CN118555546A - 无线发射接收单元wtru以及由wtru执行的方法 - Google Patents
无线发射接收单元wtru以及由wtru执行的方法 Download PDFInfo
- Publication number
- CN118555546A CN118555546A CN202410554142.6A CN202410554142A CN118555546A CN 118555546 A CN118555546 A CN 118555546A CN 202410554142 A CN202410554142 A CN 202410554142A CN 118555546 A CN118555546 A CN 118555546A
- Authority
- CN
- China
- Prior art keywords
- wtru
- transmission mode
- data packet
- rlc
- mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000005540 biological transmission Effects 0.000 claims abstract description 171
- 238000012545 processing Methods 0.000 claims abstract description 12
- 238000004891 communication Methods 0.000 description 47
- 230000004044 response Effects 0.000 description 27
- 238000005516 engineering process Methods 0.000 description 24
- 230000006870 function Effects 0.000 description 23
- 238000012544 monitoring process Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 14
- 230000006399 behavior Effects 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 241000760358 Enodes Species 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000007726 management method Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 230000008093 supporting effect Effects 0.000 description 7
- 230000001960 triggered effect Effects 0.000 description 7
- 238000013475 authorization Methods 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000005573 mixed-mode transmission Effects 0.000 description 2
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008521 reorganization Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 102100036409 Activated CDC42 kinase 1 Human genes 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- GVVPGTZRZFNKDS-JXMROGBWSA-N geranyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O GVVPGTZRZFNKDS-JXMROGBWSA-N 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/40—Connection management for selective distribution or broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
- H04W28/12—Flow control between communication endpoints using signalling between network elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/30—Resource management for broadcast services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1825—Adaptation of specific ARQ protocol parameters according to transmission conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1864—ARQ related signaling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/16—Arrangements for providing special services to substations
- H04L12/18—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
- H04L12/189—Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L2001/0092—Error control systems characterised by the topology of the transmission link
- H04L2001/0093—Point-to-multipoint
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Mobile Radio Communication Systems (AREA)
- Communication Control (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本申请涉及无线发射接收单元WTRU以及由WTRU执行的方法。WTRU包括:处理器,处理器被配置为:接收从第一传输模式切换到第二传输模式的指示;基于该指示,从第一传输模式切换到第二传输模式;通过扩展数据分组接收窗口的边界来扩展数据分组接收窗口,其中通过偏置量来扩展该边界;接收数据分组;以及将该数据分组添加到接收缓冲器用于进行处理,其中该添加基于该数据分组的SN在所扩展的数据分组接收窗口的扩展的部分内。
Description
本申请是申请号为202280014171.2、申请日为2022年01月11日、发明名称为“在MBS中的PTP与PTM传输和接收之间的无损切换”的发明专利申请的分案申请。
相关申请的交叉引用
本申请要求2021年1月11日提交的美国临时专利申请63/135,930号的权益,该专利申请的公开内容全文以引用的方式并入本文。
技术领域
本申请涉及无线通信领域,并且具体地,涉及无线发射接收单元(WTRU)以及由WTRU执行的方法。
背景技术
使用无线通信的移动通信继续演进。第五代移动通信无线电接入技术(RAT)可被称为5G新空口(NR)。前代(传统)移动通信RAT可以是例如第四代(4G)长期演进(LTE)。
发明内容
本文描述了与例如在组播和广播服务(MBS)中的点对点(PTP)与点对多点(PTM)传输和接收之间的无损切换相关联的系统、方法和手段。无线发射接收单元(WTRU)可接收从使用点对点(PTP)传输(例如,从PTP传输模式)切换到使用点对多点(PTM)传输(例如,到PTM传输模式)的指示,或基于与PTM模式相关联的可靠性条件来确定从使用PTP传输(例如,从PTP传输模式)切换到使用PTM传输(例如,到PTM传输模式)。基于该指示或该确定,该WTRU可从使用PTP传输(例如,从PTP传输模式)切换到使用PTM传输(例如,到PTM传输模式)。该WTRU可接收第一数据分组。该WTRU可通过扩展数据分组接收窗口的边界来扩展该数据分组接收窗口。可基于该第一数据分组的序列号(SN)和偏置量来扩展该边界。在一些示例中,WTRU可接收第二数据分组并且将第二数据分组添加到接收缓冲器用于进行处理,并且该添加可基于第二数据分组的第二SN在扩展的数据分组接收窗口的扩展的部分内。在一些示例中,数据分组接收窗口的边界可以为数据分组接收窗口的起始边缘,并且扩展数据分组接收窗口的边界可包括将起始边缘的第一值设定为比第一数据分组的SN低偏置量的第二值。在一些示例中,扩展的数据分组接收窗口的扩展的部分可以为扩展的数据分组接收窗口的一部分,该一部分在第二值处开始并且在第一数据分组的SN处结束。
WTRU可接收第一数据分组。WTRU可基于与PTM传输模式相关联的可靠性条件来确定从使用PTM传输(例如,从PTM传输模式)切换到使用PTP传输(例如,到PTP传输模式)。基于该确定,WTRU可发送从使用PTM传输(例如,从PTM传输模式)切换到使用PTP传输(例如,到PTP传输模式)的请求。WTRU可接收从使用PTM传输(例如,从PTM传输模式)切换到使用PTP传输(例如,到PTP传输模式)的指示。基于该指示,WTRU可从使用PTM传输(例如,从PTM传输模式)切换到使用PTP传输(例如,到PTP传输模式),并且可发送数据分组状态报告。数据分组状态报告可指示接收到第一数据分组。
如图3中的示例所示,WTRU可触发MBS模式切换(例如,基于指示(诸如从网络接收的指示),或基于由WTRU进行的确定)。WTRU(例如,参见图3中的304)可被配置用于MBS并且可被配置带有一个或多个组播无线电承载(MRB)(例如,参见图3中的308)。WTRU可从网络(例如,参见图3中的306)接收配置信息,该配置信息可包括用于触发MBS模式切换的参数/阈值(例如,要使用的)。参数/阈值可包括与服务小区有关的信号水平/阈值(例如,参考信号接收功率(RSRP)水平/阈值、参考信号接收质量(RSRQ)水平/阈值、接收信号与噪声比指示标识(RSNI)水平/阈值等)、HARQ失败/成功率水平/阈值、MRB重传计数水平/阈值等。WTRU可监测MBS操作的性能(例如,根据配置信息或WTRU具体实施)。WTRU可确定切换MBS模式。例如,WTRU(例如,在以PTM模式操作的情形下)可确定切换到PTP模式,例如,在服务小区的信号水平下降到低于阈值的情形下和/或在HARQ失败率/重传计数高于阈值的情形下(例如,参见图3中的310)。当确定切换MBS模式(例如,从PTM到PTP,或反之亦然)时,WTRU可发送MBS模式切换请求(例如,参见图3中的312)。该请求可包括信息,诸如分组数据会聚协议(PDCP)/RLC接收状态报告、受影响的MRB(例如,与WTRU请求切换到的模式相关联的MRB)等。PDCP/RLC接收状态报告可例如与该请求分开发送(例如,参见图3中的314)。WTRU可从网络(例如,参见图3中的306)接收指示以从PTM切换到PTP(例如,响应于312,在313处,如图3所示)。WTRU可例如在发送MBS模式切换请求之前/期间/之后改变PDCCH传输监测行为(例如,仅监测C-RNTI、仅监测G-RNTI、或监测C-RNTI和G-RNTI两者)。
在示例中,WTRU(例如,参见图3中的304)可切换(例如,隐式地切换)MBS模式(例如,执行隐式MBS模式切换)。WTRU可被配置用于MBS并且可被配置带有一个或多个MRB。WTRU可从网络(例如,参见图3中的306)接收指定WTRU行为的配置信息,例如,针对WTRU以PTP模式操作并且接收到RLC PDU的情况,例如,在RLC PDU与PTM模式相关联的情况下,例如,其中相关联的RLC实体与PTM模式相关联。WTRU(例如,在以PTP模式操作的情形下)可接收RLCPDU(例如,触发PTM RLC PDU,例如,触发到PTM的切换的RLC PDU),例如,在RLC PDU与PTM模式相关联的情况下,例如,其中相关联的RLC实体与PTM相关联。WTRU可(例如,基于配置信息)将RLC PDU的接收确定(例如,考虑)为来自网络的隐式MBS模式切换请求(例如,参见图3中的319)。WTRU可启动时间段(例如,定时器)。可在所接收的配置信息中指定该时间段(例如,定时器)的值。WTRU可(例如,在该时间段期间(例如,当定时器正在运行时))以模式(例如,特殊(例如,RLC)模式)操作PTM RLC实体。特殊RLC模式可以为或者可实现以下(例如,如可在所接收的配置信息中指出的那样或可以其他方式配置的那样)中的一者或多者:避免移除带有比触发PTM RLC PDU的序列号(SN)低的SN的PDU并且将这些PDU转发到PDCP层;通过缩减偏置量(例如,所确定的、所选择的或所配置的偏置量,诸如接收RLC窗口大小的一半)的接收RLC窗口左边缘来扩展RLC窗口大小(例如,参见图3中的320);通过增加偏置量(例如,所确定的、所选择的或所配置的偏置量,诸如接收RLC窗口大小的一半)的接收RLC窗口右边缘来扩展RLC窗口大小;例如通过将所接收的PDU(例如,所有所接收的PDU)转发到PDCP层,以无窗口或透明的类RLC模式操作RLC;或例如在时间段过去(例如,定时器超时)的情形下,以UM模式(例如,正常UM模式)操作PTM RLC实体。
在示例中,WTRU(例如,参见图3中的304)可切换(例如,显式地切换)MBS模式(例如,执行显式MBS模式切换)。WTRU可被配置用于MBS并且可被配置带有一个或多个MRB。WTRU可从网络接收命令(例如,RRC重新配置、MAC CE、DCI等)(例如,参见图3中的313和319)。该命令可指示(例如,指定)WTRU必须将MBS模式从PTM切换到PTP,或反之亦然。该命令可包括信息(例如,附加信息),诸如与该命令指示切换到的MBS模式相关联的RLC实体的RLC状态变量。WTRU可例如根据所指示的值来更新RLC实体的RLC状态变量。WTRU可以该命令指示切换到的MBS模式开始操作。在从PTP到PTM的MBS模式切换的情况下,WTRU可监测(例如,开始监测)PDCCH上的传输中的G-RNTI(例如,与关联于PTM模式的MRB相关联的G-RNTI)(例如,在WTRU没有这样做的情形下)。在从PTM到PTP的MBS模式切换的情况下,WTRU可停止监测PDCCH上的传输中的C-RNTI。在从PTM到PTP的MBS模式切换的情况下,WTRU可监测(例如,开始监测)PDCCH上的传输中的C-RNTI(例如,在WTRU没有这样做的情形下)。在从PTM到PTP的MBS模式切换的情况下,WTRU可停止监测PDCCH上的传输中的G-RNTI。
根据本发明的一方面,涉及一种无线发射接收单元WTRU,WTRU包括:处理器,处理器被配置为:接收从第一传输模式切换到第二传输模式的指示;基于指示,从第一传输模式切换到第二传输模式;通过扩展数据分组接收窗口的边界来扩展数据分组接收窗口,其中通过偏置量来扩展边界;接收数据分组;以及将数据分组添加到接收缓冲器用于进行处理,其中该添加基于数据分组的SN在所扩展的数据分组接收窗口的扩展的部分内。
根据本发明的另一方面,涉及一种由无线发射接收单元WTRU执行的方法,该方法包括:接收从第一传输模式切换到第二传输模式的指示;基于指示,从第一传输模式切换到第二传输模式;通过扩展数据分组接收窗口的边界来扩展数据分组接收窗口,其中通过偏置量来扩展边界;接收数据分组;以及将数据分组添加到接收缓冲器用于进行处理,其中该添加基于数据分组的SN在所扩展的数据分组接收窗口的扩展的部分内。
附图说明
图1A是示出在其中一个或多个所公开的实施方案可得以实施的示例性通信系统的系统图。
图1B是根据实施方案的示出可在图1A所示的通信系统内使用的示例性无线发射/接收单元(WTRU)的系统图。
图1C是根据实施方案的示出可在图1A所示的通信系统内使用的示例性无线电接入网络(RAN)和示例性核心网络(CN)的系统图。
图1D是根据实施方案的示出可在图1A所示的通信系统内使用的另外一个示例性RAN和另外一个示例性CN的系统图。
图2示出了协议架构的示例。
图3示出了与切换MBS模式相关联的示例。
具体实施方式
本文对定时器的引用可指时间、时间段、跟踪时间、跟踪时间段等。本文对定时器的引用可指确定时间已经发生或者时间段已经期满。对定时器正在运行的引用可指确定它在该时间段期间。
本文描述了用于在组播和广播服务(MBS)中的点对点(PTP)和点对多点(PTM)传输和接收之间的无损切换的系统、方法和手段。无线发射接收单元(WTRU)可被配置为例如根据当前MBS模式的性能(例如,考虑无线电链路信号水平、混合自动重传请求(HARQ)失败/成功率、重传计数等)来触发朝向网络的MBS模式切换请求(例如,PTP到PTM,或反之亦然)。WTRU可被配置为例如基于通过与PTM相关联的无线电链路控制(RLC)实体接收到分组数据单元(PDU)(例如,在此之后)来(例如,隐式地)将MBS模式从PTP切换到PTM。WTRU可被配置为例如基于通过与PTP相关联的RLC实体接收到PDU(例如,在此之后)来(例如,隐式地)将MBS模式从PTM切换到PTP。WTRU可被配置为例如基于(例如,隐式地)切换MBS模式来修改RLC接收器的行为(例如,窗口大小、接收器窗口的开始和结束SN、PDU移除行为等)。WTRU可从网络接收消息(例如,无线电资源控制(RRC)重新配置、介质访问控制(MAC)控制元件(CE)和/或下行链路控制信息(DCI)),并且可切换MBS模式(例如,PTP到PTM,或反之亦然)和/或将RLC状态参数设定为在消息中指示的那些。WTRU可例如在执行MBS模式切换之前/期间/之后改变物理下行链路控制信道(PDCCH)监测行为(例如,仅监测小区无线电网络临时标识(C-RNTI)、仅监测组RNTI(G-RNTI)、或监测C-RNTI和G-RNTI两者)。
本文描述了与例如在组播和广播服务(MBS)中的点对点(PTP)与点对多点(PTM)传输和接收之间的无损切换相关联的系统、方法和手段。无线发射接收单元(WTRU)可接收从使用点对点(PTP)操作(例如,从PTP传输模式)切换到使用点对多点(PTM)操作(例如,到PTM传输模式)的指示,或基于与PTM操作(例如,PTM模式)相关联的可靠性条件来确定从使用PTP操作(例如,从PTP传输模式)切换到使用PTM操作(例如,到PTM传输模式)。基于该指示或该确定,该WTRU可从使用PTP操作(例如,从PTP传输模式)切换到使用PTM操作(例如,到PTM传输模式)。该WTRU可接收第一数据分组。该WTRU可通过扩展数据分组接收窗口的边界来扩展该数据分组接收窗口。可基于该第一数据分组的序列号(SN)和偏置量来扩展该边界。在一些示例中,WTRU可接收第二数据分组并且将第二数据分组添加到接收缓冲器用于进行处理,并且该添加可基于第二数据分组的第二SN在扩展的数据分组接收窗口的扩展的部分内。在一些示例中,数据分组接收窗口的边界可以为数据分组接收窗口的起始边缘,并且扩展数据分组接收窗口的边界可包括将起始边缘的第一值设定为比第一数据分组的SN低偏置量的第二值。在一些示例中,扩展的数据分组接收窗口的扩展的部分可以为扩展的数据分组接收窗口的一部分,该一部分在第二值处开始并且在第一数据分组的SN处结束。
WTRU可接收第一数据分组。WTRU可基于与使用PTM操作(例如,PTM传输模式)相关联的可靠性条件来确定从使用PTM操作(例如,从PTM传输模式)切换到使用PTP操作(例如,到PTP传输模式)。基于该确定,WTRU可发送从使用PTM操作(例如,从PTM传输模式)切换到使用PTP操作(例如,到PTP传输模式)的请求。WTRU可接收从使用PTM操作(例如,从PTM传输模式)切换到使用PTP操作(例如,到PTP传输模式)的指示。基于该指示,WTRU可从使用PTM操作(例如,从PTM传输模式)切换到使用PTP操作(例如,到PTP传输模式),并且可发送数据分组状态报告。数据分组状态报告可指示接收到第一数据分组。
如图3中的示例所示,WTRU可触发MBS模式切换(例如,基于指示(诸如从网络接收的指示),或基于由WTRU进行的确定)。WTRU(例如,参见图3中的304)可被配置用于MBS并且可被配置带有一个或多个组播无线电承载(MRB)(例如,参见图3中的308)。WTRU可从网络(例如,参见图3中的306)接收配置信息,该配置信息可包括用于触发MBS模式切换的参数/阈值(例如,要使用的)。参数/阈值可包括与服务小区有关的信号水平/阈值(例如,参考信号接收功率(RSRP)水平/阈值、参考信号接收质量(RSRQ)水平/阈值、接收信号与噪声比指示标识(RSNI)水平/阈值等)、HARQ失败/成功率水平/阈值、MRB重传计数水平/阈值等。WTRU可监测MBS操作的性能(例如,根据配置信息或WTRU具体实施)。WTRU可确定切换MBS模式。例如,WTRU(例如,在以PTM模式操作的情形下)可确定切换到PTP模式,例如,在服务小区的信号水平下降到低于阈值的情形下和/或在HARQ失败率/重传计数高于阈值的情形下(例如,参见图3中的310)。当确定切换MBS模式(例如,从PTM到PTP,或反之亦然)时,WTRU可发送MBS模式切换请求(例如,参见图3中的312)。该请求可包括信息,诸如分组数据会聚协议(PDCP)/RLC接收状态报告、受影响的MRB(例如,与WTRU请求切换到的模式相关联的MRB)等。PDCP/RLC接收状态报告可例如与该请求分开发送(例如,参见图3中的314)。WTRU可从网络(例如,参见图3中的306)接收指示以从PTM切换到PTP(例如,响应于312,在313处,如图3所示)。WTRU可例如在发送MBS模式切换请求之前/期间/之后改变PDCCH传输监测行为(例如,仅监测C-RNTI、仅监测G-RNTI、或监测C-RNTI和G-RNTI两者)。
在示例中,WTRU(例如,参见图3中的304)可切换(例如,隐式地切换)MBS模式(例如,执行隐式MBS模式切换)。WTRU可被配置用于MBS并且可被配置带有一个或多个MRB。WTRU可从网络(例如,参见图3中的306)接收指定WTRU行为的配置信息,例如,针对WTRU以PTP模式操作并且接收到RLC PDU的情况,例如,在RLC PDU与PTM模式相关联的情况下,例如,其中相关联的RLC实体与PTM模式相关联。WTRU(例如,在以PTP模式操作的情形下)可接收RLCPDU(例如,触发PTM RLC PDU,例如,触发到PTM的切换的RLC PDU),例如,在RLC PDU与PTM模式相关联的情况下,例如,其中相关联的RLC实体与PTM相关联。WTRU可(例如,基于配置信息)将RLC PDU的接收确定(例如,考虑)为来自网络的隐式MBS模式切换请求(例如,参见图3中的319)。WTRU可启动时间段(例如,定时器)。可在所接收的配置信息中指定该时间段(例如,定时器)的值。WTRU可(例如,在该时间段期间(例如,当定时器正在运行时))以模式(例如,特殊(例如,RLC)模式)操作PTM RLC实体。特殊RLC模式可以为或者可实现以下(例如,如可在所接收的配置信息中指出的那样或可以其他方式配置的那样)中的一者或多者:避免移除带有比触发PTM RLC PDU的序列号(SN)低的SN的PDU并且将这些PDU转发到PDCP层;通过缩减偏置量(例如,所确定的、所选择的或所配置的偏置量,诸如接收RLC窗口大小的一半)的接收RLC窗口左边缘来扩展RLC窗口大小(例如,参见图3中的320);通过增加偏置量(例如,所确定的、所选择的或所配置的偏置量,诸如接收RLC窗口大小的一半)的接收RLC窗口右边缘来扩展RLC窗口大小;例如通过将所接收的PDU(例如,所有所接收的PDU)转发到PDCP层,以无窗口或透明的类RLC模式操作RLC;或例如在时间段过去(例如,定时器超时)的情形下,以UM模式(例如,正常UM模式)操作PTM RLC实体。
在示例中,WTRU(例如,参见图3中的304)可切换(例如,显式地切换)MBS模式(例如,执行显式MBS模式切换)。WTRU可被配置用于MBS并且可被配置带有一个或多个MRB。WTRU可从网络接收命令(例如,RRC重新配置、MAC CE、DCI等)(例如,参见图3中的313和319)。该命令可指示(例如,指定)WTRU必须将MBS模式从PTM切换到PTP,或反之亦然。该命令可包括信息(例如,附加信息),诸如与该命令指示切换到的MBS模式相关联的RLC实体的RLC状态变量。WTRU可例如根据所指示的值来更新RLC实体的RLC状态变量。WTRU可以该命令指示切换到的MBS模式开始操作。在从PTP到PTM的MBS模式切换的情况下,WTRU可监测(例如,开始监测)PDCCH上的传输中的G-RNTI(例如,与关联于PTM模式的MRB相关联的G-RNTI)(例如,在WTRU没有这样做的情形下)。在从PTM到PTP的MBS模式切换的情况下,WTRU可停止监测PDCCH上的传输中的C-RNTI。在从PTM到PTP的MBS模式切换的情况下,WTRU可监测(例如,开始监测)PDCCH上的传输中的C-RNTI(例如,在WTRU没有这样做的情形下)。在从PTM到PTP的MBS模式切换的情况下,WTRU可停止监测PDCCH上的传输中的G-RNTI。
图1A是示出在其中一个或多个所公开的实施方案可得以实现的示例性通信系统100的示图。通信系统100可为向多个无线用户提供诸如语音、数据、视频、消息、广播等内容的多址接入系统。通信系统100可使多个无线用户能够通过系统资源(包括无线带宽)的共享来访问此类内容。例如,通信系统100可采用一个或多个信道接入方法,诸如码分多址接入(CDMA)、时分多址接入(TDMA)、频分多址接入(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块滤波OFDM、滤波器组多载波(FBMC)等。
如图1A所示,通信系统100可包括无线发射/接收单元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交换电话网(PSTN)108、互联网110和其他网络112,但应当理解,所公开的实施方案设想了任何数量的WTRU、基站、网络和/或网络元件。WTRU102a、102b、102c、102d中的每一者可以是被配置为在无线环境中操作和/或通信的任何类型的设备。作为示例,WTRU 102a、102b、102c、102d(其中任何一个均可被称为“站”和/或“STA”)可被配置为传输和/或接收无线信号,并且可包括用户装备(UE)、移动站、固定或移动用户单元、基于订阅的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型电脑、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴式显示器(HMD)、车辆、无人机、医疗设备和应用(例如,远程手术)、工业设备和应用(例如,在工业和/或自动处理链环境中操作的机器人和/或其他无线设备)、消费电子设备、在商业和/或工业无线网络上操作的设备等。WTRU 102a、102b、102c和102d中的任一者可互换地称为UE。
通信系统100还可包括基站114a和/或基站114b。基站114a、114b中的每一者可为任何类型的设备,其被配置为与WTRU 102a、102b、102c、102d中的至少一者无线对接以促进对一个或多个通信网络(诸如CN 106/115、互联网110和/或其他网络112)的访问。作为示例,基站114a、114b可为基站收发台(BTS)、节点B、演进节点B、家庭节点B、家庭演进节点B、gNB、NR节点B、站点控制器、接入点(AP)、无线路由器等。虽然基站114a、114b各自被描绘为单个元件,但应当理解,基站114a、114b可包括任何数量的互连基站和/或网络元件。
基站114a可以是RAN 104/113的一部分,该RAN还可包括其他基站和/或网络元件(未示出),诸如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等。基站114a和/或基站114b可被配置为在一个或多个载波频率(其可被称为小区(未示出))上发射和/或接收无线信号。这些频率可在许可频谱、未许可频谱或许可和未许可频谱的组合中。小区可向特定地理区域提供无线服务的覆盖,该特定地理区域可为相对固定的或可随时间改变。小区可进一步被划分为小区扇区。例如,与基站114a相关联的小区可被划分为三个扇区。因此,在实施方案中,基站114a可包括三个收发器,即,小区的每个扇区一个收发器。在实施方案中,基站114a可采用多输入多输出(MIMO)技术并且可针对小区的每个扇区利用多个收发器。例如,可使用波束成形在所需的空间方向上发射和/或接收信号。
基站114a、114b可通过空中接口116与WTRU 102a、102b、102c、102d中的一者或多者通信,该空中接口可为任何合适的无线通信链路(例如,射频(RF)、微波、厘米波、微米波、红外(IR)、紫外(UV)、可见光等)。可使用任何合适的无线电接入技术(RAT)来建立空中接口116。
更具体地讲,如上所指出,通信系统100可为多址接入系统,并且可采用一个或多个信道接入方案,诸如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,RAN 104/113中的基站114a和WTRU 102a、102b、102c可实现诸如通用移动电信系统(UMTS)陆地无线电接入(UTRA)之类的无线电技术,其可使用宽带CDMA(WCDMA)来建立空中接口115/116/117。WCDMA可包括诸如高速分组接入(HSPA)和/或演进的HSPA(HSPA+)之类的通信协议。HSPA可包括高速下行链路(DL)分组接入(HSDPA)和/或高速UL分组接入(HSUPA)。
在实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如演进的UMTS陆地无线电接入(E-UTRA)的无线电技术,其可使用长期演进(LTE)和/高级LTE(LTE-A)和/或高级LTEPro(LTE-A Pro)来建立空中接口116。
在一个实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如NR无线电接入之类的无线电技术,其可使用新空口(NR)来建立空中接口116。
在实施方案中,基站114a和WTRU 102a、102b、102c可实现多种无线电接入技术。例如,基站114a和WTRU 102a、102b、102c可例如使用双连接(DC)原理一起实现LTE无线电接入和NR无线电接入。因此,WTRU 102a、102b、102c所使用的空中接口可由多种类型的无线电接入技术和/或向/从多种类型的基站(例如,eNB和gNB)发送的传输来表征。
在其他实施方案中,基站114a和WTRU 102a、102b、102c可实现诸如IEEE 802.11(即,无线保真(WiFi))、IEEE 802.16(即,全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、暂行标准2000(IS-2000)、暂行标准95(IS-95)、暂行标准856(IS-856)、全球移动通信系统(GSM)、GSM增强数据率演进(EDGE)、GSM EDGE(GERAN)等无线电技术。
图1A中的基站114b可为例如无线路由器、家庭节点B、家庭演进节点B或接入点,并且可利用任何合适的RAT来促进诸如商业场所、家庭、车辆、校园、工业设施、空中走廊(例如,供无人机使用)、道路等局部区域中的无线连接。在实施方案中,基站114b和WTRU 102c、102d可实现诸如IEEE 802.11之类的无线电技术以建立无线局域网(WLAN)。在实施方案中,基站114b和WTRU 102c、102d可实现诸如IEEE 802.15之类的无线电技术以建立无线个域网(WPAN)。在又一个实施方案中,基站114b和WTRU 102c、102d可利用基于蜂窝的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等)来建立微微小区或毫微微小区。如图1A所示,基站114b可直接连接到互联网110。因此,基站114b可不需要经由CN 106/115访问互联网110。
RAN 104/113可与CN 106/115通信,该CN可以是被配置为向WTRU 102a、102b、102c、102d中的一者或多者提供语音、数据、应用和/或互联网协议语音技术(VoIP)服务的任何类型的网络。数据可具有不同的服务质量(QoS)要求,诸如不同的吞吐量要求、延迟要求、误差容限要求、可靠性要求、数据吞吐量要求、移动性要求等。CN 106/115可提供呼叫控制、账单服务、基于移动位置的服务、预付费呼叫、互联网连接、视频分发等,和/或执行高级安全功能,诸如用户认证。尽管未在图1A中示出,但是应当理解,RAN 104/113和/或CN 106/115可与采用与RAN 104/113相同的RAT或不同RAT的其他RAN进行直接或间接通信。例如,除了连接到可利用NR无线电技术的RAN 104/113之外,CN 106/115还可与采用GSM、UMTS、CDMA2000、WiMAX、E-UTRA或WiFi无线电技术的另一RAN(未示出)通信。
CN 106/115也可充当WTRU 102a、102b、102c、102d的网关,以访问PSTN 108、互联网110和/或其他网络112。PSTN 108可包括提供普通老式电话服务(POTS)的电路交换电话网络。互联网110可包括使用常见通信协议(诸如传输控制协议(TCP)、用户数据报协议(UDP)和/或TCP/IP互联网协议组中的互联网协议(IP))的互连计算机网络和设备的全球系统。网络112可包括由其他服务提供商拥有和/或操作的有线和/或无线通信网络。例如,网络112可包括连接到一个或多个RAN的另一个CN,其可采用与RAN 104/113相同的RAT或不同的RAT。
通信系统100中的一些或所有WTRU 102a、102b、102c、102d可包括多模式能力(例如,WTRU 102a、102b、102c、102d可包括用于通过不同无线链路与不同无线网络通信的多个收发器)。例如,图1A所示的WTRU 102c可被配置为与可采用基于蜂窝的无线电技术的基站114a通信,并且与可采用IEEE 802无线电技术的基站114b通信。
图1B是示出示例性WTRU 102的系统图。如图1B所示,WTRU 102可包括处理器118、收发器120、发射/接收元件122、扬声器/麦克风124、小键盘126、显示器/触摸板128、不可移动存储器130、可移动存储器132、电源134、全球定位系统(GPS)芯片组136和/或其他外围设备138等。应当理解,在与实施方案保持一致的同时,WTRU 102可包括前述元件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心相关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、任何其他类型的集成电路(IC)、状态机等。处理器118可执行信号编码、数据处理、功率控制、输入/输出处理和/或任何其他功能,这些其他功能使WTRU 102能够在无线环境中工作。处理器118可耦合到收发器120,该收发器可耦合到发射/接收元件122。虽然图1B将处理器118和收发器120描绘为单独的部件,但是应当理解,处理器118和收发器120可在电子封装件或芯片中集成在一起。
发射/接收元件122可被配置为通过空中接口116向基站(例如,基站114a)发射信号或从基站接收信号。例如,在一个实施方案中,发射/接收元件122可以是被配置为发射和/或接收RF信号的天线。在一个实施方案中,发射/接收元件122可以是被配置为发射和/或接收例如IR、UV或可见光信号的发射器/检测器。在又一个实施方案中,发射/接收元件122可被配置为发射和/或接收RF和光信号。应当理解,发射/接收元件122可被配置为发射和/或接收无线信号的任何组合。
尽管发射/接收元件122在图1B中被描绘为单个元件,但是WTRU 102可包括任何数量的发射/接收元件122。更具体地讲,WTRU 102可采用MIMO技术。因此,在一个实施方案中,WTRU 102可包括用于通过空中接口116发射和接收无线信号的两个或更多个发射/接收元件122(例如,多个天线)。
收发器120可被配置为调制将由发射/接收元件122发射的信号并且解调由发射/接收元件122接收的信号。如上所指出,WTRU 102可具有多模式能力。例如,因此,收发器120可包括多个收发器,以便使WTRU 102能够经由多种RAT(诸如NR和IEEE 802.11)进行通信。
WTRU 102的处理器118可耦合到扬声器/麦克风124、小键盘126和/或显示器/触摸板128(例如,液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元)并且可从其接收用户输入数据。处理器118还可将用户数据输出到扬声器/麦克风124、小键盘126和/或显示器/触摸板128。此外,处理器118可从任何类型的合适存储器(诸如不可移动存储器130和/或可移动存储器132)访问信息,并且将数据存储在任何类型的合适存储器中。不可移动存储器130可包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或任何其他类型的存储器存储设备。可移动存储器132可包括用户身份模块(SIM)卡、记忆棒、安全数字(SD)存储卡等。在其他实施方案中,处理器118可从未物理上定位在WTRU 102上(诸如,服务器或家用计算机(未示出)上)的存储器访问信息,并且将数据存储在该存储器中。
处理器118可从电源134接收电力,并且可被配置为向WTRU 102中的其他部件分配和/或控制电力。电源134可以是用于为WTRU 102供电的任何合适的设备。例如,电源134可包括一个或多个干电池组(例如,镍镉(NiCd)、镍锌(NiZn)、镍金属氢化物(NiMH)、锂离子(Li-ion)等)、太阳能电池、燃料电池等。
处理器118还可耦合到GPS芯片组136,该GPS芯片组可被配置为提供关于WTRU 102的当前位置的位置信息(例如,经度和纬度)。除了来自GPS芯片组136的信息之外或代替该信息,WTRU 102可通过空中接口116从基站(例如,基站114a、114b)接收位置信息和/或基于从两个或更多个附近基站接收到信号的定时来确定其位置。应当理解,在与实施方案保持一致的同时,该WTRU 102可通过任何合适的位置确定方法来获取位置信息。
处理器118还可耦合到其他外围设备138,该其他外围设备可包括提供附加特征、功能和/或有线或无线连接的一个或多个软件模块和/或硬件模块。例如,外围设备138可包括加速度计、电子指南针、卫星收发器、数字相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发器、免提耳麦、模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏播放器模块、互联网浏览器、虚拟现实和/或增强现实(VR/AR)设备、活动跟踪器等。外围设备138可包括一个或多个传感器,该传感器可为以下中的一者或多者:陀螺仪、加速度计、霍尔效应传感器、磁力计、方位传感器、接近传感器、温度传感器、时间传感器;地理位置传感器;测高计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物识别传感器和/或湿度传感器。
WTRU 102可包括全双工无线电台,对于该全双工无线电台,一些或所有信号的传输和接收(例如,与用于UL(例如,用于传输)和下行链路(例如,用于接收)的特定子帧相关联)可为并发的和/或同时的。全双工无线电台可包括干扰管理单元,该干扰管理单元用于经由硬件(例如,扼流圈)或经由处理器(例如,单独的处理器(未示出)或经由处理器118)进行的信号处理来减少和/或基本上消除自干扰。在一个实施方案中,WRTU 102可包括半双工无线电台,对于该半双工无线电台,一些或所有信号的传输和接收(例如,与用于UL(例如,用于传输)或下行链路(例如,用于接收)的特定子帧相关联)。
图1C是示出根据实施方案的RAN 104和CN 106的系统图。如上所述,RAN 104可采用E-UTRA无线电技术通过空中接口116与WTRU 102a、102b、102c通信。RAN 104还可与CN106通信。
RAN 104可包括演进节点B 160a、160b、160c,但是应当理解,在与实施方案保持一致的同时,RAN 104可包括任何数量的演进节点B。演进节点B 160a、160b、160c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、102b、102c通信。在实施方案中,演进节点B 160a、160b、160c可实现MIMO技术。因此,演进节点B 160a例如可使用多个天线来向WTRU 102a发射无线信号和/或从WTRU 102a接收无线信号。
演进节点B 160a、160b、160c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度等。如图1C所示,演进节点B 160a、160b、160c可通过X2接口彼此通信。
图1C所示的CN 106可包括移动性管理实体(MME)162、服务网关(SGW)164和分组数据网络(PDN)网关(或PGW)166。虽然前述元件中的每个元件描绘为CN 106的一部分,但应当理解,这些元件中的任一个元件可由除CN运营商之外的实体拥有和/或运营。
MME 162可经由S1接口连接到RAN 104中的演进节点B 162a、162b、162c中的每一者,并且可用作控制节点。例如,MME 162可负责认证WTRU 102a、102b、102c的用户、承载激活/去激活、在WTRU 102a、102b、102c的初始附加期间选择特定服务网关等。MME 162可提供用于在RAN 104和采用其他无线电技术(诸如GSM和/或WCDMA)的其他RAN(未示出)之间进行切换的控制平面功能。
SGW 164可经由S1接口连接到RAN 104中的演进节点B 160a、160b、160c中的每一者。SGW 164通常可向/从WTRU 102a、102b、102c路由和转发用户数据分组。SGW 164可执行其他功能,诸如在演进节点B间切换期间锚定用户平面、当DL数据可用于WTRU 102a、102b、102c时触发寻呼、管理和存储WTRU 102a、102b、102c的上下文等。
SGW 164可连接到PGW 166,该PGW可向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以有利于WTRU 102a、102b、102c和启用IP的设备之间的通信。
CN 106可促进与其他网络的通信。例如,CN 106可向WTRU 102a、102b、102c提供对电路交换网络(诸如,PSTN 108)的访问,以有利于WTRU 102a、102b、102c与传统陆线通信设备之间的通信。例如,CN 106可包括用作CN 106与PSTN 108之间接口的IP网关(例如,IP多媒体子系统(IMS)服务器)或者可与该IP网关通信。另外,CN 106可向WTRU 102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。
尽管WTRU在图1A至图1D中被描述为无线终端,但是可以设想到,在某些代表性实施方案中,这种终端可(例如,临时或永久)使用与通信网络的有线通信接口。
在代表性实施方案中,其他网络112可为WLAN。
处于基础结构基本服务集(BSS)模式的WLAN可具有用于BSS的接入点(AP)以及与AP相关联的一个或多个站点(STA)。AP可具有至分发系统(DS)或将流量携带至和/或携带流量离开BSS的另一种类型的有线/无线网络的接入或接口。源自BSS外部并通向STA的流量可通过AP到达并且可被传递到STA。源自STA并通向BSS外部的目的地的流量可被发送到AP以被传递到相应目的地。BSS内的STA之间的流量可通过AP发送,例如,其中源STA可向AP发送流量,并且AP可将流量传递到目的地STA。BSS内的STA之间的流量可被视为和/或称为点对点流量。可利用直接链路建立(DLS)在源和目的地STA之间(例如,直接在它们之间)发送点对点流量。在某些代表性实施方案中,DLS可使用802.11e DLS或802.11z隧道DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且IBSS内或使用IBSS的STA(例如,所有STA)可彼此直接通信。IBSS通信模式在本文中有时可称为“ad-hoc”通信模式。
当使用802.11ac基础结构操作模式或相似操作模式时,AP可在固定信道(诸如主信道)上发射信标。主信道可为固定宽度(例如,20MHz宽带宽)或通过信令动态设置的宽度。主信道可为BSS的操作信道,并且可由STA用来建立与AP的连接。在某些代表性实施方案中,例如在802.11系统中可实现载波侦听多路访问/冲突避免(CSMA/CA)。对于CSMA/CA,STA(例如,每个STA)(包括AP)可侦听主信道。如果主信道被特定STA侦听/检测和/或确定为繁忙,则特定STA可退避。一个STA(例如,仅一个站)可在给定BSS中在任何给定时间发射。
高吞吐量(HT)STA可使用40MHz宽的信道进行通信,例如,通过主20MHz信道与相邻或不相邻的20MHz信道的组合以形成40MHz宽的信道。
极高吞吐量(VHT)STA可支持20MHz、40MHz、80MHz和/或160MHz宽的信道。40MHz和/或80MHz信道可通过组合连续的20MHz信道来形成。可通过组合8个连续的20MHz信道,或通过组合两个非连续的80MHz信道(这可被称为80+80配置)来形成160MHz信道。对于80+80配置,在信道编码之后,数据可通过可将数据分成两个流的段解析器。可单独地对每个流进行快速傅里叶逆变换(IFFT)处理和时间域处理。可将这些流映射到两个80MHz信道,并且可通过发射STA来发射数据。在接收STA的接收器处,可颠倒上述用于80+80配置的操作,并且可将组合的数据发送到介质访问控制(MAC)。
802.11af和802.11ah支持低于1GHz的操作模式。相对于802.11n和802.11ac中使用的那些,802.11af和802.11ah中减少了信道操作带宽和载波。802.11af支持电视白空间(TVWS)频谱中的5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。根据代表性实施方案,802.11ah可支持仪表类型控制/机器类型通信,诸如宏覆盖区域中的MTC设备。MTC设备可具有某些能力,例如有限的能力,包括支持(例如,仅支持)某些带宽和/或有限的带宽。MTC设备可包括电池寿命高于阈值(例如,以保持非常长的电池寿命)的电池。
可支持多个信道的WLAN系统以及诸如802.11n、802.11ac、802.11af和802.11ah之类的信道带宽包括可被指定为主信道的信道。主信道可具有等于由BSS中的所有STA支持的最大公共操作带宽的带宽。主信道的带宽可由来自在BSS中操作的所有STA的STA(其支持最小带宽操作模式)设置和/或限制。在802.11ah的示例中,对于支持(例如,仅支持)1MHz模式的STA(例如,MTC型设备),主信道可为1MHz宽,即使AP和BSS中的其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽操作模式。载波侦听和/或网络分配向量(NAV)设置可取决于主信道的状态。如果主信道繁忙,例如,由于STA(仅支持1MHz操作模式)正在向AP传输,即使大多数频段保持空闲并且可能可用,整个可用频段也可被视为繁忙。
在美国,可供802.11ah使用的可用频带为902MHz至928MHz。在韩国,可用频带为917.5MHz至923.5MHz。在日本,可用频带为916.5MHz至927.5MHz。802.11ah可用的总带宽为6MHz至26MHz,具体取决于国家代码。
图1D是示出根据实施方案的RAN 113和CN 115的系统图。如上文所指出,RAN 113可采用NR无线电技术以通过空中接口116与WTRU 102a、102b、102c通信。RAN 113还可以与CN 115通信。
RAN 113可以包括gNB 180a、180b、180c,尽管将了解,RAN 113可以包括任何数量的gNB,同时与实施方案保持一致。gNB 180a、180b、180c各自可包括一个或多个收发器以便通过空中接口116与WTRU 102a、102b、102c通信。在实施方案中,gNB 180a、180b、180c可实现MIMO技术。例如,gNB 180a、108b可利用波束成形来向gNB 180a、180b、180c传输信号和/或从gNB 180a、180b、180c接收信号。因此,gNB 180a例如可使用多个天线来向WTRU 102a发射无线信号和/或从WTRU 102a接收无线信号。在实施方案中,gNB 180a、180b、180c可实现载波聚合技术。例如,gNB 180a可向WTRU 102a(未示出)发射多个分量载波。这些分量载波的子集可在免许可频谱上,而其余分量载波可在许可频谱上。在实施方案中,gNB 180a、180b、180c可实现被协调的多点(CoMP)技术。例如,WTRU 102a可从gNB 180a和gNB 180b(和/或gNB 180c)接收被协调的发射。
WTRU 102a、102b、102c可使用与可扩展参数集相关联的发射来与gNB 180a、180b、180c通信。例如,OFDM符号间隔和/或OFDM子载波间隔可因不同发射、不同小区和/或无线发射频谱的不同部分而变化。WTRU 102a、102b、102c可使用各种或可扩展长度的子帧或传输时间间隔(TTI)(例如,包含不同数量的OFDM符号和/或持续变化的绝对时间长度)来与gNB180a、180b、180c通信。
gNB 180a、180b、180c可被配置为以独立配置和/或非独立配置与WTRU 102a、102b、102c通信。在独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信,同时也不访问其他RAN(例如,诸如演进节点B 160a、160b、160c)。在独立配置中,WTRU 102a、102b、102c可将gNB 180a、180b、180c中的一者或多者用作移动性锚定点。在独立配置中,WTRU 102a、102b、102c可在未许可频带中使用信号与gNB 180a、180b、180c通信。在非独立配置中,WTRU 102a、102b、102c可与gNB 180a、180b、180c通信或连接,同时也与其他RAN(诸如,演进节点B160a、160b、160c)通信或连接。例如,WTRU 102a、102b、102c可实现DC原理以基本上同时与一个或多个gNB 180a、180b、180c和一个或多个演进节点B 160a、160b、160c通信。在非独立配置中,演进节点B 160a、160b、160c可用作WTRU 102a、102b、102c的移动性锚点,并且gNB 180a、180b、180c可提供用于服务WTRU 102a、102b、102c的附加覆盖和/或吞吐量。
gNB 180a、180b、180c中的每一者可与特定小区(未示出)相关联,并且可被配置为处理无线电资源管理决策、切换决策、UL和/或DL中的用户的调度、网络切片的支持、双连接、NR和E-UTRA之间的互通、用户平面数据朝向用户平面功能(UPF)184a、184b的路由、控制平面信息朝向接入和移动性管理功能(AMF)182a、182b的路由等。如图1D所示,gNB 180a、180b、180c可通过Xn接口彼此通信。
图1D中所示的CN 115可包括至少一个AMF 182a、182b、至少一个UPF 184a、184b、至少一个会话管理功能(SMF)183a、183b以及可能数据网络(DN)185a、185b。虽然前述元件中的每个元件描绘为CN 115的一部分,但应当理解,这些元件中的任一个元件可由除CN运营商之外的实体拥有和/或运营。
AMF 182a、182b可经由N2接口连接到RAN 113中的gNB 180a、180b、180c中的一者或多者,并且可用作控制节点。例如,AMF 182a、182b可负责认证WTRU 102a、102b、102c的用户、网络切片的支持(例如,具有不同要求的不同PDU会话的处理)、选择特定SMF 183a、183b、注册区域的管理、NAS信令的终止、移动性管理等。AMF 182a、182b可使用网络切片,以便基于WTRU 102a、102b、102c所使用的服务的类型来为WTRU 102a、102b、102c定制CN支持。例如,可针对不同的用例(诸如,依赖超高可靠低延迟(URLLC)接入的服务、依赖增强型移动宽带(eMBB)接入的服务、用于机器类型通信(MTC)接入的服务等)建立不同的网络切片。AMF162可提供用于在RAN 113与采用其他无线电技术(诸如LTE、LTE-A、LTE-A Pro和/或非3GPP接入技术(诸如WiFi))的其他RAN(未示出)之间切换的控制平面功能。
SMF 183a、183b可经由N11接口连接到CN 115中的AMF 182a、182b。SMF 183a、183b还可经由N4接口连接到CN 115中的UPF 184a、184b。SMF 183a、183b可选择并控制UPF184a、184b,并且配置通过UPF 184a、184b进行的流量路由。SMF 183a、183b可执行其他功能,诸如管理和分配UE IP地址、管理PDU会话、控制策略实施和QoS、提供下行链路数据通知等。PDU会话类型可以是基于IP的、非基于IP的、基于以太网的等。
UPF 184a、184b可经由N3接口连接到RAN 113中的gNB 180a、180b、180c中的一者或多者,该接口可以向WTRU 102a、102b、102c提供对分组交换网络(诸如互联网110)的访问,以促进WTRU 102a、102b、102c与启用IP的设备之间的通信。UPF 184、184b可执行其他功能,诸如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲下行链路分组、提供移动性锚定等。
CN 115可促进与其他网络的通信。例如,CN 115可包括用作CN 115与PSTN 108之间接口的IP网关(例如,IP多媒体子系统(IMS)服务器)或者可与该IP网关通信。另外,CN115可向WTRU 102a、102b、102c提供对其他网络112的访问,该其他网络可包括由其他服务提供商拥有和/或运营的其他有线和/或无线网络。在一个实施方案中,WTRU 102a、102b、102c可通过UPF 184a、184b通过至UPF 184a、184b的N3接口以及UPF184a、184b与本地数据网络(DN)185a、185b之间的N6接口连接到DN 185a、185b。
鉴于图1A至图1D以及图1A至图1D的对应描述,本文参照以下中的一者或多者描述的功能中的一个或多个功能或全部功能可由一个或多个仿真设备(未示出)执行:WTRU102a-d、基站114a-b、演进节点B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或本文所述的任何其他设备。仿真设备可以是被配置为模仿本文所述的一个或多个或所有功能的一个或多个设备。例如,仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计为在实验室环境和/或运营商网络环境中实现其他设备的一个或多个测试。例如,该一个或多个仿真设备可执行一个或多个或所有功能,同时被完全或部分地实现和/或部署为有线和/或无线通信网络的一部分,以便测试通信网络内的其他设备。该一个或多个仿真设备可执行一个或多个功能或所有功能,同时临时被实现/部署为有线和/或无线通信网络的一部分。仿真设备可直接耦合到另一个设备以用于测试目的和/或可使用空中无线通信来执行测试。
该一个或多个仿真设备可执行一个或多个(包括所有)功能,同时不被实现/部署为有线和/或无线通信网络的一部分。例如,仿真设备可在测试实验室和/或非部署(例如,测试)有线和/或无线通信网络中的测试场景中使用,以便实现一个或多个部件的测试。该一个或多个仿真设备可为测试装备。经由RF电路系统(例如,其可包括一个或多个天线)进行的直接RF耦合和/或无线通信可由仿真设备用于发射和/或接收数据。
所公开的系统、方法和手段(例如,包括非限制性示例)不限制本文所述的系统、方法和手段的适用性(例如,适用于其他无线技术)。术语网络可指与一个或多个传输/接收点(TRP)相关联的一个或多个gNB,和/或可指无线电接入网络(RAN)中的任何其他节点。
多媒体广播组播系统(MBMS)服务可根据(例如,经由)多种方法通过例如无线网络发送,该多种方法包括以下中的一者或多者:单播蜂窝传输(UC)、组播-广播单频网络(MBSFN)或单小区点对多点(SC-PTM)。
SC-PTM可支持例如通过单个小区的广播/组播服务。广播/组播区域可例如根据用户分布逐小区(例如,动态地)调整。SC-PTM可例如使用下行链路信道(例如,LTE下行链路共享信道,诸如PDSCH)来传送广播/组播服务,该下行链路信道可使用针对一组用户的RNTI(例如,公共RNTI,诸如组RNTI)来调度。SC-PTM调度可以为灵活的。可例如基于实时流量负载传输时间间隔(TTI)(例如,为一个或多个符号的整数倍)逐一地通过PDCCH在时域和/或频域中(例如,动态地)分配无线电资源。例如在广播/组播服务(例如,预期)(例如,由于用户兴趣)被发送到有限数量的小区并且小区可(例如,动态地)(例如,由于用户移动)动态变化的情形下,可应用SC-PTM。SC-PTM可允许有效无线电利用和多种应用的灵活部署,例如,关键通信、汽车的交通信息和按需TV服务等。
MBSFN可安排来自不同小区的传输(例如,成为相同的和/或时间一致的),使其从WTRU的角度看起来为一个传输(例如,单个传输)。基站(例如,eNB)之间的时间同步可例如通过MBSFN同步区域(例如,MBSFN同步区域的概念)来实现。MBSFN区域可包括网络的MBSFN同步区域内被协调以实现MBSFN传输的一组小区。MBMS架构可包括(例如,定义)各种逻辑实体以执行适用于MBMS传输的网络功能。多小区/组播协调实体(MCE)可执行准入控制,确定是使用SC-PTM还是MBSFN,暂停和恢复MBMS服务等等。MBMS网关(MBMS-GW)可执行会话控制信令,将MBMS用户数据转发到eNB(例如,经由IP组播)等等。
MBMS(例如,在LTE中)可支持单播、SC-PTM和/或MBSFN传输。例如在MBMS传输消耗太多(例如,全部)带宽(BW)的情形下,这种情形在具有大带宽的部署中可能是低效的,可能不支持频域资源分配。
例如,在新空口(NR)中,MBMS可被称为MBS(组播和广播服务)。术语MBMS和MBS可互换地使用。
WTRU可被配置带有传输模式(例如,在MBS被配置的情形下)。传输模式可包括一个或多个传输方法,诸如单播、组播(例如,SC-PTM)、广播(例如,SFN)、混合模式(例如,WTRU可接收单播和组播和/或广播)等等。传输模式在范围和适用性方面是非限制性的(例如,传输模式可适用于类似的无线发送方法)。一个或多个非单播模式可包括仅接收模式(ROM)。传输模式可包括侧链路接口(例如,用于直接WTRU到WTRU通信)。传输模式可用于发送具有不同服务质量(QoS)的服务,例如增强的移动宽带(eMBB)、超高可靠性低延迟通信(URLLC)和/或MBS服务。传输模式可用于向一个接收器(例如,经由单播)或多个接收器(例如,经由组播、组播或广播)发送服务。针对多个用户的服务的示例可包括车辆到万物(V2X)服务(例如,组播)和MBS服务(例如,组播、广播)。MBS模式和/或MBS传输模式可(例如,用于)指WTRU的传输模式。
WTRU可被配置用于MBMS数据服务的发送(例如,传输)。WTRU可被配置为以传输模式操作以交换MBS相关数据和/或控制信息(例如,和/或其他数据和/或控制信息)。WTRU可(例如,进一步)被配置用于MBS服务的发送。例如,WTRU可被配置用于映射用于所配置的传输方法的数据承载和/或信令承载以交换MBS相关数据(例如,用于MBS的L2承载配置)。在一些示例中,WTRU可被配置用于混合模式传输(例如,单播和组播),其中使用(例如,仅使用)组播和/或广播传输来执行MBS数据的发送,且/或其中其他服务通过单播(例如,eMBB、URLLC)发送。在一些示例中,WTRU可被配置用于混合模式传输(例如,单播和组播),其中使用例如单播(例如,被称为点对点(PTP)传输/模式)和/或组播传输(例如,被称为点对多点(PTP)传输/模式)来执行MBS数据的发送,而不管WTRU对于其他服务诸如单播传输(例如,eMBB、URLLC)是否是活动的。
MBMS(例如,在NR中)可在多种部署中利用,并且可支持以下中的一者或多者:V2X;侧链路;公共安全;IoT(例如,窄带(NB)IoT和增强型机器类型通信(eMTC))设备(例如,用于软件更新);智能电网/公用事业;5G中的电视(TV)视频和无线电服务(例如,线性电视、实况、智能电视、受监管的机顶盒(OTT)内容分发、无线电服务),其可包括视频分发、经由单播媒体流的OTT服务的并发消费中的大峰值和/或沉浸式六自由度(6DoF)体积流传输);推送服务(例如,广告和天气广播);用于工厂自动化的以太网广播/组播;扩展现实、团体游戏;等。
可提供各种MBS相关的使能能力(例如,使能器)(例如,用于NR)。服务切换可在PTP、PTM和混合模式操作之间发生。服务变化可例如由于以下中的一者或多者而被触发:WTRU移动性、用户活动、WTRU密度或链路条件。WTRU移动性可包括用于模式切换的不同场景,模式切换诸如以下中的一者或多者:PTP到PTP;PTP到PTM;PTP到PTM+PTP;PTM到PTP;PTM到PTM;PTM到PTM+PTP;PTM+PTP到PTP;PTM+PTP到PTM;和/或PTM+PTP到PTM+PTP。WTRU移动性可包括不同的切换场景,诸如以下中的一者或多者:eNB内/MBS内区域小区间移动性;eNB间/MBS内区域小区间移动性;MBS间区域移动性;具有传输模式变化的RAT间移动性;或没有传输模式变化的RAT间移动性。所触发的服务变化(例如,由于WTRU移动性)可在具有或没有服务连续性的情况下发生,其可以为有损的或无损的。WTRU移动性问题可包括启用空闲/非活动WTRU的服务连续性。
用户活动(例如,作为服务变化的触发器)可包括例如以下中的一者或多者:用户对媒体流的控制(例如,用户可与回放功能交互并且对媒体流具有某种控制);或最终用户经由上行链路信道与实况或共享内容交互以进行用户参与和/或货币化(例如,视频分发、广告和/或公共安全)。
WTRU密度(例如,作为服务变化的触发器)可包括以下中的一者或多者:获取和接收MBS服务的用户数量的变化(例如,可满足阈值,在这种情况下,可通过改变MBS传输模式来提高系统效率);或针对区域内的V2X接近度/WTRU范围。链路条件(例如,作为服务变化的触发器)可包括以下:用于WTRU的组播和单播传输之间的资源的不同特性(例如,与第二资源相比,第一资源的质量可变得更低)。
可实现传输资源和/或发送区域的动态控制(例如,在NR中)。传输资源和/或发送区域的动态控制可基于以下中的一者或多者(例如,由以下中的一者或多者促动):在一天的特定时间发生区域性TV/无线电服务;按需MBS服务的波动/变化(例如,在支持上行链路数据或在支持更高可靠性方面的服务中);或用于群组通信和实况视频的目标区域可基于特定区域或地点或由事件触发,其中区域可改变(例如,由于感兴趣用户的移动性)。MBS区域的变化可比调整单播(UC)/组播广播(MB)/广播(BC)之间的资源更慢(例如,在时间尺度方面)。
可实现/改善传输的可靠性(例如,在NR中)。MBS服务可支持应用程序级重发。应用程序级方法可具有可靠性和效率折衷,这在频谱效率方面可能是代价高昂的。应用程序级方法可能不满足较低的延迟要求。不同MBS服务可具有不同延迟、效率和/或可靠性要求。在一些示例中,MBS服务可能具有严重的多普勒劣化,这可能使得难以在高速环境中使用MBS服务。在示例中,电网分布(例如,在NR中)可被实现为具有5ms的延迟及10-6的误包率。V2X(例如,在NR中)可被实现为针对WTRU与路侧单元(RSU)之间的信息共享具有至多20ms的延迟。任务关键型即按即说(MCPTT)(例如,在NR中)可被实现为具有至多300ms的延迟(例如,针对口到耳延迟)。
可部署为MBS接收器(例如,在NR中)的设备的范围可从只读模式(ROM)WTRU(例如,可能不能够和/或可能不被期望执行用于获取和接收MBS传输的上行链路传输的设备)到实现更复杂的功能性(例如,包括利用上行链路传输的功能和过程)的WTRU。一些(例如,更复杂的)WTRU可支持载波聚合、双重连接、同时激活多个无线电接口和/或(例如,同时)在不同频率范围(例如,FR1和FR2)上操作。
无线电链路控制(RLC)协议可包括位于分组数据会聚协议(PDCP)与介质访问控制(MAC)协议之间的层2协议,并且可促进这两层之间的数据的传送。RLC协议功能性(例如,任务)可包括以下中的一者或多者:以多种(例如,三种)模式(例如,确认模式(AM)、非确认模式(UM)和透明模式(TM))中的一种模式来传送上层协议数据单元(PDU);错误校正(例如,通过自动重复请求(ARQ),其可用于(例如,仅用于)AM数据传送);RLC服务数据单元(SDU)的分段和/或重组(例如,用于UM和/或AM);RLC数据PDU的重新分段(例如,用于AM);重复检测(例如,用于AM);RLC SDU移除(例如,用于UM和AM);RLC重新建立;和/或协议错误检测(例如,用于AM)。
复用数据(例如,在LTE中)可被实现多次(例如,两次),例如,通过将来自逻辑信道的RLC SDU级联到RLC层中的RLC PDU中,以及通过将来自不同逻辑信道的RLC PDU复用到MAC层中的MAC PDU中。MAC PDU可承载关于RLC和MAC(子)标头中的相同数据字段的信息。RLC级联可包括来自MAC层调度的输入(例如,可使用与MAC的交互针对每个UL授权来构造具有正确大小的RLC PDU)。例如,响应于接收到调度决策(例如,上行链路授权大小)以及在MAC层中执行LCP过程,可执行RLC级联(例如,在一个调度循环内)。RLC级联过程可暗示RLC和MAC层在没有授权信息的情况下(例如,在接收到授权信息之前)可不执行预处理。不能在没有授权信息的情况下(例如,在接收到授权信息之前)进行预处理可能会限制非常高的数据速率和低延迟要求(例如,在NR中)。在一些示例中,级联过程可不在NR RLC层中发生。响应于(例如,立即响应于)标头添加,RLC可向MAC发送PDCP分组。MAC层可级联/复用来自多个RLC PDU的数据,并且可例如响应于MAC层接收到调度授权和传输块大小(TBS)指示而通过空中接口发送该数据。
RLC(例如,LTE RLC)可具有重排序功能性。重排序可由可具有重排序功能性的PDCP层执行(例如,在NR中)。由PDCP层执行重排序可改善延迟,例如,向PDCP层发送无序RLC分组可允许更早地对无序分组进行译解。
RLC UM操作可使用状态变量、常数和定时器。发送UM RLC实体(例如,每个发送UMRLC实体)可保持以下状态变量:TX_Next(例如,UM发送状态变量)。TX_Next状态变量可保存要分配给下一(例如,新)生成的具有分段的非确认模式数据(UMD)PDU的SN的值。TX_Next可被初始设定为0。TX_Next可例如响应于UM RLC实体向下层提交UMD PDU而被更新,UMD PDU可包括RLC SDU的最后分段。
接收UM RLC实体(例如,每个接收UM RLC实体)可保持以下状态变量中的一者或多者:RX_Next_Reassembly(例如,UM接收状态变量);RX_Timer_Trigger(例如,UM t-Reassembly状态变量);或RX_Next_Highest(例如,UM接收状态变量)。
RX_Next_Reassembly(例如,UM接收状态变量)可保存可(例如,仍)考虑用于重组的最早SN的值。在一些示例中,RX_Next_Reassembly可被初始设定为0。在一些示例中(例如,针对NR侧链路通信的组播和广播),RX_Next_Reassembly可被初始设定为包括SN的第一所接收的UMD PDU的SN。具有较低SN的PDU可被考虑为已接收和/或已丢失。
RX_Timer_Trigger(例如,UM t-Reassembly状态变量)可保持在触发(例如,启动)本文所述的t-Reassembly的SN之后的SN的值。
RX_Next_Highest(例如,UM接收状态变量)可保持在所接收的UMD PDU当中具有最高SN的UMD PDU的SN之后的SN的值。在一些示例中,RX_Next_Highest可被初始设定为0。在一些示例中(例如,针对NR侧链路通信的组播和广播),RX_Next_Highest可被初始设定为包括SN的第一所接收的UMD PDU的SN。
UM_Window_Size可以为常数。UM_Window_Size可由接收UM RLC实体用于定义可被接收的UMD SDU的SN,例如,而不引起接收窗口的提前。在一些示例中,例如,在配置了6位SN的情形下,UM_Window_Size可等于32。在一些示例中,例如,在配置了12位SN的情形下,UM_Window_Size可等于2048。RLC接收窗口可被考虑为RLC_Next_Reassembly和RLC_Next_Reassabmly+UM_Window_Size之间的SN。RX_Next_Reassembly可被考虑为RLC接收窗口的左边缘、起始边缘或下边缘。RX_Next_Reassembly+UM_Window_Size可被考虑为RLC接收窗口的右边缘、结束边缘或上边缘。
t-Reassembly可以为定时器。t-Reassembly可由AM RLC实体的接收侧和接收UMRLC实体用于例如检测下层处的RLC PDU的损失。例如,在第一t-Reassembly正在运行的情形下,第二t-Reassembly可不启动。在一些示例中,每个RLC实体可一次(例如,给定时间)运行仅一个t-Reassembly。
可执行接收操作。接收UM RLC实体可例如根据状态变量RX_Next_Highest来保持重组窗口。例如,在(RX_Next_Highest-UM_Window_Size)≤SN<RX_Next_Highest的情形下,SN可落在重组窗口内。例如,在其他情形下,SN可能落在重组窗口之外。
UM RLC接收实体可(例如,在从下层接收到UMD PDU的情形下)在移除RLC标头之后将所接收的UMD PDU发送到上层,移除所接收的UMD PDU,或将所接收的UMD PDU放置在接收缓冲器中。例如,在从下层接收到UMD PDU并且所接收的UMD PDU被放置在接收缓冲器中的情形下,UM RLC接收实体可更新状态变量,重组RLC SDU并将其发送到上层,并且启动/停止t-Reassembly(例如,根据需要)。例如,在t-Reassembly超时的情形下,UM RLC接收实体可更新状态变量,移除RLCSDU分段,并且启动t-Reassembly(例如,根据需要)。
UM RLC实体可从下层接收UMD PDU。例如,在UMD PDU标头不包括SN的情形下,接收UM RLC实体可(例如,在从下层接收到UMDPDU的情形下)移除RLC标头并且将RLC SDU发送到上层。例如,在(RX_Next_Highest-UM_Window_Size)≤SN<RX_Next_Reassembly的情形下,接收UM RLC实体可移除所接收的UMD PDU。例如,在其他情形下,接收UM RLC实体可将所接收的UMD PDU放置在接收缓冲器中。
UMD PDU可被放置在接收缓冲器中。例如,在接收到具有SN=x的字节片段(例如,所有字节片段)的情形下,接收UM RLC实体可(例如,基于具有SN=x的UMD PDU被放置在接收缓冲器中)从具有SN=x的字节片段(例如,所有字节片段)重组RLC SDU,移除RLC标头,并且将重组的RLC SDU发送到上层。例如,在x=RX_Next_Reassembly的情形下,接收UM RLC实体可(例如,基于具有SN=x的UMD PDU被放置在接收缓冲器中)将RX_Next_Reassembly更新为大于(例如,>)尚未被重组并被发送到上层的(例如,当前)RX_Next_Reassembly的第一SN的SN。
例如,在x落在重组窗口之外的情形下,接收UM RLC实体可(例如,基于具有SN=x的UMD PDU被放置在接收缓冲器中)将RX_Next_Highest更新为x+1且/或移除具有落在重组窗口之外的SN的UMD PDU(例如,任何UMD PDU)。例如,在RX_Next_Reassembly落在重组窗口之外的情形下,接收UM RLC实体可(例如,基于具有SN=x的UMD PDU被放置在接收缓冲器中)将RX_Next_Reassembly设定为大于或等于(例如,≥)尚未被重组并被发送到上层的(RX_Next_Highest-UM_Window_Size)的第一SN的SN。
例如,在t-Reassembly正在运行并且以下中的一者或多者为真的情形下,接收UMRLC实体可(例如,基于具有SN=x的UMD PDU被放置在接收缓冲器中)停止并重置t-Reassembly:RX_Timer_Trigger≤RX_Next_Reassembly;RX_Timer_Trigger落在重组窗口之外,并且RX_Timer_Trigger不等于RX_Next_Highest;或RX_Next_Highest=RX_Next_Reassembly+1,并且在RLC SDU的所接收的片段(例如,所有所接收的片段)的最后字节之前,不存在与SN=RX_Next_Reassembly相关联的RLC SDU的缺失字节片段。
例如,在t-Reassembly没有运行(包括t-Reassembly如本文所述停止的情况)并且以下中的一者或多者为真的情形下,接收UM RLC实体可(例如,基于具有SN=x的UMD PDU被放置在接收缓冲器中)启动t-Reassembly且/或将RX_Timer_Trigger设定为RX_Next_Highest:RX_Next_Highest>RX_Next_Reassembly+1;或RX_Next_Highest=RX_Next_Reassembly+1,并且在该RLC SDU的所接收的片段(例如,所有所接收的片段)的最后字节之前,存在与SN=RX_Next_Reassembly相关联的RLC SDU的至少一个缺失字节片段。
定时器t-Reassembly可超时。接收UM RLC实体可(例如,基于t-Reassembly期满)将RX_Next_Reassembly更新为大于或等于(例如,≥)尚未被重组的RX_Timer_Trigger的第一SN的SN;或移除具有小于(例如,<)更新的RX_Next_Reassemble的SN的片段(例如,所有片段)。接收UM RLC实体可(例如,基于t-Reassembly期满)启动t-Reassembly;和/或将RX_Timer_Trigger设定为RX_Next_Highest,例如,在RX_Next_Highest>RX_Next_Reassembly+1的情形下;和/或在RX_Next_Highest=RX_Next_Reassembly+1,并且在RLC SDU的所接收的片段(例如,所有所接收的片段)的最后字节之前,存在与SN=RX_Next_Reassembly相关联的RLC SDU的至少一个缺失字节片段的情形下。
在MBS的示例中,WTRU可在会话已经开始的情况下加入组播,或WTRU可以PTP模式开始会话并且可(例如,稍后)切换到PTM模式,例如,由于无线电条件的改善,这可使得WTRU能够经由用于PTM模式的宽波束接收组播会话;由于到支持PTM模式(例如,仅PTM模式)的小区的移动性;等。
例如,在UM RLC实体被建立的情形下,控制RLC接收窗口的状态变量(例如,RX_Next_Reassembly和/或RX_Next_Highest)可被初始化(例如,为0)。例如,在NR侧链路组播/广播通信的情况下(例如,因为WTRU可在会话已经开始之后加入组播/广播),控制RLC接收窗口的状态变量可被设定为第一所接收的UMD PDU的SN(例如,在第一所接收的UMD PDU包括SN的情形下)。
在PTM模式的示例中,WTRU可从PTP模式切换到PTM模式,或可以PTM模式加入MBS会话。响应于切换到PTM模式(例如,PTM RLC模式),状态变量可被初始化为第一所接收的PDU的SN。这种方法可能不适用于例如无损切换到PTM模式。例如,可接收的第一RLC PDU(例如,在切换到PTM模式或者在会话已经开始之后以PTM模式加入MBS会话的情形下)可以为无序的,例如具有为x的SN。例如,在RLC接收窗口的起始边缘被初始化为第一所接收的PDU的SN,并且缺失的RLC分组(例如,稍后)被无序地接收(例如,具有SN x-n的RLC分组)的情形下,RLC接收器可移除所接收的第一RLC PDU。
RLC UM操作可被改进,例如用于实现在MBS中从PTP模式无损切换到PTM模式操作。
通过基于MBS服务的传输和/或发送的示例来描述用于MBS操作模式的无损切换的方法。本文所述的方法不限于本文所述的示例(例如,系统和服务)。本文所述的方法可适用于多于一种类型(例如,任何类型)的传输和/或服务,包括但不限于V2X、扩展现实、游戏、IoT/MTC、工业用例等。本文所述的方法可单独地或组合地实现(例如,在任何MBS系统内)。
WTRU(例如,被配置用于接收MBS的数据)(例如,参见图3中的304)可被配置带有数据无线电承载(DRB)(例如,组播无线电承载(MRB)),其可专用于MBS接收(例如,参见图3中的步骤308)。MBS服务和MRB可被考虑为等效的(例如,当从L2和L3的角度讨论时)。MBS服务可被配置带有零个、一个或多个MRB。
多个(例如,若干)QoS流可在MRB(例如,类似于DRB(例如,正常DRB))内复用。
图2示出了协议架构的示例(也参见图3中的302)。如图2所示(以及在图3中的步骤308处),MRB可采用类分离承载的配置(例如,具有PDCP实体和多个(例如,两个)RLC实体。第一RLC实体可用于PTM操作,并且第二RLC实体可用于PTP操作。
小区无线电网络标识(C-RNTI)可(例如,唯一地)识别小区内的WTRU的RRC连接。组RNTI(G-RNTI)可识别参与组播的一组WTRU。WTRU(例如,根据图2所示的示例性架构配置带有MRB)可在C-RNTI和/或G-RNTI上监测针对MRB的DL调度。在本文所述的方法中,可假设与PTM相关联的RLC实体以非确认模式(UM)操作,并且与PTP相关联的RLC实体以确认模式(AM)操作。本文所公开的方法可应用于其他操作模式(例如,以透明模式(TM)或AM操作的PTM,或以TM或UM操作的PTP)。
本文所述的方法可适用于从PTP到PTM的切换。本文所述的方法可适用于其他类型的切换(例如,从PTM到PTP)。在本文所述的示例中,术语左边缘、起始边缘和下边缘可互换地使用以表示RLC接收窗口的起始SN。在本文所述的示例中,术语右边缘、结束边缘和上边缘可互换地使用以表示RLC接收窗口的结束SN。在一些示例(例如,传统操作)中,可假设具有在RLC接收窗口之外的SN的PDU可被接收器丢弃。
可触发MBS模式切换(例如,参见图3中的312和318)。在一些示例中,WTRU可发送关于需要从PTM切换到PTP的信息(例如,参见图3中的312)。该信息可在RRC消息(例如,MBSModeSwitchRequest消息)中发送,或信息元素(IE)可被包括在RRC消息中(例如,WTRUAssistanceInformation消息中的IE)。WTRU可在请求(例如,MBSModeSwitchRequest消息或WTRUAssistanceInformation消息中的IE)中包括针对相关联的MRB(例如,相关的MRB)的接收器状态(例如,在PDCP和/或RLC实体中)(例如,参见图3中的314)。在一些示例中,WTRU可发送切换用于多个MRB的操作模式的请求。在一些示例中,WTRU可在请求中包括对应于MRB(例如,每个MRB)的状态报告(例如,PDCP状态报告、RLC状态报告)(例如,参见图3中的步骤)。
在一些示例(例如,传统操作)中,可例如在PDCP重新建立、PDCP数据恢复和/或双活动协议栈(DAPS)切换期间(例如,在上行链路数据切换的情况下或在DAPS被释放的情况下),针对以AM操作的DRB发送PDCP状态PDU。可例如在(例如,仅在)DAPS上行链路数据切换期间,发送PDCP状态PDU(例如,在UM DRB的情况下)。在一些示例中,WTRU可在不满足用于PDCP状态报告的传统条件的情况下(例如,在WTRU检测到PTM操作正在劣化/满足阈值条件的情形下,例如,如基于频繁(例如,高于阈值)的HARQ失败/重传和/或服务小区的信号水平下降到低于特定阈值等所检测到的)(例如,参见图3中的310)发送针对MRB的PDCP状态PDU。网络(例如,参见图3中的306)可将(例如,在不满足传统触发条件的情况下发送的)PDCP状态报告解释为例如WTRU隐式地请求切换MBS模式(例如,参见图3中的313)。在一些示例中,例如,基于(例如,仅基于)WTRU检测到PTM操作正在劣化/满足本文所述的一个或多个阈值条件,WTRU可确定从PTM模式切换到PTP模式而不向网络(例如,图3中的306)发送请求(例如,图3中的312可不被执行)。
在一些示例中,可在PDCP状态报告中实现/利用标记/字段来(例如,显式地)指示切换MBS模式的请求。
在一些示例中,可经由RLC控制PDU(例如,RLC状态PDU)发送切换请求。在一些示例(例如,传统RLC)中,状态报告可适用于(例如,仅适用于)AM模式。在一些示例中,可针对UM模式实现/利用状态报告。例如,在WTRU确定从PTM切换到PTP模式的情形下,可触发状态报告(例如,用于UM模式)。
在一些示例中,WTRU可使用MAC控制元件(例如,新的MAC控制元件)或现有MAC控制元件内的信息元素(例如,新的信息元素)来请求MBS模式的切换。
在一些示例中,WTRU可发送请求从PTP到PTM的切换的切换请求(例如,参见图3中的318)。例如,在以下条件中的一者或多者为真(例如,参见图3中的316)的情形下,WTRU可请求到PTM模式的切换:在可由网络配置的时间量(例如,阈值时间量)内,不存在HARQ重传;或在服务小区的信号水平高于阈值(例如,可配置的阈值)的情形下。例如,在时间窗口内与MBS相关联的传输块的初始传输的成功解码的次数高于阈值的情形下,不存在HARQ重传的该时间量(例如,基于阈值、标准和/或其他触发器)可能发生。在一些示例中,该标准可以为在时间窗口内发送的ACK的数量是否高于阈值或在时间窗口内发送的NACK的数量是否低于阈值。在一些示例中,例如,基于(例如,仅基于)WTRU检测到PTM操作是可靠的/满足本文所述的一个或多个条件,WTRU可确定从PTP模式切换到PTM模式而不向网络(例如,图3中的306)发送请求(例如,图3中的318可不被执行)。
可实现本文所述的示例及其变型形式。在示例中,当WTRU的MBS以PTM模式操作时指示的接收可被网络解释为WTRU请求切换到PTP。当WTRU的MBS以PTP操作时指示的接收可被解释为切换到PTM的请求。在一些示例中,可(例如,显式地)指示关于切换的信息。例如,在布尔字段/标记的值为0的情形下,可包括该字段/标记以指示从PTP切换到PTM,或在布尔字段/标记的值为1的情形下,可包括该字段/标记以指示从PTM切换到PTP,或反之亦然。
切换(例如,MBS模式切换)可以为隐式的(参见例如图3中的313和319)。在一些示例中(例如,参见图3中的319),例如,响应于例如经由与PTM模式相关联的RLC实体接收到RLC PDU,以PTP操作的WTRU可确定(例如,考虑或假设)MBS模式从PTP切换到PTM。在一些示例中(例如,参见图3中的313),例如,响应于例如经由与PTP模式相关联的RLC实体接收到RLC PDU,以PTM操作的WTRU可确定(例如,考虑或假设)MBS模式从PTM切换到PTP。MBS模式切换可影响(例如,仅影响)与所接收的PDU相关联的MRB(例如,所接收的PDU所属的MRB),并且用于其他MRB的操作模式可不受影响(例如,在以PTP模式操作的情形下,其他MRB可保持在PTP模式中,或在以PTM模式操作的情形下,其他MRB可保持在PTM模式中)。MBS模式切换可影响多个MRB(例如,所有MRB)。MBS模式切换可影响与所接收的PDU所属的MRB相同的G-RNTI相关联的MRB(例如,所有MRB)。
一些示例可基于定时器。在一些示例中,WTRU可被配置带有时间段(例如,定时器,其可以为t_switching定时器)。该时间段(例如,定时器)可例如响应于经由与PTM模式相关联的RLC实体接收到RLC PDU(例如,第一RLC PDU)而开始。例如,在该时间段期间(例如,在定时器正在运行的情形下),可将具有比第一所接收的RLC PDU的SN低的SN的所接收的PDU(例如,立即)转发到PDCP层(例如,而不是将其移除)。例如,在该时间段已经过去(例如,定时器超时)的情形下,PTM RLC可以UM模式(例如,正常UM模式)操作(例如,开始操作),并且可移除在接收窗口之外的PDU。
可提供(例如,配置、实现、执行)扩展的窗口模式。WTRU可被配置为以扩展的窗口模式操作/在扩展的窗口模式中操作。WTRU(例如,以扩展的窗口模式操作)可保持比正常操作中(例如,正常模式中)的接收窗口大的接收窗口。正常模式和扩展的窗口模式可指第一模式和第二模式,并且可与第一模式和第二模式可互换地使用,或反之亦然。扩展的窗口可例如通过使用一个或多个偏置量值(例如,预先配置的值,诸如接收窗口大小的一半)来确定(例如,参见图3中的320)。例如,可将第一偏置量应用于窗口的左边缘并且可将第二偏置量应用于窗口的右边缘。可将接收窗口大小扩展例如第一偏置量+第二偏置量。例如,在所接收的PDU的SN在扩展的窗口内的情形下,WTRU可被配置为将所接收的PDU放置在接收缓冲器中。例如,在所接收的PDU的SN不在扩展的窗口内的情形下,WTRU可被配置为移除该PDU。
例如,基于以下条件中的一者或多者,WTRU可被配置为以扩展的窗口模式操作(例如,应用扩展的窗口模式)(例如,参见图3中的320):在PTP到PTM切换被触发的情形下(例如,参见图3中的318);在时间段期间(例如,在定时器(例如,t_switching定时器)正在运行的情形下);在MBS承载与多个(例如,两个)配置的和/或激活的RLC实体(例如,PTM RLC和PTP RLC)相关联的情形下;和/或响应于来自网络(例如,图3中的306)的指示(例如,显式指示)(例如,参见图3中的319),该指示可经由DCI、MAC CE和/或RRC。指示(例如,显式指示)可激活或去激活操作。
可提供(例如,配置、实现、执行)无窗口RLC模式。在一些示例中,WTRU可被配置为执行针对MBS服务的数据接收,例如以RLC模式使用RLC实体。例如,RLC模式可以为无窗口模式。无窗口RLC实体可执行以下中的一者或多者:从所接收的UMD PDU重组RLC SDU或将RLCSDU发送到上层(例如,响应于RLC SDU可用)。例如,即使PDU在RLC接收窗口之外,以无窗口模式操作的RLC实体也可将RLC SDU发送到高层/上层。在一些示例中,无窗口模式可被实现(例如,建模)为RLC功能,该RLC功能表现得类似用于将PDU发送到高层的透明模式和/或用于处理重组和PDU处理的UM模式。
在一些示例中,可通过禁用PDU移除功能来实现无窗口模式。
在一些示例中,可通过禁用与UM RLC实体相关联的RLC窗口来实现(例如,建模)无窗口RLC模式。例如,可通过以下中的一者或多者来触发禁用:PTP到PTM切换、网络命令(例如,显式网络命令)、响应于基于经由GRNTI的调度而发送的PDU的接收等。
WTRU可被配置为例如在时间段(例如,在定时器(其可以为t_switching定时器)正在运行的情形下)期间应用无窗口RLC模式。例如,在MBS承载被配置的情形下,WTRU可被配置为应用无窗口RLC模式。例如,在MBS承载与多个(例如,两个)配置的和/或激活的RLC实体(例如,PTM RLC和PTP RLC)相关联的情形下,WTRU可应用无窗口模式。
无窗口操作可能导致重复的PDU被发送到PDCP层。重复的PDU可例如经由重复检测功能在PDCP层处被移除。例如,响应于来自网络的指示(例如,显式指示),该指示可经由DCI、MAC CE或RRC,WTRU可应用无窗口模式。指示(例如,显式指示)可激活或去激活操作。
可提供(例如,配置、实现、执行)小区级切换。小区级切换可包括将MBS会话中涉及的WTRU(例如,所有WTRU)从PTM切换到PTP,这可同时发生。可在RLC标头中提供标记/IE/指示标识(例如,指示小区级切换)。标记/IE/指示标识(例如,指示小区级切换)可被包括在例如在小区级切换到PTM操作之后从网络发送的RLC分组(例如,第一RLC分组)上。WTRU可接收包括RLC标头的分组。例如,响应于接收到包括RLC标头的分组,WTRU可将所接收的分组的SN设定为用于PTM RLC的接收窗口的开始。在包括该指示标识的PDU之前接收的PDU(例如,在有的情形下)可被转发到PDCP层。
在一些示例中,包括该指示标识(例如,指示小区级切换)的RLC PDU可能丢失(例如,HARQ重传可能无法取回包括该RLC PDU的MAC PDU)。例如,可实现时间段(例如,定时器)以避免WTRU等待具有该指示标识的可能无法到达的PDU的情况。例如,WTRU可响应于第一RLC PDU的接收而启动定时器(例如,t_switching定时器),例如,在切换到PTM模式之后。WTRU可保存第一所接收的RLC PDU的SN(例如,first_SN)。在该时间段期间(例如,在定时器正在运行的情形下),在接收到具有该指示标识的PDU的情形下,WTRU可向PDU的SN启动UMRLC状态变量,可停止定时器,且/或将PDU传递到PDCP层并且开始以正常UM模式操作。在该时间段期间(例如,在定时器正在运行的情形下),在没有接收到具有该指示标识的PDU的情形下,WTRU可将没有该指示标识的PDU传递到PDCP层。例如,当在该时间段之外(例如,定时器超时)的情形下,WTRU可向first_SN发起UM RLC状态变量且/或可以正常UM模式操作(例如,开始操作)。
在一些示例中,网络可向小区内的一个或多个WTRU(例如,所有WTRU)指示(例如,经由系统信息中的指示)将MBS操作从PTM切换到PTP(或反之亦然)。
可提供(例如,配置、实现、执行)显式切换(例如,参见图3中的313和319)。显式切换可例如经由RRC重新配置实现。在一些示例中,WTRU可响应于接收到RRC重新配置消息而切换到PTM模式。RRC重新配置消息可包括关于UM状态变量的信息,诸如RX_next_reassambly和/或RX_next_highest。WTRU可例如基于RRC重新配置消息来启动PTM RLC实体以切换到PTM模式。RRC重新配置消息可包括关于多个MRB的信息。
在一些示例中,信息元素(IE)可被包括在RLC UM配置中。IE可指示(例如,指定)可用于UM状态变量的初始SN,例如,如表1中的示例所示。
RRC重新配置消息可包括cellGroupConfig,其可包括要添加在rlc-BearerToAddModList中的RLC承载(例如,rlc-Bearers)的列表。rlc-BearerConfig(例如,每个rlc-BearerConfig)可包括RLC实体的配置(例如,除了将RLC实体与PDCP实体和MAC逻辑信道链接的其他相关配置之外)。
CellGroupConfig IE可用于配置主小区组(MCG)或辅小区组(SCG)。小区组可包括例如MAC实体(例如,一个MAC实体)、一组逻辑信道(例如,具有相关联的RLC实体)、主小区(例如,主或辅小区组的主小区(SpCell))和/或一个或多个辅小区(SCell)。表1示出了小区组配置IE的示例。
表1—CellGroupConfig信息元素的示例
RLC-BearerConfig IE可用于配置RLC实体、MAC中的对应逻辑信道和/或到PDCP实体(例如,所服务的无线电承载)的链接。表2示出了RLC承载配置IE的示例。
表2—RLC-BearerConfig信息元素的示例
RLC-Config IE可用于指定SRB和/或DRB的RLC配置。表3示出了RLC配置IE的示例。
表3—RLC-Config信息元素的示例
在一些示例中,WTRU可例如响应于接收到RRC重新配置消息而切换到PTP模式。
在一些示例中,WTRU可接收MBS配置(例如,显式MBS配置),其可与移动性事件期间的目标小区相关联。例如,MBS配置可与具有同步的RRC重新配置、有条件的RRC重新配置等中的一者或多者相关联。例如,WTRU可被配置带有可与源小区不同的目标小区的MBS模式。例如,基于目标小区相对于源小区的MBS模式配置,WTRU可执行一个或多个动作(例如,如本文所述)。
例如,基于源中的MBS模式配置与目标中的MBS模式配置之间的关系(例如,当将一者与另一者进行比较时),WTRU可被配置带有行为/动作(例如,附加的行为/动作)。例如,在从源中的PTM模式切换到目标中的PTP模式的情况下,WTRU可被配置为向目标发送PDCP状态报告。例如,在被配置带有目标中的PTP模式的情形下(例如,不管源中的MBS模式),WTRU可被配置为向目标发送PDCP状态报告。例如,基于用于MBS模式切换的一个或多个条件(例如,如本文所述),WTRU可被配置为向目标发送MBS模式切换的指示。
可提供(例如,配置、实现、执行)经由MAC控制元件的显式切换。在一些示例中,例如,在网络确定向WTRU指示(例如,想要WTRU)将MBS操作从PTP模式切换到PTM模式的情形下,网络可向WTRU发送MAC CE。MAC CE配置可包括以下中的一者或多者:关于MAC CE涉及哪个MRB的信息(例如,承载ID、逻辑信道ID、G-RNTI等);或关于要用于初始化PTM RLC状态变量的SN的信息。
在一些示例中,MAC CE可包括关于一个或多个(例如,多个、若干)MRB的信息(例如,包括例如如本文所述的用于多个MRB中的每个MRB的信息的列表)。
在一些示例中,MAC CE可包括与MBS服务/会话相关联的身份标识。例如,MAC CE可包括与MBS服务相关联的临时移动组身份标识(TMGI)。例如,MAC CE可包括与MBS服务相关联的G-RNTI。
在一些示例中,没有关于MRB的信息的MAC CE可被考虑为(例如,被解释为)该信息适用于多个MRB(例如,所有MRB)和/或MBS服务(所有MBS服务)的指示。
可提供(例如,配置、实现、执行)经由DCI的显式切换。在一些示例中,例如,在网络确定向WTRU指示(例如,想要WTRU)将MBS操作从PTP模式切换到PTM模式的情形下,网络可向WTRU发送DCI。DCI配置可包括以下中的一者或多者:关于DCI涉及哪个MRB的信息(例如,承载ID、逻辑信道ID、G-RNTI等);或关于要用于初始化PTM RLC状态变量的SN的信息。关于DCI涉及哪个MRB的信息可以为隐式的或显式的。例如,在隐式信息的情况下,PDCCH传输中的DCI的接收可与G-RNTI相关联,并且相关联的G-RNTI可识别相关联的MRB。
可提供(例如,配置、实现、执行)对MBS模式切换的PDCCH传输监测行为。在一些示例中,例如,响应于指示从PTM到PTP的切换的模式切换命令(例如,根据本文所述的方法,诸如RRC重新配置消息、MACCE、DCI等)的接收或响应于发送指示从PTM切换到PTP的请求的MBS模式切换请求,WTRU可开始针对C-RNTI监测PDCCH中的传输。
WTRU可应用与C-RNTI相关联的控制资源集(CORESET)和/或搜索空间配置(例如,在被配置的情形下)。
在一些示例中,例如,响应于指示从PTM到PTP的切换的模式切换命令(例如,根据本文所述的方法,诸如RRC重新配置消息、MAC CE、DCI等)的接收或响应于发送指示从PTM切换到PTP的请求的MBS模式切换请求,WTRU可停止针对与MRB相关联的G-RNTI监测PDCCH中的传输。
在一些示例中,例如,响应于指示从PTP到PTM的切换的模式切换命令(例如,根据本文所述的方法,诸如RRC重新配置消息、MAC CE、DCI等)的接收或响应于发送指示从PTP切换到PTM的请求的MBS模式切换请求,WTRU可开始针对与MRB相关联的G-RNTI监测PDCCH中的传输。
WTRU可应用与G-RNTI相关联的CORESET和/或搜索空间配置信息(例如,在被配置的情形下)。WTRU可(例如,以其他方式)针对与C-RNTI相关联的CORESET和/或搜索空间配置信息中的G-RNTI监测PDCCH中的传输。
在一些示例中,例如,响应于指示从PTP到PTM的切换的模式切换命令(例如,根据本文所述的方法,诸如RRC重新配置消息、MAC CE、DCI等)的接收或响应于发送指示从PTP切换到PTM的请求的MBS模式切换请求,WTRU可停止针对C-RNTI监测PDCCH中的传输。
尽管上述特征和元素以特定组合进行了描述,但每个特征或元素可在不具有优选实施方案的其他特征和元素的情况下单独使用,或者在具有或不具有其他特征和元素的情况下以各种组合使用。
尽管本文所述的具体实施可考虑3GPP特定协议,但应当理解,本文所述的具体实施并不限于这种场景,并且可适用于其他无线系统。例如,尽管本文描述的解决方案考虑LTE、LTE-A、新空口(NR)或5G特定协议,但应当理解,本文所述的解决方案不限于此场景,并且也适用于其他无线系统。
上文所述的过程可在结合于计算机可读介质中以供计算机和/或处理器执行的计算机程序、软件和/或固件中实现。计算机可读介质的示例包括但不限于电子信号(通过有线或无线连接传输)和/或计算机可读存储介质。计算机可读存储介质的示例包含但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、高速缓存存储器、半导体存储器设备、磁介质(诸如但不限于内置硬盘和可移动磁盘)、磁光介质和光介质(诸如紧凑盘(CD)-ROM磁盘和/或数字通用光盘(DVD))。与软件相关联的处理器可用于实现用于WTRU、终端、基站、RNC和/或任何主计算机的射频收发器。
Claims (20)
1.一种无线发射接收单元WTRU,所述WTRU包括:
处理器,所述处理器被配置为:
接收从第一传输模式切换到第二传输模式的指示;
基于所述指示,从所述第一传输模式切换到所述第二传输模式;
通过扩展数据分组接收窗口的边界来扩展所述数据分组接收窗口,其中通过偏置量来扩展所述边界;
接收数据分组;以及
将所述数据分组添加到接收缓冲器用于进行处理,其中所述添加基于所述数据分组的SN在所扩展的数据分组接收窗口的扩展的部分内。
2.根据权利要求1所述的WTRU,其中,所述第一传输模式与第一RNTI相关联,并且所述第二传输模式与第二RNTI相关联,并且其中所述处理器进一步被配置为:
基于从所述第一传输模式到所述第二传输模式的所述切换,经由使用所述第二RNTI来监测PDCCH传输。
3.根据权利要求2所述的WTRU,其中,所述数据分组接收窗口的所述边界为所述数据分组接收窗口的起始边缘,并且其中扩展所述数据分组接收窗口的所述边界包括将所述起始边缘的第一值设定为比与所接收数据相关联的序列号SN低所述偏置量的第二值。
4.根据权利要求3所述的WTRU,其中,所扩展的数据分组接收窗口的所述扩展的部分为所扩展的数据分组接收窗口的一部分,所述一部分在所述第二值处开始并且在所述SN处结束。
5.根据权利要求1所述的WTRU,其中,所述第一传输模式是点对点PTP传输模式,并且所述第二传输模式是点对多点PTM传输模式。
6.根据权利要求5所述的WTRU,其中,所述指示基于经由与所述PTM传输模式相关联的无线电链路控制RLC实体接收到RLC数据分组,并且其中所述WTRU以所述PTP传输模式操作。
7.根据权利要求2所述的WTRU,其中,所述第一RNTI是C-RNTI,并且所述第二RNTI是G-RNTI。
8.根据权利要求1所述的WTRU,其中,所述数据分组接收窗口的所述边界基于状态变量被扩展,其中所述状态变量包括RX_next_reassambly和RX_next_highest。
9.根据权利要求8所述的WTRU,其中,在消息中接收RX_next_reassambly和RX_next_highest,并且其中经由所述消息指示从所述第一传输模式切换到所述第二传输模式的所述指示。
10.根据权利要求9所述的WTRU,其中,所述消息是RRC重配置消息。
11.一种由无线发射接收单元WTRU执行的方法,所述方法包括:
接收从第一传输模式切换到第二传输模式的指示;
基于所述指示,从所述第一传输模式切换到所述第二传输模式;
通过扩展数据分组接收窗口的边界来扩展所述数据分组接收窗口,其中通过偏置量来扩展所述边界;
接收数据分组;以及
将所述数据分组添加到接收缓冲器用于进行处理,其中所述添加基于所述数据分组的SN在所扩展的数据分组接收窗口的扩展的部分内。
12.根据权利要求11所述的方法,其中,所述第一传输模式与第一RNTI相关联,并且所述第二传输模式与第二RNTI相关联,并且其中所述方法还包括:
基于从所述第一传输模式到所述第二传输模式的所述切换,经由使用所述第二RNTI来监测PDCCH传输。
13.根据权利要求12所述的方法,其中,所述数据分组接收窗口的所述边界为所述数据分组接收窗口的起始边缘,并且其中扩展所述数据分组接收窗口的所述边界包括将所述起始边缘的第一值设定为比与所接收数据相关联的序列号SN低所述偏置量的第二值。
14.根据权利要求13所述的方法,其中,所扩展的数据分组接收窗口的所述扩展的部分为所扩展的数据分组接收窗口的一部分,所述一部分在所述第二值处开始并且在所述SN处结束。
15.根据权利要求11所述的方法,其中,所述第一传输模式是点对点PTP传输模式,并且所述第二传输模式是点对多点PTM传输模式。
16.根据权利要求15所述的方法,其中,所述指示基于经由与所述PTM传输模式相关联的无线电链路控制RLC实体接收到RLC数据分组,并且其中所述WTRU以所述PTP传输模式操作。
17.根据权利要求12所述的方法,其中,所述第一RNTI是C-RNTI,并且所述第二RNTI是G-RNTI。
18.根据权利要求11所述的方法,其中,所述数据分组接收窗口的所述边界基于状态变量被扩展,其中所述状态变量包括RX_next_reassambly和RX_next_highest。
19.根据权利要求18所述的方法,其中,在消息中接收RX_next_reassambly和RX_next_highest,并且其中经由所述消息指示从所述第一传输模式切换到所述第二传输模式的所述指示。
20.根据权利要求19所述的方法,其中,所述消息是RRC重配置消息。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163135930P | 2021-01-11 | 2021-01-11 | |
US63/135,930 | 2021-01-11 | ||
PCT/US2022/011941 WO2022150750A1 (en) | 2021-01-11 | 2022-01-11 | Lossless switching between ptp and ptm transmission and reception in mbs |
CN202280014171.2A CN116888989A (zh) | 2021-01-11 | 2022-01-11 | 在mbs中的ptp与ptm传输和接收之间的无损切换 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280014171.2A Division CN116888989A (zh) | 2021-01-11 | 2022-01-11 | 在mbs中的ptp与ptm传输和接收之间的无损切换 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118555546A true CN118555546A (zh) | 2024-08-27 |
Family
ID=80446375
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280014171.2A Pending CN116888989A (zh) | 2021-01-11 | 2022-01-11 | 在mbs中的ptp与ptm传输和接收之间的无损切换 |
CN202410554142.6A Pending CN118555546A (zh) | 2021-01-11 | 2022-01-11 | 无线发射接收单元wtru以及由wtru执行的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280014171.2A Pending CN116888989A (zh) | 2021-01-11 | 2022-01-11 | 在mbs中的ptp与ptm传输和接收之间的无损切换 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240015849A1 (zh) |
EP (1) | EP4275309A1 (zh) |
JP (1) | JP2024503378A (zh) |
CN (2) | CN116888989A (zh) |
WO (1) | WO2022150750A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220286907A1 (en) * | 2021-03-03 | 2022-09-08 | Qualcomm Incorporated | Recovery after packet data convergence protocol packet discard |
WO2022199698A1 (en) * | 2021-03-25 | 2022-09-29 | FG Innovation Company Limited | Method of triggering packet data convergence protocol status report and related device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8694869B2 (en) * | 2003-08-21 | 2014-04-08 | QUALCIMM Incorporated | Methods for forward error correction coding above a radio link control layer and related apparatus |
KR101098592B1 (ko) * | 2009-04-13 | 2011-12-23 | 엘지전자 주식회사 | 무선 통신 시스템상에서 점대다 서비스를 수신하는 방법 |
WO2022056746A1 (zh) * | 2020-09-16 | 2022-03-24 | 华为技术有限公司 | 一种通信方法及通信装置 |
-
2022
- 2022-01-11 JP JP2023541606A patent/JP2024503378A/ja active Pending
- 2022-01-11 WO PCT/US2022/011941 patent/WO2022150750A1/en active Application Filing
- 2022-01-11 EP EP22705925.0A patent/EP4275309A1/en active Pending
- 2022-01-11 CN CN202280014171.2A patent/CN116888989A/zh active Pending
- 2022-01-11 CN CN202410554142.6A patent/CN118555546A/zh active Pending
- 2022-01-11 US US18/271,079 patent/US20240015849A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2024503378A (ja) | 2024-01-25 |
WO2022150750A8 (en) | 2022-09-09 |
WO2022150750A1 (en) | 2022-07-14 |
EP4275309A1 (en) | 2023-11-15 |
CN116888989A (zh) | 2023-10-13 |
US20240015849A1 (en) | 2024-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240292329A1 (en) | Methods for power saving sensing and resource allocation | |
JP2022174164A (ja) | 無線システムにおける補助的なアップリンク送信 | |
CN113039833A (zh) | 基于上行链路的前向移动性 | |
US20230037980A1 (en) | Method and device for performing paging in mobile communication system | |
CN116250342A (zh) | 针对小数据传输的空闲/非活动移动性 | |
JP2023547857A (ja) | マルチキャスト及びブロードキャストサービスのharqフィードバック | |
JP2024133557A (ja) | マルチキャスト及びブロードキャスト構成シグナリング | |
CN114982256A (zh) | 用于无线系统中多媒体广播多播服务(mbms)的资源分配的方法、装置和系统 | |
JP2023537490A (ja) | Nrリレーに関連付けられたサイドリンクディスカバリ | |
CN117242893A (zh) | 用于经由侧链路和直接链路的路径选择和复制的方法和装置 | |
CN118555546A (zh) | 无线发射接收单元wtru以及由wtru执行的方法 | |
CN118251922A (zh) | 集成接入和回程(iab)中的新空口(nr)—用于移动小区的测量相关增强 | |
CN117957863A (zh) | 与mint相关联的wtru到网络中继 | |
CN115735409A (zh) | Wtru到网络中继切换的方法 | |
US20230199894A1 (en) | Method of multimedia broadcast/multicast service (mbms) delivery mode switch | |
US20230088622A1 (en) | Communication system, communication terminal, and network | |
CN117426119A (zh) | 条件重新配置程序的增强 | |
CN117296355A (zh) | 用于有效处理服务/相邻小区信息的更新的方法和装置 | |
US20240114399A1 (en) | Handover with an active multi-cast broadcast session | |
US20240365349A1 (en) | Multicast and broadcast services reliability indication | |
US20230189299A1 (en) | Communication control method | |
CN118715817A (zh) | 源节点和目标节点之间的增强型cho/cpc | |
WO2024173312A1 (en) | Retransmission scheme based on a triggering condition | |
WO2024035937A1 (en) | Coordinated handover for a group of wtrus using xr and media applications | |
WO2024211494A1 (en) | L1/l2 triggered mobility temporary recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |