为KCl:LiCl=(0.1~10):1,其熔点范围为353~771℃。
所制得的C3N4/LaOCl复合材料可应用于光催化,尤其是光催化水全分解制氢中。
本发明的显著优点在于:
(1)本发明首次制备了复合材料C3N4/LaOCl。
(2)本发明采用一步熔盐法,所制备的复合物中两组分之间具有密切的接触,有利于光生电子和空穴的传输与分离,且制备工艺简单,成本低。
(3)本发明产物为水全分解光催化剂,其在可见光照射下在纯水中(无任何牺牲试剂)能够分解水产生氢气和氧气,且所生成的氢气和氧气的物质的量之比接近水全分解的化学计量比2:1。
附图说明
图1为实施例1所制备C3N4/LaOCl复合材料的X射线粉末衍射图;
图2为实施例1所制备C3N4/LaOCl复合材料的扫描电镜图;
图3为实施例1所制备C3N4/LaOCl复合材料的紫外-可见漫反射光谱图;
图4为实施例1所制备C3N4/LaOCl作为催化剂可见光催化水全分解制氢的活性图;
图5为实施例1所制备C3N4/LaOCl作为催化剂可见光催化水全分解制氢的活性稳定性图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1 复合材料C3N4/LaOCl的制备
称取1.5 g氯化锂、1.5 g氯化钾、1.0 g三聚氰胺和0.5 g氧化镧置于研钵中充分研磨混合均匀后,放入带盖子的刚玉坩埚中,置于马弗炉内经550 ℃恒温处理3 h,自然降温至室温后,所得混合物经去离子水洗涤至离子浓度<10 ppm,60 ℃干燥6 h,得到复合材料C3N4/LaOCl。
图1为本实施例所制备的C3N4/LaOCl样品的X射线粉末衍射图。从图中可以发现样品呈现四方LaOCl(JCPDS:08~0477)的特征衍射峰,没有发现C3N4的特征衍射峰。
图2为本实施例所制备的C3N4/LaOCl样品的扫描电镜图。由图可见,C3N4/LaOCl样品呈长约5~20 μm,宽约1~10 μm的二维片状形貌。
图3为本实施例所制备的C3N4/LaOCl样品的紫外-可见吸收光谱图。由图可以发现,复合材料C3N4/LaOCl相较于单一的LaOCl具有明显增强的光吸收,其吸收带边在435 nm左右。
实施例2 复合材料C3N4/LaOCl的制备
称取1.0 g氯化锂、1.0 g氯化钾、1.0 g三聚氰胺和1.0 g氧化镧置于研钵中充分研磨混合均匀后,放入带盖的刚玉坩埚中,置于马弗炉内经500 ℃恒温处理2 h,自然降温至室温后,用去离子水洗涤至离子浓度<10 ppm,于60 ℃干燥6 h,得到复合材料C3N4/LaOCl。
实施例3 样品C3N4的制备
称取1.5 g氯化锂、1.5 g氯化钾和1.0 g三聚氰胺置于研钵中充分研磨混合均匀后,放入带盖的刚玉坩埚中,置于马弗炉内经500 ℃恒温处理2 h,自然降温至室温后,用去离子水洗涤至离子浓度<10 ppm,于60 ℃干燥6 h,得到C3N4。
实施例4 样品LaOCl的制备
称取1.5 g氯化锂、1.5 g氯化钾和0.5 g氧化镧置于研钵中充分研磨混合均匀后,放入带盖子的刚玉坩埚中,置于马弗炉内经550 ℃恒温处理3 h,自然降温至室温后,所得混合物经去离子水洗涤至离子浓度<10 ppm,60 ℃干燥6 h,得到LaOCl。
实施例5
称取1.5 g氯化锂(或氯化钾)、1.0 g三聚氰胺和0.5 g氧化镧置于研钵中充分研磨混合均匀后,放入带盖子的刚玉坩埚中,置于马弗炉内经550 ℃恒温处理3 h,自然降温至室温后,发现无法得到复合材料C3N4/LaOCl。
实施例6
称取1.5 g氯化锂、1.5 g氯化钾、1.0 g三聚氰胺和0.5 g氧化镧置于研钵中充分研磨混合均匀后,放入带盖子的刚玉坩埚中,置于马弗炉内经620~750 ℃恒温处理3 h,自然降温至室温后,发现无法得到复合材料C3N4/LaOCl。
实施例7 复合材料C3N4/LaOCl光催化水全分解制氢性能
将实施例1制得的C3N4/LaOCl样品用于光催化水全分解制氢,同时以实施例3制得的C3N4和实施例4制得的LaOCl作为对照样。在光催化全分解水制氢反应之前,采用光沉积法在样品表面沉积其重量0.5 wt.% Pt和0.1 wt.% Co作为助催化剂,具体步骤为:取100 mg样品分散于100 ml去离子水中,滴加1 mL甲醇、一定量的H2PtCl6(基于Pt的含量)和CoCl2(基于Co的含量),抽真空后光照1 h,经去离子水洗涤,干燥后得到Pt和Co修饰的样品。光催化水全分解的反应是在密封的循环体系中进行,反应器体积约为250 mL,以装配400 nm滤光片的300 W氙灯作为光源。称取50 mg Pt和Co修饰的样品置于反应器中,然后加入100 mL超纯水,磁力搅拌均匀,打开机械泵将反应体系抽至0.1MPa真空,打开光源和气体循环泵。每隔一段时间通过四通阀将气相产物导入色谱在线检测分析,结果如图4。由图中可见,C3N4/LaOCl样品光照4 h产生32.1 μmol H2与15.2 μmol O2,接近水全分解的化学计量比2:1。相同条件下LaOCl则未检测到水分解产物,C3N4只检测到产生少量H2。
实施例8 复合材料C3N4/LaOCl光催化水全分解制氢活性稳定性
为了考察复合材料C3N4/LaOCl光催化分解水产氢的活性稳定性,按实施例7的光催化产氢活性实验进行循环测试,每个循环测试周期为4 h,即光催化产氢反应4 h后关灯、关气体循环泵,打开机械泵将密闭反应体系抽真空30 min,再打开光源和气体循环泵开始下个活性测试周期,如此反复循环5次,结果如图5。由图中可见,每个活性测试周期随着光照时间的延长,检测到的氢气和氧气的产量稳定增加,不同测试周期间样品的产氢活性没有明显变化,表明C3N4/LaOCl样品具备良好的活性稳定性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (5)
1.一种C3N4/LaOCl复合材料的制备方法,其特征在于:以低熔点水溶性氯化物熔盐、三聚氰胺和氧化镧为原料,在熔盐熔融温度下一步煅烧合成复合材料C3N4/LaOCl。
2.根据权利要求1所述的C3N4/LaOCl复合材料的制备方法,其特征在于:所用低熔点水溶性氯化物熔盐、三聚氰胺和氧化镧的质量比为(0.1~10):(0.1~10):(0.1~10)。
3.根据权利要求1或2所述的C3N4/LaOCl复合材料的制备方法,其特征在于:所述低熔点水溶性氯化物熔盐为氯化锂和氯化钾的混合物,两者的质量比为KCl:LiCl=(0.1~10):1,其熔点范围为353~771℃。
4.根据权利要求1所述的C3N4/LaOCl复合材料的制备方法,其特征在于:所述煅烧的温度为400~600 ℃,处理时间为1~5 h。
5.一种如权利要求1~4所述方法制得的C3N4/LaOCl复合材料在光催化中的应用,其特征在于:用于光催化水全分解制氢。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910668532.5A CN110270365B (zh) | 2019-07-23 | 2019-07-23 | 一种氮化碳/氯氧化镧复合材料的制备与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910668532.5A CN110270365B (zh) | 2019-07-23 | 2019-07-23 | 一种氮化碳/氯氧化镧复合材料的制备与应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110270365A true CN110270365A (zh) | 2019-09-24 |
CN110270365B CN110270365B (zh) | 2021-04-27 |
Family
ID=67965431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910668532.5A Active CN110270365B (zh) | 2019-07-23 | 2019-07-23 | 一种氮化碳/氯氧化镧复合材料的制备与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110270365B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112570000A (zh) * | 2021-01-27 | 2021-03-30 | 河南工程学院 | 一种MoS2/ND/g-C3N4复合材料及制备方法 |
CN113731394A (zh) * | 2021-09-30 | 2021-12-03 | 贵州大学 | 一种高光催化性能二氧化铈-氮化碳复合材料的制备方法 |
CN113813980A (zh) * | 2021-09-30 | 2021-12-21 | 贵州大学 | 一种高效双z型异质结材料及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102992282A (zh) * | 2012-11-08 | 2013-03-27 | 南京大学 | 熔盐法制备介孔c3n4光催化材料及其在光催化领域的应用 |
CN104707643A (zh) * | 2015-02-15 | 2015-06-17 | 南京工程学院 | 一种g-C3N4/La2O3复合材料及其制备方法和应用 |
CN106732711A (zh) * | 2016-11-23 | 2017-05-31 | 贵州医科大学 | 一种氮化碳和铁酸镧复合光催化材料及其制备方法 |
CN108043429A (zh) * | 2018-01-15 | 2018-05-18 | 陕西科技大学 | 一种复合型纳米Tb/BiOCl材料的制备方法 |
-
2019
- 2019-07-23 CN CN201910668532.5A patent/CN110270365B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102992282A (zh) * | 2012-11-08 | 2013-03-27 | 南京大学 | 熔盐法制备介孔c3n4光催化材料及其在光催化领域的应用 |
CN104707643A (zh) * | 2015-02-15 | 2015-06-17 | 南京工程学院 | 一种g-C3N4/La2O3复合材料及其制备方法和应用 |
CN106732711A (zh) * | 2016-11-23 | 2017-05-31 | 贵州医科大学 | 一种氮化碳和铁酸镧复合光催化材料及其制备方法 |
CN108043429A (zh) * | 2018-01-15 | 2018-05-18 | 陕西科技大学 | 一种复合型纳米Tb/BiOCl材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
GUIGANG ZHANG等: "Ionothermal Synthesis of Triazine–Heptazine-Based Copolymers with Apparent Quantum Yields of 60% at 420 nm for Solar Hydrogen Production from "Sea Water"", 《PHOTOCATALYTIC MATERIALS》 * |
ZHONG HUANG等: "Growth of well-developed LaOCl microplates by chloride salt-assisted method", 《CRYSTENGCOMM》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112570000A (zh) * | 2021-01-27 | 2021-03-30 | 河南工程学院 | 一种MoS2/ND/g-C3N4复合材料及制备方法 |
CN113731394A (zh) * | 2021-09-30 | 2021-12-03 | 贵州大学 | 一种高光催化性能二氧化铈-氮化碳复合材料的制备方法 |
CN113813980A (zh) * | 2021-09-30 | 2021-12-21 | 贵州大学 | 一种高效双z型异质结材料及其制备方法和应用 |
CN113813980B (zh) * | 2021-09-30 | 2023-07-07 | 贵州大学 | 一种双z型异质结材料及其制备方法和应用 |
CN113731394B (zh) * | 2021-09-30 | 2023-09-26 | 贵州大学 | 一种高光催化性能二氧化铈-氮化碳复合材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110270365B (zh) | 2021-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation | |
Huang et al. | Artificial nitrogen fixation over bismuth-based photocatalysts: fundamentals and future perspectives | |
Li et al. | Achieving ultra-trace analysis and multi-light driven photodegradation toward phenolic derivatives via a bifunctional catalyst derived from a Cu (i)-complex-modified polyoxometalate | |
Xue et al. | Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi 2 MoO 6 and oxygen-vacancy-rich p-type BiOBr | |
Wang et al. | MoS 2/CQDs obtained by photoreduction for assembly of a ternary MoS 2/CQDs/ZnIn 2 S 4 nanocomposite for efficient photocatalytic hydrogen evolution under visible light | |
Li et al. | Highly dispersed PdS preferably anchored on In2S3 of MnS/In2S3 composite for effective and stable hydrogen production from H2S | |
CN110270365A (zh) | 一种氮化碳/氯氧化镧复合材料的制备与应用 | |
CN106824279B (zh) | 一种能光催化裂解水的金属有机框架材料及其制备方法 | |
CN110252410B (zh) | 一种三元复合光催化剂、其制备方法及应用 | |
CN107282077A (zh) | 一种光催化固氮催化剂的制备方法及其应用 | |
CN106391086A (zh) | 一种C3N4/SiO2异质结光催化剂制备方法 | |
Tan et al. | Photocatalytic carbon dioxide reduction coupled with benzylamine oxidation over Zn-Bi 2 WO 6 microflowers | |
CN109225222B (zh) | 一种复合光催化剂及其应用 | |
She et al. | Preparation of Zn0. 5Cd0. 5S/nickel acetate hydroxide composite for ameliorated water splitting performance under visible light | |
CN110385146A (zh) | 一种Ni0.85Se/PDA/g-C3N4复合光催化剂及其应用 | |
Wang et al. | Rose spherical structure Ag2S/ZnIn2S4/ZnS composites with visible light response: enhanced photodegradation and hydrogen production performance | |
Luo et al. | Lanthanide–titanium-oxalate clusters and their degradation products, photocurrent response and photocatalytic behaviours | |
CN109317184A (zh) | 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用 | |
CN106044842A (zh) | 一种扇形羟基氟化锌的制备方法及其应用 | |
Wang et al. | Ionic liquid-assisted solvothermal construction of NH2-MIL-125 (Ti)/BiOBr heterojunction for removing tetracycline under visible light | |
CN111004397B (zh) | 一类富电子体系的金属有机框架分子材料及其在光催化还原重金属离子中的应用 | |
Yang et al. | Photocatalytic C–N coupling towards urea synthesis with a palladium-supported CeO 2 catalyst | |
Jiang et al. | Novel honeycomb-like Ni-MOF enhanced hierarchical Bi2MoO6 microspheres for high efficient photocatalytic CO2 reduction | |
CN108722486A (zh) | 一种窄带氮化碳修饰铁基金属有机骨架复合光催化剂的制备方法 | |
Ma et al. | All-solid-state Z-scheme AgBr/Bi2CrO6 heterostructure with metallic Ag as a charge transfer bridge for boosted charge transfer and photocatalytic performances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |